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ABSTRACT

We focus on designing and solving the neutral inclusion problem via neural net-
works. The neutral inclusion problem has a long history in the theory of com-
posite materials, and it is exceedingly challenging to identify the precise condi-
tion that precipitates a general-shaped inclusion into a neutral inclusion. Physics-
informed neural networks (PINNs) have recently become a highly successful ap-
proach to addressing both forward and inverse problems associated with partial
differential equations. We found that traditional PINNs perform inadequately
when applied to the inverse problem of designing neutral inclusions with arbi-
trary shapes. In this study, we introduce a novel approach, Conformal mapping
Coordinates Physics-Informed Neural Networks (CoCo-PINNs), which integrates
complex analysis techniques into PINNs. This method exhibits strong perfor-
mance in solving forward-inverse problems to construct neutral inclusions of ar-
bitrary shapes in two dimensions, where the imperfect interface condition on the
inclusion’s boundary is modeled by training neural networks. Notably, we math-
ematically prove that training with a single linear field is sufficient to achieve
neutrality for untrained linear fields in arbitrary directions, given a minor assump-
tion. We demonstrate that CoCo-PINNs offer enhanced performances in terms of
credibility, consistency, and stability.

1 INTRODUCTION

Physics-informed neural networks (PINNs)(Raissi et al., 2019; Karniadakis et al., 2021) are spe-
cialized neural networks designed to solve partial differential equations (PDEs). Since their intro-
duction, PINNs have been successfully applied to a wide range of PDE-related problems (Cuomo
et al., 2022; Hao et al., 2023; Wu et al., 2024). A significant advantage of using PINNs is their
versatile applicability to different types of PDEs and their ability to deal with PDE parameters or
initial/boundary constraints while solving forward problems (Akhound-Sadegh et al., 2023; Cho
et al., 2023; Rathore et al., 2024; Lau et al., 2024). The conventional approach to solving inverse
problems with PINNs involves designing neural networks that converge to the parameters or con-
straints to be reconstructed, which are typically modeled as constants or functions. We refer to this
methodology as classical PINNs. Numerous successful outcomes in solving inverse problems using
PINNs have been reported. See, for example, Chen et al. (2020); Jagtap et al. (2022); Haghighat
et al. (2021). However, as the complexity of the PDE-based inverse problem increases, the neu-
ral networks may require additional design to represent the parameters or constraints accurately.
For instance, Pokkunuru et al. (2023) utilized Bayesian approach to design the loss function, Guo
et al. (2022) used Monte Carlo approximation to compute the fractional derivatives, Xu et al. (2023)
adopted multi-task learning method to weight losses and also presented the forward-inverse problem
combined neural networks, and Yuan et al. (2022) propose the auxiliary-PINNs to solve the forward
and inverse problems of integro-differential equations. This increase in network complexity can sig-
nificantly escalate computational difficulties and the volume of data necessary for training PINNs.
Moreover, the direct approach to approximate the reconstructing parameters by neural networks en-
ables too much fluent representation ability. This alludes to the fact that the conventional approach
is inadequate depending on the problems due to the intrinsic ill-posedness of inverse problems.
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In this paper, we apply the PINNs’ framework to address the inverse problem of designing neutral
inclusions, a topic that will be elaborated below. The challenge of designing neutral inclusions falls
within the scope where traditional PINNs tend to perform inadequately. To overcome this limita-
tion, we propose improvements to the PINNs approach by incorporating mathematical analytical
methods.

Figure 1: Inclusion makes perturbation.

Inclusions with different material features from the back-
ground medium commonly cause perturbations in applied
fields when they are inserted into the medium. Problems
analyzing and manipulating the effects of inclusions have
gained significant attention due to their fundamental im-
portance in the modeling of composite materials, partic-
ularly in light of rapid advancements and diverse appli-
cations of these materials. Specific inclusions, referred
to as neutral inclusions, do not disturb linear fields (see
Figure 2). The neutral inclusion problem has a long and
established history in the theory of composite materials
(Milton, 2002). Some of the most well-known examples
include coated disks and spheres (Hashin, 1962; Hashin & Shtrikman, 1962), as well as coated
ellipses and ellipsoids (Grabovsky & Kohn, 1995; Kerker, 1975; Sihvola, 1997). The primary mo-
tivation for studying neutral inclusions is to design reinforced or embedded composite materials
in such a way that the stress field remains unchanged from that of the material without inclusions
and avoids stress concentration. Extensive research has been conducted on neutral inclusions and
related concepts, such as invisibility cloaking involving wave propagation, in fields including acous-
tics, elasticity, electromagnetic waves within the microwave range Alù & Engheta (2005); Ammari
et al. (2013); Landy & Smith (2013); Liu et al. (2017); Zhou & Hu (2006; 2007); Zhou et al. (2008);
Yuste et al. (2018).

Figure 2: Neutral inclusions with circular shapes.

Designing neutral inclusions with general shapes presents an inherent challenge. In the context of the
conductivity problem, which is the focus of this paper, mathematical theory shows that only coated
ellipses and ellipsoids can maintain neutral properties for linear fields in all directions (Kang & Lee,
2014; Kang et al., 2016; Milton & Serkov, 2001). In contrast, non-elliptical shapes can remain neu-
tral for just a single linear field direction (Jarczyk & Mityushev, 2012; Milton & Serkov, 2001). To
address the difficulty of designing general shaped neutral inclusions, relaxed versions of the prob-
lem have been studied (Choi et al., 2023; Kang et al., 2022; Lim & Milton, 2020). Differently from
the above examples, where perfectly bonding boundaries are assumed, imperfect interfaces intro-
duce discontinuities in either the flux or potential boundary conditions in PDEs. Ru (1998) found
interface parameters for typical inclusion shapes in two-dimensional elasticity for typical inclusion
shapes. Benveniste & Miloh (1999) found neutral inclusions under a single linear field. The in-
terface parameters, which characterize these discontinuities, may be non-constant functions defined
along the boundaries of the inclusions so that, theoretically, the degree of freedom of the interface
parameters is infinite. Hence, we expect to overcome the inherent challenge of designing neutral in-
clusions with general shapes by considering neutral inclusions with imperfect interfaces. A powerful
technique for dealing with planar inclusion problems of general shapes has been to use conformal
mappings and to define orthogonal curvilinear coordinates (Movchan & Serkov, 1997; Cherkaev
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et al., 2022; Ammari & Kang, 2004; Jung & Lim, 2021), where the existence of the conformal map-
ping for a simply connected bounded domain is mathematically guaranteed by the Riemann mapping
theory. Using these coordinates, Kang & Li (2019); Choi & Lim (2024) constructed weakly neutral
inclusions that yield zero coefficients for leading-order terms in PDEs solution expansions (also re-
fer to Milton (2002); Choi et al. (2023); Lim & Milton (2020) for neutral inclusion problems using
the conformal mapping technique). However, such asymptotic approaches cannot achieve complete
neutrality within this framework. Moreover, the requirement for analytic asymptotic expressions
poses limitations on the generalizability of this approach.

In this paper, by adopting a deep learning approach approach, we focus on precise values of the
solution rather than asymptotic ones. Unlike the asymptotic approaches in Kang & Li (2019); Choi
& Lim (2024), the proposed method does not rely on an analytical expansion formula and incorpo-
rates the actual solution values directly into the loss function design. More precisely, we introduce
a novel forward-inverse PINN framework by combining complex analysis techniques into PINNs,
namely Conformal mapping Coordinates Physics-Informed Neural Networks (CoCo-PINNs). We
define the loss function to include the evaluations of the solutions at sample points exterior of inclu-
sions. Furthermore, we leverage the conformal mapping to effectively sample collocation points for
PDEs involving general shaped inclusions. We found that classical PINNs–which treat the interface
parameters as functions approximated by neural networks–perform inadequately when applied to
designing imperfect parameters for achieving neutrality. Instead, we propose training the Fourier
series coefficients of the imperfect parameters, rather than approximating the function. We test the
performance of our proposed method in finding the forward solution by using the analytical math-
ematical results for the forward solution presented in Choi & Lim (2024), where theoretical direct
solutions are expressed as products of infinite dimensional matrices whose entries depends on the
expansion coefficients of interface parameter. Additionally, we leverage these analytical results to
explain that why it is possible to train the PINN for the neutral inclusion using only a single applied
field (see Subsection 3.2).

Many PINNs approaches to solving PDEs focus primarily on the forward problem and are typically
validated through comparisons with numerical methods such as Finite Element Methods (FEM) and
Boundary Element Methods (BEM), and others. In contrast, our problem addresses both forward and
inverse problems simultaneously, adding complexity, especially in cases involving complex-shaped
inclusions, and making it more challenging to achieve accurate forward solutions. Consequently,
“reliability” becomes a critical factor when applying PINNs to our problem. The proposed CoCo-
PINNs provide more accurate forward solutions, along with improved identification of the inverse
parameters, compared to classical PINNs. They demonstrate greater consistency in repeated exper-
iments and exhibit improved stability with respect to different conductivity values σc. We conduct
experiments to ensure the “reliability” of CoCo-PINNs by assessing the credibility, consistency, and
stability.

It is noteworthy that by utilizing Fourier series expansions to represent the inverse parameters,
CoCo-PINNs offer deeper analytic insights into these parameters, making the solutions not only
more accurate but also more explainable. Furthermore, our method requires no training data for the
neutral inclusion problem due to its unique structure, where constraints at exterior points effectively
serve as data. An additional remarkable feature is that our proposed method has proven effective
in identifying optimal inverse parameters that are valid for general first-order background fields in-
cluding those not previously trained. This impressive result is supported by a rigorous mathematical
analysis.

In summary, this paper contains the following contributions:

• We developed a novel approach to PINNs, namely CoCo-PINNs, which have been shown
to offer enhanced credibility, consistency, and stability compared to classical PINNs.

• We have adopted the exterior conformal mapping in the PINNs to make it train the problem
corresponding to the arbitrarily shaped domains.

• Due to the nature of the neutral inclusion problem, it can be mathematically shown that
once training with a given background solution H(x) = x1 or x2, a similar effect can be
obtained for arbitrary linear background solutions H(x) = ax1+ bx2 for any a, b ∈ R (see
Section 3.2 for more details).
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2 INVERSE PROBLEM OF NEUTRAL INCLUSIONS WITH IMPERFECT
CONDITIONS

We set x = (x1, x2) to be a two-dimensional vector in R2. On occasion, we regard R2 ∼= C, whereby
x = x1+ix2 will be used. We assume that Ω ⊊ C is a nonempty simply connected bounded domain
with an analytic boundary (refer Appendix B). We assume the interior region Ω has the constant
conductivity σc while the background medium R2 \ Ω has the constant conductivity σm. We set
σ = σcχΩ + σmχR2\Ω, where χ is the characteristic function. We further assume that the boundary
of ∂Ω is not perfectly bonding, resulting in a discontinuity in the potential. This discontinuity is
represented by a nonnegative real-valued function p on ∂Ω, referred to as the interface parameter
or interface function. Specifically, we consider the following potential problem:

∇ · σ∇u = 0 in R2,

p(u|+ − u|−) = σm
∂u
∂ν

∣∣+ on ∂Ω,

σm
∂u
∂ν

∣∣+ = σc
∂u
∂ν

∣∣− on ∂Ω,

(u−H)(x) = O(|x|−1) as |x| → ∞,

(1)

where H is an applied background potential and ∂u/∂ν denotes the normal derivative ∂u/∂ν =
⟨∇u,N⟩ with the unit exterior normal vector N to ∂Ω.

Here, we define neutral inclusion to provide a clearer explanation.

Definition 1. We define Ω as a neutral inclusion for the imperfect interface problem equation 1 if
(u − H)(x) = 0 for all x in the exterior region R2 \ Ω where H(x) is any arbitrary linear fields,
i.e., H(x) = ax1 + bx2 for any a, b ∈ R.

We explore the development of neural networks to find a specific interface function p that makes Ω
a neutral inclusion, given the inclusion Ω along with the conductivities σc and σm, while simultane-
ously providing the forward solution u.

2.1 SERIES SOLUTION FOR THE GOVERNING EQUATION VIA CONFORMAL MAPPING

By the Riemann mapping theorem (see Appendix B), there exists a unique γ > 0 and conformal
mapping Ψ from D = {w ∈ C : |w| > γ} onto C \ Ω such that Ψ(∞) = ∞, Ψ′(∞) = 1, and

Ψ(w) = w + a0 +
a1
w

+
a2
w2

+ · · · . (2)

We set ρ0 = ln γ. We use modified polar coordinates (ρ, θ) ∈ [ρ0,∞) × [0, 2π) via z = Ψ(w) =
Ψ(eρ+iθ). One can numerically compute the conformal mapping coefficients γ and an for a given
domain Ω (Jung & Lim, 2021; Wala & Klöckner, 2018). In the following, we assume Ψ is given.
Choi & Lim (2024) obtained the solution expression for the solution u using the geometric function
theory for complex analytic functions for a given arbitrary analytic domain Ω:

Theorem 1 (Analytic solution formula). Let Fm(z) be the Faber polynomials associated with Ω
and the applied field is given by H(z) = ℜ (

∑∞
m=1 αmFm(z)), the solution u satisfies

(u−H)(z) = ℜ

( ∞∑
m=1

∞∑
n=1

smnw
−n

)
for |w| > γ, (3)

s := {smn}m,n≥1 = −αÃ1 −αÃ2, (4)

where α is a diagonal matrix whose entries are αm, and ℜ(·) denotes the real part of a complex
number. The matrices Ã1 and Ã2 are determined by the conductivities, the shape of inclusion, and
the coefficients of the expansion formula of the interface function p(z); refer to Appendix B for the
concept of Faber polynomials and explicit definitions.

From Theorem 1, the exact solution u to Eq. (1) can be obtained analytically. We denote this solution
as up for comparison with the trained forward solution by neural networks. This analytic solution
up will be used to evaluate the credibility of the PINNs forward solver, as discussed in Section 4.2.
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2.2 SERIES REPRESENTATION OF THE INTERFACE FUNCTION

In this subsection, based on complex analysis, we present the series expansion formula for designing
the CoCo-PINNs. We assume that the interface function p(x) is nonnegative, bounded, and contin-
uous on ∂Ω. By introducing a parametrization x(θ) of ∂Ω with θ ∈ [0, 2π), the interface function
admits a Fourier series expansion with respect to θ:

p(x(θ)) = a0 +
∑

k∈N (ak cos(kθ) + bk sin(kθ)) , θ ∈ [0, 2π),

where ak and bk are real constant coefficients. In particular, we take x(θ) = Ψ(w), w = γeiθ,
where Ψ is the conformal mapping in Eq. (2). In this case, we have

p(w) := p(x(θ)) = ℜ
(
p0 + p1w + p2w

2 + p3w
3 + · · ·

)
= p0 + p1w + p1γ

2w−1 + p2w
2 + p2γ

4w−2 + · · · , |w| = γ,
(5)

for some complex-valued constants pk. Note that we can similarly express the boundary conditions
in Eq. (1) in terms of the variable w, enabling us to effectively address these boundary conditions.

We further assume that p(w) is represented by a finite series, truncated at the wn-term for some
n ∈ N. Specifically, we define

p(n)(w) = ℜ
(∑n

k=0 pkw
k
)
. (6)

At this state, the reconstruction parameters are deduced to p0, · · · , pn, and this makes the in-
verse problem of determining the interface parameter over-determined by using the constraints
(u−H)(x) ≈ 0 for many sample points exterior of Ω.

A fundamental characteristic of inverse problems is that they are inherently ill-posed, and the ex-
istence or uniqueness of the inverse solution–the interface function in this paper–is generally not
guaranteed. When solving a minimization problem, neural networks may struggle if the problem
admits multiple minimizers. In particular, the ability of neural networks to approximate a wide
range of functions can lead them to converge to suboptimal solutions, corresponding to local mini-
mizers of the loss function. As a result, the classical approach in PINNs, which allows for flexible
function representation, can be highly sensitive to the initial parameterization. In contrast, the se-
ries expansion approach constrains the solution to well-behaved functions, reducing sensitivity to
the initial parameterization and ensuring the regularity of the target function. Additionally, since
the series approximation method requires fewer parameters, it can be treated as an over-determined
problem, helping to mitigate the ill-posedness of inverse problems.

3 THE PROPOSED METHOD: COCO-PINNS

This section introduces the CoCo-PINNs, their advantages, and the mathematical reasoning behind
why neutral inclusions designed by training remain effective even in untrained background fields.
We begin with the loss design corresponding to the imperfect interface problem Eq. (1), whose
solution exhibits a discontinuity across ∂Ω due to the imposed boundary conditions. We denote the
solutions inside and outside Ω as uint and uext, respectively, and represent their neural networks’
approximations as uint

NN and uext
NN. We named these solutions as trained forward solutions. We aim

to train the interface function, represented by p(n) for the truncated series approximation and pNN

for the fully connected neural network approximation. The method utilizing p(n) is referred to as
CoCo-PINNs, while the approach using pNN to represent the interface function is called classical
PINNs.

3.1 MODEL DESIGN FOR THE FORWARD-INVERSE PROBLEM

We utilize three sets of collocation points: Ωint, Ωext, and ∂Ω, which are finite sets of points corre-
sponding to the interior, exterior, and boundary of Ω, respectively, with a slight abuse of notation for
∂Ω. We select collocation points based on conformal mapping theory to handle PINNs in arbitrarily
shaped domains, and provide a detailed methodology for this selection in Appendix D.1. To address
the boundary conditions for z ∈ ∂Ω, we use xz = z + δN and yz = z − δN for the limit of the
boundary from the exterior and interior, respectively, with small δ > 0, and unit normal vector N .
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The loss functions corresponding to the governing equation and the design of a neutral inclusion are
defined as follows:

Lint
PDE = ∇ · σc∇uint

NN for x ∈ Ωint, (7)

Lext
PDE = ∇ · σm∇uext

NN for x ∈ Ωext, (8)

L(1)
bd = p(n)

(
uext

NN − uint
NN

)
− σm

∂uext
NN

∂ν
(xz) for z ∈ ∂Ω, (9)

L(2)
bd = σm

∂uext
NN

∂ν
(xz)− σc

∂uint
NN

∂ν
(yz) for z ∈ ∂Ω, (10)

LNeutral = uext
NN −H for x ∈ Ωext. (11)

with ∂u/∂ν = ⟨∇u,N⟩. In the case where we train using classical PINNs, we replace the interface
function p(n) with pNN. To enforce the non-negativity of the interface function, we introduce an
additional loss function Lplus = max{0,−p}.

By combining all the loss functions with weight variables {wi}5i=1, we define the total loss by

LTotal =
w1

|Ωint|
∑
x∈Ωint

(
Lint

PDE

)2
+

w1

|Ωext|
∑

x∈Ωext

(
Lext

PDE

)2
+

w2

|∂Ω|
∑
z∈∂Ω

(
L(1)

bd

)2
+

w3

|∂Ω|
∑
z∈∂Ω

(
L(2)

bd

)2
+

w4

|Ωext|
∑

x∈Ωext

(LNeutral)
2
+ w5

∑
x∈∂Ω

Lplus.
(12)

Here, |A| denotes the number of the elements in the set A. We then consider the following loss with
regularization term:

LReg =

{
Ltotal + ϵ

(
2πγ2|p0|2 + 4πγ2∑n

k=1(1 + k2)|pk|2
)
, p = p(n),

Ltotal + ϵ∥wp∥2F , p = pNN,
(13)

where wp represents the weights of the neural networks pNN, ∥ · ∥F is the Frobenius norm, and the
W 1,2(∂Ω)-norm is used for p(n), that is,

∥p(n)∥2W 1,2(∂Ω) = ∥p(n)∥2L2(∂Ω) + ∥∇p(n)∥2L2(∂Ω) = 2πγ2|p0|2 + 4πγ2∑n
k=1(1 + k2)|pk|2.

This type of regularization is commonly used to address ill-posed problems. We used the loss in
Eq. (13) for all experiments.

CoCo-PINNs are designed using complex geometric function theory to address the interface prob-
lem. While classical PINNs rely on neural network approximations based on the universal approxi-
mation theory, CoCo-PINNs utilize Fourier series expansion, which helps overcome the challenges
of ill-posedness in the neutral inclusion inverse problems and ensures that the inverse solution re-
mains smooth. Additionally, this approach allows for the selection of initial coefficients of the inter-
face function using mathematical results. The results of CoCo-PINNs can be explained by a solid
mathematical foundation, as discussed in Section 3.2. In Section 4, we examine the advantages of
CoCo-PINNs in terms of credibility, consistency, and stability.

3.2 NEUTRAL INCLUSION EFFECTS FOR UNTRAINED LINEAR FIELDS

In this section, we briefly explain the reason that the CoCo-PINNs can yield the neutral inclusion
effect for untrained background fields. Since the governing equation Eq. (1) is linear with respect to
H , the following trivially holds by the properties of linear PDEs:
Theorem 2. Consider a domain, denoted by Ω, that is of arbitrary shape and whose boundary is
given by an exterior conformal mapping Ψ(w). If there exists an interface function p(x) that makes
Ω a neutral inclusion for the background field H(x) = x1 and x2, simultaneously, then Ω is neutral
also for all linear fields H(x) = ax1 + bx2 of arbitrary directions (a, b) ∈ R2.

By Theorem 2, one can expect to find a function p(x) such that Ω is neutral to all linear fields H by
training with only two background fields, assuming such a p(x) exists. Although the existence of
this function has not yet been theoretically verified, experiments in this paper with various shapes
demonstrate that, for given Ω, there exists a p(x) that produces the neutral inclusion effect, meaning
that the perturbation u−H is negligible for all directions of H .
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Remark 1. In all examples, we successfully identified a p(x) with the neutral inclusion effect by
training with only a single H . These results can be explained by the following theorem.

Theorem 3. Let Ω with an interface function p(x) be neutral for a single background field H . If
the first rows of Ã1 and Ã2 given in Eq. (4) are linearly independent, then Ω is neutral also for all
linear fields H(x) = ax1 + bx2 of arbitrary directions (a, b) ∈ R2.

The proof of Theorem 3 can be found in Appendix C. As a future direction, it would be interest-
ing to either prove that the first rows of Ã1 and Ã2 are linearly independent for any Ω, or to find
counterexamples–namely, inclusions that are neutral in only one direction.

Remark 2. According to the universal approximation theorem, for a given interface function p(x),
the analytic solution up on a bounded set and p on ∂Ω can be approximated by neural networks.
Additionally, by the Fourier analysis, p(x) can be approximated by a truncated Fourier series p(n).
In light of Theorem 3 and Remark 1, we train using only a single linear field H .

p(n)

pNN p {pk}nk=0 up

uNN

Univ. Fourier Thm. 1

Cred.

Figure 3: Credibility scheme. uNN, pNN, p
(n) are

trained results by PINNs.

Figure 3 demonstrates the operational princi-
ples of the neural networks we designed. We
use ‘Univ.’ to represent the universal approx-
imation theorem, ‘Fourier’ for the Fourier se-
ries expansion, Thm. 1 for the analytical solu-
tion derived from the mathematical result, and
‘Cred.’ for credibility. We note that up is the
analytic solution to Eq. (1) associated with p
obtained either from p(n) via CoCo-PINNs or
from pNN via classical PINNs. The credibility
of up is determined by whether ∥up − uNN∥ is
small. Credibility is a crucial factor in the proposed PINNs’ schemes for identifying neutral inclu-
sions with imperfect boundary conditions. If the trained forward solution uNN, obtained alongside
with p(n) or pNN, is close to up, we can conclude that the neural networks have successfully iden-
tified the interface function, ensuring that Ω exhibits the neutral inclusion effect. This is because
(uNN −H) has small values in Ωext by the definition of the loss function LNeutral. In other words, if
the interface function provided by neural networks makes both ∥up − uNN∥ and LNeutral small, then
this interface function is the desired one. However, if ∥up − uNN∥ is not small, it becomes unclear
whether the neural networks have failed to solve the inverse problem or the forward problem.

The field of AI research is currently facing significant challenges regarding the efficacy and explain-
ability of solutions generated by neural networks. Moreover, there is a pressing need to establish
“reliability” credibility in these solutions. It is noteworthy that the trained forward solution uNN
deviates from the analytic solution up defined with pNN in several examples, particularly in cases
involving complicated-shaped inclusions (see Section 4.2). This discrepancy raises concerns about
the “reliability” credibility of neural networks.

4 EXPERIMENTS

We present the successful outcomes for designing the neutral inclusions by using the CoCo-PINNs,
as well as the experiment results to verify the “reliability” in terms of credibility, consistency, and
stability. Credibility indicates whether the trained forward solution closely approximates the analytic
solution, which we assess by comparing the trained forward solution with the analytic solution
derived in Choi & Lim (2024). Consistency focuses on whether the interface functions obtained
from the classical PINNs and the CoCo-PINNs converge to the same result for re-experiments under
identical environments. It’s worth noting that even if the neural networks succeed in fitting the
forward solution and identifying the interface parameter in a specific experiment, this success may
only occur occasionally. Consistency is aimed at determining whether the training outcomes are
steady or merely the result of chance, and it can be utilized as an indicator of the steadiness of the
model. training model. Lastly, stability refers to the sensitivity of a training model, examining how
the model’s output changes in response to variations in environments of PDEs.

7
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The inclusions with the shapes illustrated in Figure 4 will be used throughout this paper. Each
shaped inclusion is defined by the conformal map given by Eqs. (26) to (29) in Appendix D.3. We
named the shapes of the inclusions ‘square’, ‘fish’, ‘kite’, and ‘spike’.

Figure 4: The shaped inclusions:
square, fish, kite, and spike.

We introduce the quantities to validate the credibility and
the neutral inclusion effect as follows:

∥uext
NN − up∥Cred =

1

|Ωext|
∑

x∈Ωext

|uext
NN − up|2, (14)

∥uext
NN − up∥∞ = max

x∈Ωext

{
|uext

NN − up|
}
, (15)

∥up −H∥P-Neutral =
1

|Ωext|
∑

x∈Ωext

|up −H|2, (16)

4.1 NEUTRAL INCLUSION

We present experimental results demonstrating the successful achievement of the neutral inclusion
effect using CoCo-PINNs. For training, we use only a single background solution, H(x) = x1, and
illustrate the neutral inclusion effects for three background solutions H(x) = x1, x2 and 2x1 − x2;
see Theorem 3 for a theoretical explanation.

Inclusions generally yield perturbations in the applied background fields. However, the domain Ω,
with the interface function p(x) trained from CoCo-PINNs, achieves the neutral inclusion effects
across all three test background fields, as shown by the level curves of the analytic solutions up in
Figure 5. All results are presented in Figure 10 of Appendix D.5.

Figure 5: Neutral inclusion effect appeared after training. For the ‘square’ and ‘spike’ shaped inclu-
sions, the interface function p(n) is separately trained using a single background solution H(x) = x1

via CoCo-PINNs.

4.2 CREDIBILITY OF CLASSICAL PINNS AND COCO-PINNS

Table 1: Credibility results.

Shape
Credibility

∥uext
NN − up∥Cred ∥uext

NN − up∥∞

Classical
PINNs

square 7.241e-04 2.617e-01
fish 4.704e-04 1.005e-01
kite 8.790e-03 5.999e-01

spike 1.371e-02 5.798e-01

CoCo-
PINNs

square 3.197e-03 9.958e-02
fish 2.505e-04 8.960e-02
kite 1.947e-03 2.117e-01

spike 3.969e-03 2.431e-01

We investigate the credibility of the two
methods. We examine whether the exte-
rior part of the trained forward solution uext

NN
matches the analytic solution up. Recall
that, we denote up as the analytic solution
when coefficients of the interface function
p are given by training. Once training is
complete, CoCo-PINNs provide the expan-
sion coefficients of the interface function di-
rectly. For classical PINNs, where the inter-
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face function is represented by neural net-
works, we compute the Fourier coefficients
of pNN. We use the Fourier series expansion up to a sufficiently high order to ensure that the dif-
ference between the neural network-designed interface function and its Fourier series is small (see
Figure 9 in Appendix D.4). We experiment for four inclusion shapes in Figure 4. Detailed experi-
ment settings are given in the Appendix D.

Table 1 demonstrates CoCo-PINNs have superior performance in the shape of ‘fish’, ‘kite’, and
‘spike’ compared to the classical PINNs. Although the credibility error for classical PINNs appears
smaller than that for CoCo-PINNs on the ‘square’ shape as shown in Table 1, the trained forward
solution by classical PINNs illustrates an exorbitant large deviation that does not coincide with the
analytic solution derived from the inverse parameter result, as shown in Figure 6. This indicates
that, despite its strong performance in minimizing the loss function, the classical PINNs approach
fails to effectively function as a forward solver.

Figure 6: The trained forward solution, uNN, and the analytic solution up for classical PINNs and
Coco-PINNs with ‘square’ shape. Note that uNN should closely resemble the analytic solution up.

4.3 CONSISTENCY OF CLASSICAL PINNS AND COCO-PINNS

In this subsection, we examine whether repeated experiments consistently yield similar results. Fig-
ure 7 shows the interface functions after training the classical PINNs and CoCo-PINNs performed
independently multiple times. We repetitively test 30 times under the same condition and plot the
interface function pointwise along the boundary of the unit disk. The blue-dashed and red-bold lines
represent the mean of the interface functions produced by classical PINNs and CoCo-PINNs, re-
spectively, while the blue- and red-shaded regions indicate the pointwise standard deviations of the
interface functions, respectively. Each column corresponds to an experiment with ‘square’, ‘fish’,
‘kite’, and ‘spike’.

Figure 7: Consistency of interface functions in classical PINNs and CoCo-PINNs.

As shown in Figure 7, the interface functions trained by classical PINNs show inconsistency, while
CoCo-PINNs produce consistent results. The precise value for the mean of the standard deviations
is provided in column 3 of Table 2. Additionally, columns 4 through 6 of Table 2 present the three
quantities in Eqs. (14) to (16), which show the credibility and the errors indicating the neutral in-
clusion effect. These results clearly demonstrate that CoCo-PINNs exhibit superior credibility com-
pared to classical PINNs. Furthermore, CoCo-PINNs outperform classical PINNs in achieving the
neutral inclusion effect, particularly for complex shapes, as verified by the quantity ∥up−H∥P-Neutral.
In some cases, the trained forward solution uNN and the inverse solution pNN produced by classical

9
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PINNs show a significant discrepancy, with uNN differing substantially from the analytic solution
derived from pNN (see Figure 11 in Appendix D.6).

Table 2: Mean of the standard deviation of the interface function, and mean and standard deviations
of errors for fitting the background fields after training. CoCo-PINNs show superior results than
classical PINNs for complex shapes such as ‘fish’, ‘kite’, and ‘spike’. The ‘Mean of S.D.’ denotes
the mean of standard deviation for each point, and ‘S.D.’ denotes the standard deviation.

Shape
Interface function ∥uext

NN − up∥Cred ∥uext
NN − up∥∞ ∥up −H∥P-Neutral

Mean of S.D. Mean S.D. Mean S.D. Mean S.D.

Classical
PINNs

square 2.614e-01 1.071e-03 1.348e-04 3.185e-01 2.601e-02 1.102e-03 1.043e-04
fish 4.011e-01 1.685e-03 1.375e-03 1.223e-01 1.606e-02 2.220e-03 1.895e-03
kite 5.358e-01 1.779e-02 2.412e-02 1.173e+00 1.082e+00 1.676e-02 2.454e-02

spike 2.554e-01 1.094e-02 2.511e-03 5.188e-01 7.791e-02 1.636e-03 1.048e-03

CoCo-
PINNs

square 1.357e-01 3.190e-03 1.515e-04 1.014e-01 2.152e-03 5.045e-03 2.443e-04
fish 3.264e-02 2.482e-04 1.554e-05 9.028e-02 5.617e-03 4.065e-04 6.261e-06
kite 2.258e-02 1.314e-03 4.500e-04 1.800e-01 2.625e-02 4.267e-04 1.990e-05

spike 1.432e-01 3.512e-03 1.505e-04 2.336e-01 3.575e-03 1.367e-03 3.073e-04

4.4 STABILITY OF CLASSICAL PINNS AND COCO-PINNS

In this subsection, we assess the stability of the interface function along with the change of envi-
ronments of PDEs. Since both classical PINNs and CoCo-PINNs are trained for a fixed domain
Ω and background field H , we focus on stability with respect to different conductivities σc. In
Figure 8, we present experiments results obtained for σc = 3, 4, 5, 6, 7 and σm = 1, where the
inclusion shapes are ‘square’, ‘fish’, ‘kite’, and ‘spike’. Recall that the ill-posed nature of inverse
problems can lead to significant instability, causing the inverse solution to exhibit large deviations
in response to environmental changes or re-experimentation. Classical PINNs for neutral inclusions
with imperfect conditions represent such an unstable case, as demonstrated in Figure 8. In con-
trast, our CoCo-PINNs are stable for repeated experiments, and we confirmed that CoCo-PINNs are
stable for slightly changed environments. Table 3 provides the mean of standard deviations for all
experiments used in Figure 8. As shown in Table 3, the CoCo-PINNs are exceedingly stable for
consistency and stability than classical PINNs.

Figure 8: The first and second rows present the stability of interface functions from classical PINNs
and CoCo-PINNs, respectively. The precise value for the mean of standard deviations is in Table 3.
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Table 3: Mean of standard deviations of the interface function for stability experiments.

Shape
Conductivities for interior

σc = 3 σc = 4 σc = 5 σc = 6 σc = 7

Classical
PINNs

square 3.060e-01 2.784e-01 2.614e-01 2.840e-01 1.289e-01
fish 4.421e-01 4.416e-01 4.056e-01 4.218e-01 3.734e-01
kite 6.282e-01 6.062e-01 4.703e-01 4.722e-01 4.597e-01

spike 3.505e-01 2.855e-01 2.469e-01 2.588e-01 2.420e-01

CoCo-
PINNs

square 2.082e-01 1.565e-01 1.357e-01 1.775e-01 1.457e-01
fish 2.841e-02 3.077e-02 2.760e-02 2.611e-02 3.105e-02
kite 1.874e-02 2.346e-02 2.095e-02 2.325e-02 2.420e-02

spike 1.142e-01 1.709e-01 1.313e-01 1.468e-01 1.513e-01

5 CONCLUSION

We focus on the inverse problem of identifying an imperfect function that makes a given simply
connected inclusion a neutral inclusion. We introduce a novel approach of Conformal mapping Co-
ordinates Physics-Informed Neural Networks (CoCo-PINNs) based on complex analysis and PDEs.
Our proposed approach of CoCo-PINNs successively and simultaneously solves the forward and in-
verse problem much more effectively than the classical PINNs approach. While the classical PINNs
approach may occasionally demonstrate success in finding an imperfect function with a strong neu-
tral inclusion effect, the reliability of this performance remains uncertain. In contrast, CoCo-PINNs
present high credibility, consistency, and stability, with the additional advantage of being explain-
able through analytical results. The potential applications of this method extend to analyzing and
manipulating the interaction of embedded inhomogeneities and surrounding media, such as finding
inclusions having uniform fields in their interiors. Several questions remain, including the general-
ization to multiple inclusions and three-dimensional problems, as well as proving the existence of
an interface function that achieves neutrality.
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itive applications such as designing reinforced or embedded composites that preserve the original
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A NOTATIONS

Table 4 provides the list of notations used throughout the paper.

Table 4: Notations

Notation Meaning
H(x) background fields
p(x) interface function
pNN Inverse solution via classical PINNs
p(n) Truncated representation of interface function & Inverse solution via CoCo-PINNs
up Analytic solution with given interface function
uNN Trained forward solution

B GEOMETRIC FUNCTION THEORY

Geometric function theory is the research area of mathematics with the corresponding geometric
properties of analytic functions. One remarkable result is the Riemann mapping theorem. We briefly
introduce this theorem with related results.

B.1 RIEMANN MAPPING, FABER POLYNOMIALS, AND GRUNSKY COEFFICIENTS

A connected open set in the complex plane is called a domain. We say that a domain Ω is simply
connected if its complement C \ Ω is connected.
Theorem 4 (Riemann mapping theorem). If Ω ⊊ C is a nonempty simply connected domain, then
there exists a conformal map from the unit ball B = {z ∈ C : |z| < 1} onto Ω.

We assume that Ω ⊊ C is a nonempty simply connected bounded domain. Then, by the Riemann
mapping theorem, there exists a unique γ > 0 and conformal mapping Ψ from D = {w ∈ C :
|w| > γ} onto C \ Ω such that Ψ(∞) = ∞, Ψ′(∞) = 1, and

Ψ(w) = w + a0 +
a1
w

+
a2
w2

+ · · · . (17)

The quantity γ in Eq. (17) is called the conformal radius of Ω. One can obtain Eq. (17) by using
Theorem 4, the power series expansion of an analytic function and its reflection with respect to a
circle; we refer to for instance Pommerenke (1992, Chapter 1.2) for the derivation.

We further assume that Ω has an analytic boundary, that is, Ψ can be conformally extended to
{w ∈ C : |w| > γ − ϵ} for some ϵ > 0.

The exterior conformal mapping Ψ in Eq. (17) defines the Faber polynomials {Fm}∞m=1 by the
relation

Ψ′(w)

Ψ(w)− z
=

∞∑
m=0

Fm(z)

wm+1
, z ∈ Ω, |w| > γ. (18)

The Faber polynomials {Fm} are monic polynomials of degree m, and their coefficients are uniquely
determined by the coefficients {an}mn=0 of Ψ. In particular, one can determine Fm by the following
recursive relation:

Fm+1(z) = zFm(z)−mam

m∑
n=0

anFm−n(z), m ≥ 0. (19)

In particular, F1(z) = z − a0. A core feature of the Faber polynomials is that Fm(Ψ(w) has only a
single positive-order term wm. In other words, we have

Fm(Ψ(w)) = wm +

∞∑
n=1

cmnw
−n, |w| > γ,

where cmn are known as the Grunsky coefficient.
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Remark 3. The Faber polynomial forms a basis for complex analytic functions in Ω. This means
that an analytic function v in Ω can be expanded into Fm as

v(z) =

∞∑
n=0

bnFn(z), z ∈ Ω,

for some complex coefficients bn.

C PROOF OF MAIN THEOREM

As the Faber polynomials form a basis for complex analytic functions (see remarked in Remark 3),
the background field H is an entire harmonic so that it is the real part of an entire analytic function.
Hence, H satisfies

H(z) =

∞∑
m=1

ℜ[αmFm(z)]

for some complex coefficients {αm}. Choi & Lim (2024) showed that, for some δ > 0, the solution
u to the Eq. (1) admits the expression

u(z) =


ℜ

[ ∞∑
m=1

∞∑
n=1

βmnFn(z)

]
for ρ ∈ [ρ0 − δ, ρ0],

ℜ

[ ∞∑
m=1

αmFm(z) +

∞∑
m=1

∞∑
n=1

smnw
−n

]
for ρ > ρ0

=


ℜ

[ ∞∑
m=1

∞∑
n=1

βmnw
n +

∞∑
m=1

∞∑
n=1

∞∑
l=1

βmlclnw
−n

]
for ρ ∈ [ρ0 − δ, ρ0],

ℜ

[ ∞∑
m=1

αmwm +

∞∑
m=1

∞∑
n=1

(αmcmn + smn)w
−n

]
for ρ > ρ0,

where the coefficients βmn and smn are depending on H , σ and p. Recall that cmn are Grunsky
coefficients.

We define semi-infinite matrices:

α = {αmδmn}m,n≥1, β = {βmn}m,n≥1, s = {smn}m,n≥1, (20)

N = {nδmn}m,n≥1, γ
τN = {γτnδmn}m,n≥1, C = {cmn}m,n≥1, (21)

where δmn is the Kronecker delta function, and τ ∈ R.

Define Ψ(ρ, θ) = Ψ(eρ+iθ) and denote the scale factor as h, that is,

h(ρ, θ) =

∣∣∣∣∂Ψ∂ρ
∣∣∣∣ = ∣∣∣∣∂Ψ∂θ

∣∣∣∣ = eρ|Ψ′|.

For |w| = γ, we have w = eρ0+iθ for θ ∈ [0, 2π). We consider the Fourier series of
h(ρ0, θ)p(Ψ(w)) in θ :

h(ρ0, θ)p(Ψ(w)) =

∞∑
n=−∞

pnw
n, |w| = γ,

where pnγ
n is the Fourier coefficients. As p is a real-valued function, one can show that p−n =

pnγ
2n for each n ∈ Z and, hence,

h(ρ0, θ)p(Ψ(w)) = p0 + p1w + p1γ
2w−1 + p2w

2 + p2γ
4w−2 + · · · , |w| = γ. (22)

We denote

P+ = {p+mn}m,n≥1 with p+mn = pm+nγ
m+n,

P− = {p−mn}m,n≥1 with p−mn = pm−nγ
m−n.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

If m < n, we can use pm−n = p−m+nγ
2(−m+n).

Recall that α is given by the background field, and C is determined by Ω. Choi & Lim (2024)
showed that

αA1 +αA2 + sB1 + sB2 = 0 (23)
and, using this relation, derived the expression of s in terms of p, σ, and H as follows:

s =−
[
α
(
A1 −A2B2

−1
B1

)
+α

(
A2 −A1B2

−1
B1

)](
B2 −B1B2

−1
B1

)−1

, (24)

where 

A1 = (σc − σm)γNP+γN + (σc − σm)Cγ−NP−γN + σcσmCN ,

A2 = (σc − σm)γNP−γN + (σc − σm)Cγ−NP+γN − σcσmγ2NN ,

B1 =
[
(σc − σm)I + 2σm(I − γ−2NCγ−2NC)−1

]
γ−NP+γN

+2σm(I − γ−2NCγ−2NC)−1γ−2NCγ−NP−γN ,

B2 =
[
(σc − σm)I + 2σm(I − γ−2NCγ−2NC)−1

]
γ−NP−γN

+2σm(I − γ−2NCγ−2NC)−1γ−2NCγ−NP+γN + σcσmN .

We set

Ã1 =
(
A1 −A2B2

−1
B1

)(
B2 −B1B2

−1
B1

)−1

,

Ã2 =
(
A2 −A1B2

−1
B1

)(
B2 −B1B2

−1
B1

)−1

.

Proof of Theorem 3. The neutral inclusion means that ℜ(sw−N ) = 0 where w−N = {w−n}n≥1

for all |w| > γ. This implies that s = 0. In other words, αÃ1 +αÃ2 = 0.

If the background field is H(x) = ax1 + bx2, H(z) = ℜ [
∑∞

m=1 αmFm(z)] with α1 = a− ib and
α2 = α3 = · · · = 0 so that the matrix α is

α =


α1 0 · · ·

0 0
. . .

...
. . . . . .

 with α1 ∈ C, α1 = a− ib. (25)

Hence, s has nonzero entries only in its first row. Hence, Ω is neutral to the linear field H if and only
if −α1 row1[Ã1]− α1 row1[Ã2] = 0. By the assumption of the theorem, the first rows of row1[Ã1]

and row1[Ã2] are linearly independent. Hence, row1[Ã1] = row1[Ã2] = 0. This implies that Ω is
neutral to linear fields H of all directions.

D EXPERIMENTAL DETAILS

D.1 COLLOCATION POINTS

We denote the set of collocation points as

Ωint, Ωext, ∂Ω, ∂Ω+, ∂Ω−,

for interior, exterior, boundary, and the limit to the boundary from interior and exterior components,
respectively. We define as follows: Ωext and ∂Ω are the images of the exterior conformal map Ψ(w)
under the uniform grid of its restricted domain, and the boundary of the disk with radius γ = eρ0 by

Ωext =
{
Ψ(w) : w = eρ+iθ, (ρ, θ) ∈ (ρ0, L]× (0, 2π]

}
,

∂Ω =
{
Ψ(w) : w = eρ0+iθ, θ ∈ (0, 2π]

}
,

for some fixed L > γ. The limits to the boundary ∂Ω± from exterior and interior are defined by

∂Ω± = {z ± δN(z) : z ∈ ∂Ω}

18
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with a small δ > 0 and a unit normal vector N to the boundary ∂Ω. To select the interior points,
we recall that z ∈ ∂Ω can be represented as z = Ψ(eρ0+iθ). Now, we fix the angle θ and divide the
radius uniformly. In other words, we collect x ∈ Ω such that arg(x) = arg(z) and |x| < |z|, that is,

Ωint = {x ∈ Ω : |x| < |z|, arg(x) = arg(z), z ∈ ∂Ω} .

D.2 EXPERIMENTAL SETUP AND PARAMETERS

In common settings for experiments, we set σm = 1, σm = 5 and σc = 3, 4, 6, 7 are also used.
The conformal radius γ = 1 and L = 5. which determines the domain of the conformal map, and
sample points are located in the square box of [−5, 5]2. We generated collocation points |Ωext| =
21, 808, |Ωint| = 6, 000, and |∂Ω| = 6, 000 with a single epoch so that collocation points are all
fixed. For the neural networks’ architecture, we use 4 hidden layers with a width of 20 and the
Tanh activation due to its smoothness. We use Adam optimizers under 25,000 iterations adjusting
learning rates lr pinn: all types of neural networks and lr inv: for interface (inverse) parameters
decaying with η per 1000 iterations along the learning rate schedulers. We fix both learning rates
as 10−3 and η = 0.7. We use the CoCo-PINNs with p = p(20) which takes a real number p0 and
complex numbers {pi}20i=1 as inverse parameters. To verify the classical PINNs’ result, we use the
Fourier fitting with an order of 20. The Fourier fitting is explained in Appendix D.4. Note that using
too high order makes singularities, and hence, it represents awful credibility. We set the initial value
of the interface function to 5 for the square and spike shape to make it easier to satisfy the condition
of being a positive function.

Remark on the environments Traditionally, hyperparameter tuning is important to acquire the
PINNs’ performance. Since balancing them is much more complicated due to the difficulty of the
PDEs, we need to choose the appropriate values to enhance PINNs. Here are the brief guidelines
for our settings: 1) When we balance the number of collocation points, although the exterior do-
main is much larger than the interior, fitting the background fields on the exterior domain has been
designed to be less complex. So we set 4 times of interior points. Also, the boundary effect is
essential for neutral inclusion, we put more points on the boundary same with the interior’s points.
2) Re-sampling collocation points can lead to the uncertainty of the interface function. If we sample
again for each epoch, PINNs are hardly adapted for new sample points, especially for the boundary
condition loss, which is quite important for the neutral inclusion effects. It is also from the exper-
imental results that the results of re-sampling are worse than those of fixed-sampling. Hence, we
fix the points and proceed to a single epoch. 3) To control the learning rates adaptively, we use the
Adam optimizers so that we can handle the sensitivity of Fourier coefficients much better. Since
Adam has faster convergence and robustness, they can adjust the learning rates appropriately during
the training.

The following algorithm explains the progress of the CoCo-PINNs and classical PINNs.

Algorithm 1 Generation method of the perturbed field from the interface function

Input: Background fields: H(x, y); Interface function: p = p(n) or pNN

1: if p = p(n) then
2: [Initialization]: Utilizing the mathematical results
3: Training
4: p(n) gives us the coefficients {pk}nk=1 directly.
5: else if p = pNN then
6: [Initialization]: None
7: pNN(w) with given sample points w ∈ ∂D.
8: Training
9: Use the Fourier fitting to attain the coefficients {pk}nk=1.

10: end if
11: S = Numeric[{pk}nk=1]
12: up = ℜ [H + Sw] · · · · · ·Eq. (3).
Output: up
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D.3 CONFORMAL MAPS FOR VARIOUS SHAPES

The shapes shown in Figure 4 are defined by the conformal map Ψ(w) : {w ∈ C : |w| > 1} → C\Ω
as follows:

Ψ(w) = w +
1

10w3
, (26)

Ψ(w) = w +
1

4w
+

1

8w2
+

1

10w3
, (27)

Ψ(w) = w +
1

10w
+

1

4w2
− 1

20w3
+

1

20w4
− 1

25w5
+

1

50w6
, (28)

Ψ(w) = w − 1

10w9
. (29)

The Eqs. (26) to (29) present ‘square’, ‘fish’, ‘kite’, and ‘spike’, respectively.

D.4 FOURIER FITTINGS

In order to ascertain whether the trained forward solution is true or not, it is necessary to identify
the Fourier series that is sufficiently similar to the original interface function and, hence, achieve
the real analytic solution. We utilize the Fourier series approximation for each interface function.
Figure 9 presents the difference between the interface function and the Fourier series we used. We
denote pF as the Fourier series corresponding to the pNN. Given that pNN is sufficiently close to pF,
it is reasonable to utilize the analytic solution obtained by pF in order to ascertain the credibility of
the classical PINNs results.

The relative L2 error of the neural network-designed interface function and its Fourier series formula
is given by

∥pNN − pF∥L2(∂Ω)

∥pNN∥L2(∂Ω)
.

The relative errors and the Fourier fittings for each shape are given by Table 5 and Fig. 9, respec-
tively.

Table 5: The error of Fourier fitting

square fish kite spike
5.013e-07 2.915e-07 1.729e-06 2.443e-06

Figure 9: Fourier fitting the interface function for each domain

D.5 NEUTRAL INCLUSION EFFECT FOR ARBITRARY FIELDS

In this subsection, we present the neutral inclusion effect of shapes and different fields H(x1, x2) =
x1, x2, and 2x1 − x2. The neutral inclusion effects for one random experiment results are given in
Table 6.

After many fair experiments with both CoCo-PINNs and classical PINNs, we concluded that CoCo-
PINNs were superior. After that, we tested the neutral inclusion effect for each shape by utilizing
the CoCo-PINNs. Figure 10 presents the results. In the case of unit circle inclusion, exact neutral
inclusion appeared. The shape we used may have no interface functions that make exact neutral
inclusions. Notwithstanding, the CoCo-PINNs results for the neutral inclusion effect are, to some
extent, satisfactory.
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Table 6: Errors for fitting the background fields after neutral inclusion

Shape
∥up −H∥P-Neutral with

H(x) = x1 H(x) = x2 H(x) = 2x1 − x2

CoCo-
PINNs

square 5.004e-03 8.164e-03 2.801e-02
fish 4.050e-04 2.694e-04 1.868e-03
kite 4.358e-04 1.654e-04 1.928e-03

spike 2.230e-03 5.847e-03 1.498e-02

Figure 10: Neutral inclusion effects for various shapes and background fields.

D.6 ILLUSTRATIONS FOR CREDIBILITY

All experiments described in Table 1 are illustrated in Figures 11 and 12, by utilizing CoCo-PINNs
and classical PINNs, respectively. We illustrate the pairs of(

uNN, up,
|uext

NN − up|2

|Ωext|
,
|uext

NN −H|2

|Ωext|

)
for each shape in Figure 4.

As shown Figures 11 and 12, the trained forward solutions by CoCo-PINNs uNN are more similar to
analytic solution up using the interface parameter given by the CoCo-PINNs’ training results than
classical PINNs’ one.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 11: Experiment results by using the classical PINNs
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Figure 12: Experiment results by using the CoCo-PINNs
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