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Abstract

Large language models (LLMs) have revolu-
tionized the field of natural language process-
ing (NLP), and recent studies have aimed to
understand their underlying mechanisms. How-
ever, most of this research is conducted within
a monolingual setting, primarily focusing on
English. Few studies have attempted to explore
the internal workings of LLMs in multilingual
settings. In this study, we aim to fill this re-
search gap by examining how neuron activation
is shared across tasks and languages. We clas-
sify neurons into four distinct categories based
on their responses to a specific input across
different languages: all-shared, partial-shared,
specific, and non-activated. Building upon this
categorisation, we conduct extensive experi-
ments on three tasks across nine languages us-
ing several LLMs and present an in-depth analy-
sis in this work. Our findings reveal that: (i) de-
activating the all-shared neurons significantly
decreases performance; (ii) the shared neurons
play a vital role in generating responses, es-
pecially for the all-shared neurons; (iii) neu-
ron activation patterns are highly sensitive and
vary across tasks, LLMs, and languages. These
findings shed light on the internal workings of
multilingual LLMs and pave the way for future
research. We will release the code to foster
research in this area.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in recent studies, excelling
in both understanding and generating text across
various languages (OpenAl, 2023; Zhang et al.,
2023; Zhao et al., 2024a). Despite their proven
effectiveness, the intricate mechanisms underlying
their processing remain largely opaque. This opac-
ity has given rise to a growing field of research
aimed at interpreting the internal workings of the
Transformer architecture (Elhage et al., 2021; Yu
et al., 2023). To enhance interpretability and in-
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Figure 1: A comparison of neuron analysis with differ-
ent type designs in multilingual settings with the same
semantic input, in which we define four types of neu-
rons in one layer of LLM.

vestigate specific aspects of model behavior, re-
searchers have increasingly focused on the com-
ponents of these models. Recent studies have ex-
plored the role of Feed-Forward Networks (FFNs)
within LLMs, proposing that these components
function as key-value memories for storing factual
and linguistic knowledge (Geva et al., 2020, 2022;
Ferrando et al., 2023). While these studies have an-
alyzed neuron behaviors based on activation states
in monolingual settings, there remains a significant
gap in our understanding of how neurons behave in
multilingual contexts.

To address this research gap, recent research
attempts to unveil the mechanistic interpretabil-
ity of multilingual LLMs. Bhattacharya and Bo-
jar (2023) categorized neurons into two coarse-
grained groups: language-agnostic (shared across
languages) and language-specific (unique to a lan-
guage). However this categorization oversimplifies
the complexity observed in cross-lingual studies,
where neuron overlap varies significantly between
languages (Stanczak et al., 2022; Zhao et al., 2023;
Liu et al., 2024). Additionally, most research has
been confined to single-task analyses, overlooking



how neuron types might shift across diverse tasks
(Bhattacharya and Bojar, 2023; Tang et al., 2024;
Tan et al., 2024). This underscores the need for a
more nuanced, fine-grained classification method
to enhance our understanding of the multifaceted
roles of neurons in multilingual LLMs.

In this work, our research introduces a fine-
grained classification of neurons, enabling a de-
tailed exploration of their functions across lan-
guages. For a specific English example and its
translations in eight other languages, we catego-
rize neurons into four distinctive types (see Fig-
ure 1): all-shared neurons, which remain active
for all the inputs regardless of language; partial-
shared neurons, which are activated only for inputs
in certain languages; specific neurons, which are
activated exclusively for inputs in one language;
and non-activated neurons, which are not activated
for any inputs. We begin by analysing the impor-
tance of each neuron type by deactivating them
individually. Then we probe their contributions to
generating answers using the Generation Impact
Score (Geva et al., 2022) and the Correctness Im-
pact Score (Voita et al., 2023). Furthermore, by
examining the percentage of neurons in each type,
we analyse activation patterns to gain insights into
the internal workings of LLMs. We systematically
study neuron behaviours across three distinct tasks,
including reasoning, fact probing, and question an-
swering, in nine languages. This analysis utilizes
diverse model backbones such as BLOOMZ-7B,
LLAMAZ2-7B-CHAT, BLOOM-7B, and XGLM.

We provide substantial empirical evidence de-
tailing neuron contributions and activation patterns
in this study, leading to several significant findings.
Here are the main takeaways:

* All-shared neurons have a significant im-
pact on model performance. We individu-
ally deactivate each type of neurons in LLMs
and observe substantial performance declines
(up to 87.39%) across tasks (see Section 5).

* All-shared neurons are crucial in generat-
ing responses. Both the Generation Impact
Score and Correctness Impact Score highlight
the significance of the shared neurons in the
generation process, and the all-shared neurons
make substantially more contributions com-
pared to other neuron types (see Section 6).

* Neuron activation patterns vary across
tasks, LLLMs, and languages. We observe

that the patterns of four types of neurons vary
across tasks (see Section 7.2) and LLMs (see
Section 7.3). Moreover, our empirical re-
sults show that languages from the same lan-
guage family do not always exhibit a higher
degree of neuron sharing compared with lan-
guages from distinct language families (see
Section 7.4).

2 Related Work

The black-box nature of LLMs has given rise to
an area of research which aims to interpret the in-
ternal mechanism of the Transformer architecture
(Elhage et al., 2021; Yu et al., 2023). More re-
cently, several studies on LLMs have advanced our
understanding of how neurons acquire task-specific
knowledge. For instance, Ferrando et al. (2023);
Dai et al. (2022); Geva et al. (2020, 2022) investi-
gated how FFN blocks function as key-value mem-
ories and proved that factual knowledge is stored
in the neurons. Research work on the sparsity of
neurons in FFN blocks showed that many neurons
are inactive in various tasks (Zhang et al., 2022; Li
etal.,2023). Voita et al. (2023) located these “dead”
neurons in the lower part of the model (close to in-
puts) in the English scenario. Despite the insights
obtained, these studies have focused exclusively on
a monolingual setting.

For multilingual neuron analysis, Bhattacharya
and Bojar (2023) explored the neuron sharing be-
tween two languages. Tang et al. (2024); Tan et al.
(2024); Liu et al. (2024); Kojima et al. (2024) clas-
sified neurons in an FFN block to language-specific
and language-agnostic based on predefined thresh-
old. However, the broad classification into two
groups is inadequate for detailed multilingual anal-
ysis. Additionally, these studies classified neurons
based on the single task (Tan et al., 2024; Liu et al.,
2024), without considering the potential adaptation
of neurons under various languages and semantics
brought forth by inputs from various multilingual
tasks. We investigate neurons’ behaviors across
multiple languages and tasks to this end.

3 Fine-Grained Neuron Classification

In this section, we provide a detailed description
of the 4-way neuron classification that we propose.
We begin with some background concerning neu-
rons in the FFN block (Section 3.1). Following this,
we define the four types of neurons (Section 3.2).



XNLI KE (EN — ALL) KE (ALL — EN) Fact Probing
pet. Hace Agee pct. Hace Agee pet. Hace Agee pct. Hace Agee
baseline 0.00% 41.99 0.00% 0.00% 38.39 0.00% 0.00% 41.74 0.00% 0.00% 41.98 0.00%

T wlo.all T T T T992% T 938  -77.66% ~ 871% 484 ~ -8739%  10.17%  13.19  -6840% = 0.28%  21.86 -50.31%
w/o. partial 10.33% 42.65 1.57% 13.36% 40.67 5.94% 10.55% 39.59 5.15% 36.73% 26.86 36.02%
w/o. specific 3.14% 42.07 0.19% 4.91% 40.78 6.23% 3.82% 40.77 2.32% 16.56% 12.68 -67.41%
w/0. non-act. 76.61% 35.90 14.50% 73.22% 21.96 42.80% 75.46% 19.58 53.09% 46.43% 26.68 36.45%

77777777 5.00% 4230 ~ 074%  500% 3098 = -1930% ~ 5.00% 4129 - 1.08% ~ 1.00% 3786 - 9.81%
wio. random 15.00% 43.13 2.71% 15.00% 31.74 -17.32% 15.00% 42.14 0.96% 15.00% 35.38 15.72%

: 25.00% 43.98 4.74% 25.00% 32.40 -15.60% 25.00% 42.28 1.29% 35.00% 41.78 - 0.48%
75.00% 36.58 -12.88% 75.00% 13.29 -65.38% 75.00% 16.50 -60.47% 45.00% 17.06 -59.36%

Table 1: The performance on XNLI, Cross-lingual KE, and Fact Probing tasks, using BLOOMZ-78B, when
deactivating all-shared neurons, specific neurons, partial-shared neurons, non-activated neurons, and random

selected neurons, respectively. The largest reductions are highlighted in bold. “pct.”

indicates the percentage of the

deactivated neurons. i, indicates the macro-average accuracy across languages. A, indicates the macro-average

of relative change (%) in accuracy across languages.

3.1 Neurons in FFN Blocks

A neuron inside the FFNs is defined as a linear
transformation of an input representation followed
by a non-linear activation (Tang et al., 2024). Every
FFN block at layer [ involves two linear transforma-
tions separated by a point-wise activation function.
Biases are omitted for brevity:

FEN'(z!) = Act(Wa Wi, (1)
where W} € Réxdm Wl € RIm*d gre linear pa-
rameter matrices, and Act(-) is a non-linear acti-
vation function, where rows in Wll{ and columns
in W‘l, are viewed as d-dimensional keys k! and
values v, respectively. d,, is the count of neurons.
And the output of neurons Al := Act(Wka!) €
R% determines the weighting of the correspond-
ing values in W‘l/

For the i-th neuron and corresponding key k:f,
value vﬁ and activation value Aé, we can express
this relationship using the following formulation:

dm dm,

Z Act(z! - kol

Following Voita et al. (2023); Bhattacharya and
Bojar (2023); Tang et al. (2024), we define a neuron
as activated when its activation value satisfies Aé >
0. Conversely, if the activation value is A < 0, the
neuron is considered deactivated.

FFN'(x

3.2 Definitions of Four Types of Neurons

In this work, we categorize the neurons into four
types based on their activation values and detail the
neuron classification in this section. To ablate the
impact of semantic discrepancies across languages,
the datasets used in this work are initially in En-
glish and then translated into foreign languages (see

Section 4.1), so we can formulate the s-th exam-
ple as X° = {X » I p=1, Where p indicates the p-th
language and P is the total number of languages.
Given the s-th example X*, the set of all-shared
neurons at the [-th layer can be defined as:

P
Ny ={n'eN A7 >0} )
p

where N' is the set of all the neurons at the I-th
layer and 7/ is the i-th neuron in N'. Furthermore,
the non-activated neurons is the set of neurons
whose activation value is less than or equal to zero
in all languages, as follows:

P
Nah=({n" e N': 470 <0}. (@
P

Moreover, the specific neurons are the neurons
only activated in one specific language and not ac-
tivated in any other languages, defined as follows:

P
Ngto=J{{n" e N': 47, > 0}

P (%)
ﬂ {nZ e N ASZ <0}}
P
p#p’
Lastly, the remaining neurons are partial-shared

neurons as they are activated by inputs from a
subset of languages:

l
Now = N\ANG U N U Ngled )

Note that, we only examine the activation state of
the last token of the input, as that is when the LLM
performs the prediction task.



4 Experimental Setting
4.1 Multilingual Tasks

We perform analysis on neurons in FFN blocks
of various LLMs, harnessing their multilingual
capabilities in three diverse tasks which consist
of multilingual parallel sentences, including XNLI
(Conneau et al., 2018), Fact Probing (Fierro and
S@gaard, 2022), and Cross-lingual Knowledge
Editing (KE) (Wang et al., 2023). For the
Cross-lingual KE, we analyse the LLMs in two
setups, including EN (Edit) — ALL (Test) and
ALL (Edit) — EN (Test). These test sets across
languages are translated from the original English
test set. More details are described in Appendix B.

These tasks cover nine diverse languages, in-
cluding English (en), German (de), Spanish (es),
French (fr), Russian (ru), Thai (th), Turkish (tr),
Vietnamese (vi), and Chinese (zh). Prompts are
detailed in Appendix C.

4.2 Model Backbones

We mainly analyse the contributions and activation
patterns of neurons in an instruction-finetuned mul-
tilingual model BLOOMZ-7B (Muennighoff et al.,
2023). We also include the analysis of other mul-
tilingual LLMs: BLOOM-7B (Scao et al., 2022),
LLAMAZ2-7B-CHAT (Touvron et al., 2023), and
XGLM (Lin et al., 2022). We use one NVIDIA
A100 (40G) for all experiments.

5 Shared Neurons Are Crucial to
Performance

In this section, we explore how different neuron
types affect the performance of the BLOOMZ-7B
model by selectively deactivating specific groups
of neurons. By setting the activation values of
these neurons to zero, we assess their impact on the
model’s output across various tasks. Specifically,
we compare the effects of deactivating four distinct
types of neurons and include a control group of ran-
domly selected neurons to evaluate their respective
contributions to the model performance. Our exper-
iments involve tasks such as XNLI, cross-lingual
KE, and fact probing.

All-shared neurons play a crucial role in model
performance across different tasks. As shown
in Table 1, we observe that all-shared neurons
significantly contribute to the model’s perfor-
mance across various tasks. For instance, in the
Cross-lingual KE (EN (Edit) — ALL (Test))

settings pct. en de es fr ru th tr vi zh
XNLI task

baseline 0% 53.8 41.8 50.3 49.0 47.6 40.9 349 50.5 5I.1

“wioall T T 9.9% 167 3.5 101 10.0 6.6 9.0 1.4 121 145

w/o. partial  10.3% 52.9 40.4 49.7 47.6 49.2 40.3 36.1 50.0 50.0

w/o. specific  3.1% 53.7 41.7 50.3 48.9 47.4 40.6 353 50.4 493
w/o0. non-act. 76.7% 36.6 31.6 33.6 33.4 29.5 31.3 283 345 235

25% 52.6 41.7 50.3 48.8 46.0 38.8 36.2 50.7 49.7
75% 36.0 28.7 40.7 36.7 28.9 254 23.0 38.5 329

Cross-lingual KE (EN (Edit) — ALL (Test)) task

baseline 0% 96.2 48.8 36.9 49.5 246 6.3 38.8 494 334
“wioall T T 87% 11.0 49 61 49 19 04 15 61 29
w/o. partial  13.3% 90.2 51.7 46.9 489 254 5.5 355 509 384

w/o. specific  4.9% 96.1 54.4 48.7 489 304 6.3 379 51.7 285
w/o. non-act. 73.2% 36.1 15.8 182 17.8 1.9 9.8 199 10.6 16.3

w/o. partial K . 52 7 S 3
w/o. specific  3.8% 96.1 54.4 48.7 489 29.7 6.3 38.0 51.8 30.0
w/o. non-act. 75.5% 19.2 19.8 15.5 147 114 2.0 182 12.0 75

wio. random 550, 913 559 48.5 493 283 6.8 37.7 50.3 297

75% 102 17.0 11.7 157 47 1.1 7.8 148 7.0

Fact Probing task

baseline 0% 724 41.6 566 581 373 5.7 393 574 Sl4
wlo. all 0.2% 434 129 344 224 114 ~52 152 3435 290
wio. partial  36.7% 43.3 20.8 31.2 30.9 144 2.8 245 346 29.4

w/o. specific 16.6% 18.1 9.1 30.1 7.7 5.7 57 94 123 221
w/o. non-act. 46.4% 42.5 27.6 399 28.1 1.7 0.0 229 402 17.5

45% 29.0 213 164 172 03

Table 2: The performance on three tasks, using
BLOOMZ-78B, when deactivating all-shared neurons,
specific neurons, partial-shared neurons, non-activated
neurons, and randomly selected neurons, respectively.
The largest reductions are highlighted in bold. “pct.”
indicates the percentage of the deactivated neurons.

task, deactivating the all-shared neurons, which ac-
count for only 8.71% of the total neurons, results
in an 87.39% decrease in accuracy. Moreover, for
the Fact Probing task, deactivating the all-shared
neurons, which constitute only 0.28% of the total
neurons, causes a substantial 50.31% performance
drop. Furthermore, deactivating the specific neu-
rons, which account for 16.56% of the total neu-
rons, leads to the largest performance decline of
67.41%. In comparison, deactivating a comparable
number of random selected neurons typically re-
sults in smaller performance drops, suggesting that
all-shared neurons are crucial to the performance.

Deactivating neurons does not always result in
performance declines. Interestingly, we some-



times observe small performance gains when a
small number of neurons are deactivated, as shown
in Table 1, regardless of the neuron type. To
explore this phenomenon further, we provide a
breakdown of the results by language in Table 2.
Our analysis reveals that only deactivating the all-
shared neurons consistently leads to a decline in
model performance across various tasks and lan-
guages. In contrast, deactivating either partial-
shared neurons or specific neurons can occasionally
improve performance for certain languages. For
example, in the Cross-lingual KE (EN (Edit)
— ALL (Test)) task, we observe substantial per-
formance improvements in German (de), Spanish
(es), and Chinese (zh) when the partial-shared neu-
rons are deactivated. We hypothesize that this phe-
nomenon stems from knowledge conflicts encoded
in the LLM (Xu et al., 2024). By deactivating cer-
tain neurons, these knowledge conflicts may be
mitigated, resulting in enhanced performance.

It is important to note that we conduct similar
experiments using the LLAMA?2-7B-CHAT and
present the results in Appendix D. These additional
experiments yield observations and conclusions
consistent with those using BLOOMZ-7B.

6 Probing Neuron Contributions

We demonstrate the significant role of neurons
shared across languages, particularly the all-shared
neurons, in generating answers, as discussed in
Section 5. To gain a deeper understanding of the
model’s behavior, we conduct further analysis us-
ing two metrics: Generation Impact Score and
Correctness Impact Score. First, we introduce
the definitions of these two metrics in Section 6.1.
Then, we analyse and quantify the contributions of
each type of neuron in Section 6.2 and Section 6.3,
respectively.

6.1 Generation Impact Score and Correctness
Impact Score

In this section, we introduce two measures to quan-
tify the contributions of neurons: Generation Im-
pact Score and Correctness Impact Score.

Generation Impact Score Inspired by Geva et al.
(2022), the Generation Impact Score (G1.5) eval-
uates the importance of neurons in generating an-
swers. For the i-th neuron at [-th layer, the G1.S is

XNLI Fact Probing KE (EN->ALL) KE (ALL->EN)
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Figure 2: Average Generation Impact Score of the four
types of neurons on the English and German test sets
across tasks given by BLOOMZ-7B.

defined as:

orst o ALl
i AL led

which is the proportion of its weight to the sum of
weights of all neurons in the FFN block. | Al is the
absolute value of activation value and ||v}|| is the
L2-norm of value vzl-.

(N

Correctness Impact Score Following Geva et al.
(2022) and Voita et al. (2023), Correctness Impact
Score (C'IS) assesses a neuron’s influence on gen-
erating the correct answer.

CIS! = E, - Al ®)

where F, is the embedding of the correct answer
r. A larger C'I Sf has a higher probability to pro-
duce the correct answer r, while a negative C'S!
reduces the probability in generating r. Detailed
descriptions of the neuron projection are provided
in Appendix A.

Comparison While both Generation Impact
Score (G15) and Correctness Impact Score (C'I5)
measure neuronal influence, they serve different
purposes. The GIS quantifies a neuron’s overall
contribution to the generation process, regardless



all-shared partial-shared specific non-activated
max min mean var max min mean var max min mean var max min mean var
en 1.85 0.94 0.07 0.36 022 016 12e4 19e4 | 002 -002 25e4 355 | 004 -0.03 2led4 58e-6
de | 1.03 0.60 0.02 0.07 0.13 0.13  6.7e-5 7.le-5 | 0.07 0.03  23e-5 23e-5 | 0.02 0.01 29e-6  2.9e-6
es 1.15 0.84 0.02 0.07 0.12 0.11 1.3e-4  63e-5 | 001 -0.01 94e-5 7.6e6 | 002 -002 77e-5 3.le-6
fr 1.06 0.78 0.01 0.05 0.15 0.11  2.le-4  7.8¢-5 | 0.03 0.04 3.6e-5 99e6 | 002 -0.02 56e-5 2.8e-6
ru | 070 -045 33e-3 593 | 0.24 0.13  2.6e-4 7.6e-5 | 0.08 -0.03 l.le-4 1.8e-5 | 0.01 0.01  3.9e-5 1.7e-6
th 050  -0.90  2.6e-3 0.02 0.17 0.10  22e-4 6.8¢-5 | 0.03 -0.05 3.4e-5 1.8e-5 | 0.01 0.01 7.1e-5 1.9e-6
tr 0.82 0.51 0.03 0.07 0.12 0.12  1.6e-4  74e-5 | 0.04 0.03  6.6e-5 1.le-5 | 0.02 -002 9.de-5 3.4e6
vi 0.86 0.68  6.8e-3 0.03 0.15 0.11  93e-5 6.8¢-5 | 0.04 0.04 28e-5 13e-5 | 002 -002 3.2e-5 2.6e-6
zh | 052 -042  19e-3 0.02 0.17 -020 15e-4 775 | 008 -007 85e5 2.6e5 | 002 -0.01 1.7e-5  3.1e-6

Table 3: Maximum, minimum, average, and variance of Correctness Impact Score of the four types of neurons on

the Cross-lingual KE (EN (edit) — ALL (Test)) task given by BLOOMZ-7B.

of output correctness. In contrast C'1.S specifically
measures a neuron’s impact on producing accurate
responses by incorporating the correct answer’s
embedding. Thus, the key distinction lies in their
consideration of answer correctness: G1.S focuses
on general generation ability, whereas C'1.S empha-
sizes correctness.

6.2 The Generation Impact of Neuron Types

In this section, we explore the contribution of each
neuron type using the Generation Impact Score
(GIS) described in Section 6.1.

All-shared neurons have the greatest impact on
generation outputs. As shown in Figure 2, we
analyse the GIS across layers on the English and
German test sets of three tasks (with overall results
provided in Appendix E). For both English and Ger-
man, it can be observed that the all-shared neurons
almost always achieve the highest G1.S across all
layers, indicating their significant influence on the
model’s output generation. The partial-shared neu-
rons are the second most influential, particularly in
the upper layers. Notably, there is a decrease in the
influence of all-shared neurons between layers 5
and 10. This can be attributed to the fact that G1.5
assesses the impact on generating answers, while
the lower layers are primarily responsible for input
understanding (Zhao et al., 2024b). Consequently,
all types of neurons exhibit lower GI.S in these lay-
ers. Moreover, previous studies have demonstrated
that higher layers capture more abstract, high-level
information essential for generation (Gao et al.,
2024). These findings suggest that shared neurons
play a more significant role in the model’s genera-
tion capabilities.

6.3 The Correctness Impact of Neuron Types

In this section, we assess the effectiveness of each
neuron type using the Correctness Impact Score
(C15S) described in Section 6.1.

All-shared neurons have the greatest im-
pact on generating correct answers. In the
Cross-lingual KE (EN (Edit) — ALL (Test))
task, we present the maximum, minimum, average,
and variance of C'1.S for each neuron type across
all layers of the BLOOMZ-7B model, as shown in
Table 3. The results reveal that all-shared neurons
have both the highest maximum and the lowest
minimum CS values, indicating that they have
strong impact on generating correct outputs. While
all-shared and partial-shared neurons display a
wide variance in C'1S (e.g., 1.85 vs. -0.94 and 0.22
vs. -0.16 in English, respectively), specific neurons
and non-activated neurons exhibit much narrower
score ranges (approximately £ 0.07). Furthermore,
the all-shared neurons also exhibit the largest mean
and variance of C'I .S among all kinds of neurons.

In conclusion, these findings presented in Sec-
tion 6.2 and Section 6.3 demonstrate that all-shared
neurons also have the greatest impact on generat-
ing both answers and correct answers, highlighting
their importance in the model’s performance across
different languages and tasks.

7 Understanding Neuron Activations

We demonstrate in Section 5 that shared neurons
have a significant impact on model performance
and investigate their influence on the generation
process in Section 6. However, the inner patterns
of neurons across layers remain unexplored. In this
section, we firstly introduce the measure of quan-
tifying neuron activation in Section 7.1, and then
we further illustrate how neuron activation patterns
vary across tasks (Section 7.2), LLMs (Section 7.3)
and languages (Section 7.4).

7.1 Measuring Neuron Activation

In this section, we explain how to quantify neuron
activation patterns based on the definitions in Sec-
tion 3.2. Specifically, we measure the percentage



XNLI fact probing

Cross-lingual KE (EN->ALL) Cross-lingual KE (ALL->EN)

100 100 A

80 80
60 60 1

40 -

20 1 /N\\ 20--\N

40

Percentage

f B e - .
0 1 0 1

100 4 100 4

80 1 80 1
60 - 60 -

40 4 40 1

20 - ’ 20 -
=
01 0 1

T T T T T T T T T T T T
5 10 15 20 25 30 5 10 15 20 25 30

T T T T T T T T T T T T
5 10 15 20 25 30 5 10 15 20 25 30

Layers

—§— all-shared

partial-shared

-@— specific

non-activated

Figure 3: Neuron activation pattern (Rl{_}) in the XNLI, Fact Probing, Cross-lingual KE (EN (Edit) — ALL
(Test), and Cross-lingual KE (ALL (Edit) — EN (Test) tasks with BLOOMZ-7B backbone. It shows the
percentage of each type of neuron relative to the total number of neurons across layers.

of each type of neuron relative to the total number
of neurons. Given the s-th test instance, the per-
centage of each neuron type RS’.Z} at the [/-th layer
can be defined as follows:

INEL
sl _ {}
R{‘} =100 x N

(€))

where | - | denotes the number of elements in the
set. Consequently, the aggregated neuron activation
pattern at the [-th layer for one dataset containing
S instances can be defined as:

S
1
I s,l
R{.} =3 g_l R{.}. (10)

7.2 Neuron Activations Across Tasks

Neuron activations are task-related. As shown
in Figure 3, non-activated neurons are typically
more prevalent than other types of neurons, except
in the Fact Probing task. In this task, there are
more partial-shared neurons and specific neurons,
with a negligible amount of all-shared neurons,
whereas other tasks involve far more all-shared
neurons. Referring to Table 1, deactivating the
specific neurons and all-shared neurons results in
the largest and second largest performance declines.
These findings demonstrate that the some factual
knowledges in LLMs are language-specific and
minimally shared across languages, while others
are universally shared. We leave more in-depth
investigation to the future work.

Neuron sharing peaks at early layers for uni-
versal features, declining later for specific ones.
We present the percentage of each neuron type at
each layer in Figure 3. The number of all-shared
neurons and partial-shared neurons typically peaks
between the 5th and 10th layers and then gradually

XNLI fact probing Cross-lingual KE (EN->ALL)
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Figure 4: Neuron activation patterns in the XNLI, Fact
Probing, Cross-lingual KE (EN (Edit) — ALL
(Test) tasks with LLAMAZ2-7B-CHAT backbone.

decreases in subsequent layers. This trend can be
explained by the functional roles of different layers
in the model. The initial layers, which are closer
to the input data, primarily focus on capturing low-
level features such as basic lexical and syntactic
patterns. As the network progresses to the later lay-
ers (between the 5th and 10th layers), it begins to
learn abstract concepts that are relatively universal
across different tasks and languages. This univer-
sality leads to a higher number of shared neurons in
these layers. In contrast, the higher layers special-
ize in task-specific features and nuances unique to
each task, resulting in a decline in neuron sharing.
These findings highlight the importance of neuron
sharing in LLMs, as shared neurons in the early
layers facilitate the transfer of universal knowledge
across tasks and languages. They also align with
previous research (Yosinski et al., 2014; de Vries
et al., 2020; Zhao et al., 2024b; Gao et al., 2024).

7.3 Neuron Activations Across LLMs

Different LLMs exhibit different neuron acti-
vation patterns. To investigate whether neuron
activation patterns vary across different multilin-
gual LLMs, we present additional results from
LLAMAZ2-7B-CHAT in Figure 4. Our analysis re-
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Figure 5: Comparison of neuron activations with founda-
tion LLM BLOOM-7B (left) and instruction finetuned
LLM BLOOMZ-7B (right).

veals that the activation patterns in LLAMA2-7B-
CHAT differ significantly from those observed in
BLOOMZ-78, highlighting the variability across
models. Notably, LLAMA2-7B-CHAT demon-
strates a higher degree of neuron sharing, particu-
larly for partial-shared neurons. This phenomenon
can be attributed to the English-centric nature of
LLAMA2-7B-CHAT. When processing multilin-
gual inputs, the model heavily relies on knowledge
transfer from English to other languages, resulting
in a substantial number of partial-shared neurons.
We also present additional results using XGLM
(Lin et al., 2022) in Figure 9 of Appendix F, align-
ing with our observations.

Instruction finetuned LLMs exhibit larger pro-
portion of the all-shared neurons. We conduct
additional experiments using the foundation model
BLOOM-7B to explore the impact of instruction
finetuning on neuron activation patterns. As shown
in Figure 5, the instruction-finetuned BLOOMZ-
7B demonstrates a higher percentage of all-shared
neurons compared to BLOOM-7B. This observa-
tion suggests that instruction finetuning may en-
courage neuron sharing within LLMs, potentially
aligning their internal representations across lan-
guages. Therefore, instruction-finetuned LLMs,
such as BLOOMZ-7B, generally outperform their
foundational counterparts.

7.4 Neuron Activations Across Languages

Neuron sharing does not completely align with
language similarity. We investigate the relation-
ship between language similarity and neuron shar-
ing by analysing the proportion of partial-shared
neurons for language pairs involving German and
several other languages on the Fact Probing task.
As shown in Figure 6, our findings reveal that sim-
ilar languages (e.g., German and French) do not
always exhibit higher levels of neuron sharing. For

partial-shared
251 15 ‘/»—\
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specific
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—o— de-fr de-zh

—— fr zh
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Figure 6: Neuron activation pattern across languages in
the Fact Probing task with BLOOMZ-7B backbone.
Left: The ratio of partial-shared neurons representing
{en, fr, ru, zh} shared with German (de). Right: The
percentage of {en, de, fr, ru, zh} in specific neurons.

instance, the proportion of partial-shared neurons
between German and Chinese is nearly identical to
that between German and French, despite German
and French both belonging to the Indo-European
language family, while Chinese belongs to the Sino-
Tibetan language family. Furthermore, we observe
no consistent pattern in the percentage of specific
neurons across the languages studied, suggesting
that neuron specialization may not directly corre-
late with language similarity. We leave further ex-
ploration of this phenomenon to future work. Addi-
tional results on the XNLI task are in Appendix H.

Furthermore, we conduct ablation studies to in-
vestigate the impact of two key factors on the
neuron activation patterns: the size of the back-
bone model with 0.56b, 1b, 3b, 7b parameters (Ap-
pendix I), and the number of demonstrations in the
few-shot setting (Appendix J).

8 Conclusion

In this study, we explored the complex mechanisms
of neuron activation within multilingual LLMs,
addressing the significant research gap in under-
standing these models beyond a monolingual con-
text. We developed a fine-grained classification for
analysing how neurons respond to different tasks
and languages. We categorized neurons into four
distinct groups: all-shared, partial-shared, spe-
cific, and non-activated. Our research revealed
that neurons shared across all languages proved
essential for generating accurate responses, high-
lighting their pivotal role in multilingual processing.
Furthermore, we demonstrate that neuron sharing
is task-related, and, it does not always align with
language similarity. Our study improves the under-
standing of the internal workings of multilingual
LLMs and fosters future research in this direction.



9 Limitations

In this paper, we develop a method to analyse neu-
ron behaviors in detail by categorizing them into
four distinct neuron types w.r.t the degree of their
responses to input languages. Although this en-
ables a fine granularity neuron analysis on LLM
backbones across various linguistic characteristics
and task complexity, the scope of the experiments
can be extended to accommodate larger LLMs
with large amounts of parameters (i.e., BLOOMZ-
176B) on a more comprehensive range of tasks.
While this study demonstrates that the number of
languages slightly impacts the percentage of all-
shared neurons, it is limited to nine languages. Ex-
ploring the effects of incorporating a larger number
of languages into the proposed method warrants
further investigation. Additionally, other network
components, for example, attention heads, are not
in the scope of this analysis.
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A Detailed Interpretation of Projection in
Vocabulary Space

There is a residual connection in the each layer of
transformer, where the hidden state is:

Bt = 2! + FFNY(a!) (11)
In order to analyze the attribution of neurons,
we explore how the output distribution in the vo-
cabulary space changes when the representation
(before the FFN update) is added with the output of
neurons Aévzl-. With the embedding matrix F, we
map each vector into the vocabulary space v. For
each token w, the probability is calculate with the
softmax function:
! 11
p(wlz” + Ay, E)
exp(Ey - 2t + B, - Abv))
Z(E(zt + Alvl))
X exp(Ew ’ xl) ’ emp(Ew : Aivi)

(12)

where F,, is the embedding of w, and Z(+) is the
constant softmax normalization factor. The E,, - «!
can be viewed as a static score of w that is indepen-
dent of the input to the model. Thus, the projection
Ey - Aévf induces a ranking over the vocabulary.
So we use the projection as effective score to detect
the responsibility of neurons.

B Tasks

e XNLI. Natural Language Inference (Conneau
et al.,, 2018) is a multilingual natural lan-
guages inference dataset, containing 5000
items. Each test sample consists of a premise
and a hypothesis, requiring an LLM to deter-
mine whether a hypothesis is entailed, contra-
dicted, or neutral conditioned on the premise.

Fact Probing. LLMs are used to predict
factual answers in response to correspond-
ing probing prompts. A multilingual factual
knowledge dataset (mParaRel (Fierro and Sg-
gaard, 2022)) capturing 38 binary relations
(e.g., X born-in Y) is used in the analysis. We
seletc the relation of “capital” subset (X capi-
tal Y) as testset, including 348 items.

Cross-lingual Knowledge Editing (KE).
MzsRE (Wang et al., 2023) is a multilingual
question-answering dataset, containing 743
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settings pct. en de es fr ru th tr vi =zh
baseline 0% 59.1 47.6 50.1 47.0 49.1 41.4 40.2 51.6 46.1
‘w/o. all-shared ~ 2242% 3.0 3.6 44 19 47 69 3.6 13.5 48

. partial-shared 17.48% 59.1 48.4 51.5 47.9 49.7 42.9 41.5 50.8 48.0
. specific 4.75% 59.2 47.3 49.9 47.0 49.1 41.9 40.1 51.4 46.2
. non-activated 55.35% 30.5 13.8 12.0 11.9 124 5.0 14.2 134 5.2
77777777777 58.7°47.7'50.2 482 49.0 41.7 40.0 49.9 45.7
52.7 44.6 47.2 46.4 44.5 38.4 40.1 48.6 45.2
46.1 42.4 41.3 43.3 40.1 34.5 39.7 38.7 40.7
28.7 30.2 28.6 30.3 25.8 19.0 27.1 28.2 25.0

15%
25%
55%

Table 4: The accuracy in XNLI task with LLAMAZ2-
7B-CHAT backbone when deactivating four types of
neurons.

items for each language. It provides counter-
factual edited knowledge in the context and re-
quires an LLM to produce the corresponding
answer according to the context. We evaluate
LLMs in two Cross-lingual KE scenarios: 1)
EN (Edit) — ALL (Test): edit in English and
test in other languages and 2) ALL (Edit) —
EN (Test): edit in other languages and test in
English.

C Prompts

For the Fact Probing task, we use the P36 sub-
testset, which describe facts of entities in a relation
of “capital”. The prompt is framed as “ The capital
of {X} is ” where “{X}” is the subject (sovereign
state) and LLMs are required to predict the object
(capital city). We keep at least three paraphrase
prompts from mParaRel for each language to en-
sure a level of diversity.

For the Natural Language Inference (XNLI) task,
we frame the prompt as ““ Take the following as
truth: {premise} Then the following statement:
‘{hypothesis}’ is ‘true’, ‘false’, or ‘inconclusive’?

For the Cross-1lingual KE task, we format the
prompt as ““ {context} Question: {question} An-
swer: ”. The same language is used for the ques-
tions and the answers, but the context is in a differ-
ent language.

D Supplemental Results on Deactivating
Neurons

In order to further prove the importance of all-
shared neurons across LLMs, we conduct the ex-
periments with deactivating neurons on the XNLI
task with LLAMAZ2-7B-CHAT backbone. The re-
sults in Table 4 show that there is more significant
decline when all-shared neurons are deactivated.
It demonstrates that all-shared neurons play a key
role in predicting correct answers across LLMs.



E Generation Impact Score of Different
Tasks

The Generation Impact Score of the four types of
neurons evaluated on the Cross-lingual KE (EN
(edit) — ALL (Test)) and XNLI tasks across
languages are shown in Figure 7 and Figure 8.

F Supplemental Results on Neurons
Activation Patterns across LLMs

We further study the neuron activation patterns in
another multilingual LLM (XGLM). The results
of XGLM backbone are captured in Figure 9.

G Supplemental Results on Neurons
Activation Patterns of Foundation

LLM BLOOM-78B

We further explore the neuron activation pat-
terns across various tasks in the foundation LLM
(BLOOM-7B). The results of BLOOM-7B back-
bone are captured in Figure 10.

H Neuron Activation Across Languages
on XNLI Task

We analyze the shared proportion of German with
other languages in partial-shared neurons and the
specific neuron ratios for each language derived
from the XNLI task in Figure 11. The shared ra-
tio of German with Russian (in different language
family) is higher than the ratio of German with
French (in the same language family), confirming
the conclusion in Section 7.4.

I Influence of Model Scale

We investigate neuron activation patterns across the
BLOOMZ series with 0.56b, 1b, 3b, 7b parameters
in a XNLI task. As shown in the results captured in
Figure 12, no identifiable pattern difference can be
observed to indicate a scale law effect. However,
the scale of the model is limited, potentially leading
to unreliable results in this experiment. More non-
activated neurons in the upper layers of BLOOMZ-
7B may reflect on a higher level of sparsity for a
larger LLM (consistent with Voita et al. (2023); Li
et al. (2023)).

J Neuron Activation Patterns in Few-shot
In-context Learning

According to Wang et al. (2023), in-context learn-
ing (ICL) can improve the performance of an
LLM under the guidance of few-shot examples
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in a Cross-lingual KE task. We further explore
the impact of few-shot examples on neuron activa-
tion patterns. We compare the results of an LLM
with O-shot, 2-shot, 4-shot, 6-shot examples in a
Cross-lingual KE (EN (edit) — ALL (Test))
task. Four types of neurons in scope have almost
identical activation patterns across various few-shot
examples (Figure 13). Although in-context exam-
ples lead to no observable neuron activation pat-
tern changes, more examples lead to better perfor-
mances. Could ICL lead to a better neuron acti-
vation composition instead of invoking more neu-
rons? We leave this to a future study.
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Figure 7: Generation Impact Score on the Cross-lingual KE (EN (edit) — ALL (Test)) task with BLOOMZ-
7B backbone.
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Figure 8: Generation Impact Score on the XNLI task with BLOOMZ-7B backbone.
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Figure 9: Neuron activation pattern in XNLI, Fact Probing, and Cross-lingual KE tasks with XGLM backbone.
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Figure 10: Neuron activation pattern in XNLI, Fact
Probing, and Cross-1lingual KE tasks with BLOOM-
7B backbone.
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Figure 11: Aggregated neuron activation pattern across
languages in the XNLI task. Left: The ratio of partially-
shared neurons representing {en, fr, ru, vi} shared with
German (de). Right: The percentage of {en, de, fr, ru,
vi} in specific neurons.
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Figure 12: Neuron activation patterns in a XNLI task
with the BLOOMZ size as 0.56b, 1b, 3b, 7b.
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Figure 13: Neuron activation patterns in

Cross-lingual KE (EN (edit) — ALL (Test))
task with BLOOMZ-7B backbone under the in-context
learning.
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