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ABSTRACT

Large language models (LLMs) are often queried multiple times at test time,
with predictions aggregated by majority vote. While effective, this self-
consistency (Wang et al., 2023) strategy requires a fixed number of calls and fails
when the correct answer is infrequent. We introduce Confidence-Guided Early
Stopping (CGES), a Bayesian framework that forms posteriors over candidate an-
swers from scalar confidence signals—derived from token probabilities or reward
models—and adaptively halts sampling once posterior mass exceeds a threshold.
We provide theoretical guarantees in both the ideal case of perfectly calibrated
confidences and the realistic regime with noisy confidences. Averaged over five
reasoning benchmarks, CGES reduces the average number of calls by 69.4% (e.g.,
from 16.0 to 4.9) while maintaining accuracy within 0.06 percentage points of
self-consistency.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable progress across reasoning, problem solv-
ing, and open-domain tasks. A common practice to improve reliability is test-time scaling (Snell
et al., 2025), a family of methods that allocate additional inference-time computation to improve
performance. One subset of these methods samples multiple responses and aggregates them into a
final prediction. Among the most widely used methods, self-consistency (SC) (Wang et al., 2023)
aggregates outputs by majority vote, leveraging the intuition that the most frequent answer across
diverse generations is likely to be correct. While simple and effective in many settings, majority-
based aggregation suffers from two major shortcomings. First, it assumes that response frequency is
a faithful proxy for correctness, which fails in cases where the correct answer appears infrequently.
Second, it requires a fixed number of model calls regardless of confidence, leading to substantial
inefficiency.

Confidence signals offer an alternative perspective. Instead of depending solely on frequency, one
can incorporate confidence scores that capture the model’s belief in each response. These scores
may be derived from different sources. Token probabilities are taken directly from the model’s
output distribution and reflect how certain the model is about generating each token. Calibration
schemes adjust these raw probabilities so that they better match the actual likelihood of correctness,
turning overconfident or underconfident estimates into more reliable signals. External reward mod-
els are trained separately, often with human feedback or domain-specific supervision, and provide
an independent measure of response quality beyond the model’s own probabilities. Such signals can
distinguish between frequent but uncertain answers and rare yet confident ones.

We propose a confidence-based Bayesian framework for test-time scaling. Our framework builds
on the idea that incorporating confidence enables robust aggregation and adaptive stopping, where
sampling stops once sufficient certainty is reached, reducing cost without sacrificing accuracy. Our
approach computes posterior probabilities over candidate answers by treating each response and its
associated confidence as probabilistic evidence. This yields two key advantages over majority vot-
ing: (1) when the correct answer is frequent, our method reaches the same conclusion but often stops
earlier by exploiting high-confidence signals, improving efficiency; (2) when the correct answer is a
minority, our method can still recover it by amplifying the influence of confident predictions, where
majority voting fails. Figure 1 illustrates both phenomena on real items: our framework (a) halts
after only a few calls when confidence concentrates, and (b) outperforms majority vote when the
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(a) Efficiency: CGES stops early once its posterior exceeds γ, while SC uses a fixed budget (B=16).

(b) Accuracy: SC’s majority vote is wrong, but CGES aggregates confidences and selects the correct answer.

Figure 1: Examples of CGES vs. SC. Top: early stopping with high confidence; Bottom: recovering a
minority-but-confident answer.

correct answer is a minority but highly confident. We further formalize this intuition by proving the-
oretical guarantees under ideal conditions where confidence scores are faithful to the true likelihood
of correctness. We then extend the analysis to the more practical case of noisy confidence estimates,
where scores may be imperfect reflections of true correctness.

To operationalize this framework, we introduce Confidence-Guided Early Stopping (CGES), which
integrates Bayesian scoring with an adaptive stopping rule. CGES allows for flexible accu-
racy–efficiency trade-offs by halting once posterior concentration exceeds a threshold or a bud-
get is reached. We evaluate CGES across multiple reasoning benchmarks, including AIME24,
MATH500 (Hendrycks et al., 2021b), GSM8K (Cobbe et al., 2021), GPQA (Rein et al., 2024),
and MMLU Pro (Wang et al., 2024), and compare against self-consistency (Wang et al., 2023) and
early-stopping self-consistency (Li et al., 2024). Our experiments show that CGES consistently re-
duces the number of LLM calls by large margins while maintaining or even improving accuracy.
These results highlight the benefits of incorporating calibrated confidence into test-time scaling,
moving beyond frequency-based heuristics toward principled Bayesian aggregation. In summary,
our contributions are as follows:

• We propose a Bayesian framework that incorporates confidence estimates into self-
consistency, enabling more accurate and theoretically grounded aggregation beyond ma-
jority voting.

• We design Confidence-Guided Early Stopping (CGES), which adaptively halts sampling to
trade off accuracy and efficiency.

• We establish theoretical guarantees of correctness under ideal conditions where confidence
scores are perfectly calibrated to the true probabilities of correctness, and extend the anal-
ysis to the realistic setting with noisy confidence estimates.

• We empirically validate CGES across five reasoning benchmarks, showing substantial effi-
ciency improvements while maintaining or improving accuracy.

2 RELATED WORK

A widely used approach for improving test-time scaling is self-consistency. Introduced by Wang
et al. (2023), it aggregates multiple reasoning paths by majority voting, improving reliability in
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chain-of-thought reasoning. However, self-consistency requires a fixed number of model calls and
often fails when the correct answer is infrequent. To reduce this cost, Li et al. (2024) proposed early-
stopping self-consistency (ESC), which stops sampling when predictions begin to agree. More re-
cent extensions, such as Self-Calibration (Huang et al., 2025), incorporate dynamic stopping rules or
distill self-consistency signals into single-pass confidence estimates. In contrast to Self-Calibration,
which learns confidence from majority voting signals, our work introduces a Bayesian framework
with theoretical guarantees for confidence-guided early stopping.

Beyond self-consistency, several methods adaptively allocate test-time compute. Snell et al. (2025)
study compute-optimal scaling strategies, while Muennighoff et al. (2025) introduce s1, which opti-
mizes inference length under budget constraints. Other directions combine search and verification:
self-enhanced tree search frameworks (Bi et al., 2025; Lample et al., 2022; Koh et al., 2024) expand
multiple reasoning paths with sparse activation, while step-wise verifiers dynamically prune the
search tree (Li et al., 2023; Lightman et al., 2024). Two-stage elimination-based approaches (Chen
et al., 2025) refine candidate answers iteratively, and query-variant ensembling (Huang et al., 2024)
improves robustness. These methods share with us the goal of balancing accuracy and efficiency, but
differ in their reliance on structured search or verifier signals. Our approach instead treats confidence
as probabilistic evidence in a Bayesian model, yielding lightweight updates and formal consistency
guarantees. Moreover, while prior methods typically optimize efficiency when extracting a single
reasoning path or answer, our framework belongs to the family of test-time scaling approaches that
deliberately sample multiple responses per query and then aggregate them into a final answer using
principled Bayesian inference.

A core component of our framework is uncertainty estimation, which has also been studied exten-
sively in generative LLMs. Probability-based methods such as length-normalized scoring (Malinin
& Gales, 2021) reduce bias against longer responses, while more recent approaches explicitly ac-
count for meaning or learn trainable scoring functions. For example, MARS (Bakman et al., 2024)
introduces a semantics-aware weighting of token contributions, and LARS (Yaldiz et al., 2025) for-
mulates uncertainty estimation as a supervised learning problem over token-level scores. Other
studies explore Bayesian or distillation-based techniques (Vejendla et al., 2025) for efficient uncer-
tainty estimation. Unlike these works, our aim is not to propose new uncertainty estimation methods.
Instead, we adapt and integrate existing techniques–modifying them when appropriate–within the
CGES framework.

3 CONFIDENCE-BASED APPROACH

In this section, we propose a confidence-based method as an alternative to the majority-vote self-
consistency approach. We formalize our setting, introduce a Bayesian framework, provide theoret-
ical guarantees under ideal conditions, and discuss the realistic scenario where confidence scores
may be noisy.

3.1 PROBLEM SETTING AND NOTATIONS

Q,A I

P
Rt

Ct

t = 1:m

Figure 2: Graphical model for the sampling
process.

Suppose we query a large language model (LLM)
multiple times with a given query Q, whose true an-
swer is A, thereby obtaining a sample set S of re-
sponses. Let U = {a1, a2, . . . , aK} denote the com-
plete set of all possible distinct candidate answers
from the LLM, where K is the maximum number
of such candidates. We assume the correct answer
is within this candidate set and denote its index as
I ∈ [K]. Conditioned on (Q,A) and the identity
of the correct candidate I , there exists a probabil-
ity distribution over answers P = (P1, . . . , PK) ∼
fP (Q,A, I), where Pj = P[R = aj | Q,A, I]. In-
tuitively, this captures the stochastic behavior of the
LLM given the query: the likelihood of producing
each candidate answer depends both on the query and on which candidate is correct. For each
LLM call t = 1, 2, . . . , we draw a response–confidence pair (Rt, Ct) according to Rt ∼ P and

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Ct ∼ fC|P (P ). That is, the response Rt is drawn i.i.d. from the distribution P , and the confidence
signal Ct—a scalar attached to Rt—is a (possibly noisy) proxy derived from P . This structure can
be represented as a graphical model, illustrated in Fig. 2.

Idealistic vs. Realistic Assumptions. It is important to distinguish between two types of assump-
tions. Idealistic assumptions are simplifying conditions introduced to design a simple, efficient algo-
rithm and to prove that it achieves optimality under ideal conditions (Theorem 1). These include the
assumption of a uniform error distribution and the independence of confidence scores from the true
index. In contrast, realistic assumptions are those expected to hold in practice and are used both in
the derivation of the CGES algorithm and in establishing guarantees under realistic conditions (The-
orem 2). These include the i.i.d. sampling assumption and the uniform prior on I . Thus, while all
four assumptions 1-2-3-4 hold in the idealized setting, only the weaker pair 1-2—i.i.d. sampling and
uniform prior on I—are retained under realistic conditions. The four assumptions are as follows:

1. Given a fixed query Q, with a fixed U and P , the samples {(Rt, Ct)}mt=1 are i.i.d.
2. I ∼ Uniform({1, . . . ,K}), reflecting that uncertainty lies in the indexing convention, not

in the identity of the correct answer.
3. Under hypothesis I = i, the correct answer ai is emitted with probability Ct, while each

incorrect candidate shares the residual probability mass uniformly:

P(Rt = ai | Ct, I = i) = Ct, P(Rt = aj ̸= ai | Ct, I = i) =
1− Ct

K − 1
.

4. The confidence score Ct is independent of the index of the correct answer. Intuitively,
the confidence attached to a sample should not depend on which candidate happens to be
correct. Formally,

P(Ct | I = i) = P(Ct | I = j) ∀i, j ∈ {1, . . . ,K}.

Given these assumptions, the objectives of our framework are twofold: (i) to identify the most prob-
able index i ∈ [K] corresponding to the true answer, and (ii) to quantify the level of confidence in
this selection.

3.2 BAYESIAN CONFIDENCE-BASED FRAMEWORK

We use Bayesian inference to compute posterior probabilities. That is, given an unknown index
I ∈ {1, . . . ,K} and a sequence of observed response–confidence pairs, the posterior distribution
over I is

P(I = i | Obs) =
P(Obs | I = i)P(I = i)∑K

k=1 P(Obs | I = k)P(I = k)
.

Here, the numerator combines the likelihood of the observations under hypothesis I = i and the
prior P(I = i), while the denominator normalizes across all K competing hypotheses. The set of
observations is defined as Obs = {R1, C1, R2, C2, . . . , Rm, Cm}, where Rt denotes the response
at step t and Ct its associated confidence score. This alternating structure reflects how, at each trial,
both the raw prediction and its confidence are incorporated.

Since we assume a uniform prior over all hypotheses, i.e., P(I = i) = 1/K, Bayes’ rule simplifies
to

P(I = i | Obs) =

∏
t P(Rt, Ct | I = i)∑K

k=1

∏
t P(Rt, Ct | I = k)

.

This formulation emphasizes that the posterior is built by multiplying the contributions of each
observation and then renormalizing across all indices.

According to Assumption 4, we have

P(Ct | I = i) = P(Ct | I = j) ∀i, j ∈ {1, . . . ,K}.

As a result, the joint distribution factorizes as

P(Rt, Ct | I = i) = P(Rt | Ct, I = i)P(Ct),
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Algorithm 1 SCORE: Confidence-Based Bayesian Normalization

Require: Candidate set U = {a1, . . . , aK}; samples S = {(Rt, Ct)}mt=1 with Rt ∈ U and Ct ∈
(0, 1)

1: for all ai ∈ U do
2: sai

←
∏

t:Rt=ai
Ct ×

∏
t:Rt ̸=ai

1−Ct

K−1

3: end for
4: return score(ai) = sai

/Z for all ai

and the marginal P(Ct) cancels out in the numerator and denominator of Bayes’ rule. This leads to
the simplified posterior form

P(I = i | Obs) ∝
∏

t P(Rt | Ct, I = i)∑K
k=1

∏
t P(Rt | Ct, I = k)

≜ Xi, (1)

where Xi represents the posterior mass for hypothesis i.

Finally, in the ideal scenario, we assume that the conditional probability of a response takes the
following form:

P(Rt | Ct, I = i) =

{
Ct if Rt = ai,

1−Ct

K−1 otherwise.
Intuitively, this means that when the response Rt matches the true answer ai, it is selected with
probability equal to the reported confidence Ct, while the remaining (K − 1) incorrect answers
share the residual probability mass uniformly.

3.3 ALGORITHM FOR CONFIDENCE-BASED SCORING

Given a set of sampled answers and their confidences S = {(Rt, Ct)}mt=1 for a single question,
our goal is to convert them into calibrated, comparable probabilities over the unique answer set
U = {at}Kt=1. The Bayesian posterior of Eq 1 factorizes into a product of per-sample terms: if the
hypothesis (answer) is ai, then a sample Rt that outputs ai has likelihood Ct, and any other answer
has likelihood (1 − Ct)/(K − 1). We therefore form an unnormalized score sai

by multiplying
these terms across all samples and then normalize across candidates. Algorithm 1 implements this
computation.

Algorithm 2 wraps SCORE into an adaptive loop that allocates test-time compute per question. We
begin with one sample per question, compute posteriors with SCORE, and maintain the set of un-
resolved questions Drem whose current top posterior is below a confidence threshold γ. At round
t = 2, . . . , B, we query the LLM only for n ∈ Drem, append the new (Rn

t , C
n
t ), recompute SCORE

on that question’s t samples, and remove it from Drem as soon as its top posterior exceeds γ. The
process stops when all questions are confident or the budget B is reached, returning the argmax label
per question and the average number of LLM calls.

3.4 THEORETICAL ANALYSIS OF ALGORITHM PERFORMANCE (IDEAL SCENARIO)

Theorem 1. Under Assumptions 1, 2, 3, and 4, and provided the confidences are informative i.e.,
P(Ct = 1/K) = 0, the Bayesian confidence-based aggregator identifies the correct answer with
probability tending to one as the number of samples m grows:

P
(
arg max

i∈[K]
Xi = I

)
−→ 1 as m→∞.

In fact, XI → 1 and Xk → 0 for all k ̸= I almost surely.

Proof Sketch. Fix any wrong index k ̸= I and compare the (log) likelihood of the observed samples
under the hypotheses I vs. k. Each sample contributes a log-likelihood ratio (LLR) increment whose
expected value is strictly positive whenever the confidence Ct deviates from the uninformative value
1/K. By the Strong Law of Large Numbers (SLLN), these positive-drift increments accumulate
linearly, so the total LLR diverges to +∞. Hence the likelihood under the true index dominates
every competitor, forcing the normalized posterior XI to 1 and all others to 0. A complete formal
proof is provided in Appendix A
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Algorithm 2 Confidence-Guided Early Stopping (CGES)

Require: N questions; threshold γ; calls budget B; scoring routine SCORE
1: Initialize scoresn ← SCORE({(Rn

1 , C
n
1 )}) for all n ∈ [N ]

2: Drem ← [N ]; calls← N
3: for t = 2 to B do
4: Drem ← {n ∈ Drem : maxi scoresn[i] < γ}
5: if Drem = ∅ then break
6: end if
7: Query LLM for each n ∈ Drem; calls += |Drem|
8: for all n ∈ Drem do
9: scoresn ← SCORE({(Rn

1 , C
n
1 ), . . . , (R

n
t , C

n
t )})

10: end for
11: end for
12: return ŷn = aargmaxi scoresn[i] ∀n, usage= calls/N

3.5 THEORETICAL ANALYSIS OF ALGORITHM PERFORMANCE (REALISTIC SCENARIO)

In contrast to the ideal case, where the data are generated by the same likelihood used by the ag-
gregator, the realistic setting permits model mismatch: the observed answers Rt are drawn from an
unknown but fixed (per question) distribution P = (P1, . . . , PK), while the confidence signal Ct

is a noisy proxy produced by an estimator (for example token probabilities). The aggregator itself
retains the same one-versus-rest likelihood as in the ideal model; under these conditions, consistency
reduces to the sign of the average LLR drift µk defined below.

Theorem 2 (Consistency under realistic confidence noise). Assume 1 and 2. For a fixed question,
let Rt ∼ P = (P1, . . . , PK) i.i.d., and Ct | P ∼ fC|P(· | P) i.i.d., with Ct ∈ (0, 1) a.s. and
E[| logCt| + | log(1 − Ct)|] < ∞. The aggregator uses the one–versus–rest likelihood from the
ideal model. Let θt = (1− Ct)/(K − 1) and define

µk = EP,C

[
(P1 − Pk) log

(
Ct

θt

)]
, k ̸= 1.

If µk > 0 for all k ̸= 1, then P(argmaxi∈[K] Xi = 1) → 1 as m → ∞ and, in fact, X1 → 1 and
Xk → 0 almost surely. If µk⋆ < 0 for some k⋆ ̸= 1, then X1 → 0 almost surely.

Proof Sketch. As in the ideal case, fix any k ̸= 1 and consider the log-likelihood ratio (LLR)
between hypotheses I = 1 and I = k. Under the realistic generator, (Rt, Ct) are drawn with
Rt ∼ P while the aggregator evaluates likelihoods using Ct and θt = (1 − Ct)/(K − 1). The
per-sample LLR increment has conditional mean

E
[
Y

(t)
k | P, Ct

]
= (P1 − Pk)

(
logCt − log θt

)
.

Averaging over (P, Ct) gives the drift µk. If µk > 0, the Strong Law of Large Numbers implies the
cumulative LLR grows linearly to +∞, so the likelihood under I = 1 dominates and the posterior
concentrates on the truth. This condition also covers minority-correct regimes (P1 < Pk) provided
Ct is systematically below 1/K, which flips the sign of the log term and yields positive drift where
majority vote would fail. A full proof appears in Appendix B.

4 EXPERIMENTS

We evaluate CGES on five reasoning benchmarks using two 7B-class models and compare against
standard self-consistency (SC) (Wang et al., 2023) and early-stopping self-consistency (ESC) (Li
et al., 2024). Self-consistency (SC) aggregates multiple samples by majority vote. Early-stopping
self-consistency (ESC) halts sampling once predictions within a fixed-size window agree, reducing
calls relative to SC. We report accuracy of the final answer and efficiency as the average number
of LLM calls per question. All reported results are averaged over three random seeds to mitigate
variance due to stochasticity. Unless noted, decoding and prompting details follow prior work and
are provided in Appendix D. Confidence signals Ct are computed using the strategies in Section 4.2.
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4.1 DATASETS AND MODELS

We evaluate on five benchmarks spanning mathematics and broad knowledge: AIME24, consisting
of 30 problems from the 2024 American Invitational Mathematics Examination; MATH500, a 500-
question subset of the MATH benchmark (Hendrycks et al., 2021b) targeting advanced mathematical
reasoning; GSM8K (Cobbe et al., 2021), 8,500 grade-school math word problems requiring multi-
step arithmetic; MMLU Pro (Wang et al., 2024), a more challenging variant of MMLU (Hendrycks
et al., 2021a) covering 14 college-level subjects; and GPQA Diamond (Rein et al., 2024), expert-
written science questions designed to be difficult even for skilled human participants. For the
more challenging datasets (AIME24 and GPQA), we employ the stronger DeepSeek-R1-Distill-
Qwen(7B) (DeepSeek-AI et al., 2025), whereas for the less challenging benchmarks (MATH500,
GSM8K, and MMLU Pro) we use the weaker Qwen2.5(7B) (Yang et al., 2025).

4.2 CONFIDENCE ESTIMATION STRATEGIES

We compare several strategies for estimating the scalar confidence Ct ∈ (0, 1) of each sampled
answer Rt. Our framework operates at the response level, but confidence estimation relies on finer
token-level granularities. Specifically, let a response Rt consist of a token sequence T1, . . . , TL

with associated autoregressive probabilities p1, . . . , pL. Building on this, we now describe three
token-based approaches and one verifier-based alternative.

Length-Normalized Scoring (LNS) (Malinin & Gales, 2021). A natural way to quantify the likeli-
hood of a response is by averaging over token probabilities. The geometric mean yields the standard
length-normalized score:

LNSgeom = exp
(

1
L

L∑
ℓ=1

log pℓ

)
while the arithmetic mean provides a simpler length-insensitive proxy, LNSarith = 1

L

∑L
ℓ=1 pℓ. We

set Ct to either of these values and denote them in results as LNS [Geometric mean] and LNS
[Arithmetic mean].

MARS (Step-Weighted Scoring) (Bakman et al., 2024). The MARS method generalizes LNS
by assigning different weights to different positions in the sequence. Each token Tℓ receives an
exponent

w(R,Q,L, ℓ) ≜
1

2L
+

u(R,Q, ℓ)

2
so the overall score becomes

P̄ (R | Q, θ) =

L∏
ℓ=1

p
w(R,Q,L,ℓ)
ℓ

where θ denotes the parameters of the language model generating token probabilities. Here
u(R,Q, ℓ) is an importance score for token Tℓ, such as the semantic change in the output when
masking that token. While token-level weighting can be precise, for long reasoning responses most
token importance scores become nearly uniform, and computing u(·) for every token is expensive
(requiring L calls to a semantic extractor model such as a sentence transformer). To address this, we
adopt a step-wise variant of MARS: instead of per-token weights, we assign weights at the granular-
ity of reasoning steps or sentence segments. Although the step-importance score is recomputed each
iteration, this overhead (6 layers, ∼50M parameters) is negligible compared to the 7B-parameter
inference model we query for Rt. We denote the resulting confidence as Ct = MARS.

Reward Model Confidence. In addition to the above token-level methods, we also consider a
model-based approach that evaluates entire responses directly. A trained reward model assigns a
quality score to each Rt, which we use as Ct. In our study, we use Qwen2.5-Math-PRM-72B
process reward model (Zhang et al., 2025), which outputs a scalar in (0, 1) that correlates with
alignment to the ground truth on math-style reasoning. Because it has 72B parameters (far larger
than our 7B inference model), using it as the scorer is impractical for deployment; we include it as
a near-optimal reference to approximate an upper bound on confidence quality, especially on tasks
that are in-domain for this PRM. We denote this variant as RM Confidence.

7
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Table 1: Accuracy (%) and avg. #Calls across five reasoning tasks; Avg is mean over benchmarks. Parentheses
show difference vs. SC (#Calls=16 or SC Acc). For CGES, the first row corresponds to the Efficient setting
(lower threshold, fewer calls) and the second row to the Conservative setting (higher threshold, more calls).1

AIME24 MATH500 GSM8K GPQA MMLU Pro Avg.
#Calls Acc #Calls Acc #Calls Acc #Calls Acc #Calls Acc #Calls Acc

SC 16.00 78.89 16.00 82.20 16.00 94.39 16.00 51.01 16.00 61.54 16.00 73.61

ESC (w=4) 11.02
(-4.98)

78.89
(+0.00)

7.88
(-8.12)

82.07
(-0.13)

5.22
(-10.78)

94.37
(-0.02)

11.90
(-4.10)

51.18
(+0.17)

9.04
(-6.96)

61.43
(-0.11)

9.01
(-6.99)

73.59
(-0.02)

ESC (w=8) 14.40
(-1.60)

78.89
(+0.00)

11.57
(-4.43)

82.20
(+0.00)

9.50
(-6.50)

94.39
(+0.00)

14.87
(-1.13)

51.01
(+0.00)

12.94
(-3.06)

61.54
(+0.00)

12.66
(-3.34)

73.61
(+0.00)

CGES (Ours)

LNS[Arithmetic mean]

6.47
(-9.53)

78.89
(+0.00)

4.69
(-11.31)

81.93
(-0.27)

4.50
(-11.50)

94.26
(-0.13)

2.09
(-13.91)

51.13
(+0.12)

6.77
(-9.23)

61.56
(+0.02)

4.90
(-11.10)

73.55
(-0.06)

9.59
(-6.41)

78.89
(+0.00)

5.81
(-10.19)

81.87
(-0.33)

4.50
(-11.50)

94.26
(-0.13)

10.48
(-5.52)

51.52
(+0.51)

8.29
(-7.71)

61.58
(+0.04)

7.73
(-8.27)

73.62
(+0.01)

LNS[Geometric mean]

7.27
(-8.73)

78.44
(-0.45)

6.64
(-9.36)

82.00
(-0.20)

5.36
(-10.64)

94.36
(-0.03)

4.44
(-11.56)

51.35
(+0.34)

6.78
(-9.22)

61.63
(+0.09)

6.88
(-9.12)

73.56
(-0.05)

11.56
(-4.44)

78.44
(-0.45)

6.64
(-9.36)

82.00
(-0.20)

5.36
(-10.64)

94.36
(-0.03)

13.26
(-2.74)

51.18
(+0.17)

10.68
(-5.32)

61.65
(+0.11)

9.90
(-6.10)

73.52
(-0.09)

MARS

5.79
(-10.21)

77.78
(-1.11)

6.80
(-9.20)

81.93
(-0.27)

5.39
(-10.61)

94.42
(+0.03)

3.61
(-12.39)

52.69
(+1.68)

6.68
(-9.32)

61.60
(+0.06)

5.65
(-10.35)

73.28
(-0.33)

10.83
(-5.17)

77.78
(-1.11)

6.80
(-9.20)

81.93
(-0.27)

5.39
(-10.61)

94.42
(+0.03)

12.14
(-3.86)

50.84
(-0.17)

10.59
(-5.41)

61.53
(-0.01)

9.15
(-6.85)

73.52
(-0.09)

Table 2: CGES–PRM (upper bound). Same conventions as Table 1. Confidences from a large PRM
(Qwen2.5-Math-PRM-72B; scoring only).

AIME24 MATH500 GSM8K GPQA MMLU Pro Avg.
#Calls Acc #Calls Acc #Calls Acc #Calls Acc #Calls Acc #Calls Acc

RM Confidence

6.71
(-9.29)

77.78
(-1.11)

4.32
(-11.68)

83.00
(+0.80)

2.57
(-13.43)

94.49
(+0.10)

6.62
(-9.38)

51.68
(+0.67)

6.05
(-9.95)

62.17
(+0.63)

5.27
(-10.73)

73.42
(-0.19)

7.65
(-8.36)

77.78
(-1.11)

5.27
(-10.73)

85.13
(+2.93)

3.02
(-12.98)

95.55
(+1.16)

10.62
(-5.38)

50.67
(-0.34)

7.44
(-8.57)

63.64
(+2.10)

6.40
(-9.60)

74.35
(+0.74)

4.3 RESULTS

Table 1 reports accuracy and average number of calls for CGES and baselines with a Self-
Consistency budget of B = 16. We compare probability-based variants of CGES, which use token-
level (LNS) and step-level (MARS) confidence scores.

Across all benchmarks, CGES variants using token-level and step-level confidence (LNS and
MARS) significantly reduce the number of model calls compared to both SC and ESC, while main-
taining near-identical accuracy. In the configuration achieving the greatest reduction in LLM calls,
arithmetic mean LNS achieves an average of just 4.90 calls—a 69.4% reduction over SC’s fixed
budget of 16—while preserving accuracy within−0.06%. Notably, MARS further improves sample
efficiency on challenging benchmarks such as GPQA, lowering the average calls from 16.00 to 3.61
with a +1.68% accuracy gain. Similarly, on MMLU Pro, CGES variants reach comparable or better
accuracy with fewer than half the calls (e.g., 6.77 calls vs. 16.00 with +0.02% gain). These results
demonstrate that CGES offers a more promising and reliable alternative than local majority-vote
stopping rules, enabling adaptive early stopping guided by confidence signals. For MATH500 and
GSM8K—the easier tasks—probability-based variants show small accuracy dips despite large call
savings. This is expected: when most samples are already correct, marginal improvements hinge
on the calibration of Ct; noisy probability proxies (LNS/MARS) can be slightly over- or under-
confident, limiting accuracy gains. Nevertheless, the efficiency gains are substantial (often > 2×
fewer calls) with accuracy essentially preserved.

1The Efficient setting corresponds to the smallest γ for which CGES matches or surpasses SC performance,
while the Conservative setting corresponds to the largest γ considered. If CGES does not reach SC perfor-
mance, both settings coincide at the largest γ.
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(a) AIME24 (b) MATH500 (c) GSM8K

(d) GPQA (e) MMLU Pro

Figure 3: Accuracy vs. number of LLM calls (B=16) on AIME24 (a), MATH500 (b), GSM8K (c),
GPQA (d), and MMLU Pro (e). CGES achieves near-maximal accuracy with far fewer calls than
self-consistency.

Reward-model–based CGES approximates a best-case scenario where confidence estimates are
much closer to ground truth than those obtainable from the 7B inference models. Because
Qwen2.5-Math-PRM-72B is substantially larger and trained for step-level scoring, its signals
are stronger than what is practical at inference time. As expected, improvements are most pro-
nounced on math-centric datasets (MATH500, GSM8K), where the PRM’s training data overlaps
with the task: accuracy rises while calls drop sharply (Table 2). In contrast, on AIME24 and GPQA,
the domain mismatch and higher difficulty reduce the utility of PRM scores, yielding small accuracy
drops despite fewer calls. Interestingly, on MMLU Pro, the PRM still supplies useful confidence
signals and surpasses SC with substantially fewer calls. Appendix C presents additional results
under smaller SC budgets (B = 4, 8), showing consistent trends.

Figure 3 shows the accuracy–efficiency trade-off. Each CGES curve is obtained by sweeping the
stopping threshold γ; the baseline traces self-consistency (SC) at fixed budgets. On AIME24,
GSM8K, and MATH500, CGES achieves near-maximal accuracy after only a few calls, whereas
SC requires the full budget. Reward-model (PRM) confidence converges fastest (often within 3–4
calls), and is shown as a near-ideal reference rather than a deployable setting. Across datasets, curves
flatten beyond ∼6 calls, indicating diminishing returns and that SC’s B=16 is over-provisioned.
These results confirm that confidence-guided stopping enables CGES to adaptively terminate sam-
pling early without compromising accuracy.

5 CONCLUSIONS

We proposed CGES, a confidence-based Bayesian framework for test-time scaling of LLMs. By
treating each response and its confidence as probabilistic evidence, CGES enables early stopping
and more reliable aggregation than majority voting. Across five reasoning benchmarks, CGES
substantially reduces model calls while maintaining or improving accuracy, outperforming Self-
Consistency and early-stopping baselines. Our theoretical analysis further shows correctness under
both ideal and noisy confidence assumptions. Overall, confidence-guided aggregation provides a
principled solution within the family of test-time scaling methods that sample multiple responses
and aggregate them into a single answer. Future work includes (i) developing more accurate confi-
dence estimators to further enhance efficiency and accuracy, and (ii) predicting the required number
of samples dynamically from confidence signals.
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6 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. All theoretical claims are
stated under clearly enumerated assumptions (Section 3.1) with full proofs provided in Appen-
dices A–B. The complete Bayesian formulation and algorithmic details of CGES are presented in
Section 3.2–3.3, including pseudocode for both the scoring and stopping procedures (Algorithms 1-
2). Experimental protocols are fully described in Section 4, covering datasets (Section 4.1), models,
baselines, and confidence estimation strategies (Section 4.2). Detailed hyperparameters, decoding
configurations, and additional results under varying budgets are included in Appendix C-D. To fur-
ther facilitate verification, we provide an anonymized implementation and experiment scripts as
supplementary material. Together, these resources ensure that both the theoretical and empirical
results reported in this paper can be independently reproduced and validated.
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A FULL PROOF OF THEOREM 1

Proof. Without loss of generality, relabel so that the true index is I = 1. Define the unnormalized
and normalized posteriors

Aj :=

m∏
t=1

P(Rt | Ct, I = j), Xj :=
Aj∑K
k=1 Ak

, j ∈ [K].

To prove the claim, it is enough to show that for every k ̸= 1, A1/Ak → ∞ almost surely, which
then implies X1 → 1 and Xk → 0 almost surely.

Step 1: First, for a fixed k ̸= 1, we define

Y
(t)
k := logP(Rt | Ct, I = 1) − logP(Rt | Ct, I = k).

Under Assumption 3, conditioning on Ct we have

logP(Rt | Ct, I = 1) =

{
logCt if Rt = a1,

log
(
1−Ct

K−1

)
if Rt ̸= a1,

and

logP(Rt | Ct, I = k) =

{
logCt if Rt = ak,

log
(
1−Ct

K−1

)
if Rt ̸= ak.

Let θt := 1−Ct

K−1 . Using Assumption 1 (i.i.d. across t given P and hence given Ct in this idealized
parameterization), the conditional probabilities under the true model I = 1 are P(Rt = 1 | Ct, I =
1) = Ct and P(Rt = k | Ct, I = 1) = θt.
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Step 2: In the next step, by taking the conditional expectation of Y (t)
k given Ct, it follows that

E
[
Y

(t)
k | Ct

]
=

(
Ct − θt

)(
logCt − log θt

)
=

(
Ct − θt

)
log

(
Ct

θt

)
.

Because x 7→ log x is strictly increasing, (a− b) log(a/b) > 0 for a ̸= b. Here a = Ct and b = θt,
so the conditional mean is strictly positive whenever Ct ̸= θt, i.e., whenever Ct ̸= 1/K. By the
informativeness condition P(Ct = 1/K) = 0,

µk := E
[
Y

(t)
k

]
= E

[
E
[
Y

(t)
k | Ct

]]
> 0.

Moreover, |Y (t)
k | has finite expectation since Ct ∈ (0, 1) a.s., making the logs finite.

Step 3: By Assumption 1, {Y (t)
k }mt=1 are i.i.d. with E[|Y (t)

k |] <∞ and E[Y (t)
k ] = µk > 0. Finally,

the Strong Law of Large Numbers yields

1

m

m∑
t=1

Y
(t)
k

a.s.−−→ µk > 0 =⇒
m∑
t=1

Y
(t)
k

a.s.−−→ +∞.

Exponentiating both sides of log(A1/Ak) =
∑m

t=1 Y
(t)
k gives

A1

Ak
= exp

( m∑
t=1

Y
(t)
k

)
a.s.−−→∞.

Since this holds for every k ̸= 1, we have Ak/A1 → 0 almost surely for all k ̸= 1, and therefore

X1 =
1

1 +
∑

k ̸=1 Ak/A1

a.s.−−→ 1, Xk =
Ak/A1

1 +
∑

j ̸=1 Aj/A1

a.s.−−→ 0.

This completes the proof.

B FULL PROOF OF THEOREM 2

Proof. Without loss of generality, let I = 1. For j ∈ [K], define

Aj :=

m∏
t=1

P(Rt | Ct, I = j), Xj :=
Aj∑K
k=1 Ak

.

It suffices to show that for every k ̸= 1, A1/Ak
a.s.−−→∞, which implies X1 → 1 and Xk → 0 almost

surely.

Step 1: In the first step, we fix k ̸= 1 and set

Y
(t)
k := logP(Rt | Ct, I = 1) − logP(Rt | Ct, I = k).

With the model likelihood above and θt =
1−Ct

K−1 ,

logP(Rt | Ct, I = 1) =

{
logCt (Rt = a1),

log θt (Rt ̸= a1),
logP(Rt | Ct, I = k) =

{
logCt (Rt = ak),

log θt (Rt ̸= ak).

Step 2: Next by conditioning on (P, Ct) and using P(Rt = ar | P) = Pr, we have

E
[
Y

(t)
k | P, Ct

]
= P1(logCt − log θt) + Pk(log θt − logCt) = (P1 − Pk)

(
logCt − log θt

)
.

Taking expectations over (P, Ct) gives

µk := E
[
Y

(t)
k

]
= EP,C

[
(P1 − Pk) log

(
Ct

θt

)]
.

By assumption, µk > 0 for all k ̸= 1 and E[|Y (t)
k |] < ∞ (since Ct ∈ (0, 1) a.s. and the logs are

integrable).
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Step 3: By Assumption 1 and the i.i.d. generation of (Rt, Ct) given P, the increments {Y (t)
k }mt=1

are i.i.d. with finite first moment and mean µk > 0. The Strong Law of Large Numbers yields

1

m

m∑
t=1

Y
(t)
k −→ µk > 0 almost surely =⇒

m∑
t=1

Y
(t)
k −→ +∞ almost surely.

Hence

A1

Ak
= exp

( m∑
t=1

Y
(t)
k

)
−→∞ almost surely,

so Ak/A1 → 0 a.s. for all k ̸= 1, and therefore X1 → 1 and Xk → 0 almost surely.

Converse (necessity). If µk⋆ < 0 for some k⋆ ̸= 1, then by the same SLLN argument,∑m
t=1 Y

(t)
k⋆ → −∞ a.s., so A1/Ak⋆ → 0 almost surely and thus X1 → 0 almost surely. (When

µk = 0 for some k, the LLR has zero drift and the posterior need not concentrate; this is a boundary
case.)

C ADDITIONAL RESULTS

Additional results are provided in Table 3 and Table 4.

AIME24 MATH500 GSM8K GPQA MMLU Pro Avg.
#Calls Acc #Calls Acc #Calls Acc #Calls Acc #Calls Acc #Calls Acc

SC 4.00 67.78 4.00 78.80 4.00 93.40 4.00 50.67 4.00 58.79 4.00 69.89

CGES (Ours)

LNS[Arithmetic mean]

3.03
(–0.97)

68.89
(+1.11)

2.59
(–1.41)

79.40
(+0.60)

1.84
(–2.16)

93.48
(+0.08)

1.52
(–2.48)

53.02
(+2.35)

2.76
(–1.24)

59.05
(+0.26)

2.35
(–1.65)

70.77
(+0.88)

4.00
(0.00)

68.89
(+1.11)

3.75
(–0.25)

79.40
(+0.60)

3.86
(–0.14)

93.48
(+0.08)

4.00
(0.00)

53.02
(+2.35)

3.98
(–0.02)

59.05
(+0.26)

3.92
(–0.08)

70.77
(+0.88)

LNS[Geometric mean]

3.17
(–0.83)

67.99
(+0.21)

2.93
(–1.07)

79.40
(+0.60)

2.14
(–1.86)

93.40
(+0.00)

3.33
(–0.68)

53.54
(+2.87)

3.02
(–0.98)

59.00
(+0.21)

2.92
(–1.08)

70.67
(+0.78)

4.00
(0.00)

67.78
(+0.00)

3.95
(–0.05)

79.47
(+0.67)

3.99
(–0.01)

93.35
(–0.05)

4.00
(0.00)

53.20
(+2.53)

4.00
(0.00)

59.34
(+0.55)

3.99
(–0.01)

70.63
(+0.74)

MARS

2.48
(–1.52)

67.78
(+0.00)

3.00
(–1.00)

79.00
(+0.20)

2.15
(–1.85)

93.45
(+0.05)

3.00
(–1.00)

53.05
(+2.38)

3.05
(–0.95)

59.06
(+0.27)

2.74
(–1.26)

70.47
(+0.58)

4.00
(0.00)

72.22
(+4.44)

3.98
(–0.02)

79.07
(+0.27)

3.99
(–0.01)

93.38
(–0.02)

4.00
(0.00)

51.85
(+1.18)

4.00
(0.00)

59.14
(+0.35)

3.99
(–0.01)

71.13
(+1.24)

CGES - Near Ideal Scenario (Ours)

RM Confidence

1.72
(–2.28)

68.89
(+1.11)

1.80
(–2.20)

78.93
(+0.13)

2.16
(–1.84)

94.16
(+0.76)

3.88
(–0.12)

50.51
(–0.16)

2.41
(–1.59)

58.98
(+0.19)

2.39
(–1.61)

70.29
(+0.40)

3.68
(–0.32)

73.33
(+5.55)

2.74
(–1.26)

83.27
(+4.47)

2.43
(–1.57)

94.94
(+1.54)

3.97
(–0.03)

50.34
(–0.33)

3.44
(–0.56)

61.97
(+3.18)

3.25
(–0.75)

72.77
(+2.88)

Table 3: Accuracy (%) and avg. #Calls across five reasoning tasks; Avg is mean over benchmarks.
Parentheses show difference vs. SC (#Calls=4 or SC Acc). Efficient (first row) vs. Conservative
(second row) are two CGES settings.
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AIME24 MATH500 GSM8K GPQA MMLU Pro Avg.
#Calls Acc #Calls Acc #Calls Acc #Calls Acc #Calls Acc #Calls Acc

SC 8.00 74.45 8.00 81.47 8.00 93.91 8.00 50.17 8.00 60.68 8.00 72.14

CGES (Ours)

LNS[Arithmetic mean]

4.41
(–3.59)

74.45
(0.00)

4.08
(–3.92)

81.87
(+0.40)

3.41
(–4.59)

93.83
(–0.08)

2.08
(–5.92)

51.12
(+0.95)

4.42
(–3.58)

60.68
(0.00)

3.68
(–4.32)

72.39
(+0.25)

6.88
(–1.12)

74.45
(0.00)

4.88
(–3.12)

81.87
(+0.40)

4.26
(–3.74)

93.83
(–0.08)

7.56
(–0.44)

51.12
(+0.95)

6.59
(–1.41)

60.68
(0.00)

6.03
(–1.97)

72.39
(+0.25)

LNS[Geometric mean]

4.32
(–3.68)

75.19
(+0.74)

4.67
(–3.33)

81.73
(+0.26)

4.04
(–3.96)

93.78
(–0.13)

4.25
(–3.75)

51.68
(+1.51)

5.78
(–2.22)

60.89
(+0.21)

4.61
(–3.39)

72.65
(+0.51)

7.71
(–0.29)

72.22
(–2.23)

5.52
(–2.48)

81.80
(+0.33)

5.05
(–2.95)

93.78
(–0.13)

7.99
(–0.01)

51.35
(+1.18)

7.40
(–0.60)

60.95
(+0.27)

6.74
(–1.26)

72.02
(–0.12)

MARS

4.04
(–3.96)

74.45
(0.00)

3.69
(–4.30)

81.60
(+0.13)

5.08
(–2.92)

93.88
(–0.03)

3.56
(–4.44)

52.69
(+2.52)

4.43
(–3.57)

60.75
(+0.07)

4.16
(–3.84)

72.67
(+0.53)

7.63
(–0.37)

75.56
(+1.11)

5.63
(–2.37)

81.87
(+0.40)

5.08
(–2.92)

93.88
(–0.03)

7.97
(–0.03)

51.68
(+1.51)

7.49
(–0.51)

61.03
(+0.35)

6.76
(–1.24)

72.80
(+0.66)

CGES - Near Ideal Scenario (Ours)

RM Confidence

1.72
(–6.28)

75.56
(+1.11)

3.26
(–4.74)

82.67
(+1.20)

2.37
(–5.63)

94.44
(+0.53)

5.32
(–2.69)

50.34
(+0.17)

4.42
(–3.58)

61.68
(+1.00)

3.42
(–4.58)

72.94
(+0.80)

5.70
(–2.30)

75.56
(+1.11)

3.82
(–4.18)

84.47
(+3.00)

2.73
(–5.27)

95.45
(+1.54)

7.20
(–0.80)

50.00
(–0.17)

5.20
(–2.80)

63.19
(+2.51)

4.93
(–3.07)

73.73
(+1.59)

Table 4: Accuracy (%) and avg. #Calls across five reasoning tasks; Avg is mean over benchmarks.
Parentheses show difference vs. SC (#Calls=4 or SC Acc). Efficient (first row) vs. Conservative
(second row) are two CGES settings.

D DECODING HYPERPARAMETERS AND PROMPT TEMPLATES

For CGES, we sweep the stopping threshold γ over the grid
0.70, , 0.75, , 0.80, , 0.85, , 0.90, , 0.95, , 0.99, , 0.999, , 0.9999 to explore different accu-
racy–efficiency trade-offs. All experiments, including those for SC, ESC, CGES, and confidence
estimation, share the same decoding setup. Specifically, we allow a maximum of 32,768 generation
tokens, use a temperature of 0.7, and apply nucleus sampling with top-p = 1.0 (i.e., no truncation).
Top-k sampling is disabled in all runs.

Prompt Templates. We use dataset-specific answer-format constraints to simplify parsing.
Prompt templates are shown in Fig 4.

(a) Prompt used for MATH500, AIME24, GSM8K (b) Prompt used for GPQA, MMLU Pro

Figure 4: Two prompt templates for evaluation.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) solely to aid with polishing the writing and improving
clarity of exposition. No part of the research ideation, methodology, analysis, or experimental results
was generated by LLMs. The authors take full responsibility for the content of this paper.
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