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Abstract

The rapidly increasing size of deep-learning models has renewed interest in alternatives to
digital-electronic computers as a means to dramatically reduce the energy cost of running state-
of-the-art neural networks. Optical matrix-vector multipliers are best suited to performing
computations with very large operands, which suggests that large Transformer models
could be a good target for them. In this paper, we investigate—through a combination of
simulations and experiments on prototype optical hardware—the feasibility and potential
energy benefits of running Transformer models on future optical accelerators that perform
matrix-vector multiplication.

We use simulations, with noise models validated by small-scale optical experiments, to show
that optical accelerators for matrix-vector multiplication should be able to accurately run
a typical Transformer architecture model for language processing. We demonstrate that
optical accelerators can achieve the same (or better) perplexity as digital-electronic processors
at 8-bit precision, provided that the optical hardware uses sufficiently many photons per
inference, which translates directly to a requirement on optical energy per inference. We
studied numerically how the requirement on optical energy per inference changes as a function
of the Transformer width d and found that the optical energy per multiply–accumulate
(MAC) scales approximately as 1

d , giving an asymptotic advantage over digital systems.

We also analyze the total system energy costs for optical accelerators running Transformers,
including both optical and electronic costs, as a function of model size. We predict that well-
engineered, large-scale optical hardware should be able to achieve a 100× energy-efficiency
advantage over current digital-electronic processors in running some of the largest current
Transformer models, and if both the models and the optical hardware are scaled to the
quadrillion-parameter regime, optical accelerators could have a > 8, 000× energy-efficiency
advantage. Under plausible assumptions about future improvements to electronics and
Transformer quantization techniques (5× cheaper memory access, double the digital–analog
conversion efficiency, and 4-bit precision), we estimate that the energy advantage for optical
processors versus electronic processors operating at 300 fJ/MAC could grow to > 100, 000×.
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1 Introduction

Deep learning models’ exponentially increasing scale is both a key driver in advancing the state-of-the-art and
a cause of growing concern about their energy usage, speed, and practicality. This has led to the development
of hardware accelerators and model training/compression/design techniques for efficient and fast inference on
them. Because they still perform all the underlying operations using the same physical mechanisms, most
digital-electronic accelerators (Reuther et al., 2020; Graphcore, 2021; Cerebras Systems, 2021; Andersch et al.,
2022; Habana Labs, 2022) can improve performance by constant factors. While these may be large factors,
they do not change the way costs scale with model compute requirements.

Analog accelerators can be different from digital ones in that the energy cost of performing computations
may fundamentally scale differently than digital systems. For example, in optics or analog-electronic crossbar
arrays, a common heuristic is that the energy of a matrix-vector product scales linearly with vector size,
rather than the ∼ d2 of digital systems (assuming all dimensions are ∼ d). This is a key intuition for
why alternative analog computing platforms using optics have been proposed as a new paradigm for better
scalability (Sebastian et al., 2020; Caulfield & Dolev, 2010; Wetzstein et al., 2020; Nahmias et al., 2020;
Stark et al., 2020; Huang et al., 2021; Shastri et al., 2021). Ideally, the scaling is asymptotically better than
digital systems in energy per MAC (Hamerly et al., 2019; Wang et al., 2022; Sludds et al., 2022; Nahmias
et al., 2020). This is because in existing digital systems there must be some amount of energy paid per
element-wise multiplication, which does not change with the number of multiplications, so the power must
scale proportionally to the number of MACs (if other overheads are ignored) (Hamerly et al., 2019). By
contrast, the multiplication in optics may be free; the energy cost is in encoding the data with enough photons
such that the output signal-to-noise (SNR) is high enough for the final answer, regardless of operand size.

However, these optical neural networks (ONNs) have additional complexities and limitations of their own such
as low precision, noise, and analog/digital data conversion overheads which depend on the access patterns
of the model running (Figure 1). Thus, advantageously accelerating any neural network architecture with
ONNs is in practice hard, and DNNs without the necessary activation statistics and model architecture
may not achieve this scaling. But Transformers’ efficient data-access patterns (wide layers, parallel/batched
token processing, etc.), and trends in methods for scaling them, make them an especially attractive match to
leverage this analog optical scaling advantage for asymptotic energy-efficiency. Here, our goal is to investigate
if this Optical Transformer hypothesis is true in realistic settings — with real noise, hardware imperfections,
memory and digital-analog-conversion costs, and state-of-the-art models.

Here we demonstrate how Transformers run on ONN systems, and estimate the potential benefits of doing so.
To first verify that Transformers may run on these systems despite their imprecision, we sampled operations
from a Transformer and ran them on a real spatial light modulator (SLM) based experimental system, and
used the results to create a calibrated simulation of the optical hardware, with the systematic error, noise,
and imprecision of weights/inputs we observed. Transformers running on the simulated hardware could
perform nearly as well as those running digitally, and could be far more efficient. We summarize our key
contributions as follows:

• We demonstrated linear Transformer operations (the bulk of a Transformer’s computation) running
with sufficient accuracy on real optical hardware and in a matching simulation, despite errors and
noise on hardware supporting fewer than 8 effective bits of precision.

• Via simulation, we established scaling laws for optical Transformer performance versus optical energy
usage, and optical energy usage versus model size. We found that Transformers accelerated optically
achieve performance that is consistent with the ideal 1

d -energy-per-MAC scaling possible on analog
hardware, and that Transformer architectures are large enough to benefit significantly.

• Based on our simulations and experiments we estimated an orders-of-magnitude energy consumption
advantage of full ONN accelerators versus state-of-the-art GPUs, exceeding 103 for near-future model
sizes.
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Figure 1: Can Transformers benefit from running on optical hardware? Left: Optical Neural
Networks (ONNs) have been proposed as an alternative computing platform that can achieve asymptotic
energy-efficiency advantages over digital computers running neural networks. There are various ONN platforms
that all aim to efficiently implement matrix operations. Right: We hypothesize that Transformers’ architecture
allows for ONN-enabled benefits that scale. But energy-efficiency advantages with ONNs are not a guarantee;
their behavior is affected by model architecture, statistics, and resilience to the noise/imprecision of analog
hardware. Thus, while there are many implementations of general-purpose optical matrix accelerators (such as
those depicted in the inset), there are still model-dependent challenges/tradeoffs in realizing their purported
advantages. We seek here to answer the question of how much today’s enormous Transformer models can
benefit from this technology.

• We discussed how Transformers’ suitability for optical acceleration is related to their architecture,
and more generally how specific elements of DNN architecture affect the function of ONN systems
running them.

• We identified the hardware and systems design challenges that future work on building ONN
accelerators should target.

While our experiments and simulations were based on specific hardware as a representative example, our
scope here is more general. We are interested in understanding how optical energy scaling and noise relate to
Transformer performance and architecture. As such nearly all our findings apply broadly to linear optical
processors (and hopefully future ones), irrespective of their underlying hardware implementation details
(Figure 1, left).

2 Background and Related Work

2.1 Transformer Models

Transformers are models for processing sequential data based on multi-head attention. Transformers consist of
two-layer feed-forward blocks and multi-head attention (Figure 2) operations. Multi-head attention computes
relationships between sequence elements by deriving query, key, and value sequences Q, K, V and computing
dot products with a softmax nonlinearity in-between (Vaswani et al., 2017). Transformers also leverage
modern design elements such as additive residual skip connections (He et al., 2016) and normalization
layers (Ba et al., 2016). A defining feature of Transformers is that entire sequences may be processed in
matrix-matrix products in parallel (instead of one token/input at a time).
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2.2 Large-Scale Deep Learning

In the past few years, it has been found in particular that Transformer architectures significantly improve
when sized up to billions or even trillions of parameters (Brown et al., 2020; Kaplan et al., 2020; Clark et al.,
2022; Hoffmann et al., 2022; Treviso et al., 2022; Zhai et al., 2022), causing an exponential growth of deep
learning compute usage (Sanh et al., 2019; Sevilla et al., 2022). These large-scale Transformers achieve ever
more impressive results in not only natural language processing, but also in other domains such as computer
vision (Dosovitskiy et al., 2021; Liu et al., 2021b), graphs (Kim et al., 2022), and in multi-modal settings
(Jaegle et al., 2021b;a; Radford et al., 2021; Ramesh et al., 2021; Yu et al., 2022; Reed et al., 2022), making
them a popular but expensive solution for many tasks—digital hardware’s energy efficiency (ie. per-flop or
per-inference cost) has not kept up with the growing FLOP requirements of state-of-the-art deep learning
models (Sevilla et al., 2022). They also have transfer learning capabilities (Radford & Narasimhan, 2018;
Devlin et al., 2019; Radford et al., 2019; Brown et al., 2020; Lu et al., 2021; Dosovitskiy et al., 2021), allowing
them to easily generalize to specific tasks, in some cases in a zero-shot setting where no further training is
necessary (Brown et al., 2020; Ramesh et al., 2021; Lewkowycz et al., 2022).

2.3 Scalable Compression and Quantization of Large Language Models (LLMs)

Optical hardware’s low precision raises the question of whether scaled-up models could be quantized sufficiently
to run. Thankfully, continual research in LLM compression has progressively shown that larger models do
not have increasing precision requirements. For example, Li et al. (2020) found that larger Transformers
can be compressed more easily, to the degree that it is more worthwhile to train large ones and compress
them over training smaller ones of the target size. Furthermore, Bondarenko et al. (2021) and Dettmers et al.
(2022) demonstrated running Transformers at scale with int8 precision, and the recent work of Dettmers &
Zettlemoyer (2022) proposes that 4-bit is optimal for nearly all model scales, except for the largest tested (175B
parameters) where 3-bit was sometimes found to work better. Some approaches utilize quantization-aware
training (Jacob et al., 2018)(QAT), where a model is fine-tuned while subject to quantization, to make it
robust at low precision.

2.4 Traits of Optical Accelerators

The typical working mechanism of optical accelerators assumed here is as follows: data, such as matrices and
vectors, are encoded in light, utilizing some degree of freedom (for example, each pixel in 2d space could
represent one element of a vector). This light is then modulated (such as attenuating the light) to implement
element-wise products. Then the outputs are focused onto detectors, summing up the element-wise products.
In essence, these accelerator systems are like a digital processor’s cores (and are especially analogous to
matrix compute units found on modern GPUs and accelerators) and process the data in a vectorized fashion,
where at each step a batch of products (and the accumulation) happens in parallel. The difference is that the
sizes that some ONN systems can process at a time can be significantly larger, such as computing products
with vectors of dimension ≥ 103 at a time in some cases.

Researchers have explored a wide variety of controllable optical systems to implement linear operations on
optical fields, such as arbitrary matrix-vector multiplications, vector-vector dot products (Shen et al., 2017;
Andregg et al., 2019; Hamerly et al., 2019; Spall et al., 2020; Bogaerts et al., 2020; Wang et al., 2022; Hayasaki
et al., 1992; Mesaritakis et al., 2013; Tait et al., 2015), or convolutions (Wu et al., 2020; Feldmann et al.,
2021b; Miscuglio et al., 2020; Xu et al., 2021; Fan et al., 2022). In this work, we adopt one kind of free-space
multiplier (Wang et al., 2022; Spall et al., 2020; Hayasaki et al., 1992) (Figure 2, top left) to demonstrate
Transformer operations in optical experiments and for our simulations. We selected this system because it has
many of the same characteristics as other ONN implementations (photon detection noise, free optical data
transport and reuse, systematic errors), and aim to draw conclusions that could generally be useful for those
working with other ONN designs. Many ONN systems, including ours, share the following typical traits:

Optical Shot Noise Optical systems are subject to errors in both the actual hardware and from photon
detection. Detection of optical intensity in particular is subject to a phenomenon known as shot noise where
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the detected value is Poisson distributed: given vectors x and w, with the elements of x encoded as optical
intensity, the output Y is distributed as:

Y ∼ Poisson(w · x) (1)

For other encoding schemes such as amplitude or phase encoding, equation 1 should be modified, but the
detection is still subject to shot noise.

Device Imprecision and Systematic Errors Systematic errors, on the other hand, are not noise but
rather errors resulting from deficiencies of the hardware. Unlike noise, systematic errors are identical across
multiple attempts to run the same computation. Meanwhile, because data often requires rescaling for input
into analog-optical systems, neural networks running optically may encounter scaled errors. Many works
studying ONNs have characterized the distribution of errors (prevalence of deviations from ground-truth
values) as Gaussian (Sludds et al., 2022; Feldmann et al., 2021a).

Free Data Transport and Reuse Transport and copying of data encoded in light is free when performed
optically. This negates any cost of having to send data to particular sites to perform computations. Copying
may be implemented in a variety of ways, such as via “fanning out” and “fanning in” data (projecting multiple
copies, and then focusing multiple computation results onto a detector). However, when splitting a signal in
this way, the total amount of light is divided by the number of copies.

Efficient Photon Usage Shot noise, and therefore an optical dot product’s signal-to-noise ratio (SNR,
which serves as an effective bit precision) is related to the mean number of photons at the output. The
efficiency of photon usage can therefore grow with increasing multiply-accumulate operations (MACs): the
SNR for the product w · x is

SNR(Y ) = E[Y ]√
Var[Y ]

=
√

w · x =
√

E[Y ], (2)

which explains this behavior; if the desired output precision does not change, constant photons are required
regardless of dot product size. In other words, the amount of optical energy needed is proportional to the
number of vector-vector products (due to needing a certain amount of light for each), but not the amount of
compute performed. For example, assume the computation of a dimension d vector dot-product between two
vectors. If the desired effective precision is roughly 8-bit, then one wishes to detect a maximum of roughly
2552 = 65025 photons at the output. If one still requires a ∼ 8-bit output with a dot product of size 2d, only
this same number of photons is necessary if the 2d-sized vectors have similar statistics to the d-sized vectors;
each element could be encoded using half the number of photons as before. Work on ONNs has studied this
behavior in a variety of scenarios (Hamerly et al., 2019; Nahmias et al., 2020; Wang et al., 2022; Sludds et al.,
2022).

This efficient scaling is not a guarantee—the required number of photons may be influenced by a model
architecture’s activation/weight distributions, encoding schemes, precision requirements, etc (Tait, 2021).
Related to the previous example, if the operands of the 2d-size dot-product have different statistics (ie. the
vectors have larger dynamic ranges), or if more precision in the answer is desired for larger dot products,
then differing amounts of photons are required for encoding the inputs.

2.5 Existing Optical Neural Network Architectures

The key similarity among systems with these traits is that they can reuse data: they accept a vector as input,
but only convert it from digital signal to optical signal once to compute full matrix-vector products in the
optical domain (as opposed to reloading the same data from digital-electronic memory repeatedly every time
it is needed in the matrix-vector multiplication). While this reuse is achieved in different ways the concept is
the same: ONN accelerators can take advantage of free data transport with optics, shot-noise-limited optical
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energy usage, and methods for reusing optical data to realize an energy-efficiency advantage. Some examples
of systems that possess the traits we discussed above include (see also Figure 1):

• Modulator arrays (Mesaritakis et al., 2013; Tait et al., 2016; Feldmann et al., 2021b; Giamougiannis
et al., 2023): Input data is fed into a grid-like structure and routed to rows of resonators, phase-change
materials, or similar elements that modulate the light, realizing a matrix-vector multiplication. Data
is typically reused via the branching of the waveguides to the rows of modulating elements.

• Mach-Zehnder Interferometer (MZI) meshes (Shen et al., 2017; Gu et al., 2021): Input data is fed
into a cascaded arrangement of MZIs that redistribute optical energy and information, computing a
matrix-vector multiplication. The depth of the circuit allows for data flowing through to be reused
(Miller, 2023) for all stages of the computation of the matrix-vector product at all depths.

• Spatial-Light-Modulator-based (SLM) ONNs (Spall et al., 2020; Wang et al., 2022): Data is fanned
out, fed through a spatial light modulator that realizes element-wise scalar multiplications, and is
then fanned in to compute matrix-vector multiplications. Weights may be kept in place to be used
with many input vectors, which are copied via fan out.

• Fourier-domain convolution engines (Chang et al., 2018): Input data is fed through passive optical
components resulting in the spatial Fourier transform; operations applied in the Fourier domain
(such as multiplication by weights) thus correspond to performing a convolution. The application of
weights in the Fourier domain is equivalent to reusing a spatial-domain kernel at every pixel of an
image.

• Diffractive networks (Lin et al., 2018; Zhou et al., 2021; Meng et al., 2023; Zheng et al., 2023): Inputs
pass through a series of diffractive elements, realizing a matrix-vector multiplication. The diffractive
elements can distribute the input data in a fashion similar to MZI meshes that leverages optical
depth (Miller, 2023), and weights can often be kept in place or are fixed at fabrication time.

• Frequency-domain convolution engines (Fan et al., 2022): Data is fed through electro-optic modulators
(EOMs) that encode/modulate data as frequency modes, utilizing the Toeplitz-structure coupling
behavior of EOMs to implement full convolutions as coupling is applied to all sets of neighboring
modes automatically. This only requires loading a kernel once for it to be applied many times. Input
modes can be reused by applying weights corresponding to multiple channels/features.

• Wavelength-multiplexed vector dot-product engines (Xu et al., 2021; Sludds et al., 2022): Inputs
are encoded and modulated as a pulse train through EOMs, realizing vector-vector dot products by
collecting element-wise multiplications at detectors. Systems can employ wavelength multiplexing so
that multiple data is processed at the same time, allowing for matrix-vector multiplication. Copying
data with added delay allows for convolutions (Xu et al., 2021).

While the individual implementation details are complex, what is most important are the shared traits: free
data transport, analog noise/error (including optical shot noise), and linear operation computation (ie. ability
to perform matrix products). Using these high-level assumptions we aim to model the behavior and efficiency
of Transformers running on ONNs in general.

Previous work has considered deep learning models such as MLPs and convolutional networks on benchmark
tasks like MNIST (Miscuglio et al., 2020; Wang et al., 2022), and simulations of convolutional models such as
AlexNet (Krizhevsky et al., 2012) on more difficult datasets such as ImageNet (Hamerly et al., 2019). This
is important in understanding the viability of these systems for low-power and edge applications, but also
begs the question of how well newer, larger models perform on optical systems. Here we study Transformers
running on ONN hardware to understand the operation of ONNs at compute scales that are orders of
magnitude larger than previously considered.
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2.6 Optical Neural Network Energy Calculation

Streaming Weights or Weights-In-Place There are two approaches for loading weights.Weights-in-place
schemes involve loading them once, and re-using them for many inputs. Alternatively, systems can employ
streaming weights where at every computation the required weight matrix is loaded. Streaming weights
systems may be advantageous in situations where both operands of a matrix product are changing, such as in
attention, or when weights are too large to be maintained by a weight-stationary device all at once; in such
cases the weights would need to be reloaded for a weights-in-place system which are typically not optimized
for doing so.

Estimating ONN System Energy Consumption ONNs’ energy consumption is modelled as follows:
the energy cost is broken down into the optical costs of performing MACs and the electrical costs of
loading/detecting data, which are usually dominant. Consider a product between two matrices, A ∈ Rn×d,
B ∈ Rd×k. Such a product results in loading (detecting) nd + dk (nk) scalars, and performing ndk MACs. If
the energy to electrically load (detect) a scalar is Eload (Edet), and to perform a MAC optically is Eoptical,
then the total energy is:

E = (nd + dk)Eload + nkEdet + ndkEoptical (3)

For weights-in-place systems, one of the operands’ loading costs can be assumed to be free, but in some systems
maintenance of the weights which can be modelled as a small cost per MAC (given a certain throughput rate),
Emaintain. Data access costs typically remain dominant due to the high costs of DAC/ADC. The calculation
is then as follows:

E = ndEload + ndkEmaintain + nkEdet + ndkEoptical. (4)

This illustrates how ONNs may have asymptotic energy advantages over digital computers. Notice that
regardless of the number of reuses, all data is only loaded once in Equation 3 (and partial products are
accumulated at a detector before converting and storing the data digitally). Meanwhile, Eoptical ideally
scales as 1/d. These properties make energy cost disproportional to the number of MACs, ndk (assuming
negligible Emaintain for Equation (4), which it typically is, and in some architectures it is zero). In other words,
Edigital
EONN

∼ min(n, d). For weights-in-place operations, the energy advantage scales as Edigital
EONN

∼ d because the
weights may be reused for free.

In general, many ONN accelerators share the same approach to data processing: data is read from memory,
converted to optical signal, operated on by an optical system, converted back to digital, and stored. Estimates
for energy costs follow the typical breakdown (Wang et al., 2022; Hamerly et al., 2019; Chen et al., 2023):
The energy Eload is broken down into three components, related to the energy of the cost of reading from
memory Eread, digital-to-analog conversion (DAC) EDAC, and modulation to generate the light Emod:

Eload = Eread + EDAC + Emod. (5)

Detection energy consumption Edet can broken down in a similar fashion, where

Edet = Edetector + Eamp + EADC + Ewrite (6)

represent the costs of detecting a signal, amplifying the detected signal, performing analog-to-digital conversion,
and writing to memory respectively. Often, the goal is to amortize these data-access-related costs via the
data reuse when computing with large operands.

Importance of Neural Network Architecture In practice, achieving an efficiency advantage with
ONNs is dependent on the neural network architecture being run. Data access (storage) from digital memory
occurs before (after) digital-analog (analog-digital) conversion, so the costs for loading/storing from digital
hardware are only paid once, since the optically-encoded data is freely transported/copied. Thus, the more
compute to be performed per data access (ie. how large matrix-vector products are, which depends on the
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DNN architecture), the more efficient the ONN. Also, the precision requirement must not change when the
model being run is scaled. If this is true, then under shot noise, only the same mean number of photons at
the output of a dot product is necessary, no matter how large the computation is.

2.7 Optical Accelerators for Deep Learning: Key Differences From Digital Compute

We use the common behaviors in ONN implementations to define a high-level abstraction of generic ONN
behavior, which can be targeted by deep-learning applications. Some aspects are like those of digital
accelerators. For example, ONNs access digital-electronic memory and ONN devices may only support low
bit precision. But they also have unique behaviors of their own which must be considered:

• Additional sources of error. While ONN accelerators may operate at low precision like their
digital counterparts, they also suffer from random noise and systematic errors (Section 2.4) which
have different profiles/distributions from standard quantization errors.

• Compute is effectively free. Unlike digital accelerators which consume power to compute floating-
point operations (such as multiplying two numbers), such operations can happen passively in analog,
optical systems. The main cost per operation is then the cost of encoding the data, which may scale
asymptotically better than digital compute in the ideal case (Section 2.4).

• High data-access overhead. While data access costs exist in digital-electronic accelerators, the
need for analog-digital (and vice-versa) conversion makes the overhead larger in ONNs (Section 2.6).

• Free data reuse. While digital computers cannot freely copy data, an ONN may retrieve a vector
from memory once, and use it for many dot products in, for example, a matrix-vector product, at no
additional cost (besides the optical encoding of the data) (Section 2.4).

• Model statistics affect energy consumption. In contrast to digital accelerators which typically
perform computations at a certain cost for a fixed bit precision, the encoding of data in analog-optical
systems is proportional to its scalar value (Section 2.4)

In practice, these high-level concepts summarize what must be accounted for in using ONN accelerators
effectively, abstracting away the need to consider the low-level hardware implementation. With these
assumptions, many ONNs may be thought of as generic matrix-vector-multiplication engines, as depicted in
Figure 1 (left).

3 Optical Transformers

We sought to evaluate Transformers running in the ONN-accelerator setting of Section 2.7. To do this,
we selected an example ONN accelerator system to demonstrate the common general concepts of ONNs.
We designed models that are intentionally similar to other Transformers, with the goal of simulating their
behavior (informed by some experimental measurements) and energy consumption on it. A summary of our
approach and model is in Figure 2.

3.1 Architecture and Task

We created optical Transformer models with a GPT2-like (Radford et al., 2019) architecture that replaces the
GELU (Hendrycks & Gimpel, 2016) activation with ReLU6, which is known to improve low-precision model
performance (Krizhevsky, 2010; Howard et al., 2017; Kim et al., 2021). For language modelling, we used
the raw Wikitext-103 dataset (Merity et al., 2017). The models we simulated have 12 layers (consisting of
multi-head attention and feed-forward blocks), operate on a context length of 1024 tokens, use 12 attention
heads, and have embedding dimension d varying from 192 to 1536. The full details of the training technique,
architecture, and hyperparameters are in Appendix A.
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Figure 2: Optical Transformer evaluation: prototype hardware; simulator model; Transformer
architecture. Bottom: typical Transformer architecture, but with ReLU6 activation. Top Left: experimental
spatial light modulator (SLM)-based accelerator setup. From some layers—marked with a laser icon—we
sampled dot products to run on real hardware. Top Middle: Linear operations, in light blue, run on a
simulated accelerator with noise/error. Lookup tables (LUT) allow simulation using our setup’s supported
weight/activation values. Top right: our model of energy consumption for optical accelerators, based on
assumptions and results from our experiment/simulations. The model accelerator system consists of random-
access memory (RAM), a analog/digital conversion (DAC/ADC), light modulation (MOD), amplification
(AMP).

3.2 Transformer Computations on Optical Hardware

We ran experiments using a real Transformer’s (we used the base-sized model with d = 768) weights in
order to characterize the behavior of an ONN system. We adopted as a representative example of an optical
accelerator a spatial light modulator (SLM) based system which computes vector-vector dot products (Wang
et al., 2022). Vectors are encoded on a display, and copies are shone through the SLM which has varying
transmission corresponding to some data (ie. a weight matrix). The outputs of this operation—element-wise
products—are collected at detectors as the resultant dot products (Figure 2, top left). We then collected
calibration curves, mappings from the detected output light intensity to the actual neuron floating-point
values. To do this, we ran many random dot products on the hardware and collected pairs of detected values
and digitally-computed ground-truth values. We then fit the relationship linearly. We used high photon
counts and averages over repeated experiments to eliminate shot noise, leaving any deviation from the linear
fit as the hardware’s systematic error.

Full details of experimental procedures and calibration are in Appendix B. There are differences between the
precision limitations of real devices and linearly-spaced quantization schemes often used for DNNs - While
these devices are commonly controlled by digital signals with evenly spaced discrete levels, the resultant
output of these devices tends to be unevenly spaced because of their intrinsic nonlinear response or finite
extinction ratios. We used lookup tables (LUT)s to model this kind of hardware error that is common to many
optoelectronic devices. The LUTs were collected for the organic LED display and spatial light modulators
(SLMs) by measuring levels of one device with the other at full transmission/emission. We incorporate these
LUTs into both training and simulation. Backpropagation is carried out using the straight-through estimator
just as for QAT, but unlike QAT once the rounding operation produces the quantized uint8 representations,
the numbers are directly used to index the LUTs to produce the activations instead of dequantizing.

3.3 Simulation of Optical Hardware

Informed by our experiments, we constructed a simulation of the optical hardware. By simulating the
hardware behavior directly we model how any arbitrary operation would behave if run on the physical setup
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Table 1: Summary of simulation configurations for different evaluation and training scenarios. For simulating
optical hardware we included all behaviors. For determining optical resource scaling, we focused on shot
noise, and ran a plain 8-bit model for comparison.

Setting Op. Shot Noise Sys. Err. LUT 4-Pass
Hardware
Simulation

QAT ✗ ✗ ✓ ✗
Eval ✓ ✓ ✓ ✓

Optical
Scaling
Simulation

QAT ✗ ✗ ✗ ✗
Eval ✓ ✗ ✗ ✓
Int8 ✗ ✗ ✗ ✗

when it is infeasible to run large models experimentally. We aimed to emulate the noise, error, and precision
that we observed in order to understand how well full Transformers would perform when running on optical
hardware. The configurations for different scenarios are summarized in Table 1. We also evaluated the digital,
8-bit-QAT-trained model for comparison purposes.

Hybrid Scheme Pure optical systems cannot easily compute activation or normalization functions. Thus we
assumed LayerNorm, ReLU activations, and residual skip connections are performed digitally at full precision.
Thankfully, even in smaller models, linear computations are the overwhelming majority (Section 4.3).

Non-Negative Weights and Inputs (“4-Pass” Multiplication) An important limitation is that our
display and SLM only support non-negative values. The constraint of having all-positive data is present
in many but not all optical neural network systems.We worked around this by decomposing products into
sums/differences of products with non-negative operands. Consider a product between matrices W and
X. If we let W+ (X+) and W− (X−) be matrices with only the positive and negative elements of W (X)
respectively, then:

WX = W+X+ − |W−|X+ − W+|X−| + W−X− (7)

Data Scaling On the real system, we define a maximum activation/weight value as 1.0 and minimum as
0.0. To simulate operation, the inputs and weights of every simulated NN layer are scaled to this range, and
then rescaled back afterwards.

Device Quantization Real hardware may only have certain number of representable levels. To emulate this
behavior, we fine-tuned pretrained models using QAT and applied the following in simulation (hyperparameters
in Appendix A):

• For optics-simulated layers, we applied quantization to int8 (256 levels). Then, instead of dequantizing,
we used the integer values directly as indices into the LUTs that we gathered experimentally.

• We also quantized weights, but with the SLM LUT. We clamped smaller values to 0.02 in the
simulation, as our SLM does not have a high extinction ratio, and the smallest transmission is 0.02.

• Accumulation can be high precision, but we used int8 quantization for outputs, since analog-digital
conversion (ADC) is expensive in practice.

• We used both deterministic and stochastic rounding when quantizing, with similar results.

Systematic Errors Issues like cross-talk, misalignment, defects in ONNs give rise to systematic errors.
We simulated such a constraint by adding Gaussian noise to simulated model outputs, scaled relative to the
mean sizes of the outputs, as this was the noise behavior we observed experimentally (it is related to the
rescaling of data between 0 and 1).
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Optical Encoding and Shot Noise We modeled optical encoding by subjecting layer outputs to simulated
shot noise (Figure 2), which differs from the systematic error model. Outputs were scaled by a number
such that the average photon number per feature (photons/MAC) was some target value. Each of these
features was used as the mean of a Poisson distribution, which we sampled. These outputs were then scaled
back down to represent neuron values. In the simulations for optical scaling we used vanilla 8-bit QAT
(no LUTs or systematic error, which can overwhelm shot noise) to cleanly demonstrate the optical scaling
properties—which are model-dependent and not hardware-dependent—of Transformers.

4 Results

4.1 Transformer Error Tolerance and Hardware-Simulation Accuracy

Experiment

Experimental 
Error

Simulated 
Noise

First FF
σ = 2.09%

First Attention
σ = 5.65%

20.25

Last FF
σ = 1.31%

Last Attention
σ = 5.99%

Figure 3: Comparison of experimental and
simulated noise models and simulated Op-
tical Transformer noise tolerance. Top: Sim-
ulated performance (Wikitext-103 validation per-
plexity (PPL)) versus percent mean-relative sim-
ulated noise in feed-forward (FF) and attention
(Attn) layers. Systematic errors from experimen-
tal data marked with a star. Bottom: comparison
of simulated noise model to error from experimen-
tal data. The Gaussian shape of the simulated
error behavior matches experiment accurately.

We determined experimentally that Transformer opera-
tions are able to run on real hardware without severely
degraded performance from systematic errors. The bottom
four panels of Figure 3 are histograms of the experimen-
tal differences from correct values. The simulated noise
distributions (dotted lines) match well with the experi-
mental data, which confirms that they are an accurate
representation of the real systematic error behavior. Fig-
ure 3 (top) is a map of the performance of the simulated
model over different configurations of the mean-relative (in
percent) noise at every layer of feed-forward and attention
blocks. The model performs well with significant noise
(experimental noise levels marked with stars), within 1
perplexity from noise-free performance unless the noise
is very high. While 8-bit precision was used for QAT,
the optical Transformer can perform inference at lower
precision, as implied by its error tolerance. We study this
further in Appendix C.

4.2 Optical Scaling Laws

Optical Transformers achieve language modelling perfor-
mance close to their digital counterparts’ when shot-noise-
limited at photon budgets where optical energy is negligi-
ble. The perplexities on the Wikitext-103 validation set of
various optical Transformer models simulated with differ-
ent total photon usage (amount used for input data) are
shown in Figure 4 (left). The curves illustrate a tradeoff:
larger models need larger photon totals to function well,
and there are different optimal model choices based on
the photon budget. We define photons/MAC as the total
photon budget (amount at input) divided by total MACs.
The percentage difference from the performance at 10K
photons/MAC (Figure 4, middle)—chosen to represent an
ideal high-precision scenario—is roughly power-law scaled
in photons/MAC for all models with truncation near 10K;
better performance can be had with more photons, but
with diminishing returns, and the performance matches or
exceeds that of the 8-bit digital models’ when the photon
budget is not too low (∼ 102).
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Constant photons/MAC 

Constant dot-product total (1/d photons per MAC)

8-bit PPL

Equivalent to 8-bit PPL 

Figure 4: Simulations of Optical Transformer behavior with varying photon usage. Left: Wikitext-
103 validation-set perplexity (PPL) versus embedding dimension d and total photons used for a single forward
pass/inference. 8-bit digital model performance is shown with dashed lines. Middle: perplexity degrades from
ideal with fewer photons-per-MAC; the plot exhibits truncated power-law scaling. Right: Scaling of number
of photons needed for an Optical Transformer to achieve the same perplexity as an 8-bit digital-electronic
processor, versus model size.

The models use fewer photons/MAC as they scale, achieving the theoretical efficient scaling where the total
per-dot-product photons needed is constant. To study how photon usage scales, we determined how many
photons it takes to reach the performance of 8-bit digital models. These values, in Figure 4 (right), decrease
nearly as 1

d —the total photons needed per dot product is constant (bottom dashed line). The Transformer
architecture clearly takes advantage of efficient optical scaling with larger model sizes, suggesting that required
output SNR does not increase with scale. This is consistent with other work which found that Transformers
compress/quantize well at scale (Li et al., 2020). Meanwhile, the already low photon usage of the largest
model suggests that models larger than our simulations (>10B parameters) may use <1 photon/MAC. This
sub-photon operation works in optical systems (Wang et al., 2022; Sludds et al., 2022) and is in essence no
different at all from operation at higher photon counts (since the number summed at detection is still high).
These empirical scaling results are tied to our specific configurations and training strategies. In Appendix H
we explore a different scheme, illustrating the effects of different methods on photon usage.

4.3 Estimated Energy Usage

The efficient photon scaling trend we observed in Section 4.2 suggests that Transformers running on optical
hardware could achieve significant energy efficiency advantages over running on digital hardware. To
understand the efficiency of Transformers on optical hardware, we designed an ONN system based on
current hardware that is like our experimental setup, with our measured precision and photon scaling (see:
Figure 2, top right). It is an inference system with in-place weights which are loaded once and reused forever,
activations read from and written to SRAM for every layer, and an optical “core” which can perform 10M
multiplications per cycle (this can be thought of as a 10 megapixel SLM). We assume a 10 GHz operating
speed for encoding inputs and detecting outputs, as speeds in this regime are demonstrated for high-bandwidth
telecom applications and in other ONN implementations (Liu et al., 2022; Wang et al., 2019; Ashtiani et al.,
2022). The photon-per-MAC scaling versus model dimension is taken to be the 1/d scaling which we found
was possible in our simulations, and we assumed that the model operates with 5-bit input precision, 8-bit
weight precision, and 7-bit output precision, as determined by our study of low precision performance in
Appendix C. Energy estimates are based on the power consumption of hardware operating at this speed and
precision.

Our approach to energy estimation is as follows: the system is thus assumed to have the behavior and
components as described in Section 2.6; we use Equation (3) and Equation (4) to calculate the energy cost
for every linear operation in Transformer models, with Eoptical ∼ 1/d. This includes both the model’s linear
layers (Equation (4), as weights are assumed to be kept in place) and the matrix-matrix products among
activations in the attention operation (Equation (3), which includes the cost of loading both operands, as there
are no static weights). The cost of digitally-run operations, such as softmax, ReLU, and other element-wise
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Figure 5: Estimated energy usage of Transformer models on optical hardware for a single forward
pass/inference. Hypothetical future model designs are labelled FUTURE-*. Estimated energy/MAC for
digital systems is based on Reuther et al. (2020). Trend for energy usage in optical systems (blue) computed
based on real models only. Inset: energy advantage of running on optics over estimated NVIDIA A100 usage.
The advantage grows with the model compute. M = 106, G = 109, T = 1012, q = 1015 parameters.

operations, is assumed to be the cost of storing and loading all operands in memory. None of the digital
operations have the ∼ d2 scaling of the optically-run linear operations, so energy-efficiency advantages are
still possible. In Appendix D we explain all assumed energy quantities, which are based on contemporary
hardware.

As models grow, running Transformers on optical hardware has a large and asymptotic efficiency advantage
over running on digital hardware. In Figure 5 we chart estimates of the forward pass energy required for
various models1, including a hypothetical family of large, dense Transformer models designed in a similar
fashion, which we label FUTURE-*. For comparison, we also chart various digital systems (Reuther et al.,
2020) in different performance regimes, and a hypothetical “next generation” GPU that can use ∼10 fJ/MAC.
For small models, the optics-based system uses about the same energy, but eventually gains an advantage that
scales asymptotically with the number of MACs. For the larger models, MT-NLG-530B and FUTURE-4q, the
optics-based approach would have ∼140× and ∼8500× energy advantages over the current state-of-the-art
GPU (NVIDIA A100) respectively.

The breakdown of compute and energy costs by source is in Appendix E. In summary we found that as
models get larger the feed-forward layers require most of the computation, but that the energy of data access
in attention is still very expensive due to the detection of many attention matrices across heads. Meanwhile,
the costs of the digital operations become relatively small, ≤ 20% of the total energy for large models, and
therefore not a significant bottleneck. 2

1The recent PaLM (Chowdhery et al., 2022) models used a modified architecture. For simpler comparison, we make our
estimates using a model with GPT-like architecture but with the PaLM model dimensions, which we call PaLM-Like.

2Trends in the design of real models have increasingly favored optics over time. Specifically, attention loads/stores a n × n
attention matrix for each of the h attention heads. Models with more MLP compute per attention head have a larger overall
ratio of computation to energy usage; larger d

h
is more efficient. The largest GPT2 (Radford et al., 2019) uses d

h
= 64; GPT3

(Brown et al., 2020), 128; MT-NLG-530b (Smith et al., 2022), 160; and PaLM (Chowdhery et al., 2022), 384.
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5 Discussion

The results given in Section 4.3 on optical Transformers’ efficiency have implications for the design of future
ONN hardware/software systems.

5.1 Prospects for Hardware Implementation

In Appendix G we discuss in detail the specifications for an ONN system to run large Transformers, as a
target for future work in their design. In particular, we found that ONNs constructed with the following
traits would be ideal:

• An efficient ONN system for Transformers must perform data copying after digital-analog conversion
(fan-out) and accumulation (fan-in) of partial products before detection and analog-digital conversion.

• An ONN must perform computations with large operands in a single shot to gain an energy advantage.
Once operands exceed 104 × 104 in size the advantage is significant, and therefore a future ONN
should implement at least this level of parallelism to achieve >100× efficiency improvements over
current state-of-the-art GPUs (NVIDIA A100).

• An ONN must support at least 7 effective bits of precision. The imprecision can come from various
sources of noise or error as long as there are effectively ∼ 27 distinguishable levels (however, recent
work has demonstrated low-precision Transformers (Dettmers & Zettlemoyer, 2022; Ahmadian et al.,
2023)).

• An ONN system must have sufficient fast (ie. SRAM) memory to store activations at minimum.

• An ONN should be implemented with minimal cost of its surrounding electronic components for
maximum benefit. Future improvements in CMOS technology will be greatly beneficial. In Appendix
F we estimate that future optics-based systems might achieve energy advantages of >100, 000×
running models the size of FUTURE-4q (over 300 fJ/MAC).

• An efficient ONN must encode new inputs significantly faster than weights. Since weights may be
reused, encoding of the inputs may become the main bottleneck in achieving high throughput, and
affects the total energy cost for weight maintenance and DAC/ADC. With our assumption of an
optical processing unit computing 107 products at a time, ∼ 100 MHz speed is necessary to match
the ∼ 1 POPs performance of current GPUs. Here, we based our calculations on a ∼ 10 GHz update
rate, a speed supported by existing methods and hardware, with which significant energy-efficiency
advantages can be claimed.

These generic traits/specifications are sufficient to implement Transformers efficiently, regardless of imple-
mentation details.

5.2 Neural-Network Architectures’ Relationship to ONN Performance

The design of the software — DNN architectures, including Transformer shape and size — for these systems
is also critical:

• The asymptotic advantage of optics is that once data is loaded, it may be reused N times for free,
with constant energy for M-sized dot products. This suggests that architectures with large M and N
benefit the most, and that wider is better than deeper when scaling a model (in terms of energy).

• The attention mechanism requires much of optical Transformers’ power consumption for very little
compute. Models designed with larger d

h are therefore more energy efficient. Scaling of Transformers
is conveniently following this trend already.
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• The ability of Transformers to run efficiently optically is due to their parallel-processing of tokens
with the same weights, and ability to tolerate the levels of noise and error present in ONN systems
at scale. Thus architectures designed with similar behavior (Tolstikhin et al., 2021; Liu et al., 2021a)
could also be efficient.

5.3 Limitations

While we have laid out the potential requirements and used simulation to predict the viability and potential
gains from doing so, building a full ONN system that realizes the potential benefit is still an open challenge.
For example, while optical components may perform computations cheaply and quickly, there is still the issue
of supplying them with sufficient data bandwidth to fully leverage them. Integrating these components into a
working system – memory, conversion, the optical elements, etc. – also presents a significant engineering
challenge.

Furthermore, studying potential advantages in speed/throughput is more challenging. In this domain, different
ONN implementations have different behavior, and may be optimized towards running certain neural-network
architectures. Further study of the tradeoffs with speed/energy/memory could be necessary. For example,
the assumed high-speed 10 GHz operation here also presents an implementation tradeoff: operating too slowly
may increase weight-maintenance-per-operation costs as fewer operations are performed for constant power,
but too quickly makes DAC/ADC more expensive

Finally, we note that while our estimates are for single devices, large-scale deep learning systems often
consist of multiple devices working together, due to memory/compute limitations. This introduces additional
data-transport costs for digital systems, and memory-bound situations affect both digital and optical systems’
energy consumption in nontrivial ways. In these cases, more complicated schemes to run models efficiently are
necessary, such as sharding weights across devices, and the assumption that all weights can be kept in-place
must be relaxed. We further analyze this case in Appendix G. Despite these limitations, we hope that the
potential benefits we studied here motivate future work in this direction.

6 Conclusion

We have demonstrated the ability of Transformer models to run accurately and efficiently on optical hardware
through optical experiments and an experiment-informed simulation of future optical hardware. We examined
Transformers’ scaling behavior with optics and used our findings to show that optical systems could have
a large and asymptotic energy advantage over digital-electronic ones that grows with the model size. For
example, we showed that optical hardware may achieve an over 100× energy advantage3 when running
the largest Transformer models today (∼500 billion parameters) and that larger, future Transformers (∼4
quadrillion parameters) may be realized with an >8000× optical energy advantage. We believe our findings
about the potential energy-efficiency of optical accelerator hardware strongly motivate the development of
optical processors for large-scale deep learning with Transformers.
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Table 2: Model configurations for optical Transformers. M = 106.
Model n d h L Non-emb. Params

Tiny 1024 192 12 12 15M
Small 1024 384 12 12 40.6M
Base 1024 768 12 12 123.7M
Large 1024 1536 12 12 416.3M

Table 3: Pretraining hyperparameters for optical Transformer models. All models were trained with the
AdamW (Loshchilov & Hutter, 2019) optimizer.

Model Steps Batch lr β1 β2 ϵ Weight decay Dropout Schedule Warmup Stop

Tiny 90000 32 2e-4 0.9 0.999 1e-8 0.02 0.1 Cosine 2500 -
Small 90000 32 2e-4 0.9 0.999 1e-8 0.02 0.1 Cosine 2500 -
Base 90000 32 2e-4 0.9 0.999 1e-8 0.02 0.1 Cosine 2500 -
Large 90000 32 2e-4 0.9 0.999 1e-8 0.02 0.1 Cosine 2500 82500

A Optical Transformer Training Hyperparameters

The optical Transformer models were pretrained on the Wikitext-103 (Merity et al., 2017) dataset and
used the same tokenizer as GPT2 (Radford et al., 2019). All models used Xavier uniform initialization
(Glorot & Bengio, 2010). The architectures are in Table 2. Embedding layers were initialized with a normal
distribution with σ = 0.02. We used the AdamW (Loshchilov & Hutter, 2019) optimizer, with weight decay
applied to parameters which were not embedding, gains, or biases. Dropout was applied after every linear
layer (including those in attention), as well as on the attention matrix and after the softmax( QKT

√
dh

)V product
in the attention calculation. The values of the parameters used for the training scheme are in Table 3.

After pretraining the models were quantized via our 8-bit QAT scheme. For QAT we used the RMSProp
optimizer (Tieleman et al., 2012). The parameters we used for the training are in Table 4. To clamp
weights and activations we employ two different approaches: first, we kept running statistics of minimum
and maximum values with an exponential moving average (EMA, with parameter α) for every layer and
use those to clamp. Second, we recorded the minimum/maximum statistic throughout the network for a
forward pass to apply a clipping scheme. Specifically, we clamped weights and activations to percentiles of the
maximum values collected for each layer. The outputs were either rounded to the nearest integer during QAT,
or stochastically rounded to nearby values. Finally, for the Base-sized model we used to run the experiments,
we directly used the lookup tables (LUT) instead of “simulating” the quantization of inputs and weights
(though outputs are still quantized). Table 5 details our use of these various techniques in the models.

For evaluation we used the perplexity (PPL) metric to measure the language modelling performance on
Wikitext-103. We evaluated the perplexity over the entire validation set, and ran the model with context
length 1024 (the same as in training) and a 1024-token stride length.

B ONN Experimental Procedure

B.1 Experimental Setup

Our setup is a SLM-based matrix-vector/vector-vector multiplier. The setup is shown in Figure 6 with a
simplified illustration in Figure 7, and works as follows: Vectors corresponding to the inputs and weights are
rearranged into squares of pixels and loaded onto the display and SLM respectively. They are aligned such
that the light from display pixels will reach the corresponding pixels on the SLM. First, light from the display
enters into the polarizing beam splitter (PBS), and reaches the SLM through a half-wave plate (HWP) which
rotates its polarization. The phase is then modified by the SLM and reflected back through the half-wave
plate, rotating the polarization again based on the phase difference. Then, the PBS only admits light of a
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Table 4: Quantization aware training hyperparameters for optical Transformer models. All models were
trained with the RMSProp (Tieleman et al., 2012) optimizer. Quantization parameters are in Table. 5.

Model Steps Batch lr α ϵ Weight decay Dropout Schedule Warmup Stop

Tiny 7327 64 1e-5 0.99 1e-8 1e-5 0.1 Cosine 2500 -
Small 7327 64 1e-5 0.99 1e-8 1e-5 0.1 Cosine 2500 -
Base 7327 64 1e-5 0.99 1e-8 1e-5 0.1 Cosine 2500 5500
Large 7327 32 1e-5 0.99 1e-8 1e-5 0.1 Cosine 2500 5500

Table 5: Hyperparameters for optical Transformer Quantization. We perform QAT with both a percentile-
clipping approach and by clamping based on an exponential moving average (EMA) of model statistics with
factor γ. For the Base-sized model that is used in our experiments (LUT-Base), we use lookup tables (LUT)
for inputs and weights instead of quantization.

Overall Config EMA Attention Clipping Feed-Forward Clipping
Model Precision Rounding γ Input1 Input2 Output Input Weights Output

Tiny 8-bit Stochastic - 99.99% 99.9% 99.9999% 99.99% 99.9% 99.9999%
Small 8-bit Stochastic - 99.99% 99.9% 99.9999% 99.99% 99.9% 99.9999%
Base 8-bit Stochastic - 99.99% 99.9% 99.9999% 99.99% 99.9% 99.9999%
Large 8-bit Stochastic - 99.99% 99.9% 99.9999% 99.99% 99.9% 99.9999%

LUT-Base LUT Stochastic - 99.99% 98% 99.9999% 99.99% 99% 99.9999%
Tiny 8-bit Deterministic 0.999 - - - - - -
Small 8-bit Deterministic 0.999 - - - - - -
Base 8-bit Deterministic 0.999 - - - - - -
Large 8-bit Deterministic 0.999 - - - - - -

certain polarization along one of its arms, aimed at a camera for detection. Summation of the output pixels
is performed digitally. This SLM–HWP–PBS arrangement effectively creates an amplitude modulating SLM,
where the output at each pixel is the element-wise product of the input pixel and corresponding weight pixel.

The OLED display has multiple color channels and a broad spectrum. For easier modulation by the SLM, we
used a band-pass filter and only green light.

The components we used are:

• Organic light-emitting diode (OLED) display (Google Pixel 2016)

• Reflective liquid-crystal modulator (1920-500-1100-HDMI, Meadowlark Optics)

• Half-wave plate (PH10ME-532, Thorlabs)

• Polarizing beam splitter (CCM1-PBS251, Thorlabs)

• Zoom lens for imaging onto SLM (Resolv4K, Navitar)

• Zoom lens and objective lens for imaging onto detector (1-81102, Navita and XLFLUOR4x/340,
Olympus)

• Band-pass filter (FF01-525/15-25, Semroc)

• Camera for detection (Prime 95B Scientific CMOS Camera, Teledyne Photometrics)

This setup works as a good bench for testing the precision of optical Transformers by performing optical dot
products involved in attention and feed-forward layers. Even though the optical dot products were performed
one at a time, it is sufficient for showing that Transformer operations can run with the accuracy of ONNs,
since matrix-vector and matrix-matrix products are merely collections of many dot products run in parallel.
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Figure 6: Photo of experimental setup used for running Transformer dot-product operations. Inset: simplified
illustration of the experimental system. Spatial light modulator (SLM) + half-wave plate (HWP) + polarizing
beam splitter (PBS) arrangement is effectively an amplitude-modulating SLM. The system works as follows:
in our experiments, a vector is loaded as pixels on the organic light-emitting diode (OLED) display, and
weights on the SLM. The input light enters through the PBS towards the SLM, passing through the HWP
twice as the SLM reflects it. The SLM and HWP together rotate the polarization of the light, such that
the amount reflected by the PBS towards the detector for each pixel is roughly the product between the
pixel value and the corresponding weight on the SLM. The summation of these element-wise products by the
detector yields the dot product.

Display Amplitude SLM

Input Vector Weights

Rearrange to block Element-wise products summed
at detector

Output

Calibration Curve

Convert measurement to
neuron value

Figure 7: Simplified illustration of experimental setup operation. Weights are loaded and rearranged into a
block on spatial light modulator (SLM) to prevent crosstalk between pixels of drastically different values.
Data is rearranged on display accordingly. Measurements are looked up against calibration curve to obtain
the final output value.

B.2 Calibration and Lookup Tables

We used several techniques to reduce errors, map inputs to SLM/display values, and to convert detected
outputs back to neural network values.

First, we developed a specialized data-pixel encoding scheme to reduce systematic errors. We noticed that a
large source of error was with a limitation of our hardware—in particular the SLM pixels have cross-talk
(pixels may affect their neighbors if they have very different values) and misalignment in the experimental
setup may lead to corrupted outputs. To help with these issues, we created “macropixels”—each input
element (and weight) does not occupy one pixel on the display (SLM) but rather is mapped to a 3x3 grid of
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pixels, all with the same value. For the attention layers, we used 5x5 macropixels for the results we report,
but later discovered that with 3x3 the performance is essentially the same. We also rearranged vectors into
square blocks of pixels so that significantly nonzero weights are nearby each other Figure 7. For the vectors
to better fit in the center of the field of view (where there is less distortion/misalignment) we computed
the dot products using only the 400 largest weight elements (the corresponding input elements are loaded).
While this may introduce some inaccuracy in the final results, we found that the benefits of computing the
element-wise products more accurately outweigh the drawbacks of pruning the weights; the outputs were still
quite accurate to the ground-truth dot-product values (see main text, Figure 3). We suspect that this was
the case because:

• Transformer weights are not entirely dense; some weights were already zero.

• Because our setup only supports non-negative data anyway, we use the four-pass approach (Section
3.3, main text). This means that for any given dot product, roughly half the weights and activations
will be zero before considering the previously mentioned sparsity.

• Meanwhile, a second consequence of this four-pass approach is that roughly half of activations will
be zero as well, possibly rendering some of the pruned weights irrelevant.

• Transformers still perform well when pruned, and luckily larger models can be pruned more heavily
(Li et al., 2020). While our pruning method is quite basic, the number of weights pruned was light
(ie. < 75%) compared to what is possible with more advanced methods.

This approach was not necessary for attention calculations, since the dot products were sufficiently small to
fit them entirely (64 elements).

Next, we consider the lookup tables (LUTs) of the display and SLM in the setup. In order to optimize
the experimental results, the model used for experiment was trained to be aware of the realistic, discrete
mappable values supported by the system. The display has a LUT with 256 unique levels (1000 levels total,
but many are the same as others) and the SLM has roughly 128 unique levels (256 total). So they are roughly
capable of 7 and 8 bit precision. The SLM also cannot fully extinguish input light—the minimum modulation
is 2% of the maximum transmission. Thus, the minimum absolute values of the weights were mapped to 0.02
instead of 0.

After applying these approaches, we finally collected the calibration curve, which maps the output intensity
measurements to neuron values in the neural network and allows us to determine the experimental setup’s
systematic error. To do this we sampled randomly inputs and outputs of the layers we wished to run,
computed their dot products both digitally and in experiment, and created a data set of experimental
measurements and ground-truth-digital dot-product outputs. We then performed linear regression to find a
mapping between experimental output and the correct values, effectively creating another lookup table. Then
when future dot products were computed experimentally, the output was passed to this linear regression
model (or it can literally be stored as a lookup table) to get the output. We used many photons and averaged
outputs across multiple shots for each input, eliminating shot noise—any remaining error in this calibration
scheme we defined as the system’s systematic error.

It is important to note that in general other optical systems might have different causes of error from ours,
but the overall accuracy of our system is representative of a typical ONN nowadays.

B.3 Model Design Optimization

Transformers tend to have large dynamic ranges in their activations and weights (Bondarenko et al., 2021). In
particular, we found that systematic error is proportional to some characteristic amplitude of the output. So,
because it scales roughly with the sizes of outputs, having large outlier values can increase the systematic error
and worsen the calibration for all other values in the representable range. Furthermore, after quantization in
a naive, linear scheme, large outliers mean that huge ranges of outputs which are seldom used are assigned
to many of the quantization levels, while the rest of the small, common outputs are squashed into few
buckets—so the model precision is poor. This can be an issue when quantizing any deep learning model, but
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Table 6: Simulated optical Transformer precision ablation. Input precision is degraded by subsampling from
lookup table (LUT), while output is quantized. Input precision is approximate, as LUT has 1000 levels, not
1024. Bold: most compressed model found in our ablation with performance very close to the baseline.

Input Precision (LUT) Output Precision Val. Loss
∼ 10 bits 32 bits 3.0059
∼ 9 bits 32 bits 3.0057
∼ 8 bits 32 bits 3.0054
∼ 7 bits 32 bits 3.0039
∼ 6 bits 32 bits 3.0034
∼ 5 bits 32 bits 3.0017
∼ 4 bits 32 bits 3.0111
∼ 3 bits 32 bits 3.1223
∼ 5 bits 8 bits 3.0032
∼ 5 bits 7 bits 3.0074
∼ 5 bits 6 bits 3.0335
∼ 5 bits 5 bits 3.3966

was exacerbated here by those systematic errors and the fact that the lowest levels of the weights are 0.02
and not 0.0. Therefore, we opted for an aggressive clipping scheme and the clamped activation ReLU6 when
training the model to be run (Appendix A, LUT-base model); they reduce the dynamic range of inputs
and weights and we found that they drastically improved the ONN’s ability to run Transformer operations
with smaller error. Having fewer values in the 0.02 bucket of the SLM LUT also improved QAT training
stability significantly. Even though the non-zero light extinction at 0.02 is caused by the specific SLM in our
setup, such issues may happen with other optical implementations made of elements with finite extinction or
resolution, and here we described a method to mitigate such issues by modifying training methods.

B.4 Transformer Dot Product Samples

While the speed and parallelism limitation of our setup made it intractable to run an entire Transformer
model on it, we attempted to sample dot products to run that were representative of the range of possible
activation/weight statistics in the model. That way, our results would be very representative of what running
the full model would be like. In particular, we found two ways in which statistics throughout the model
vary: the statistics change with depth (shallow and deep layers behave differently) and operation type
(matrix-matrix multiplication in attention has different statistics from MLP layers). So, given our limited
ability to run operations on the setup, we sampled roughly 10000 dot products from the first (QKT ) attention
operation and second MLP layer of the first and last encoder layers of the model. The inputs to the whole
model were samples from the Wikitext-103 dataset. Our approach captures the range of statistics throughout
a model’s different components, over its depth, and when processing a real task’s data. The second MLP
layer has dot product size 4d, making it the hardest to run experimentally.

In sampling the dot products, we tried to sample from both operands equally. For example, one could sample
1000 dot products by taking a single input vector and 1000 weight matrix vectors, and vice-versa, but choosing
random vector pairs captures dot products involving different tokens and weights. This is important because
Transformer output sizes, particularly the outlier activation values, are token-dependent (Bondarenko et al.,
2021). To maintain this balance, we sample equal rows/columns for both operands. For attention layers we
sample 100 from each; For linear layers, we sampled 56 rows from the input data and 200 columns from the
weight matrix W T , where the product being computed is xW T .

C Simulated Precision Ablation Study

To further study how the optical Transformer can perform inference at lower precisions, we conducted a
simple ablation on the input and output precisions used at inference, on the 8-bit-QAT base-sized model
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with LUT. We opted to leave the weights at 8-bit precision, since in-place weights are not a significant energy
cost, and do not take more space/memory in these analog optical systems. In Table 6 is the performance of
the model at lower precisions. With 5-bit input and 7-bit output precision, the model performs as well as the
baseline. The reported precision values for the LUT are approximate, since the LUT has 1000 levels instead
of 210 = 1024 levels.

When using the LUT, it is also not possible to directly change the precision of the input. Instead, we employed
a subsampling scheme where the precision is degraded by rounding to every n’th integer level before using
the LUT, where n is a power of 2 and represents a reduction in the effective bit precision. The LUT of our
display has 1000 levels, some levels have the same value, and we simulate the model without added noise. So
we say that the original precision is initially at most 10 bits (210 = 1024).

D ONN Energy Calculation

Table 7: Designs of models used for energy estimates. Transformers have embedding dimension d, process
sequence length n, use h attention heads, and have L layers. M = 106 parameters.

Model n d h L Parameters Reference
GPT2 1024 768 12 12 117M Radford et al. (2019)
GPT2 1024 1024 16 24 345M
GPT2 1024 1280 20 36 762M
GPT2 1024 1600 25 48 1.5B
Megatron 2048 1536 16 40 1.2B Shoeybi et al. (2019)
Megatron 2048 1920 20 54 2.5B
Megatron 2048 2304 24 64 4.2B
Megatron 2048 3072 32 72 8.3B
GPT3 2048 768 12 32 125M Brown et al. (2020)
GPT3 2048 1024 16 24 350M
GPT3 2048 1536 16 24 760M
GPT3 2048 2048 24 24 1.3B
GPT3 2048 2560 32 32 2.7B
GPT3 2048 4096 32 32 6.7B
GPT3 2048 5140 40 40 13B
GPT3 2048 12288 96 96 175B
Turing-NLG 1024 4256 28 78 17B Rosset (2020)
MT-NLG 2048 20480 128 105 530B Smith et al. (2022)
Chinchilla 2048 640 10 10 73M Hoffmann et al. (2022)
Chinchilla 2048 1024 16 20 305M
Chinchilla 2048 1280 10 24 552M
Chinchilla 2048 1792 14 26 1.1B
Chinchilla 2048 2048 16 28 1.6B
Chinchilla 2048 3584 28 40 6.8B
Chinchilla 2048 8192 64 80 70B
PaLM-like 2048 4096 16 32 8B Chowdhery et al. (2022)
PaLM-like 2048 8192 32 64 62B
PaLM-like 2048 18432 48 118 540B
FUTURE 2048 40960 80 120 2.4T This work
FUTURE 2048 81920 128 200 16T
FUTURE 2048 163840 160 400 129T
FUTURE 2048 655360 512 800 4q

The models we used to estimate the energy use of ONN systems are in Table 7. We used a variety of real
models that have been introduced by other works, and then designed our family of hypothetical future models
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FUTURE-* in a similar fashion, keeping a reasonable sequence length, increasing the embedding dimension
drastically, and following the trend of recent large models like PaLM (Chowdhery et al., 2022) and MT-NLG
(Smith et al., 2022) of increasing the ratio d/h, which results in favorable energy calculations due to the lower
fraction of memory operations in attention.

The calculation of energy costs for ONNs requires consideration of the entire system design and the costs of
the surrounding electronics—since the optical computation itself is so cheap the electronics account for nearly
all of the energy cost. The way the energy is accounted for is as follows: The energy Eload can be broken
down into three components, related to the energy of the cost of reading from memory Eread, digital-to-analog
conversion (DAC) EDAC, and modulation to generate the light Emod:

Eload = Eread + EDAC + Emod. (8)

Detection energy consumption Edet can broken down in a similar fashion, where

Edet = Edetector + Eamp + EADC + Ewrite (9)

represent the costs of detecting a signal, amplifying the detected signal, performing analog-to-digital conversion,
and writing to memory respectively. There is also a cost of maintaining the weights in a weights-in-place
system, which we call Emaintain. Because this cost scales per element, it is a per-MAC cost. But based
on values from efficient commercial SLM systems, it is sufficiently small (and amortized by a large clock
rate) that even the largest models we do estimations for are not bottlenecked. For optical energy, we take
1 eV (single-photon energy at 1240 nm). We started with using our measured 8-bit-performance photon
count of 1500/MAC for the smallest model (d = 192) and rescaled the value for larger ones using the
constant-per-dot-product trend which we know our simulated models can match or beat.

The assumptions we used were that weights would be loaded from off-chip memory like DRAM (in the case
of a chunked-weights strategy; for a full weights-in-place, one-shot approach this cost does not exist), and
that the system uses large amounts of SRAM for activations (Fu et al., 2021). We assumed that the system
only needs 5 bits worth of input precision and 7 bits worth of output precision, per the results of our ablation
on the base-sized model. We still assumed 8-bit memory accesses for convenience. The actual costs for the
data access and weight maintenance were assumed to be these values:

• Eread = 1 pJ/bit for off-chip memory (Sze et al., 2017), and 0.3 pJ/bit for SRAM. The SRAM
estimate is based on results for DNN accelerator measurements with 9.55 pJ/32-bit access (Ponzina
et al., 2021; Denkinger et al., 2020), and cutting edge/near-future assumptions for data transport
from SRAM/cache (Fu et al., 2021). (Jouppi et al., 2021) estimates 14 pJ per 64-bit access, or
roughly 0.22 pJ/bit, for a recent TPU architecture.

• EDAC = 10 pJ per 5-bit sample @ 10 GHz—this is achievable with 100 mW at 30.1dB SFDR
(Caragiulo et al.).

• Emod = 1 fJ/bit @ 110 GHz with thin-film lithium-niobate modulators (Xu et al., 2022).

• Eamp = 2.4 pJ per access. A transimpedance amplifier can run at 24 mW at 70 GHz (Ahmed et al.,
2014). We will just assume 10 GHz. 24mW / 1010 = 2.4 pJ per element.

• Edetector is negligible compared to Eamp. For example, Miller (2017) calculates the cost of detection
as the capacitive discharge, 1

2 CV 2, with capacitance C ∼ 1 fF and voltage V = 0.5 V. This results
in <500 aJ of energy consumption per detection. The cost is therefore negligible compared to
amplification (Eamp).

• EADC = 3.17 pJ per 7-bit sample. 10 Ghz, need 7-bits of precision, so 128 conversion steps per
sample – Achievable with 24.8 fJ/c-s (Liu et al., 2022) (24.8 fJ × 128 = 3.17 pJ per 7-bit sample).

• Ewrite = Eread. Actually, write access was measured to be cheaper than read access in Denkinger
et al. (2020), but we use Ewrite = Eread as a simple, conservative assumption.
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• Emaintain = 0.002 fJ/MAC. Assuming 2W for operation of a 10MP SLM, with inputs shone at 10 GHz
(each pixel performs one MAC every cycle). There is not much information SLM power consumption
for maintenance of a fixed pattern on the LCD panel, though more typical LCD displays which
update can operate in the ∼1W regime. For example, Sony Corporation consumes 30 mW with
180000 pixels, which would scale to 1.67 W with 10MP (at worst, multiple SLMs/LCDs could be
used in order to scale up).

E Breakdown-Of-Costs For Estimated ONN Energy Usage

Figure 8: Breakdown of optical Transformer energy costs by energy type at 8-bit operation. Data access
costs are dominant due to the high costs of DAC/ADC, but weight maintenance becomes important but not
a bottleneck for large models.

In Figure 8 we see that data access costs, that is costs per element loaded/stored in memory, are most
expensive. In particular, the cost of ADC and DAC are the leading contributors to the access costs, though
since their cost is exponential in the bit precision, one might imagine that a future, optimized Transformer
running at lower precision than our assumptions would have energy costs dominated by the actual SRAM
memory costs. Also, for very large models, since the energy from weight maintenance scales with the number
of MACs, it eventually will dominate if model sizes scale past that of FUTURE-4q. But future hardware
would reduce Emaintain through improved electronics or higher clock speeds allowing for lower energy per
MAC. Finally, the contribution from optical energy is vanishingly small, a consequence of the efficient photon
usage scaling that we found Transformers can leverage. Were it not for this, the cost of actually performing
the MACs would be orders of magnitude larger than everything else, resulting in energy usage that scales the
same way as digital systems’.

Breaking down the sources of compute and energy costs in Transformer models running optically further
illustrates how aspects of model/system design affect energy usage. The breakdown of compute and energy
costs by source is in Figure 9. We find that as models get larger the feed-forward layers require most of the
computation, but that the energy of data access in attention is still very expensive. This is because of the
need to save/load many attention matrices from memory, and the fact that a weights-in-place scheme cannot
be used for the matrix-matrix products because the products are between activations. Of course, this also
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Figure 9: Breakdown of computing costs for optical Transformer models. Left: fraction of total compute
used by digital operations, attention, and feed-forward components. Feed-forward layers account for most
of the compute. Right: breakdown-of-costs for models by layer. The energy costs of attention operations
is expensive. “Ele *” operations: electrical costs of loading (Ld), detecting (Dt), or both for data for the
operation. Operations related to attention computation (ie. QKT ) are expensive for little compute. Functions
computed digitally have their energy costs estimated as the cost of reading and writing to memory the
required data.

means that there are more activations to load. In total, this means that attention layers have high energy
costs for small amounts of computation. Thankfully, and interestingly, existing model design trends have
moved towards focusing much harder on feed-forward layers, and so for the largest real (and our hypothetical
future) models the fraction of energy cost taken by attention is low. Finally, we note that the operations we
assume run on digital computers - such as nonlinear functions, in gray - do not account for much of the total
energy cost (though they too are a small fraction of the total compute).

F Future ONN Energy Consumption

As optical accelerators are an emerging technology and as Transformer models continue to scale over time, it is
worth considering how ONNs might improve over the next several years. For example, an interesting question
to ask is how well future ONNs will do by the time it is possible to run a large model like FUTURE-4q. To
investigate this, we estimated the energy costs of various Transformer models running optically again, but
with the following changes and assumptions:

• Emaintain = 0—Future weights-in-place hardware will need effectively no energy to maintain weight
information (for example, one might consider the usage of phase change materials (Wuttig et al.,
2017)).

• EDAC and EADC are 1/32 the size—we assume that electronics could achieve a 2× improvement
in fJ/c-s efficiency, while future advancements in model compression allow for 4-bit Transformer
models, which are much cheaper since DAC and ADC costs scale exponentially with the number of
bits (Murmann, 2020).
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Figure 10: Energy usage estimates of forward pass for Transformers running on optical hardware, under
future electronics energy cost assumptions. The energy advantages over our estimate for the current-day
NVIDIA A100 GPU are larger than under our original assumptions (main text, Figure 5). M = 106, G = 109,
T = 1012, q = 1015 parameters.

• Eread and Estore are 1/5 the size—there is already a growing recognition of the fact that AI accelerators
will need high efficiency and large quantities of SRAM and DRAM in the future (Fu et al., 2021;
Cerebras Systems, 2021).

• Eamp 10× cheaper (there are already cheaper trans-impedance amplifiers than our conservative
estimate here, and receiver-less configuration without any amplifier has also been demonstrated
(Bandyopadhyay et al., 2022)).

Under these assumptions, ONNs become far more efficient, highlighting that improvements to electronics will
impact ONNs, and not just competing digital hardware. The energy scaling (Figure 10) is shifted downward
for optics compared to under our previous assumptions, leading to over 1900× and 130, 000× advantages over
the current A100 GPU for MT-NLG and FUTURE-4q models respectively. Of course, by the time this is
possible, GPU efficiency will have improved significantly as well, and we are comparing a 4-bit accelerator to
the 16-bit performance of the A100. It is difficult to predict the future efficiency of GPUs at lower precision,
but it is clear that ONNs can benefit from improvements to electronics and low-precision inference.

G Scaling ONNs: System Specifications and Communication Costs in
Multi-Processor and Memory-Constrained ONN and GPU Setups

Implementation of a real ONN for large models might be difficult because the amount of hardware needed
to maintain all the weights is exceedingly large. In Table 8 are the requirements for hardware to run the
largest future model. To compute the number of weights/elements, we selected the largest MLP layer in
the model, since that requires the most space for weights and activations. While detector and memory
requirements are achievable, the number of required cores—each an optical component capable of performing
10M multiplications with weights—is enormous. There are some approaches to remedy this kind of memory
issue in both GPUs and ONNs, and we are interested in their hardware-time-energy tradeoffs for ONNs.
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One solution is to introduce chunking, where only a portion of the weights are loaded at a time, and the
inputs are passed through. Then, the amount of time it takes to run is increased by a factor of the number
of chunks. This also impacts the optical system’s energy advantage over digital ones in two ways. First,
the weights must be loaded, but the cost can be amortized via reuse with batched inference. This comes at
the expense of latency. This is a new kind of tradeoff, since digital systems cannot reuse weight data for
free. Second, for each weight chunk, all inputs must be reloaded; changing the chunk number trades energy
efficiency for lower hardware requirements. These energy tradeoffs are illustrated in Figure 11; other factors
dominate energy usage until the chunk number is large and chunking becomes the bottleneck.

Realizing large models with GPUs will likely also require a multi-GPU strategy, which will incur overhead over
the peak performance of a single GPU. We find that with a simple model of communication costs—modelling
the activation reloading in both GPU and ONN systems—that ONNs can retain some of their advantages,
dependant on how much system memory (or maximum number of weight elements) is available per-processor.
We created a simple model to estimate the cost of this approach in GPU systems. In GPU systems, instead
of splitting a model over time, the model may instead be split over multiple GPUs. This introduces an
analogous tradeoff to the activation reloading in ONNs due to communication costs: if each GPU holds some
chunk of weights, then after every layer, the outputs of multiplying the inputs with each chunk must be
broadcasted to every GPU in an all-to-all fashion. This is in essence an all-reduce operation—after every
layer, the outputs from all GPUs must be copied onto all GPUs. In total, this means the total number of
activations is loaded k times, where k is the number of GPUs. As a crude but conservative estimate of these
costs, we modeled this by taking the cost of running the entire model on one GPU, and then adding the
energy cost of loading the activations from DRAM, multiplied by the number of chunks (GPUs). This is
likely an underestimate, as broadcasting data across GPUs in a real setup requires sending data electronically
over much longer distances than required for DRAM access, which would be expensive.

To determine the number of chunks, we tested multiple assumptions about device memory. We assumed a
value for the amount of memory that can be used to store weights and take the total number of weights for
each model divided by this memory capacity to determine the number of chunks to be used.

Single-Pass

Figure 11: Optical energy advantage vs A100 (FUTURE-4q). When chunking, the cost of loading weights is
amortized by increasing batch size, but the overall performance is limited by large numbers of chunks because
of input data reloading.

With these models, we found that too much chunking is detrimental to ONN performance, but that there
is still some energy advantage to be had if it is used sparingly (Figure 11). In Figure 12 (top) are the
energy cost estimates assuming a fixed memory of 100M weights (ie. 100MPixel SLM, or RAM with 100MB
capacity if each weight is one byte). We assumed that for GPU, the cost of communication is at least that of
DRAM-level communication due to the physical distances between GPUs. The curves for GPUs bend upward
as the communication costs begin to take over, as do the largest models running optically. The ONNs still
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maintain an advantage, but the advantage stops growing with model size. Looking at the energy advantage
illustrates this idea more clearly: up to a certain model size the advantage is increasing, then as the model
size reaches the memory limit it begins to level off, and then the advantage begins to shrink as the cost of
chunking takes over. For a small range of model sizes near this peak, the advantage is maintained, suggesting
that a small amount of chunking may be useful before it quickly diminishes the energy advantage.

The optimal configuration for ONNs, obviously, is to have enough memory (cores which have weights fixed in
place) so that chunking is not necessary. When plotting the advantages for larger memories (and therefore
fewer chunks), the advantage gets better, and larger models become worthwhile to run. In hindsight this
conclusion makes sense: the benefit of ONNs is their ability to copy data (“optical fan-out”) for free for parallel
computation, and so reducing this in favor of repeated memory accesses removes exactly the mechanism that
gives optics-based systems their advantages. This also suggests that an “optical memory” from which fixed
data can be accessed for free (or significantly less than re-access through electronics) may solve this problem,
allowing for more scalable ONN design without huge amounts of hardware for weights. Currently, optics still
has an advantage when using multiple cores because in principle the data could be fanned out across cores,
while GPUs must pay communication costs in multi-processor setups. With a fan-out/fan-in design that can
collect/spread a vector across cores, the efficiency of an entirely weights-in-place system is fully that of a
single, large core.

Comparison to Language Model Caching Techniques Transformers running autoregressive language
modelling at inference time may utilize caching techniques (such as KV-cache in attention) to speed up and
save computation for inference. However, such mechanisms also use exorbitant amounts of memory, and
requires offloading to off-chip memory or farther-away memory (Pope et al., 2022), each of which is far more
expensive per bit than SRAM. It is difficult to estimate the energy consumption in these scenarios, but
Transformers with unrestricted attention (such as for masked language modelling (Devlin et al., 2019), vision
transformers (Dosovitskiy et al., 2021), etc.) must perform the full computation in a single forward pass
anyway.

Table 8: Requirements for optical accelerator running feed-forward layer (embedding dimension d, sequence
length n) without chunking at 8-bit precision. The requirement of many cores to maintain weights for
matrix-vector products (MVM) is high, and we assume the ONN system requires static RAM (SRAM) for
saving and loading activations.

Model Input Vector Elements Detectors MVM Cores (107 weights each) SRAM (activations)

FUTURE-4.1q 2.6 × 106 2.6 × 106 170,000 5.37 GB
FUTURE-129T 6.55 × 105 6.55 × 105 11,000 1.34 GB
FUTURE-16T 3.28 × 105 3.28 × 105 2,700 671 MB
FUTURE-2.4T 1.64 × 105 1.64 × 105 671 336 MB

PaLM-like-540B 7.37 × 104 7.37 × 104 136 151 MB
MT-NLG-530B 8.19 × 104 8.19 × 104 168 168 MB
GPT3-175B 4.91 × 104 4.91 × 104 61 100 MB

General 4d 4d 4d2/107 4nd
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100M Weights Memory 1G Weights Memory 10G Weights Memory 100G Weights Memory

100M Weights Memory

Figure 12: Energy estimates assuming a fixed processor memory size and chunking. Top: estimated energy
scaling plot for Transformer models running on optical and digital hardware with 100MB of memory. As
models get larger, both optical and digital systems have an upward bend in energy consumption trends, driven
by communication/input-reloading-from-chunking costs. Bottom: energy advantage scaling for different
memory sizes. As the memory increases, there is a maximum energy advantage for optics over NVIDIA
A100 and corresponding model size before chunking costs take over. M = 106, G = 109, T = 1012, q = 1015

parameters.
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Constant photons/MAC 

Constant photon total

Unfavorable Clipping

Figure 13: Behavior of optical Transformer models with varying photon usage with percentile clipping scheme.
Left: Wikitext-103 validation set perplexity (PPL) versus embedding dimension d and total photons usage.
8-bit quantized digital model performance levels in dashed lines. Middle: Percent change in perplexity
from ideal 10000 photon count performance still exhibits truncated power-law scaling with photons per
multiply-accumulate (MAC) operation for all models. Right: Scaling of photon usage for maintaining the
8-bit digital performance versus model size. Dashed lines: constant photons per dot product (optical scaling)
and constant photons/MAC analogous to digital scaling. Note that unlike for our results in the main text,
smaller models beat the constant-dot-product-total scaling, but the largest model exhibits poor efficiency, as
the clipping scheme used here was not well suited for it.

H Effects of Training and Quantization Scheme on Optical Scaling

Our results demonstrating favorable scaling of photon usage in Transformers show that they can be optically
efficient, but in general the photon usage is affected by the training scheme and other factors like quantization.
This is because approaches for optimization quantization, regularization, etc. affect the statistics of weights
and activations in the network, which unlike digital systems, are tied to the resource usage. The main
example of this is with weights: they are normalized before being loaded onto an ONN accelerator, and so
large outliers may lead to many weights being near 0 after normalization—admitting fewer photons through
to the detector. This has a direct impact on the output SNR, and so depending on weight statistics more or
fewer photons may be needed in order to run at the same precision.

To discover how a different scheme might affect photon usage, we analyzed the optical scaling of our quantized
optical Transformer models with percentile clipping instead of clamping based on EMA statistics. We applied
the same clipping to all models (details in Table 5). These clipped models have familiar trends in their
language modelling performance versus photon numbers, but we notice key differences in the photons needed
to maintain 8-bit digital performance: first, the absolute number of photons needed for the smaller models
(120 and 40 versus 340 and 170 of our unclipped scheme for d = 192, 384) is much lower—this indicates
that clipping of large weight values leads to more transmission after normalization. Second, the scaling is
inconsistent, with smaller models needing significantly fewer photons than the expected 1/d scaling, but then
requiring many photons again for the largest model. The clipping scheme degraded the performance of the
large model. Of course, this could be improved by designing a better scheme for the largest model such that
it requires few photons; these results illustrate how differences in the training and quantization recipe could
lead to a variety of outcomes, and why efficiency is achievable but not an automatic guarantee for any scheme.

I Transformers With Larger Sequence Lengths

As attention is the main energy bottleneck when running on ONNs and as the demand grows for language
models that can process longer sequences, it becomes important to consider the effect of sequence length in
our estimates.
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Table 9: Estimated energy advantage (vs Nvidia A100) of Transformers running optically with different
sequence lengths (n).

Model Name n = 2048 n = 4096 n = 8192

MT-1.2B 8.9x 8.9x 8.9x
GPT3-6.7B 25x 17x 11x
GPT3-175B 73x 45x 27x
PaLM-540B 190x 140x 94x
FUTURE-4q 8400x 7400x 5900x

Generally, we find that smaller models — which were already attention-bottlenecked — see no changes to
their energy advantages, while larger ones become more attention-focused, reducing their efficiency. However,
the advantages are still significant, and it depends on the architecture and number of attention heads in
general. The results of estimating the energy costs of Transformers at various sizes with different sequence
lengths are summarized in Table 9.
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