
Sharing Matters: Analysing Neurons Across Languages and Tasks in LLMs

Anonymous ACL submission

Abstract

Large language models (LLMs) have revolu-001
tionized the field of natural language process-002
ing (NLP), and recent studies have aimed to003
understand their underlying mechanisms. How-004
ever, most of this research is conducted within005
a monolingual setting, primarily focusing on006
English. Few studies have attempted to explore007
the internal workings of LLMs in multilingual008
settings. In this study, we aim to fill this re-009
search gap by examining how neuron activation010
is shared across tasks and languages. We clas-011
sify neurons into four distinct categories based012
on their responses to a specific input across013
different languages: all-shared, partial-shared,014
specific, and non-activated. Building upon this015
categorisation, we conduct extensive experi-016
ments on three tasks across nine languages us-017
ing several LLMs and present an in-depth analy-018
sis in this work. Our findings reveal that: (i) de-019
activating the all-shared neurons significantly020
decreases performance; (ii) the shared neurons021
play a vital role in generating responses, es-022
pecially for the all-shared neurons; (iii) neu-023
ron activation patterns are highly sensitive and024
vary across tasks, LLMs, and languages. These025
findings shed light on the internal workings of026
multilingual LLMs and pave the way for future027
research. We will release the code to foster028
research in this area.029

1 Introduction030

Large language models (LLMs) have demonstrated031

remarkable capabilities in recent studies, excelling032

in both understanding and generating text across033

various languages (OpenAI, 2023; Zhang et al.,034

2023; Zhao et al., 2024a). Despite their proven035

effectiveness, the intricate mechanisms underlying036

their processing remain largely opaque. This opac-037

ity has given rise to a growing field of research038

aimed at interpreting the internal workings of the039

Transformer architecture (Elhage et al., 2021; Yu040

et al., 2023). To enhance interpretability and in-041
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Figure 1: A comparison of neuron analysis with differ-
ent type designs in multilingual settings with the same
semantic input, in which we define four types of neu-
rons in one layer of LLM.

vestigate specific aspects of model behavior, re- 042

searchers have increasingly focused on the com- 043

ponents of these models. Recent studies have ex- 044

plored the role of Feed-Forward Networks (FFNs) 045

within LLMs, proposing that these components 046

function as key-value memories for storing factual 047

and linguistic knowledge (Geva et al., 2020, 2022; 048

Ferrando et al., 2023). While these studies have an- 049

alyzed neuron behaviors based on activation states 050

in monolingual settings, there remains a significant 051

gap in our understanding of how neurons behave in 052

multilingual contexts. 053

To address this research gap, recent research 054

attempts to unveil the mechanistic interpretabil- 055

ity of multilingual LLMs. Bhattacharya and Bo- 056

jar (2023) categorized neurons into two coarse- 057

grained groups: language-agnostic (shared across 058

languages) and language-specific (unique to a lan- 059

guage). However this categorization oversimplifies 060

the complexity observed in cross-lingual studies, 061

where neuron overlap varies significantly between 062

languages (Stanczak et al., 2022; Zhao et al., 2023; 063

Liu et al., 2024). Additionally, most research has 064

been confined to single-task analyses, overlooking 065
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how neuron types might shift across diverse tasks066

(Bhattacharya and Bojar, 2023; Tang et al., 2024;067

Tan et al., 2024). This underscores the need for a068

more nuanced, fine-grained classification method069

to enhance our understanding of the multifaceted070

roles of neurons in multilingual LLMs.071

In this work, our research introduces a fine-072

grained classification of neurons, enabling a de-073

tailed exploration of their functions across lan-074

guages. For a specific English example and its075

translations in eight other languages, we catego-076

rize neurons into four distinctive types (see Fig-077

ure 1): all-shared neurons, which remain active078

for all the inputs regardless of language; partial-079

shared neurons, which are activated only for inputs080

in certain languages; specific neurons, which are081

activated exclusively for inputs in one language;082

and non-activated neurons, which are not activated083

for any inputs. We begin by analysing the impor-084

tance of each neuron type by deactivating them085

individually. Then we probe their contributions to086

generating answers using the Generation Impact087

Score (Geva et al., 2022) and the Correctness Im-088

pact Score (Voita et al., 2023). Furthermore, by089

examining the percentage of neurons in each type,090

we analyse activation patterns to gain insights into091

the internal workings of LLMs. We systematically092

study neuron behaviours across three distinct tasks,093

including reasoning, fact probing, and question an-094

swering, in nine languages. This analysis utilizes095

diverse model backbones such as BLOOMZ-7B,096

LLAMA2-7B-CHAT, BLOOM-7B, and XGLM.097

We provide substantial empirical evidence de-098

tailing neuron contributions and activation patterns099

in this study, leading to several significant findings.100

Here are the main takeaways:101

• All-shared neurons have a significant im-102

pact on model performance. We individu-103

ally deactivate each type of neurons in LLMs104

and observe substantial performance declines105

(up to 87.39%) across tasks (see Section 5).106

• All-shared neurons are crucial in generat-107

ing responses. Both the Generation Impact108

Score and Correctness Impact Score highlight109

the significance of the shared neurons in the110

generation process, and the all-shared neurons111

make substantially more contributions com-112

pared to other neuron types (see Section 6).113

• Neuron activation patterns vary across114

tasks, LLMs, and languages. We observe115

that the patterns of four types of neurons vary 116

across tasks (see Section 7.2) and LLMs (see 117

Section 7.3). Moreover, our empirical re- 118

sults show that languages from the same lan- 119

guage family do not always exhibit a higher 120

degree of neuron sharing compared with lan- 121

guages from distinct language families (see 122

Section 7.4). 123

2 Related Work 124

The black-box nature of LLMs has given rise to 125

an area of research which aims to interpret the in- 126

ternal mechanism of the Transformer architecture 127

(Elhage et al., 2021; Yu et al., 2023). More re- 128

cently, several studies on LLMs have advanced our 129

understanding of how neurons acquire task-specific 130

knowledge. For instance, Ferrando et al. (2023); 131

Dai et al. (2022); Geva et al. (2020, 2022) investi- 132

gated how FFN blocks function as key-value mem- 133

ories and proved that factual knowledge is stored 134

in the neurons. Research work on the sparsity of 135

neurons in FFN blocks showed that many neurons 136

are inactive in various tasks (Zhang et al., 2022; Li 137

et al., 2023). Voita et al. (2023) located these “dead” 138

neurons in the lower part of the model (close to in- 139

puts) in the English scenario. Despite the insights 140

obtained, these studies have focused exclusively on 141

a monolingual setting. 142

For multilingual neuron analysis, Bhattacharya 143

and Bojar (2023) explored the neuron sharing be- 144

tween two languages. Tang et al. (2024); Tan et al. 145

(2024); Liu et al. (2024); Kojima et al. (2024) clas- 146

sified neurons in an FFN block to language-specific 147

and language-agnostic based on predefined thresh- 148

old. However, the broad classification into two 149

groups is inadequate for detailed multilingual anal- 150

ysis. Additionally, these studies classified neurons 151

based on the single task (Tan et al., 2024; Liu et al., 152

2024), without considering the potential adaptation 153

of neurons under various languages and semantics 154

brought forth by inputs from various multilingual 155

tasks. We investigate neurons’ behaviors across 156

multiple languages and tasks to this end. 157

3 Fine-Grained Neuron Classification 158

In this section, we provide a detailed description 159

of the 4-way neuron classification that we propose. 160

We begin with some background concerning neu- 161

rons in the FFN block (Section 3.1). Following this, 162

we define the four types of neurons (Section 3.2). 163
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XNLI KE (EN → ALL) KE (ALL → EN) Fact Probing

pct. µacc ∆acc pct. µacc ∆acc pct. µacc ∆acc pct. µacc ∆acc

baseline 0.00% 41.99 0.00% 0.00% 38.39 0.00% 0.00% 41.74 0.00% 0.00% 41.98 0.00%
w/o. all 9.92% 9.38 -77.66% 8.71% 4.84 -87.39% 10.17% 13.19 -68.40% 0.28% 21.86 -50.31%
w/o. partial 10.33% 42.65 1.57% 13.36% 40.67 5.94% 10.55% 39.59 - 5.15% 36.73% 26.86 -36.02%
w/o. specific 3.14% 42.07 0.19% 4.91% 40.78 6.23% 3.82% 40.77 - 2.32% 16.56% 12.68 -67.41%
w/o. non-act. 76.61% 35.90 -14.50% 73.22% 21.96 -42.80% 75.46% 19.58 -53.09% 46.43% 26.68 -36.45%

w/o. random

5.00% 42.30 0.74% 5.00% 30.98 -19.30% 5.00% 41.29 - 1.08% 1.00% 37.86 - 9.81%
15.00% 43.13 2.71% 15.00% 31.74 -17.32% 15.00% 42.14 0.96% 15.00% 35.38 -15.72%
25.00% 43.98 4.74% 25.00% 32.40 -15.60% 25.00% 42.28 1.29% 35.00% 41.78 - 0.48%
75.00% 36.58 -12.88% 75.00% 13.29 -65.38% 75.00% 16.50 -60.47% 45.00% 17.06 -59.36%

Table 1: The performance on XNLI, Cross-lingual KE, and Fact Probing tasks, using BLOOMZ-7B, when
deactivating all-shared neurons, specific neurons, partial-shared neurons, non-activated neurons, and random
selected neurons, respectively. The largest reductions are highlighted in bold. “pct.” indicates the percentage of the
deactivated neurons. µacc indicates the macro-average accuracy across languages. ∆acc indicates the macro-average
of relative change (%) in accuracy across languages.

3.1 Neurons in FFN Blocks164

A neuron inside the FFNs is defined as a linear165

transformation of an input representation followed166

by a non-linear activation (Tang et al., 2024). Every167

FFN block at layer l involves two linear transforma-168

tions separated by a point-wise activation function.169

Biases are omitted for brevity:170

FFN l(xl) = Act(W l
Kxl)W l

V (1)171

where W l
K ∈ Rd×dm ,W l

V ∈ Rdm×d are linear pa-172

rameter matrices, and Act(·) is a non-linear acti-173

vation function, where rows in W l
K and columns174

in W l
V are viewed as d-dimensional keys kl and175

values vl, respectively. dm is the count of neurons.176

And the output of neurons Al := Act(W l
Kxl) ∈177

Rdm determines the weighting of the correspond-178

ing values in W l
V .179

For the i-th neuron and corresponding key kli,180

value vli and activation value Al
i, we can express181

this relationship using the following formulation:182

FFN l(xl) =

dm∑
i=1

Act(xl · kli)vli =
dm∑
i=1

Al
iv

l
i (2)183

Following Voita et al. (2023); Bhattacharya and184

Bojar (2023); Tang et al. (2024), we define a neuron185

as activated when its activation value satisfies Al
i >186

0. Conversely, if the activation value is Al
i ≤ 0, the187

neuron is considered deactivated.188

3.2 Definitions of Four Types of Neurons189

In this work, we categorize the neurons into four190

types based on their activation values and detail the191

neuron classification in this section. To ablate the192

impact of semantic discrepancies across languages,193

the datasets used in this work are initially in En-194

glish and then translated into foreign languages (see195

Section 4.1), so we can formulate the s-th exam- 196

ple as Xs = {Xs
p}Pp=1, where p indicates the p-th 197

language and P is the total number of languages. 198

Given the s-th example Xs, the set of all-shared 199

neurons at the l-th layer can be defined as: 200

N s,l
all :=

P⋂
p

{
ni ∈ N l : As,l

i,p > 0
}
. (3) 201

where N l is the set of all the neurons at the l-th 202

layer and ni is the i-th neuron in N l. Furthermore, 203

the non-activated neurons is the set of neurons 204

whose activation value is less than or equal to zero 205

in all languages, as follows: 206

N s,l
non :=

P⋂
p

{
ni ∈ N l : As,l

i,p ≤ 0
}
. (4) 207

Moreover, the specific neurons are the neurons 208

only activated in one specific language and not ac- 209

tivated in any other languages, defined as follows: 210

N s,l
spec :=

P⋃
p′

{{
ni ∈ N l : As,l

i,p′ > 0
}

P⋂
p

p̸=p′

{
ni ∈ N l : As,l

i,p ≤ 0
}} (5) 211

Lastly, the remaining neurons are partial-shared 212

neurons as they are activated by inputs from a 213

subset of languages: 214

N s,l
part := N l \

{
N s,l

all

⋃
N s,l

non

⋃
N s,l

spec
}

(6) 215

Note that, we only examine the activation state of 216

the last token of the input, as that is when the LLM 217

performs the prediction task. 218
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4 Experimental Setting219

4.1 Multilingual Tasks220

We perform analysis on neurons in FFN blocks221

of various LLMs, harnessing their multilingual222

capabilities in three diverse tasks which consist223

of multilingual parallel sentences, including XNLI224

(Conneau et al., 2018), Fact Probing (Fierro and225

Søgaard, 2022), and Cross-lingual Knowledge226

Editing (KE) (Wang et al., 2023). For the227

Cross-lingual KE, we analyse the LLMs in two228

setups, including EN (Edit) → ALL (Test) and229

ALL (Edit) → EN (Test). These test sets across230

languages are translated from the original English231

test set. More details are described in Appendix B.232

These tasks cover nine diverse languages, in-233

cluding English (en), German (de), Spanish (es),234

French (fr), Russian (ru), Thai (th), Turkish (tr),235

Vietnamese (vi), and Chinese (zh). Prompts are236

detailed in Appendix C.237

4.2 Model Backbones238

We mainly analyse the contributions and activation239

patterns of neurons in an instruction-finetuned mul-240

tilingual model BLOOMZ-7B (Muennighoff et al.,241

2023). We also include the analysis of other mul-242

tilingual LLMs: BLOOM-7B (Scao et al., 2022),243

LLAMA2-7B-CHAT (Touvron et al., 2023), and244

XGLM (Lin et al., 2022). We use one NVIDIA245

A100 (40G) for all experiments.246

5 Shared Neurons Are Crucial to247

Performance248

In this section, we explore how different neuron249

types affect the performance of the BLOOMZ-7B250

model by selectively deactivating specific groups251

of neurons. By setting the activation values of252

these neurons to zero, we assess their impact on the253

model’s output across various tasks. Specifically,254

we compare the effects of deactivating four distinct255

types of neurons and include a control group of ran-256

domly selected neurons to evaluate their respective257

contributions to the model performance. Our exper-258

iments involve tasks such as XNLI, cross-lingual259

KE, and fact probing.260

All-shared neurons play a crucial role in model261

performance across different tasks. As shown262

in Table 1, we observe that all-shared neurons263

significantly contribute to the model’s perfor-264

mance across various tasks. For instance, in the265

Cross-lingual KE (EN (Edit) → ALL (Test))266

settings pct. en de es fr ru th tr vi zh

XNLI task

baseline 0% 53.8 41.8 50.3 49.0 47.6 40.9 34.9 50.5 51.1
w/o. all 9.9% 16.7 3.5 10.1 10.0 6.6 9.0 1.4 12.1 14.5
w/o. partial 10.3% 52.9 40.4 49.7 47.6 49.2 40.3 36.1 50.0 50.0
w/o. specific 3.1% 53.7 41.7 50.3 48.9 47.4 40.6 35.3 50.4 49.3
w/o. non-act. 76.7% 36.6 31.6 33.6 33.4 29.5 31.3 28.3 34.5 23.5

w/o. random

5% 53.2 42.2 50.7 48.8 47.4 40.2 34.5 50.1 50.9
15% 53.1 41.8 50.1 48.9 47.3 40.8 33.8 50.1 50.4
25% 52.6 41.7 50.3 48.8 46.0 38.8 36.2 50.7 49.7
75% 36.0 28.7 40.7 36.7 28.9 25.4 23.0 38.5 32.9

Cross-lingual KE (EN (Edit) → ALL (Test)) task

baseline 0% 96.2 48.8 36.9 49.5 24.6 6.3 38.8 49.4 33.4
w/o. all 8.7% 11.0 4.9 6.1 4.9 1.9 0.4 1.5 6.1 2.9
w/o. partial 13.3% 90.2 51.7 46.9 48.9 25.4 5.5 35.5 50.9 38.4
w/o. specific 4.9% 96.1 54.4 48.7 48.9 30.4 6.3 37.9 51.7 28.5
w/o. non-act. 73.2% 36.1 15.8 18.2 17.8 1.9 9.8 19.9 10.6 16.3

w/o. random

5% 96.1 46.9 36.6 40.4 0.8 4.4 28.7 40.8 10.1
15% 94.8 47.1 36.1 39.4 0.8 4.3 28.4 40.4 11.1
25% 91.5 46.8 36.2 38.6 1.1 4.4 27.9 40.4 12.1
75% 11.1 5.5 9.3 11.3 0.1 2.7 1.9 8.9 7.1

Cross-lingual KE (ALL (Edit) → EN (Test)) task

baseline 0% 96.2 55.1 49.2 49.5 30.6 9.2 39.3 51.7 36.6
w/o. all 10.2% 24.4 19.5 13.8 13.1 8.0 1.4 14.5 19.9 7.1
w/o. partial 10.5% 85.1 51.3 47.8 48.0 25.4 5.2 35.1 51.4 36.1
w/o. specific 3.8% 96.1 54.4 48.7 48.9 29.7 6.3 38.0 51.8 30.0
w/o. non-act. 75.5% 19.2 19.8 15.5 14.7 11.4 2.0 18.2 12.0 7.5

w/o. random

5% 95.6 54.2 48.7 50.2 29.9 6.5 38.5 51.3 33.0
15% 93.9 56.1 49.1 49.9 29.2 6.4 38.2 51.0 32.6
25% 91.3 55.9 48.5 49.3 28.3 6.8 37.7 50.3 29.7
75% 10.2 17.0 11.7 15.7 4.7 1.1 7.8 14.8 7.0

Fact Probing task

baseline 0% 72.4 41.6 56.6 58.1 37.3 5.7 39.3 57.4 51.4
w/o. all 0.2% 43.4 12.9 34.4 22.4 11.4 5.2 15.2 34.5 29.0
w/o. partial 36.7% 43.3 20.8 31.2 30.9 14.4 2.8 24.5 34.6 29.4
w/o. specific 16.6% 18.1 9.1 30.1 7.7 5.7 5.7 9.4 12.3 22.1
w/o. non-act. 46.4% 42.5 27.6 39.9 28.1 1.7 0.0 22.9 40.2 17.5

w/o. random

1% 76.4 50.6 48.6 56.0 3.2 0.0 36.2 59.5 47.1
15% 71.5 48.5 45.6 63.5 4.3 0.0 22.7 44.5 38.2
35% 77.3 51.4 50.3 56.3 4.6 0.0 37.1 57.5 48.3
45% 29.0 21.3 16.4 17.2 0.3 0.0 9.5 25.9 6.0

Table 2: The performance on three tasks, using
BLOOMZ-7B, when deactivating all-shared neurons,
specific neurons, partial-shared neurons, non-activated
neurons, and randomly selected neurons, respectively.
The largest reductions are highlighted in bold. “pct.”
indicates the percentage of the deactivated neurons.

task, deactivating the all-shared neurons, which ac- 267

count for only 8.71% of the total neurons, results 268

in an 87.39% decrease in accuracy. Moreover, for 269

the Fact Probing task, deactivating the all-shared 270

neurons, which constitute only 0.28% of the total 271

neurons, causes a substantial 50.31% performance 272

drop. Furthermore, deactivating the specific neu- 273

rons, which account for 16.56% of the total neu- 274

rons, leads to the largest performance decline of 275

67.41%. In comparison, deactivating a comparable 276

number of random selected neurons typically re- 277

sults in smaller performance drops, suggesting that 278

all-shared neurons are crucial to the performance. 279

Deactivating neurons does not always result in 280

performance declines. Interestingly, we some- 281
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times observe small performance gains when a282

small number of neurons are deactivated, as shown283

in Table 1, regardless of the neuron type. To284

explore this phenomenon further, we provide a285

breakdown of the results by language in Table 2.286

Our analysis reveals that only deactivating the all-287

shared neurons consistently leads to a decline in288

model performance across various tasks and lan-289

guages. In contrast, deactivating either partial-290

shared neurons or specific neurons can occasionally291

improve performance for certain languages. For292

example, in the Cross-lingual KE (EN (Edit)293

→ ALL (Test)) task, we observe substantial per-294

formance improvements in German (de), Spanish295

(es), and Chinese (zh) when the partial-shared neu-296

rons are deactivated. We hypothesize that this phe-297

nomenon stems from knowledge conflicts encoded298

in the LLM (Xu et al., 2024). By deactivating cer-299

tain neurons, these knowledge conflicts may be300

mitigated, resulting in enhanced performance.301

It is important to note that we conduct similar302

experiments using the LLAMA2-7B-CHAT and303

present the results in Appendix D. These additional304

experiments yield observations and conclusions305

consistent with those using BLOOMZ-7B.306

6 Probing Neuron Contributions307

We demonstrate the significant role of neurons308

shared across languages, particularly the all-shared309

neurons, in generating answers, as discussed in310

Section 5. To gain a deeper understanding of the311

model’s behavior, we conduct further analysis us-312

ing two metrics: Generation Impact Score and313

Correctness Impact Score. First, we introduce314

the definitions of these two metrics in Section 6.1.315

Then, we analyse and quantify the contributions of316

each type of neuron in Section 6.2 and Section 6.3,317

respectively.318

6.1 Generation Impact Score and Correctness319

Impact Score320

In this section, we introduce two measures to quan-321

tify the contributions of neurons: Generation Im-322

pact Score and Correctness Impact Score.323

Generation Impact Score Inspired by Geva et al.324

(2022), the Generation Impact Score (GIS) eval-325

uates the importance of neurons in generating an-326

swers. For the i-th neuron at l-th layer, the GIS is327
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Figure 2: Average Generation Impact Score of the four
types of neurons on the English and German test sets
across tasks given by BLOOMZ-7B.

defined as: 328

GISl
i :=

|Al
i| ||vli||∑dm

j=1 |Al
j | ||vlj ||

(7) 329

which is the proportion of its weight to the sum of 330

weights of all neurons in the FFN block. |Al
i| is the 331

absolute value of activation value and ||vli|| is the 332

L2-norm of value vli. 333

Correctness Impact Score Following Geva et al. 334

(2022) and Voita et al. (2023), Correctness Impact 335

Score (CIS) assesses a neuron’s influence on gen- 336

erating the correct answer. 337

CISl
i = Er ·Al

iv
l
i (8) 338

where Er is the embedding of the correct answer 339

r. A larger CISl
i has a higher probability to pro- 340

duce the correct answer r, while a negative CISl
i 341

reduces the probability in generating r. Detailed 342

descriptions of the neuron projection are provided 343

in Appendix A. 344

Comparison While both Generation Impact 345

Score (GIS) and Correctness Impact Score (CIS) 346

measure neuronal influence, they serve different 347

purposes. The GIS quantifies a neuron’s overall 348

contribution to the generation process, regardless 349
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all-shared partial-shared specific non-activated
max min mean var max min mean var max min mean var max min mean var

en 1.85 -0.94 0.07 0.36 0.22 -0.16 1.2e-4 1.9e-4 0.02 -0.02 2.5e-4 3.5e-5 0.04 -0.03 2.1e-4 5.8e-6
de 1.03 -0.60 0.02 0.07 0.13 -0.13 6.7e-5 7.1e-5 0.07 -0.03 2.3e-5 2.3e-5 0.02 -0.01 2.9e-6 2.9e-6
es 1.15 -0.84 0.02 0.07 0.12 -0.11 1.3e-4 6.3e-5 0.01 -0.01 9.4e-5 7.6e-6 0.02 -0.02 7.7e-5 3.1e-6
fr 1.06 -0.78 0.01 0.05 0.15 -0.11 2.1e-4 7.8e-5 0.03 -0.04 3.6e-5 9.9e-6 0.02 -0.02 5.6e-5 2.8e-6
ru 0.70 -0.45 3.3e-3 5.9e-3 0.24 -0.13 2.6e-4 7.6e-5 0.08 -0.03 1.1e-4 1.8e-5 0.01 -0.01 3.9e-5 1.7e-6
th 0.50 -0.90 2.6e-3 0.02 0.17 -0.10 2.2e-4 6.8e-5 0.03 -0.05 3.4e-5 1.8e-5 0.01 -0.01 7.1e-5 1.9e-6
tr 0.82 -0.51 0.03 0.07 0.12 -0.12 1.6e-4 7.4e-5 0.04 -0.03 6.6e-5 1.1e-5 0.02 -0.02 9.1e-5 3.4e-6
vi 0.86 -0.68 6.8e-3 0.03 0.15 -0.11 9.3e-5 6.8e-5 0.04 -0.04 2.8e-5 1.3e-5 0.02 -0.02 3.2e-5 2.6e-6
zh 0.52 -0.42 1.9e-3 0.02 0.17 -0.20 1.5e-4 7.7e-5 0.08 -0.07 8.5e-5 2.6e-5 0.02 -0.01 1.7e-5 3.1e-6

Table 3: Maximum, minimum, average, and variance of Correctness Impact Score of the four types of neurons on
the Cross-lingual KE (EN (edit) → ALL (Test)) task given by BLOOMZ-7B.

of output correctness. In contrast CIS specifically350

measures a neuron’s impact on producing accurate351

responses by incorporating the correct answer’s352

embedding. Thus, the key distinction lies in their353

consideration of answer correctness: GIS focuses354

on general generation ability, whereas CIS empha-355

sizes correctness.356

6.2 The Generation Impact of Neuron Types357

In this section, we explore the contribution of each358

neuron type using the Generation Impact Score359

(GIS) described in Section 6.1.360

All-shared neurons have the greatest impact on361

generation outputs. As shown in Figure 2, we362

analyse the GIS across layers on the English and363

German test sets of three tasks (with overall results364

provided in Appendix E). For both English and Ger-365

man, it can be observed that the all-shared neurons366

almost always achieve the highest GIS across all367

layers, indicating their significant influence on the368

model’s output generation. The partial-shared neu-369

rons are the second most influential, particularly in370

the upper layers. Notably, there is a decrease in the371

influence of all-shared neurons between layers 5372

and 10. This can be attributed to the fact that GIS373

assesses the impact on generating answers, while374

the lower layers are primarily responsible for input375

understanding (Zhao et al., 2024b). Consequently,376

all types of neurons exhibit lower GIS in these lay-377

ers. Moreover, previous studies have demonstrated378

that higher layers capture more abstract, high-level379

information essential for generation (Gao et al.,380

2024). These findings suggest that shared neurons381

play a more significant role in the model’s genera-382

tion capabilities.383

6.3 The Correctness Impact of Neuron Types384

In this section, we assess the effectiveness of each385

neuron type using the Correctness Impact Score386

(CIS) described in Section 6.1.387

All-shared neurons have the greatest im- 388

pact on generating correct answers. In the 389

Cross-lingual KE (EN (Edit) → ALL (Test)) 390

task, we present the maximum, minimum, average, 391

and variance of CIS for each neuron type across 392

all layers of the BLOOMZ-7B model, as shown in 393

Table 3. The results reveal that all-shared neurons 394

have both the highest maximum and the lowest 395

minimum CIS values, indicating that they have 396

strong impact on generating correct outputs. While 397

all-shared and partial-shared neurons display a 398

wide variance in CIS (e.g., 1.85 vs. -0.94 and 0.22 399

vs. -0.16 in English, respectively), specific neurons 400

and non-activated neurons exhibit much narrower 401

score ranges (approximately ± 0.07). Furthermore, 402

the all-shared neurons also exhibit the largest mean 403

and variance of CIS among all kinds of neurons. 404

In conclusion, these findings presented in Sec- 405

tion 6.2 and Section 6.3 demonstrate that all-shared 406

neurons also have the greatest impact on generat- 407

ing both answers and correct answers, highlighting 408

their importance in the model’s performance across 409

different languages and tasks. 410

7 Understanding Neuron Activations 411

We demonstrate in Section 5 that shared neurons 412

have a significant impact on model performance 413

and investigate their influence on the generation 414

process in Section 6. However, the inner patterns 415

of neurons across layers remain unexplored. In this 416

section, we firstly introduce the measure of quan- 417

tifying neuron activation in Section 7.1, and then 418

we further illustrate how neuron activation patterns 419

vary across tasks (Section 7.2), LLMs (Section 7.3) 420

and languages (Section 7.4). 421

7.1 Measuring Neuron Activation 422

In this section, we explain how to quantify neuron 423

activation patterns based on the definitions in Sec- 424

tion 3.2. Specifically, we measure the percentage 425

6
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Figure 3: Neuron activation pattern (Rl
{·}) in the XNLI, Fact Probing, Cross-lingual KE (EN (Edit) → ALL

(Test), and Cross-lingual KE (ALL (Edit) → EN (Test) tasks with BLOOMZ-7B backbone. It shows the
percentage of each type of neuron relative to the total number of neurons across layers.

of each type of neuron relative to the total number426

of neurons. Given the s-th test instance, the per-427

centage of each neuron type Rs,l
{·} at the l-th layer428

can be defined as follows:429

Rs,l
{·} = 100×

|N s,l
{·}|

|N l|
, (9)430

where | · | denotes the number of elements in the431

set. Consequently, the aggregated neuron activation432

pattern at the l-th layer for one dataset containing433

S instances can be defined as:434

Rl
{·} =

1

S

S∑
s=1

Rs,l
{·}. (10)435

7.2 Neuron Activations Across Tasks436

Neuron activations are task-related. As shown437

in Figure 3, non-activated neurons are typically438

more prevalent than other types of neurons, except439

in the Fact Probing task. In this task, there are440

more partial-shared neurons and specific neurons,441

with a negligible amount of all-shared neurons,442

whereas other tasks involve far more all-shared443

neurons. Referring to Table 1, deactivating the444

specific neurons and all-shared neurons results in445

the largest and second largest performance declines.446

These findings demonstrate that the some factual447

knowledges in LLMs are language-specific and448

minimally shared across languages, while others449

are universally shared. We leave more in-depth450

investigation to the future work.451

Neuron sharing peaks at early layers for uni-452

versal features, declining later for specific ones.453

We present the percentage of each neuron type at454

each layer in Figure 3. The number of all-shared455

neurons and partial-shared neurons typically peaks456

between the 5th and 10th layers and then gradually457
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Figure 4: Neuron activation patterns in the XNLI, Fact
Probing, Cross-lingual KE (EN (Edit) → ALL
(Test) tasks with LLAMA2-7B-CHAT backbone.

decreases in subsequent layers. This trend can be 458

explained by the functional roles of different layers 459

in the model. The initial layers, which are closer 460

to the input data, primarily focus on capturing low- 461

level features such as basic lexical and syntactic 462

patterns. As the network progresses to the later lay- 463

ers (between the 5th and 10th layers), it begins to 464

learn abstract concepts that are relatively universal 465

across different tasks and languages. This univer- 466

sality leads to a higher number of shared neurons in 467

these layers. In contrast, the higher layers special- 468

ize in task-specific features and nuances unique to 469

each task, resulting in a decline in neuron sharing. 470

These findings highlight the importance of neuron 471

sharing in LLMs, as shared neurons in the early 472

layers facilitate the transfer of universal knowledge 473

across tasks and languages. They also align with 474

previous research (Yosinski et al., 2014; de Vries 475

et al., 2020; Zhao et al., 2024b; Gao et al., 2024). 476

7.3 Neuron Activations Across LLMs 477

Different LLMs exhibit different neuron acti- 478

vation patterns. To investigate whether neuron 479

activation patterns vary across different multilin- 480

gual LLMs, we present additional results from 481

LLAMA2-7B-CHAT in Figure 4. Our analysis re- 482
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Figure 5: Comparison of neuron activations with founda-
tion LLM BLOOM-7B (left) and instruction finetuned
LLM BLOOMZ-7B (right).

veals that the activation patterns in LLAMA2-7B-483

CHAT differ significantly from those observed in484

BLOOMZ-7B, highlighting the variability across485

models. Notably, LLAMA2-7B-CHAT demon-486

strates a higher degree of neuron sharing, particu-487

larly for partial-shared neurons. This phenomenon488

can be attributed to the English-centric nature of489

LLAMA2-7B-CHAT. When processing multilin-490

gual inputs, the model heavily relies on knowledge491

transfer from English to other languages, resulting492

in a substantial number of partial-shared neurons.493

We also present additional results using XGLM494

(Lin et al., 2022) in Figure 9 of Appendix F, align-495

ing with our observations.496

Instruction finetuned LLMs exhibit larger pro-497

portion of the all-shared neurons. We conduct498

additional experiments using the foundation model499

BLOOM-7B to explore the impact of instruction500

finetuning on neuron activation patterns. As shown501

in Figure 5, the instruction-finetuned BLOOMZ-502

7B demonstrates a higher percentage of all-shared503

neurons compared to BLOOM-7B. This observa-504

tion suggests that instruction finetuning may en-505

courage neuron sharing within LLMs, potentially506

aligning their internal representations across lan-507

guages. Therefore, instruction-finetuned LLMs,508

such as BLOOMZ-7B, generally outperform their509

foundational counterparts.510

7.4 Neuron Activations Across Languages511

Neuron sharing does not completely align with512

language similarity. We investigate the relation-513

ship between language similarity and neuron shar-514

ing by analysing the proportion of partial-shared515

neurons for language pairs involving German and516

several other languages on the Fact Probing task.517

As shown in Figure 6, our findings reveal that sim-518

ilar languages (e.g., German and French) do not519

always exhibit higher levels of neuron sharing. For520
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Figure 6: Neuron activation pattern across languages in
the Fact Probing task with BLOOMZ-7B backbone.
Left: The ratio of partial-shared neurons representing
{en, fr, ru, zh} shared with German (de). Right: The
percentage of {en, de, fr, ru, zh} in specific neurons.

instance, the proportion of partial-shared neurons 521

between German and Chinese is nearly identical to 522

that between German and French, despite German 523

and French both belonging to the Indo-European 524

language family, while Chinese belongs to the Sino- 525

Tibetan language family. Furthermore, we observe 526

no consistent pattern in the percentage of specific 527

neurons across the languages studied, suggesting 528

that neuron specialization may not directly corre- 529

late with language similarity. We leave further ex- 530

ploration of this phenomenon to future work. Addi- 531

tional results on the XNLI task are in Appendix H. 532

Furthermore, we conduct ablation studies to in- 533

vestigate the impact of two key factors on the 534

neuron activation patterns: the size of the back- 535

bone model with 0.56b, 1b, 3b, 7b parameters (Ap- 536

pendix I), and the number of demonstrations in the 537

few-shot setting (Appendix J). 538

8 Conclusion 539

In this study, we explored the complex mechanisms 540

of neuron activation within multilingual LLMs, 541

addressing the significant research gap in under- 542

standing these models beyond a monolingual con- 543

text. We developed a fine-grained classification for 544

analysing how neurons respond to different tasks 545

and languages. We categorized neurons into four 546

distinct groups: all-shared, partial-shared, spe- 547

cific, and non-activated. Our research revealed 548

that neurons shared across all languages proved 549

essential for generating accurate responses, high- 550

lighting their pivotal role in multilingual processing. 551

Furthermore, we demonstrate that neuron sharing 552

is task-related, and, it does not always align with 553

language similarity. Our study improves the under- 554

standing of the internal workings of multilingual 555

LLMs and fosters future research in this direction. 556
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9 Limitations557

In this paper, we develop a method to analyse neu-558

ron behaviors in detail by categorizing them into559

four distinct neuron types w.r.t the degree of their560

responses to input languages. Although this en-561

ables a fine granularity neuron analysis on LLM562

backbones across various linguistic characteristics563

and task complexity, the scope of the experiments564

can be extended to accommodate larger LLMs565

with large amounts of parameters (i.e., BLOOMZ-566

176B) on a more comprehensive range of tasks.567

While this study demonstrates that the number of568

languages slightly impacts the percentage of all-569

shared neurons, it is limited to nine languages. Ex-570

ploring the effects of incorporating a larger number571

of languages into the proposed method warrants572

further investigation. Additionally, other network573

components, for example, attention heads, are not574

in the scope of this analysis.575
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A Detailed Interpretation of Projection in804

Vocabulary Space805

There is a residual connection in the each layer of806

transformer, where the hidden state is:807

hl = xl + FFN l(xl) (11)808

In order to analyze the attribution of neurons,809

we explore how the output distribution in the vo-810

cabulary space changes when the representation xl811

(before the FFN update) is added with the output of812

neurons Al
iv

l
i. With the embedding matrix E, we813

map each vector into the vocabulary space ν. For814

each token w, the probability is calculate with the815

softmax function:816

p(w|xl +Al
iv

l
i, E)

=
exp(Ew · xl + Ew ·Al

iv
l
i)

Z(E(xl +Al
iv

l
i))

∝ exp(Ew · xl) · exp(Ew ·Al
iv

l
i)

(12)817

where Ew is the embedding of w, and Z(·) is the818

constant softmax normalization factor. The Ew · xl819

can be viewed as a static score of w that is indepen-820

dent of the input to the model. Thus, the projection821

Ew · Al
iv

l
i induces a ranking over the vocabulary.822

So we use the projection as effective score to detect823

the responsibility of neurons.824

B Tasks825

• XNLI. Natural Language Inference (Conneau826

et al., 2018) is a multilingual natural lan-827

guages inference dataset, containing 5000828

items. Each test sample consists of a premise829

and a hypothesis, requiring an LLM to deter-830

mine whether a hypothesis is entailed, contra-831

dicted, or neutral conditioned on the premise.832

• Fact Probing. LLMs are used to predict833

factual answers in response to correspond-834

ing probing prompts. A multilingual factual835

knowledge dataset (mParaRel (Fierro and Sø-836

gaard, 2022)) capturing 38 binary relations837

(e.g., X born-in Y) is used in the analysis. We838

seletc the relation of “capital” subset (X capi-839

tal Y) as testset, including 348 items.840

• Cross-lingual Knowledge Editing (KE).841

MzsRE (Wang et al., 2023) is a multilingual842

question-answering dataset, containing 743843

settings pct. en de es fr ru th tr vi zh

baseline 0% 59.1 47.6 50.1 47.0 49.1 41.4 40.2 51.6 46.1
w/o. all-shared 22.42% 3.0 3.6 4.4 1.9 4.7 6.9 3.6 13.5 4.8
w/o. partial-shared 17.48% 59.1 48.4 51.5 47.9 49.7 42.9 41.5 50.8 48.0
w/o. specific 4.75% 59.2 47.3 49.9 47.0 49.1 41.9 40.1 51.4 46.2
w/o. non-activated 55.35% 30.5 13.8 12.0 11.9 12.4 5.0 14.2 13.4 5.2

w/o. random

5% 58.7 47.7 50.2 48.2 49.0 41.7 40.0 49.9 45.7
15% 52.7 44.6 47.2 46.4 44.5 38.4 40.1 48.6 45.2
25% 46.1 42.4 41.3 43.3 40.1 34.5 39.7 38.7 40.7
55% 28.7 30.2 28.6 30.3 25.8 19.0 27.1 28.2 25.0

Table 4: The accuracy in XNLI task with LLAMA2-
7B-CHAT backbone when deactivating four types of
neurons.

items for each language. It provides counter- 844

factual edited knowledge in the context and re- 845

quires an LLM to produce the corresponding 846

answer according to the context. We evaluate 847

LLMs in two Cross-lingual KE scenarios: 1) 848

EN (Edit) → ALL (Test): edit in English and 849

test in other languages and 2) ALL (Edit) → 850

EN (Test): edit in other languages and test in 851

English. 852

C Prompts 853

For the Fact Probing task, we use the P36 sub- 854

testset, which describe facts of entities in a relation 855

of “capital”. The prompt is framed as “ The capital 856

of {X} is ” where “{X}” is the subject (sovereign 857

state) and LLMs are required to predict the object 858

(capital city). We keep at least three paraphrase 859

prompts from mParaRel for each language to en- 860

sure a level of diversity. 861

For the Natural Language Inference (XNLI) task, 862

we frame the prompt as “ Take the following as 863

truth: {premise} Then the following statement: 864

‘{hypothesis}’ is ‘true’, ‘false’, or ‘inconclusive’? 865

” 866

For the Cross-lingual KE task, we format the 867

prompt as “ {context} Question: {question} An- 868

swer: ”. The same language is used for the ques- 869

tions and the answers, but the context is in a differ- 870

ent language. 871

D Supplemental Results on Deactivating 872

Neurons 873

In order to further prove the importance of all- 874

shared neurons across LLMs, we conduct the ex- 875

periments with deactivating neurons on the XNLI 876

task with LLAMA2-7B-CHAT backbone. The re- 877

sults in Table 4 show that there is more significant 878

decline when all-shared neurons are deactivated. 879

It demonstrates that all-shared neurons play a key 880

role in predicting correct answers across LLMs. 881
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E Generation Impact Score of Different882

Tasks883

The Generation Impact Score of the four types of884

neurons evaluated on the Cross-lingual KE (EN885

(edit) → ALL (Test)) and XNLI tasks across886

languages are shown in Figure 7 and Figure 8.887

F Supplemental Results on Neurons888

Activation Patterns across LLMs889

We further study the neuron activation patterns in890

another multilingual LLM (XGLM). The results891

of XGLM backbone are captured in Figure 9.892

G Supplemental Results on Neurons893

Activation Patterns of Foundation894

LLM BLOOM-7B895

We further explore the neuron activation pat-896

terns across various tasks in the foundation LLM897

(BLOOM-7B). The results of BLOOM-7B back-898

bone are captured in Figure 10.899

H Neuron Activation Across Languages900

on XNLI Task901

We analyze the shared proportion of German with902

other languages in partial-shared neurons and the903

specific neuron ratios for each language derived904

from the XNLI task in Figure 11. The shared ra-905

tio of German with Russian (in different language906

family) is higher than the ratio of German with907

French (in the same language family), confirming908

the conclusion in Section 7.4.909

I Influence of Model Scale910

We investigate neuron activation patterns across the911

BLOOMZ series with 0.56b, 1b, 3b, 7b parameters912

in a XNLI task. As shown in the results captured in913

Figure 12, no identifiable pattern difference can be914

observed to indicate a scale law effect. However,915

the scale of the model is limited, potentially leading916

to unreliable results in this experiment. More non-917

activated neurons in the upper layers of BLOOMZ-918

7B may reflect on a higher level of sparsity for a919

larger LLM (consistent with Voita et al. (2023); Li920

et al. (2023)).921

J Neuron Activation Patterns in Few-shot922

In-context Learning923

According to Wang et al. (2023), in-context learn-924

ing (ICL) can improve the performance of an925

LLM under the guidance of few-shot examples926

in a Cross-lingual KE task. We further explore 927

the impact of few-shot examples on neuron activa- 928

tion patterns. We compare the results of an LLM 929

with 0-shot, 2-shot, 4-shot, 6-shot examples in a 930

Cross-lingual KE (EN (edit) → ALL (Test)) 931

task. Four types of neurons in scope have almost 932

identical activation patterns across various few-shot 933

examples (Figure 13). Although in-context exam- 934

ples lead to no observable neuron activation pat- 935

tern changes, more examples lead to better perfor- 936

mances. Could ICL lead to a better neuron acti- 937

vation composition instead of invoking more neu- 938

rons? We leave this to a future study. 939
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Figure 7: Generation Impact Score on the Cross-lingual KE (EN (edit) → ALL (Test)) task with BLOOMZ-
7B backbone.

Figure 8: Generation Impact Score on the XNLI task with BLOOMZ-7B backbone.
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Figure 9: Neuron activation pattern in XNLI, Fact Probing, and Cross-lingual KE tasks with XGLM backbone.
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Figure 10: Neuron activation pattern in XNLI, Fact
Probing, and Cross-lingual KE tasks with BLOOM-
7B backbone.
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Figure 11: Aggregated neuron activation pattern across
languages in the XNLI task. Left: The ratio of partially-
shared neurons representing {en, fr, ru, vi} shared with
German (de). Right: The percentage of {en, de, fr, ru,
vi} in specific neurons.
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Figure 12: Neuron activation patterns in a XNLI task
with the BLOOMZ size as 0.56b, 1b, 3b, 7b.

5 10 15 20 25 30
0

20

40

60

80

100
0-shot

5 10 15 20 25 30
0

20

40

60

80

100
2-shot

5 10 15 20 25 30
0

20

40

60

80

100
4-shot

5 10 15 20 25 30
0

20

40

60

80

100
6-shot

Layers

Pe
rc

en
ta

ge

all-shared
partial-shared

specific
non-activated

Figure 13: Neuron activation patterns in
Cross-lingual KE (EN (edit) → ALL (Test))
task with BLOOMZ-7B backbone under the in-context
learning.
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