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ABSTRACT

Large language models (LLMs) are often queried multiple times at test time,
with predictions aggregated by majority vote. ~While effective, this self-
consistency (Wang et al.| |2023)) strategy requires a fixed number of calls and fails
when the correct answer is infrequent. We introduce Confidence-Guided Early
Stopping (CGES), a Bayesian framework that forms posteriors over candidate an-
swers from scalar confidence signals—derived from token probabilities or reward
models—and adaptively halts sampling once posterior mass exceeds a threshold.
We provide theoretical guarantees in both the ideal case of perfectly calibrated
confidences and the realistic regime with noisy confidences. Averaged over five
reasoning benchmarks, CGES reduces the average number of calls by 69.4% (e.g.,
from 16.0 to 4.9) while maintaining accuracy within 0.06 percentage points of
self-consistency.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable progress across reasoning, problem solv-
ing, and open-domain tasks. A common practice to improve reliability is fest-time scaling (Snell
et al., |2025), a family of methods that allocate additional inference-time computation to improve
performance. One subset of these methods samples multiple responses and aggregates them into a
final prediction. Among the most widely used methods, self-consistency (SC) (Wang et al.| [2023)
aggregates outputs by majority vote, leveraging the intuition that the most frequent answer across
diverse generations is likely to be correct. While simple and effective in many settings, majority-
based aggregation suffers from two major shortcomings. First, it assumes that response frequency is
a faithful proxy for correctness, which fails in cases where the correct answer appears infrequently.
Second, it requires a fixed number of model calls regardless of confidence, leading to substantial
inefficiency.

Confidence signals offer an alternative perspective. Instead of depending solely on frequency, one
can incorporate confidence scores that capture the model’s belief in each response. These scores
may be derived from different sources. Token probabilities are taken directly from the model’s
output distribution and reflect how certain the model is about generating each token. Calibration
schemes adjust these raw probabilities so that they better match the actual likelihood of correctness,
turning overconfident or underconfident estimates into more reliable signals. External reward mod-
els are trained separately, often with human feedback or domain-specific supervision, and provide
an independent measure of response quality beyond the model’s own probabilities. Such signals can
distinguish between frequent but uncertain answers and rare yet confident ones.

We propose a confidence-based Bayesian framework for test-time scaling. Our framework builds
on the idea that incorporating confidence enables robust aggregation and adaptive stopping, where
sampling stops once sufficient certainty is reached, reducing cost without sacrificing accuracy. Our
approach computes posterior probabilities over candidate answers by treating each response and its
associated confidence as probabilistic evidence. This yields two key advantages over majority vot-
ing: (1) when the correct answer is frequent, our method reaches the same conclusion but often stops
earlier by exploiting high-confidence signals, improving efficiency; (2) when the correct answer is a
minority, our method can still recover it by amplifying the influence of confident predictions, where
majority voting fails. Figure [T]illustrates both phenomena on real items: our framework (a) halts
after only a few calls when confidence concentrates, and (b) outperforms majority vote when the
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(b) Accuracy: SC’s majority vote is wrong, but CGES aggregates confidences and selects the correct answer.

Figure 1: Examples of CGES vs. SC. Top: early stopping with high confidence; Bottom: recovering a
minority-but-confident answer.

correct answer is a minority but highly confident. We further formalize this intuition by proving the-
oretical guarantees under ideal conditions where confidence scores are faithful to the true likelihood
of correctness. We then extend the analysis to the more practical case of noisy confidence estimates,
where scores may be imperfect reflections of true correctness.

To operationalize this framework, we introduce Confidence-Guided Early Stopping (CGES), which
integrates Bayesian scoring with an adaptive stopping rule. CGES allows for flexible accu-
racy—efficiency trade-offs by halting once posterior concentration exceeds a threshold or a bud-
get is reached. We evaluate CGES across multiple reasoning benchmarks, including AIME24,
MATHS500 (Hendrycks et al.l |2021b), GSM8K (Cobbe et al.l [2021), GPQA (Rein et al., |2024),
and MMLU_Pro (Wang et al.||2024)), and compare against self-consistency (Wang et al.| 2023)) and
early-stopping self-consistency (Li et al., [2024)). Our experiments show that CGES consistently re-
duces the number of LLM calls by large margins while maintaining or even improving accuracy.
These results highlight the benefits of incorporating calibrated confidence into test-time scaling,
moving beyond frequency-based heuristics toward principled Bayesian aggregation. In summary,
our contributions are as follows:

* We propose a Bayesian framework that incorporates confidence estimates into self-
consistency, enabling more accurate and theoretically grounded aggregation beyond ma-
jority voting.

* We design Confidence-Guided Early Stopping (CGES), which adaptively halts sampling to
trade off accuracy and efficiency.

* We establish theoretical guarantees of correctness under ideal conditions where confidence
scores are perfectly calibrated to the true probabilities of correctness, and extend the anal-
ysis to the realistic setting with noisy confidence estimates.

* We empirically validate CGES across five reasoning benchmarks, showing substantial effi-
ciency improvements while maintaining or improving accuracy.

2 RELATED WORK

A widely used approach for improving test-time scaling is self-consistency. Introduced by Wang
et al.| (2023), it aggregates multiple reasoning paths by majority voting, improving reliability in
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chain-of-thought reasoning. However, self-consistency requires a fixed number of model calls and
often fails when the correct answer is infrequent. To reduce this cost, |Li et al.| (2024])) proposed early-
stopping self-consistency (ESC), which stops sampling when predictions begin to agree. More re-
cent extensions, such as Self-Calibration (Huang et al.| |2025)), incorporate dynamic stopping rules or
distill self-consistency signals into single-pass confidence estimates. In contrast to Self-Calibration,
which learns confidence from majority voting signals, our work introduces a Bayesian framework
with theoretical guarantees for confidence-guided early stopping.

Beyond self-consistency, several methods adaptively allocate test-time compute. [Snell et al.| (2025))
study compute-optimal scaling strategies, while Muennighoff et al.|(2025) introduce s', which opti-
mizes inference length under budget constraints. Other directions combine search and verification:
self-enhanced tree search frameworks (Bi et al.l 2025; |[Lample et al., 2022; |Koh et al.,[2024) expand
multiple reasoning paths with sparse activation, while step-wise verifiers dynamically prune the
search tree (Li et al.| 2023; [Lightman et al.,|2024)). Two-stage elimination-based approaches (Chen
et al.,[20235)) refine candidate answers iteratively, and query-variant ensembling (Huang et al., [2024)
improves robustness. These methods share with us the goal of balancing accuracy and efficiency, but
differ in their reliance on structured search or verifier signals. Our approach instead treats confidence
as probabilistic evidence in a Bayesian model, yielding lightweight updates and formal consistency
guarantees. Moreover, while prior methods typically optimize efficiency when extracting a single
reasoning path or answer, our framework belongs to the family of test-time scaling approaches that
deliberately sample multiple responses per query and then aggregate them into a final answer using
principled Bayesian inference.

A core component of our framework is uncertainty estimation, which has also been studied exten-
sively in generative LLMs. Probability-based methods such as length-normalized scoring (Malinin
& Gales| |2021) reduce bias against longer responses, while more recent approaches explicitly ac-
count for meaning or learn trainable scoring functions. For example, MARS (Bakman et al., [2024)
introduces a semantics-aware weighting of token contributions, and LARS (Yaldiz et al., [20235)) for-
mulates uncertainty estimation as a supervised learning problem over token-level scores. Other
studies explore Bayesian or distillation-based techniques (Vejendla et al., [2025) for efficient uncer-
tainty estimation. Unlike these works, our aim is not to propose new uncertainty estimation methods.
Instead, we adapt and integrate existing techniques—modifying them when appropriate—within the
CGES framework.

3 CONFIDENCE-BASED APPROACH

In this section, we propose a confidence-based method as an alternative to the majority-vote self-
consistency approach. We formalize our setting, introduce a Bayesian framework, provide theoret-
ical guarantees under ideal conditions, and discuss the realistic scenario where confidence scores
may be noisy.

3.1 PROBLEM SETTING AND NOTATIONS

Suppose we query a large language model (LLM)

multiple times with a given query (), whose true an-
swer is A, thereby obtaining a sample set S of re- @ a
sponses. LetU = {ay,as, ..., ax} denote the com-

plete set of all possible distinct candidate answers

from the LLM, where K is the maximum number @
of such candidates. We assume the correct answer GI—‘

is within this candidate set and denote its index as @
I € [K]. Conditioned on (Q, A) and the identity
of the correct candidate I, there exists a probabil-
ity distribution over answers P = (Py,...,Pg) ~
fr(Q,A,I), where P; = PR = a; | Q, A, I]. In-
tuitively, this captures the stochastic behavior of the
LLM given the query: the likelihood of producing
each candidate answer depends both on the query and on which candidate is correct. For each
LLMcall t = 1,2,..., we draw a response—confidence pair (R;, C;) according to R; ~ P and

Figure 2: Graphical model for the sampling
process.
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Cy ~ fc‘ p(P). That is, the response R; is drawn i.i.d. from the distribution P, and the confidence
signal C;—a scalar attached to R;—is a (possibly noisy) proxy derived from P. This structure can
be represented as a graphical model, illustrated in Fig.[2]

Idealistic vs. Realistic Assumptions. It is important to distinguish between two types of assump-
tions. Idealistic assumptions are simplifying conditions introduced to design a simple, efficient algo-
rithm and to prove that it achieves optimality under ideal conditions (Theorem|I)). These include the
assumption of a uniform error distribution and the independence of confidence scores from the true
index. In contrast, realistic assumptions are those expected to hold in practice and are used both in
the derivation of the CGES algorithm and in establishing guarantees under realistic conditions (The-
orem[2). These include the i.i.d. sampling assumption and the uniform prior on I. Thus, while all
four assumptions|I} hold in the idealized setting, only the weaker pair[T{2}—i.i.d. sampling and
uniform prior on /—are retained under realistic conditions. The four assumptions are as follows:

1. Given a fixed query @, with a fixed U and P, the samples {(R;, C;)}, are i.i.d.

2. I ~ Uniform({1,..., K}), reflecting that uncertainty lies in the indexing convention, not
in the identity of the correct answer.

3. Under hypothesis I = 4, the correct answer a; is emitted with probability C;, while each
incorrect candidate shares the residual probability mass uniformly:

1—-Cy
K-1'

P(Rt:ai|0t,lzi)zct, P(thaj;éai\Ct,IZi)z

4. The confidence score C; is independent of the index of the correct answer. Intuitively,
the confidence attached to a sample should not depend on which candidate happens to be
correct. Formally,

P(Cy | T=4)=P(Cy | T =3j) Vi, je{l,...,K}.
Given these assumptions, the objectives of our framework are twofold: (i) to identify the most prob-

able index i € [K] corresponding to the true answer, and (ii) to quantify the level of confidence in
this selection.

3.2 BAYESIAN CONFIDENCE-BASED FRAMEWORK

We use Bayesian inference to compute posterior probabilities. That is, given an unknown index
I € {1,...,K} and a sequence of observed response—confidence pairs, the posterior distribution
over I is

P(I = i | Obs) = K]P’(Obs\lfz)]P’(Ifz) .

> ko1 P(Obs | I =Fk)P(I =k)
Here, the numerator combines the likelihood of the observations under hypothesis I = ¢ and the
prior P(I = 4), while the denominator normalizes across all K competing hypotheses. The set of
observations is defined as Obs = {Ry,C1, R2,Cy, ..., Ry, Cp, }, where R; denotes the response
at step ¢ and C} its associated confidence score. This alternating structure reflects how, at each trial,
both the raw prediction and its confidence are incorporated.

Since we assume a uniform prior over all hypotheses, i.e., P(I = i) = 1/K, Bayes’ rule simplifies
to
[LP(R:,Ci | I =1)

Sk [L PR Cy | T = k)
This formulation emphasizes that the posterior is built by multiplying the contributions of each
observation and then renormalizing across all indices.

P(I =i | Obs) =

According to Assumption 4] we have
P(Cy | T=4)=P(C;|T=3j) Vi,je{l,...,K}.
As aresult, the joint distribution factorizes as

P(R:,Cy | I =1i) =P(R: | Ct, I = i) P(Cy),
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Algorithm 1 SCORE: Confidence-Based Bayesian Normalization
Require: Candidate set U = {a1,...,ax}; samples S = {(R:, Cy)}i~, with Ry € U and C; €
(0,1)
: forall a; € U do

1

1-C,
2 Sa; Ht:Rt:ai Ct x Ht:Rt#ai Ki—lf
3: end for
4: return score(a;) = $q,/Z for all a;

and the marginal P(C}) cancels out in the numerator and denominator of Bayes’ rule. This leads to
the simplified posterior form
PR, | Cs, I =1
P(I =i | Obs) x KHt (B |G T =1) £ X, (1)
2= [LP(R: [ Coy I = k)

where X; represents the posterior mass for hypothesis 7.

Finally, in the ideal scenario, we assume that the conditional probability of a response takes the
following form:

]P)(Rt | Ct,I = Z) = 1-c,
K—1
Intuitively, this means that when the response I2; matches the true answer a;, it is selected with
probability equal to the reported confidence C;, while the remaining (K — 1) incorrect answers

share the residual probability mass uniformly.

otherwise.

{Ct lth = a4,

3.3 ALGORITHM FOR CONFIDENCE-BASED SCORING

Given a set of sampled answers and their confidences S = {(R:, C)}{™, for a single question,
our goal is to convert them into calibrated, comparable probabilities over the unique answer set
U = {a;}K . The Bayesian posterior of Eq factorizes into a product of per-sample terms: if the
hypothesis (answer) is a;, then a sample R, that outputs a; has likelihood C}, and any other answer
has likelihood (1 — Cy)/(K — 1). We therefore form an unnormalized score s,, by multiplying
these terms across all samples and then normalize across candidates. Algorithm |l|implements this
computation.

Algorithm 2] wraps SCORE into an adaptive loop that allocates test-time compute per question. We
begin with one sample per question, compute posteriors with SCORE, and maintain the set of un-
resolved questions Dy, whose current top posterior is below a confidence threshold . At round
t =2,..., B, we query the LLM only for n € Dyen, append the new (R}, C}*), recompute SCORE
on that question’s ¢ samples, and remove it from D.y, as soon as its top posterior exceeds . The
process stops when all questions are confident or the budget B is reached, returning the argmax label
per question and the average number of LLM calls.

3.4 THEORETICAL ANALYSIS OF ALGORITHM PERFORMANCE (IDEAL SCENARIO)

Theorem 1. Under Assumptions|I| [ | and [ and provided the confidences are informative i.e.,
P(C; = 1/K) = 0, the Bayesian confidence-based aggregator identifies the correct answer with
probability tending to one as the number of samples m grows:

[P’(argmaxXi:I) — 1 asm — 0.
1€[K]

Infact, X; — 1 and X}, — O for all k # I almost surely.

Proof Sketch. Fix any wrong index k& # I and compare the (log) likelihood of the observed samples
under the hypotheses I vs. k. Each sample contributes a log-likelihood ratio (LLR) increment whose
expected value is strictly positive whenever the confidence C; deviates from the uninformative value
1/K. By the Strong Law of Large Numbers (SLLN), these positive-drift increments accumulate
linearly, so the total LLR diverges to +o0o. Hence the likelihood under the true index dominates
every competitor, forcing the normalized posterior X; to 1 and all others to 0. A complete formal
proof is provided in Appendix
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Algorithm 2 Confidence-Guided Early Stopping (CGES)

Require: NN questions; threshold +; calls budget B; scoring routine SCORE
1: Initialize scores,, - SCORE({(R},C7)}) foralln € [N]
2: Diem < [N]; calls + N
3: fort = 2to B do

4: Drem < {1 € Diem : max; scores,[i] < v}
5: if D;en = 0 then break
6: end if
7: Query LLM for each n € Dyep; calls += | Dyen|
8: for all n € Dy, do
9: scores,, < SCORE({(RY,C7),..., (R}, CI)})
10: end for
11: end for

12: return g, = arg max, scores, [i] V1, usage= calls/N

3.5 THEORETICAL ANALYSIS OF ALGORITHM PERFORMANCE (REALISTIC SCENARIO)

In contrast to the ideal case, where the data are generated by the same likelihood used by the ag-
gregator, the realistic setting permits model mismatch: the observed answers R; are drawn from an
unknown but fixed (per question) distribution P = (P, ..., Px), while the confidence signal C;
is a noisy proxy produced by an estimator (for example token probabilities). The aggregator itself
retains the same one-versus-rest likelihood as in the ideal model; under these conditions, consistency
reduces to the sign of the average LLR drift 15, defined below.

Theorem 2 (Consistency under realistic confidence noise). Assume[l|and[2| For a fixed question,
let Ry ~ P = (P1,...,Px)iid, and C;y | P ~ fop(- | P)iid., with C; € (0,1) as. and
E[|log Cy| + |log(1 — Ct)|] < oo. The aggregator uses the one—versus—rest likelihood from the
ideal model. Let 0, = (1 — C}) /(K — 1) and define

we = Epc|(P - Py) log(%)}, k1.

If pr, > 0 for all k # 1, then P(arg max;c(x) X; = 1) — 1 as m — oo and, in fact, X1 — 1 and
X — 0 almost surely. If pp+ < 0 for some k* # 1, then X1 — 0 almost surely.

Proof Sketch. As in the ideal case, fix any k£ # 1 and consider the log-likelihood ratio (LLR)
between hypotheses I = 1 and I = k. Under the realistic generator, (R;,C;) are drawn with
R, ~ P while the aggregator evaluates likelihoods using C; and 6; = (1 — C;)/(K — 1). The
per-sample LLR increment has conditional mean

E[Yk(t) | P7Ct] = (P — Pk)(log C, — 1og9t).

Averaging over (P, C;) gives the drift . If g > 0, the Strong Law of Large Numbers implies the
cumulative LLR grows linearly to 400, so the likelihood under I = 1 dominates and the posterior
concentrates on the truth. This condition also covers minority-correct regimes (P; < Pj) provided
C} is systematically below 1/ K, which flips the sign of the log term and yields positive drift where
majority vote would fail. A full proof appears in Appendix

4 EXPERIMENTS

We evaluate CGES on five reasoning benchmarks using two 7B-class models and compare against
standard self-consistency (SC) (Wang et al., |2023) and early-stopping self-consistency (ESC) (L1
et al. [2024)). Self-consistency (SC) aggregates multiple samples by majority vote. Early-stopping
self-consistency (ESC) halts sampling once predictions within a fixed-size window agree, reducing
calls relative to SC. We report accuracy of the final answer and efficiency as the average number
of LLM calls per question. All reported results are averaged over three random seeds to mitigate
variance due to stochasticity. Unless noted, decoding and prompting details follow prior work and
are provided in Appendix [D] Confidence signals C; are computed using the strategies in Section[4.2]



Under review as a conference paper at ICLR 2026

4.1 DATASETS AND MODELS

We evaluate on five benchmarks spanning mathematics and broad knowledge: AIME24, consisting
of 30 problems from the 2024 American Invitational Mathematics Examination; MATHS00, a 500-
question subset of the MATH benchmark (Hendrycks et al.,2021b) targeting advanced mathematical
reasoning; GSMS8K (Cobbe et al.| 2021])), 8,500 grade-school math word problems requiring multi-
step arithmetic; MMLU _Pro (Wang et al., 2024)), a more challenging variant of MMLU (Hendrycks
et al.,[2021a) covering 14 college-level subjects; and GPQA Diamond (Rein et al., 2024)), expert-
written science questions designed to be difficult even for skilled human participants. For the
more challenging datasets (AIME24 and GPQA), we employ the stronger DeepSeek-R1-Distill-
Owen(7B) (DeepSeek-Al et al.l 2025), whereas for the less challenging benchmarks (MATHS500,
GSMS8K, and MMLU_Pro) we use the weaker Qwen2.5(7B) (Yang et al.| 2025)).

4.2 CONFIDENCE ESTIMATION STRATEGIES

We compare several strategies for estimating the scalar confidence C; € (0, 1) of each sampled
answer R;. Our framework operates at the response level, but confidence estimation relies on finer
token-level granularities. Specifically, let a response R; consist of a token sequence T71,...,T},
with associated autoregressive probabilities p1,...,pr. Building on this, we now describe three
token-based approaches and one verifier-based alternative.

Length-Normalized Scoring (LNS) (Malinin & Gales,|2021). A natural way to quantify the likeli-
hood of a response is by averaging over token probabilities. The geometric mean yields the standard
length-normalized score:

L
LNSgeom = exp <% Z log pg)
=1

while the arithmetic mean provides a simpler length-insensitive proxy, LNS,im = % Zngl pe. We
set C; to either of these values and denote them in results as LNS [Geometric mean] and LNS
[Arithmetic mean].

MARS (Step-Weighted Scoring) (Bakman et al., 2024). The MARS method generalizes LNS
by assigning different weights to different positions in the sequence. Each token T} receives an
exponent

1 u(R,Q,9)

so the overall score becomes

L
P(R|Q.60) =[] o/ """
(=1

where 6 denotes the parameters of the language model generating token probabilities. Here
u(R,@,?) is an importance score for token T}, such as the semantic change in the output when
masking that token. While token-level weighting can be precise, for long reasoning responses most
token importance scores become nearly uniform, and computing «(-) for every token is expensive
(requiring L calls to a semantic extractor model such as a sentence transformer). To address this, we
adopt a step-wise variant of MARS: instead of per-token weights, we assign weights at the granular-
ity of reasoning steps or sentence segments. Although the step-importance score is recomputed each
iteration, this overhead (6 layers, ~50M parameters) is negligible compared to the 7B-parameter
inference model we query for R;. We denote the resulting confidence as C; = MARS.

Reward Model Confidence. In addition to the above token-level methods, we also consider a
model-based approach that evaluates entire responses directly. A trained reward model assigns a
quality score to each R;, which we use as C}. In our study, we use Qwen2 .5-Math-PRM-72B
process reward model (Zhang et al., [2025), which outputs a scalar in (0, 1) that correlates with
alignment to the ground truth on math-style reasoning. Because it has 72B parameters (far larger
than our 7B inference model), using it as the scorer is impractical for deployment; we include it as
a near-optimal reference to approximate an upper bound on confidence quality, especially on tasks
that are in-domain for this PRM. We denote this variant as RM Confidence.
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Table 1: Accuracy (%) and avg. #Calls across five reasoning tasks; Avg is mean over benchmarks. Parentheses
show difference vs. SC (#Calls=16 or SC Acc). For CGES, the first row corresponds to the Efficient setting
(lower threshold, fewer calls) and the second row to the Conservative setting (higher threshold, more calls)[]

AIME24 MATHS500 GSM8K GPQA MMLU_Pro Avg.
#Calls Acc |#Calls Acc |#Calls Acc |#Calls Acc |#Calls Acc |#Calls Acc
SC 16.00 78.89 ‘ 16.00 82.20 ‘ 16.00 94.39 ‘ 16.00 51.01 ‘ 16.00 61.54 ‘ 16.00 73.61
ESC (w=4) 11.02 78.89 | 7.88 82.07| 522 9437| 11.90 51.18| 9.04 61.43| 9.01 73.59
(-0.13) (-0.02) (-0.11) (-0.02)
ESC (w=8) 1440 78.89| 11.57 8220| 9.50 94.39| 14.87 51.01 | 12.94 61.54 | 12.66 73.61
CGES (Ours)
647 7889 | 4.69 8193 | 450 9426 2.09 51.13| 6.77 61.56| 490 73.55
LNS[Arithmetic mean] 027) (-0.13) (-0.06)

9.59 7889 | 581 81.87| 450 94.26| 1048 51.52| 829 61.58| 7.73 73.62
(-0.33) (-0.13)

727 7844 6.64 82.00| 536 94.36| 444 5135| 6.78 61.63| 6.88 73.56
(-0.45) (-0.20) (-0.03) (-0.05)
11.56 78.44| 6.64 82.00| 536 9436| 13.26 51.18| 10.68 61.65| 9.90 73.52
(-0.45) (-0.20) (-0.03) (-:0.09)

579 7778 | 680 81.93| 539 9442| 361 52.69| 668 61.60| 565 73.28
(-1.11) (-0.27) (-:0.33)
10.83 7778 | 6.80 81.93| 539 9442 12.14 50.84| 10.59 61.53| 9.15 73.52

(-1.11) (-0.27) (-0.17) (-0.01) (-0.09)

LNS[Geometric mean]

MARS

Table 2: CGES-PRM (upper bound). Same conventions as Table Confidences from a large PRM
(Qwen2.5-Math—PRM-72B; scoring only).

AIME24 MATHS500 GSM8K GPQA MMLU_Pro Avg.
#Calls Acc |#Calls Acc |#Calls Acc |#Calls Acc |#Calls Acc |#Calls Acc

6.71 7778 | 432 83.00| 257 9449 6.62 51.68| 6.05 62.17| 527 7342
111 (-0.19)

7.65 7778 | 527 8513| 3.02 9555 10.62 50.67 | 7.44 63.64| 640 7435
11D (0.34)

RM Confidence

4.3 RESULTS

Table [I] reports accuracy and average number of calls for CGES and baselines with a Self-
Consistency budget of B = 16. We compare probability-based variants of CGES, which use token-
level (LNS) and step-level (MARS) confidence scores.

Across all benchmarks, CGES variants using token-level and step-level confidence (LNS and
MARS) significantly reduce the number of model calls compared to both SC and ESC, while main-
taining near-identical accuracy. In the configuration achieving the greatest reduction in LLM calls,
arithmetic mean LNS achieves an average of just 4.90 calls—a 69.4% reduction over SC’s fixed
budget of 16—while preserving accuracy within —0.06%. Notably, MARS further improves sample
efficiency on challenging benchmarks such as GPQA, lowering the average calls from 16.00 to 3.61
with a +1.68 % accuracy gain. Similarly, on MMLU _Pro, CGES variants reach comparable or better
accuracy with fewer than half the calls (e.g., 6.77 calls vs. 16.00 with +0.02% gain). These results
demonstrate that CGES offers a more promising and reliable alternative than local majority-vote
stopping rules, enabling adaptive early stopping guided by confidence signals. For MATH500 and
GSM8K—the easier tasks—probability-based variants show small accuracy dips despite large call
savings. This is expected: when most samples are already correct, marginal improvements hinge
on the calibration of Cy; noisy probability proxies (LNS/MARS) can be slightly over- or under-
confident, limiting accuracy gains. Nevertheless, the efficiency gains are substantial (often > 2x
fewer calls) with accuracy essentially preserved.

"The Efficient setting corresponds to the smallest - for which CGES matches or surpasses SC performance,
while the Conservative setting corresponds to the largest « considered. If CGES does not reach SC perfor-
mance, both settings coincide at the largest .
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Figure 3: Accuracy vs. number of LLM calls (B=16) on AIME24 (a), MATHS500 (b), GSM8K (c),
GPQA (d), and MMLU Pro (e). CGES achieves near-maximal accuracy with far fewer calls than
self-consistency.

Reward-model-based CGES approximates a best-case scenario where confidence estimates are
much closer to ground truth than those obtainable from the 7B inference models. Because
Qwen?2.5-Math-PRM-72B is substantially larger and trained for step-level scoring, its signals
are stronger than what is practical at inference time. As expected, improvements are most pro-
nounced on math-centric datasets (MATHS500, GSM8K), where the PRM’s training data overlaps
with the task: accuracy rises while calls drop sharply (Table[2)). In contrast, on AIME24 and GPQA,
the domain mismatch and higher difficulty reduce the utility of PRM scores, yielding small accuracy
drops despite fewer calls. Interestingly, on MMLU_Pro, the PRM still supplies useful confidence
signals and surpasses SC with substantially fewer calls. Appendix [C] presents additional results
under smaller SC budgets (B = 4, 8), showing consistent trends.

Figure [3| shows the accuracy—efficiency trade-off. Each CGES curve is obtained by sweeping the
stopping threshold +; the baseline traces self-consistency (SC) at fixed budgets. On AIME24,
GSMSK, and MATHS500, CGES achieves near-maximal accuracy after only a few calls, whereas
SC requires the full budget. Reward-model (PRM) confidence converges fastest (often within 3—4
calls), and is shown as a near-ideal reference rather than a deployable setting. Across datasets, curves
flatten beyond ~6 calls, indicating diminishing returns and that SC’s B=16 is over-provisioned.
These results confirm that confidence-guided stopping enables CGES to adaptively terminate sam-
pling early without compromising accuracy.

5 CONCLUSIONS

We proposed CGES, a confidence-based Bayesian framework for test-time scaling of LLMs. By
treating each response and its confidence as probabilistic evidence, CGES enables early stopping
and more reliable aggregation than majority voting. Across five reasoning benchmarks, CGES
substantially reduces model calls while maintaining or improving accuracy, outperforming Self-
Consistency and early-stopping baselines. Our theoretical analysis further shows correctness under
both ideal and noisy confidence assumptions. Overall, confidence-guided aggregation provides a
principled solution within the family of test-time scaling methods that sample multiple responses
and aggregate them into a single answer. Future work includes (i) developing more accurate confi-
dence estimators to further enhance efficiency and accuracy, and (ii) predicting the required number
of samples dynamically from confidence signals.
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6 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. All theoretical claims are
stated under clearly enumerated assumptions (Section [3.1) with full proofs provided in Appen-
dices The complete Bayesian formulation and algorithmic details of CGES are presented in
Section[3.2H3.3] including pseudocode for both the scoring and stopping procedures (Algorithms [T}
[2). Experimental protocols are fully described in Sectiond] covering datasets (Section[d.1]), models,
baselines, and confidence estimation strategies (Section 4.2)). Detailed hyperparameters, decoding
configurations, and additional results under varying budgets are included in Appendix [CHD] To fur-
ther facilitate verification, we provide an anonymized implementation and experiment scripts as
supplementary material. Together, these resources ensure that both the theoretical and empirical
results reported in this paper can be independently reproduced and validated.
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A FULL PROOF OF THEOREM 1

Proof. Without loss of generality, relabel so that the true index is I = 1. Define the unnormalized
and normalized posteriors

t=1 > k=1 Ak
To prove the claim, it is enough to show that for every k # 1, A1 /A, — oo almost surely, which
then implies X; — 1 and X, — 0 almost surely.

Step 1:  First, for a fixed k& # 1, we define

YD = logP(R, | C;, 1 =1) — logP(R; | Cy, I = k).
Under Assumption 3] conditioning on C; we have
log C; if Ry = ax,
log(425t) if Ry # an,

IOgIP(Rt | Ct,I = ].) = {

and

log Ct if Rt = ag,

log(45t) if Ry # ay.

Let 0; := 1K_7C{ Using Assumption |1{(i.i.d. across ¢ given P and hence given C; in this idealized
parameterization), the conditional probabilities under the true model I = 1are P(Ry = 1 | C, I =
1) = Ct and]P’(Rt =k ‘ Ct,I: 1) :0,5.

IOgIP)(Rt | Ct,I = k) = {
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Step 2: In the next step, by taking the conditional expectation of Yk(t) given Cy, it follows that

B[ 1€ = (€= 0) (108G~ towts) = (G- 0 o5

Because x — log x is strictly increasing, (@ — b) log(a/b) > 0 for a # b. Here a = C; and b = 6,,
so the conditional mean is strictly positive whenever C; # 6, i.e., whenever C; # 1/K. By the
informativeness condition P(C; = 1/K) = 0,

m = B[R] = EE[RY c]] > o

Moreover, |Yk(t)| has finite expectation since C; € (0,1) a.s., making the logs finite.

Step3: By Assumption {Yk,(t)};":1 are i.i.d. with IEHYk(t) ] < ooand E[Yk(t)] = uy > 0. Finally,
the Strong Law of Large Numbers yields

1 m N m N
EZy,c(“ S >0 = > ¥ h
t=1 t=1

Exponentiating both sides of log(A4;/A4;) = >/, Yk(t) gives
Al ( i (t) a.s
— = ex Y, ) — 00.
Since this holds for every k # 1, we have Ay /A; — 0 almost surely for all k£ # 1, and therefore
1 A A a.s.
A sy
L+ 30 Ae/A L4+ 44

This completes the proof. O

Xy = 21, Xy =

B FuLL PROOF OF THEOREM [2]

Proof. Without loss of generality, let I = 1. For j € [K], define
AJ = ﬁP(Rt ‘ Ct,I :_]), X] = 12473
t=1 Zk:l Ap

It suffices to show that for every k # 1, A1 /A 2%, 0, which implies X; — 1 and X} — 0 almost
surely.

Step 1: In the first step, we fix £ # 1 and set
Vi = logP(R, | Co, T =1) — logP(R, | Cy, I = k).

With the model likelihood above and 6; = lK_flt ,

log Ct (Rt = al),
logy (R # a1),

IOg Ct (Rt = ak),

st G I =) _{ logh  (Ri # ax).

log P(R, | C1, T = k) = {

Step 2: Next by conditioning on (P, Cy) and using P(R; = a, | P) = P,, we have
E[Yk(t) | P, Ct} = Py (log Cy — log 6;) + Pi,(log 6, — log Cy) = (Py — Pi)(log Cy — log ;).
Taking expectations over (P, C) gives
e = E{Y,j“} = Epc [(P1 - Pk)log(%)} .

By assumption, i > 0 for all & # 1 and EHYk(t)H < oo (since Cy € (0,1) a.s. and the logs are
integrable).
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Step 3: By Assumptionand the i.i.d. generation of (R;, Ct) given P, the increments {Yk(t) i
are i.i.d. with finite first moment and mean p > 0. The Strong Law of Large Numbers yields

1 e
— Z Yk,(t) — x> 0almost surely — Z Yk(t) — 400 almost surely.
m
t=1 t=1
Hence
A =ex (zm: Y(t)) — oo almost surel
AL P 2 k Y,

so Ai/A1 — 0 as. for all k # 1, and therefore X; — 1 and X} — 0 almost surely.

Converse (necessity). If pg« < 0 for some k* # 1, then by the same SLLN argument,

Sy v &5 —o0o a.s., so A;/Ag+ — 0 almost surely and thus X; — 0 almost surely. (When
i = 0 for some k, the LLR has zero drift and the posterior need not concentrate; this is a boundary
case.) O

C ADDITIONAL RESULTS

Additional results are provided in Table [3]and Table 4]

AIME24 MATHS00 GSM8K GPQA MMLU_Pro Avg.
#Calls Acc | #Calls Acc |#Calls Acc |#Calls Acc |#Calls Acc |#Calls Acc
SC 4.00 67.78‘ 4.00 78.80‘ 4.00 93.40‘ 4.00 50.67‘ 4.00 58.79‘ 4.00 69.89
CGES (Ours)

3.03 68.89| 259 7940 1.84 9348 1.52 53.02| 276 59.05| 235 70.77

LNS[Arithmetic mean] o, a9 | 375 7940| 386 9348| 400 53.02| 398 59.05| 392 70.77

3.17 6799 | 293 79.40| 2.14 9340| 3.33 5354 3.02 59.00| 292 70.67

LNS[Geometricmean] o, 778 | 305 7947| 399 9335| 400 5320| 400 5934 | 399 7063

(-0.05)

248 6778 | 3.00 79.00| 2.15 9345| 3.00 53.05| 3.05 59.06| 2.74 70.47

MARS 400 7222| 398 79.07| 399 9338| 400 51.85| 400 59.14| 3.99 7113
(0.02)
CGES - Near Ideal Scenario (Ours)
172 6389| 180 7893| 2.16 94.16| 3.88 5051 | 241 5898 239 70.29
RM Confidence 0.16)

3.68 7333 | 274 8327 | 243 9494 | 397 5034 | 344 6197 325 7277
(-0.33)

Table 3: Accuracy (%) and avg. #Calls across five reasoning tasks; Avg is mean over benchmarks.
Parentheses show difference vs. SC (#Calls=4 or SC Acc). Efficient (first row) vs. Conservative
(second row) are two CGES settings.
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AIME24 MATHS500 GSM8K GPQA MMLU_Pro Avg.
#Calls Acc | #Calls Acc |#Calls Acc |#Calls Acc | #Calls Acc |#Calls Acc
SC 8.00 74445‘ 8.00 81.47‘ 8.00 93.91‘ 8.00 50.17‘ 8.00 60.68‘ 8.00 72.14
CGES (Ours)

441 7445| 4.08 81.87| 341 9383 | 2.08 51.12| 442 60.68| 3.68 72.39
(-0.08)
6.88 7445| 488 81.87| 426 93.83| 7.56 5S1.12| 6.59 60.68| 6.03 72.39
(-0.08)

432 75.19| 467 81.73| 4.04 93.78| 425 51.68| 5.78 60.89 | 4.61 72.65
(<0.13)
7.1 7222 552 81.80| 5.05 93.78| 7.99 51.35| 740 6095| 6.74 72.02

(-2.23) (<0.13) (-0.12)

4.04 7445] 3.69 81.60| 508 93.88| 356 52.69| 443 60.75| 4.16 72.67
(-0.03)

LNS[Arithmetic mean]

LNS[Geometric mean]

MARS 7.63 7556 | 5.63 81.87| 508 93.88| 797 51.68| 749 61.03| 6.76 72.80
(-0.03)
CGES - Near Ideal Scenario (Ours)
172 7556 | 326 82.67| 237 94.44| 532 5034| 442 61.68| 3.42 7294
RM Confidence

5770 7556 | 3.82 8447 | 273 9545| 7.20 50.00| 520 63.19| 493 73.73
(-0.17)

Table 4: Accuracy (%) and avg. #Calls across five reasoning tasks; Avg is mean over benchmarks.
Parentheses show difference vs. SC (#Calls=4 or SC Acc). Efficient (first row) vs. Conservative
(second row) are two CGES settings.

D DECODING HYPERPARAMETERS AND PROMPT TEMPLATES

For CGES, we sweep the stopping threshold ¥ over the grid
0.70,,0.75,,0.80,,0.85,,0.90,,0.95,,0.99,,0.999,,0.9999 to explore different accu-
racy—efficiency trade-offs. All experiments, including those for SC, ESC, CGES, and confidence
estimation, share the same decoding setup. Specifically, we allow a maximum of 32,768 generation
tokens, use a temperature of 0.7, and apply nucleus sampling with top-p = 1.0 (i.e., no truncation).
Top-k sampling is disabled in all runs.

Prompt Templates. We use dataset-specific answer-format constraints to simplify parsing.
Prompt templates are shown in Fig ]

( N\ ( )

Question: {sample['question’T} Question: {sample['question']}
Provide your step-by-step reasoning Provide your step-by-step reasoning first, and
first, and then print "The answer is then print "The answer is (X)", where X is the

\boxed{X}", where X is the final answer, answer choice (one capital letter), at the end
at the end of your response. of your response.
. /L J
(a) Prompt used for MATHS500, AIME24, GSM8SK (b) Prompt used for GPQA, MMLU_Pro

Figure 4: Two prompt templates for evaluation.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) solely to aid with polishing the writing and improving
clarity of exposition. No part of the research ideation, methodology, analysis, or experimental results
was generated by LLMs. The authors take full responsibility for the content of this paper.
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