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ABSTRACT

Interpretability for machine learning models is becoming more and more impor-
tant as machine learning models become more complex. The functional ANOVA
model, which decomposes a high-dimensional function into a sum of lower di-
mensional functions so called components, is one of the most popular tools for
interpretable AI, and recently, various neural network models have been devel-
oped for estimating each component in the functional ANOVA model. However,
such neural networks are highly unstable when estimating components since the
components themselves are not uniquely defined. That is, there are multiple func-
tional ANOVA decompositions for a given function. In this paper, we propose a
novel interpretable model which guarantees a unique functional ANOVA decom-
position and thus is able to estimate each component stably. We call our proposed
model ANOVA-NODE since it is a modification of Neural Oblivious Decision En-
sembles (NODE) for the functional ANOVA model. Theoretically, we prove that
ANOVA-NODE can approximate a smooth function well. Additionally, we ex-
perimentally show that ANOVA-NODE provides much more stable estimation of
each component and thus much more stable interpretation when training data and
initial values of the model parameters vary than existing neural network models
do.

1 INTRODUCTION

Interpretability has become more important as artificial intelligence (AI) models have become more
sophisticated and complicated in recent years. Various methods for interpretable AI can be catego-
rized into two groups. One is transparent box design, where interpretable machine learning models
such as linear models and decision trees are used to learn a prediction model. Typically, interpretable
models are inferior to black box models in terms of prediction powers. The other group consists of
post-hoc interpretation methods that try to interpret a given black box models (Lundberg, 2017;
Ribeiro et al., 2016). While post-hoc interpretation methods do not hamper the prediction power of
a given black box model at all, they often exhibit instability and lack faithfulness (Slack et al., 2020).

In this paper, we focus on the transparent box design based on the functional ANOVA model (Ho-
effding, 1992). The functional ANOVA model approximates a given complex high-dimensional
function by the sum of low dimensional (e.g., one or two dimensional) functions referred to as
components. One of the most representative examples of the functional ANOVA model is the gen-
eralized additive model (GAM, Hastie & Tibshirani (1987)), which consists of the summation of
one-dimensional functions, each corresponding to an input feature. Low dimensional functions are
easier to understand, and thus the functional ANOVA model is popularly used for interpretable AI
(Lengerich et al., 2020; Märtens & Yau, 2020).

Recently, various learning algorithms for the functional ANOVA model based on neural networks
have been proposed (Agarwal et al., 2021; Radenovic et al., 2022; Chang et al., 2021). While they
provide accurate prediction models, existing neural networks struggle to estimate each component
in the functional ANOVA model due to unidentifiability (Lengerich et al., 2020). That is, completely
different components could result in the same prediction model. Figure 1 presents the plots of the
main effects estimated by NA2M, NB2M, and our proposed ANOVA-N2ODE on CALIFORNIA
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Figure 1: Plots of the estimated main components on CALHOUSING dataset.

HOUSING dataset for two trials. Figure 1 shows that our proposed model reliably estimates the
components, whereas the other models do not. The experimental results for additional trials can
be found in Appendix F.1. Reliable estimation of components is crucial for interpretation, as the
functional ANOVA model is interpreted through the interpretation of each component.

A simple remedy for resolving the issue of unidentifiability is to impose a constraint on the compo-
nents to make them identifiable. There are several such constraints, some of which can be found, for
example, in Gu & Wahba (1993); Chastaing et al. (2012); Hooker (2007). One of the most popular
identifiability constraints is the so called ‘sum-to-zero’ condition, which ensures that each compo-
nent is orthogonal in a certain Hilbert space.

Learning the functional ANOVA model by using neural networks under such an identifiability con-
straint, however, is not easy since a standard gradient descent algorithm could not be applicable.
The aim of this paper is to develop a specially designed neural network that automatically satis-
fies the sum-to-zero condition and thus can be learned by a standard gradient descent algorithm.
The proposed neural network is a modification of Neural Oblivious Decision Ensembles (NODE,
Popov et al. (2019)) for the functional ANOVA model. Chang et al. (2021) propose a modification of
NODE for the GAM called NODE-GAM, but NODE-GAM is not effective in estimating each com-
ponent due to the identifiability issue. We modify NODE such that each component in the functional
ANOVA model is estimated uniquely. We call our algorithm ANOVA-NODE.

There exist various learning algorithms for the functional ANOVA model under the sum-to-zero
condition such as Gu & Wahba (1993); Lin & Zhang (2006); Kim et al. (2009) that do not use
neural networks. An advantage of ANOVA-NODE compared to these non-neural algorithms is that a
gradient descent based optimization algorithm can be used in learning and hence end-to-end learning
is possible when it is combined with other neural networks. See Section 4.5 for an example.

Overall, our contributions are as follows.

• We propose a novel XAI model (ANOVA-NODE) which trains the functional ANOVA model
under the sum-to-zero condition using a gradient descent-based optimization algorithm.

• We prove the universal approximation property in the sense that ANOVA-NODE can approxi-
mate any smooth function up to an arbitrary precision.

• By analyzing multiple benchmark datasets, we illustrate that ANOVA-NODE provides more
stable estimation and interpretation of each component compared to the baseline models, in-
cluding NAM (Agarwal et al., 2021), NBM (Radenovic et al., 2022), NODE-GAM (Chang
et al., 2021) and XGB (Chen & Guestrin, 2016) without losing prediction accuracy.
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2 BACKGROUND

2.1 NOTATION

Let x = (x1, ..., xp)
⊤ ∈ X = X1 × ... × Xp be a vector of input features, where we assume

X ⊆ [−a, a]p for some a > 0. We denote [p] = {1, . . . , p}, and denote its power set as P([p]). For
x ∈ X and S ⊆ [p], let xS = (xj , j ∈ S)⊤. We denote fS as a function of xS . For a real-valued
function f : X → R, we denote ||f ||∞ = supx∈X |f(x)|.

2.2 FUNCTIONAL ANOVA MODEL

The functional ANOVA model (Hoeffding, 1992) decomposes a high-dimensional function f into
the sum of low-dimensional functions

f(x) = β0 +

p∑
j=1

fj(xj) +
∑
j<k

fjk(xj , xk) + · · · ,

which is considered as one of the most important XAI tools. Here, f(x) = g(E(Y |X = x)) where
g is a link function and Y is target variable, fj , j ∈ [p] are called the main effects, and fj,k, (j, k) ∈
[p]2 are called the second interaction terms and so on. In practice, only interactions of lower orders
(e.g., the main and second order only) are included in the decomposition for a more transparent
interpretation.

Generalized Additive Model (GAM, Hastie & Tibshirani (1987)) is a special form of the functional
ANOVA model where only the main effects are included in the model, that is

f(x) = β0 +

p∑
j=1

fj(xj).

Similarly, GA2M is defined as the functional ANOVA model including all of the main effects and
second order interactions,

f(x) = β0 +
∑

S⊆[p],|S|≤2

fS(xS),

or more generally we can consider GAdM defined as

f(x) = β0 +
∑

S⊆[p],|S|≤d

fS(xS).

Several learning algorithms for the functional ANOVA model have been proposed. Gu & Wahba
(1993) applied the smoothing spline to learn the functional ANOVA model, Lin & Zhang (2006)
developed a component-wise sparse penalty, and Kim et al. (2009) proposed a boosting algorithm for
the functional ANOVA model. In addition, the functional ANOVA model has been applied to various
problems such as sensitivity analysis (Chastaing et al., 2012), survival analysis (Huang et al., 2000),
diagnostics of high-dimensional functions (Hooker, 2007) and machine learning models (Lengerich
et al., 2020; Märtens & Yau, 2020).

Recently, learning the functional ANOVA model using neural networks has received much attention
since gradient descent based learning algorithms can be easily scaled up. Examples are Neural Ad-
ditive Model (NAM, Agarwal et al. (2021)), Neural Basis Model (NBM, Radenovic et al. (2022))
and NODE-GAM (Chang et al., 2021). NAM uses deep neural network (DNN) to train each com-
ponent of GAM. NBM achieves a significant reduction in training time compared to NAM by using
basis DNNs to train all components. NODE-GAM extends Neural Obilvious Decision Ensembles
(NODE, Popov et al. (2019)) for GAM.

2.3 NEURAL OBLIVIOUS DECISION ENSEMBLES (NODE)

Oblivious Decision Tree (ODT) (Kohavi & Li, 1995) is a decision tree which has the following two
properties:

1. All terminal nodes have the same depth.

2. All rules at each depth are identical.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Let d be the depth of ODT, for t ≤ d, F t(x) be the feature function used for the rule at the depth
t, bt is the split value in the depth t and B ∈ R2d be the height parameters at the terminal nodes of
ODT. Then, the ODT model is given as

h(x) = B′
([

I(F 1(x) ≤ b1)
I(F 1(x) > b1)

]
⊗

[
I(F 2(x) ≤ b2)
I(F 2(x) > b2)

]
⊗ · · · ⊗

[
I(F d(x) ≤ bd)
I(F d(x) > bd)

])
,

where I is the indicator function and ⊗ is the outer product.

To train ODT using gradient descent methods, Popov et al. (2019) replaced the indicator function
I(F (x) > b) with the entmaxν((

F (x)−b
γ , 0)′)1 (Peters et al., 2019) which is differentiable. More-

over, the feature function F t is a weighed sum of input features. Note that entmaxν((
F (x)−b

γ , 0)′)1
works similarly to a sparse sigmoid. They referred to this ODT as Neural ODT (NODT).

In addition, Popov et al. (2019) proposed a layer architecture which involves the output of the current
layer being concatenated with the current input and then fed into the next layer. The final output of
NODT with a layer architecture can be obtained by averaging the outputs of each layer. Finally, they
proposed Neural Oblivious Decision Ensembles (NODE) as an ensemble of NODTs.

3 PROPOSED MODEL

3.1 IDENTIFIABILITY ISSUE

An unsolved but important problem in neural functional ANOVA algorithms is the identifiability of
each component. The functional ANOVA model itself is not identifiable. That is, there are multiple
functional ANOVA decompositions of a given function. For example,

f(x1, x2) = f1(x1) + f2(x2) + f12(x1, x2)

where f1(x1) = x1, f2(x2) = x2, f1,2(x1, x2) = x1x2 can be expressed as

f(x1, x2) = f∗
1 (x1) + f∗

2 (x2) + f∗
1,2(x1, x2)

where f∗
1 (x1) = −x1, f

∗
2 (x2) = x2, f

∗
12(x1, x2) = x1(x2+2) (Lengerich et al., 2020). Without the

identifiability, each component cannot be estimated uniquely and thus interpretation of the model
becomes unstable and inaccurate.

A simple remedy to ensure the identifiability of each component is to put constraints. One of the
most popular constraints for the identifiability of the components in the functional ANOVA model
is so called the sum-to-zero condition (Gu & Wahba, 1993; Kim et al., 2009). When we consider the
functional ANOVA model using interactions in S ⊆ P([p]), the sum-to-zero condition is

∀S ∈ S, ∀j ∈ S, ∀z ∈ XS\{j},

∫
Xj

fS(xS\{j} = z, xj)µj(dxj) = 0 (1)

for some probability measure µj on Xj . In practice, we can use the empirical distribution of the input
feature xj for µj or the uniform distribution. With the sum-to-zero in (1), the functional ANOVA
model becomes identifiable, as can be seen in proposition 3.1. Let µ =

∏
j µj .

Proposition 3.1. (Hooker, 2007) Consider two component sets {f1
S , S ∈ S} and {f2

S , S ∈ S} which
satisfy (1). Then,

∑
S∈S f1

S(·) ≡
∑

S∈S f2
S(·) almost everywhere (with respect to µ) if and only if

f1
S(·) ≡ f2

S(·) almost everywhere (with respect to µ) for every S ∈ S.

The sum-to-zero condition is not a unique identifiability condition. However, Herren & Hahn (2022)
demonstrated that there is an interesting relation between the sum-to-zero condition and SHAP
(Lundberg, 2017) which is a well known interpretable AI method. That is, SHAP value of a given
input can be calculated easily from the prediction values of each component under regularity con-
ditions. For a given model f and input vector x, SHAP value of the jth input variable is defined
as

ϕj(f,x) =
∑

S⊆[p]\{j}

|S|!(p− |S| − 1)!

p!
(vf (S ∪ {j})− vf (S)),

where vf (S) = E[f(X)|XS = xS ], where X ∼ µ.
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Proposition 3.2. (Herren & Hahn, 2022) For a given f which is the GAdM satisfying the sum-to-
zero condition. Then, we have

ϕj(f,x) =
∑

S⊆[p],|S|≤d,j∈S

fS(xS)/|S|. (2)

The result in equation (2) provides an interesting implication - the functional ANOVA model sat-
isfying the sum-to-zero condition also decomposes SHAP value. That is, the contribution of the
interaction between xj and xS to SHAP value ϕj(f,x) is f(xS′)/|S′|, where S′ = S ∪ {j}. Note
that this interesting relation is not generally valid for identifiability conditions other than the sum-
to-zero condition.

Therefore, for general GAdM, we can calculate SHAP value using equation (2), which we refer
to as ANOVA-SHAP. One advantage of ANOVA-SHAP is that it is significantly faster to compute
compared to Deep-SHAP and Kernel-SHAP proposed by Lundberg (2017), as well as Tree-SHAP
proposed by Lundberg et al. (2018). The ANOVA-SHAP experiment results are in Appendix K.

3.2 ANOVA-NODE

Incorporating the sum-to-zero condition into existing neural functional ANOVA models would be
difficult because standard gradient descent algorithms cannot be applied due to identifiability con-
straints. The aim of this subsection is to propose a special neural network function for the functional
ANOVA model that automatically satisfies the sum-to-zero condition and thus each component can
be estimated uniquely by using a standard gradient descent based optimization algorithm.

The main idea of the proposed neural network is to model each component as the sum of special but
simple neural networks that satisfy the sum-to-zero condition. That is, we set

fS(xS) =

KS∑
k=1

hS(xS |ϕS,k),

where {hS( · |ϕS,k)}KS

k=1 are neural networks with learnable parameters ϕS,k satisfying the sum-to-
zero condition.

ANOVA-NODT. For hS( · |ϕS,k), we propose ANOVA-NODT, which is a modification of ODT,
as follows. First, we set the depth of hS to be equal to |S|. For t ∈ {1, ..., |S|}, we use the feature
function as

F t(xS) = (xS)t,

where (xS)t is the tth feature of xS . To approximate the indicator function I in ODT as a differen-
tiable function, we use entmaxν as Peters et al. (2019) does. For b ∈ R and γ ∈ R+, we define

c1(x|b, γ) := 1− entmaxν

((
x− b

γ
, 0

)′ )
1

, c2(x|b, γ) := 1− c1(x|b, γ),

where ν is a hyper-parameter. Finally, we define the ANOVA-NODT model hS as

hS(xS) = (BS)′
([

c1((xS)1|b1, γ1)
c2((xS)1|b1, γ1)

]
⊗

[
c1((xS)2|b2, γ2)
c2((xS)2|b2, γ2)

]
⊗ · · · ⊗

[
c1((xS)|S||b|S|, γ|S|)
c2((xS)|S||b|S|, γ|S|)

])
,

where BS ∈ R2|S|
, b1, . . . , b|S| and γ1, . . . , γ|S| are learnable parameters.

A novel part of ANOVA-NODT is to parameterize BS to make hS always satisfy the sum-to-zero
condition. Here, we address the case where |S| = 1, and the case where |S| = 2 is described in
Appendix B.2. For the case of S = {j}, we consider

hj(xj) = β1,jc1(xj |b1,j , γ1,j) + β2,jc2(xj |b1,j , γ1,j).

For a given θj ∈ R, we let β1,j = θj and β2,j = −E[c1(Xj |b1,j ,γ1,j)]
E[c2(Xj |b1,j ,γ1,j)]

θj . Then, it is easy to see that
E[hj(Xj)] = 0, meaning that it satisfies the sum-to-zero condition. Hence, we can parameterize
hj(xj) by ϕj = (θj , b1,j , γj). Note that there is no constraint on ϕj and thus standard gradient
descent algorithms can be used to learn ϕj .
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Figure 2: ANOVA-N1ODE architecture

Finally, for general S ⊆ [p], ANOVA-NODT can be parameterized by

ϕS = {θS , (b1,S , γ1,S), . . . , (b|S|,S , γ|S|,S)}
as

hS(xS |ϕS) =
∑

s∈{1,2}|S|

βs,S(ϕS)

|S|∏
i=1

csi((xS)i|bi,S , γi,S),

where s = (s1, . . . , s|S|)
′ and βs,S(ϕS) are the functions of ϕS with β1,S(ϕS) = θS .

ANOVA-NdODE. ANOVA-NdODE is an ensemble of ANOVA-NODT for the order of interac-
tions up to d. That is, we set

fANOVA-NdODE(x) =
∑

S⊆[p],|S|≤d

KS∑
k=1

hS(xS |ϕS,k),

where KS is the number of ANOVA-NODTs corresponding to the component S. In practice, d = 1,
which corresponds to the GAM, and d = 2 are commonly used. The architecture of ANOVA-
N1ODE is shown in Figure 2. Note that ANOVA-NdODE always satisfies the sum-to-zero condition
since each ANOVA-NODT does so. Therefore, standard gradient descent algorithms can be applied
without modification. Unless there is any confusion, we write ANOVA-NODE instead of ANOVA-
NdODE for general d.

An interesting theoretical property of ANOVA-NODE is the universal approximation property as
the standard neural network has (Hornik et al., 1989). That is, ANOVA-NODE can approximate any
arbitrary GAdM function to a desired level of accuracy, as stated in the following theorem.
Theorem 3.3. Let g0(x) :=

∑
S⊂[p],|S|≤d g0,S(xS) be a given GAdM function satisfying the sum-

to-zero condition. Consider the entmaxν for ν = 1, and let µ be a measure for any distribution
which has a bounded density. If each g0,S is L-Lipschitz continuous1 for some L > 0, then for any
ϵ > 0, there exists fANOVA-NdODE with sufficiently large KSs such that∥∥g0(·)− fANOVA-NdODE(·)

∥∥
∞ < ϵ.

Training For a given train data and loss function, ANOVA-NODE is trained using any gradient
descent algorithm to minimize the empirical risk.

Data preprocessing. To satisfy the sum-to-zero condition in ANOVA-NODT, one element in BS

is a free parameter, while the remaining elements are parameterized by the product of constants (e.g.,
−E[c1(Xj |b1,j , γ1,j)]/E[c2(Xj |b1,j , γ1,j)]) and the free parameter. In this case, since the constants
can become close to or equal to zero depending on the trained {(bi,S , γ1,S), i = 1, ..., |S|}, we scale
the data by using a transformation based on the quantiles of a uniform distribution to ensure stable
learning.

1A given function v defined on Z is L-Lipschitz continuous if |v(z1) − v(z2)| ≤ L∥z1 − z2∥ for all
z1, z2 ∈ Z , where ∥ · ∥ is a certain norm defined on Z.
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Figure 3: Scatter plots of the stability scores on CALHOUSING dataset. Figures (a) and (d) are the scatter
plots for the stability scores of the main effects, where the x-axis is the stability score of ANOVA-N1ODE and
the y-axis is the stability scores of NA1M in (a) and NB1M in (d). Figures (b) and (e) are the scatter plots
for the stability scores of the main effects, where the x-axis is the stability score of ANOVA-N2ODE, and the
y-axis is the stability score of NA2M in (b) and NB2M in (e). Figures (c) and (f) compare the stability scores of
the second order interactions of ANOVA-N2ODE to those of NA2M and NB2M. Each dot in the scatter plots
corresponds to each component.

4 EXPERIMENTS

This section presents the results of numerical experiments. More results along with details about
data, algorithms and selection of hyper-parameters are provided in Appendices C to M.

4.1 STABILITY IN COMPONENT ESTIMATION

Similarly to NAM (Agarwal et al., 2021) and NBM (Radenovic et al., 2022), ANOVA-NODE pro-
vides interpretation through the estimated components. Thus, if the components are not estimated
stably, the interpretations based on the estimated components would not be reliable. In this subsec-
tion, we investigate the stability of the component estimation of ANOVA-NODE compared with the
other baseline models including NAM and NBM. For this purpose, we generate randomly sampled
training data and estimate the components of the functional ANOVA model. We repeat this proce-
dure 10 times to obtain 10 estimates of each component, and measure how similar these 10 estimates
are. For the similarity measure, we use

SC(fS) =
1

n

n∑
i=1

∑10
j=1(f

j
S(xi)− f̄S(xi))

2∑10
j=1(f

j
S(xi))2

for given pre-selected n many input vectors xi, i = 1, . . . , n, where f j
S , j = 1, . . . , 10 are the 10

estimates of fS and f̄S is their average. A smaller value of SC(fS) means a more stable estimation
(and thus more stable interpretation).

In Figure 3, we present the scatter plots of the stability scores for each estimated component between
(NA1M, NB1M) vs ANOVA-N1ODE and (NA2M, NB2M) vs ANOVA-N2ODE on CALHOUSING
dataset. It is obvious that our models are more stable than the baselines in component estimation.
Consistent results are also observed with other datasets, which are presented in Appendix F.3. Also,
the plots of the functional relation of the main effects are provided in Appendix F.1, from which we
can feel how much NAM and NBM are unstable in estimating the components.

In addition, we compare the overall stability score SC(f) =
∑

S SC(fS). For each of nine bench-
mark datasets, we calculate the ratios of the overall stability scores of ANOVA-NODE, NAM, and
NBM normalized by the overall stability score of ANOVA-NODE, whose results are given in Table
1. The unnormalized results of stability score are in Appendix G.1. The results again confirm that
ANOVA-NODE is superior in terms of the stability of component estimation.

The stability of ANOVA-NODE with respect to the choice of initial values are illustrated in Ap-
pendix D.2.
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Table 2: Performance of component selection. We report the averages (standard deviations) of AUROCs
of the estimated importance scores of each component on f (1), f (2), f (3) synthetic datasets. The bold faces
highlight the best results.

True model f(1) f(2) f(3)

Models
ANOVA
N2ODE

NA2M NB2M
ANOVA
N2ODE

NA2M NB2M
ANOVA
N2ODE

NA2M NB2M

AUROC ↑ 1.000
(0.00)

0.330
(0.08)

0.522
(0.16)

0.943
(0.01)

0.311
(0.08)

0.481
(0.09)

0.956
(0.02)

0.381
(0.13)

0.477
(0.07)

Table 1: Stability scores on real datasets. For each dataset, stability scores of GAM (GA2M) models are
normalized by the that of ANOVA-N1ODE (ANOVA-N2ODE). Lower stability score means more stable inter-
pretation. The bold faces highlight the best results.

GAM GA2M

Dataset
ANOVA
N1ODE NA1M NB1M

ANOVA
N2ODE NA2M NB2M

CALHOUSING (Pedregosa et al., 2011a) 1.000 3.750 3.250 1.000 2.209 2.143
WINE(Cortez et al., 2009) 1.000 5.273 3.909 1.000 1.776 1.327

ONLINE (Fernandes et al., 2015) 1.000 2.452 1.742 1.000 1.385 1.385
ABALONE (Warwick et al., 1995) 1.000 1.625 3.250 1.000 1.679 1.357

FICO (fic, 2018) 1.000 1.314 1.314 1.000 1.854 1.563
CHURN(chu, 2017) 1.000 1.588 2.765 1.000 1.894 1.702
CREDIT (cre, 2015) 1.000 3.286 1.190 1.000 2.472 1.472

LETTER (Slate, 1991) 1.000 1.294 0.824 1.000 2.885 1.962
DRYBEAN(dry, 2020) 1.000 2.643 2.500 1.000 1.660 1.528

4.2 PERFORMANCE IN COMPONENT SELECTION

An important implication of stable estimation of the components is the ability of selecting signal
components. That is, ANOVA-NODE can effectively identify signal components in the true function
by measuring the variations of the estimated components. For example, we can consider the l1 norm
of each estimated component (i.e, ∥fS(xS)∥1) as the important score, and select the components
whose important scores are large. This simple component selection procedure would not perform
well if component estimation is unstable.

To investigate how well ANOVA-NODE selects the true signal components, we conduct an experi-
ment similar to the one in Tsang et al. (2017). We generate synthetic datasets from Y = f(x) + ϵ,
where f is the true prediction model and ϵ is a noise generated from a Gaussian distribution with
mean 0 and variance σ2

ϵ . Then, we apply ANOVA-N2ODE, NA2M and NB2M to calculate the im-
portance scores of the main effects and second order interactions and examine how well they predict
whether a given component is signal. For the performance measure of component selection, we use
AUROC obtained from the pairs of ∥f̂S∥1 and rS for all S ⊂ [p] with |S| ≤ 2, where f̂S are the
estimates of fS in f and rS = I(∥f (k)

S ∥1 > 0) are the indicators whether fS are signal or not.

For the true prediction model, we consider the three functions f (k), k = 1, 2, 3 whose details are
given in Appendix C.1. We set the data size to 15,000 and set σ2

ϵ to make the signal-to-noise ratio
become 5. Table 2 compares the AUROCs of ANOVA-N2ODE, NA2M and NB2M, which clearly in-
dicates that ANOVA-N2ODE outperforms the baseline models in component selection. More details
of component selection with ANOVA-N2ODE are given in Appendix H.

4.3 PREDICTION PERFORMANCE

We compare prediction performance of ANOVA-NODE with baseline models. We randomly split
the train, validation and test data into the ratio 70/10/20, where the validation data is used to select
the optimal epoch and the test data is used to measure the prediction performance of the estimated
models. We repeat this random split 10 times to obtain 10 performance measures for prediction. For
the performance measure, we use the Root Mean Square Error (RMSE) for regression datasets and
the Area Under the ROC curve (AUROC) for classification datasets.

Table 3 presents the results of prediction performance of ANOVA-NODE, NODE-GAM, NAM, and
NBM as well as two black box models. It is obvious that ANOVA-NODE favorably competes with
its competitors in view of prediction performance. In addition, at the final line, the average ranks of
each model over the nine datasets are given, which shows that ANOVA-NO2DE exhibits comparable
prediction performance compared to the baseline models. Details about the experiments are given in
Appendix C.2.
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Table 3: Prediction performance. We report the averages (standard deviations) of the prediction performance
measure. In addition, we report the averages of ranks of prediction performance of each model on nine datasets.
The optimal (or suboptimal) results are highlighted in bold (or underlined).

GAM GA2M Black box

Dataset Measure
ANOVA
N1ODE

NODE
GA1M NA1M NB1M

ANOVA
N2ODE

NODE
GA2M NA2M NB2M XGB NODE

CALHOUSING RMSE ↓ 0.614
(0.01)

0.581
(0.01)

0.659
(0.01)

0.594
(0.08)

0.512
(0.01)

0.515
(0.01)

0.525
(0.02)

0.502
(0.03)

0.452
(0.01)

0.482
(0.01)

WINE RMSE ↓ 0.725
(0.02)

0.723
(0.02)

0.733
(0.02)

0.724
(0.02)

0.704
(0.02)

0.730
(0.02)

0.720
(0.02)

0.702
(0.03)

0.635
(0.03)

0.646
(0.03)

ONLINE RMSE ↓ 1.111
(0.25)

1.121
(0.27)

1.350
(0.57)

1.187
(0.25)

1.111
(0.25)

1.137
(0.26)

1.313
(0.46)

1.179
(0.21)

1.122
(0.26)

1.112
(0.27)

ABALONE RMSE ↓ 2.135
(0.09)

2.141
(0.09)

2.171
(0.08)

2.167
(0.09)

2.087
(0.08)

2.100
(0.10)

2.088
(0.08)

2.088
(0.08)

2.164
(0.09)

2.086
(0.09)

FICO AUROC ↑ 0.799
(0.007)

0.795
(0.009)

0.788
(0.006)

0.797
(0.006)

0.800
(0.007)

0.793
(0.007)

0.799
(0.007)

0.799
(0.008)

0.796
(0.008)

0.795
(0.008)

CHURN AUROC ↑ 0.839
(0.012)

0.824
(0.012)

0.846
(0.011)

0.845
(0.012)

0.842
(0.012)

0.830
(0.011)

0.844
(0.011)

0.844
(0.011)

0.846
(0.012)

0.844
(0.013)

CREDIT AUROC ↑ 0.983
(0.005)

0.983
(0.005)

0.976
(0.012)

0.972
(0.011)

0.984
(0.006)

0.985
(0.006)

0.980
(0.007)

0.985
(0.004)

0.983
(0.004)

0.984
(0.009)

LETTER AUROC ↑ 0.900
(0.003)

0.910
(0.002)

0.904
(0.001)

0.910
(0.001)

0.984
(0.001)

0.988
(0.001)

0.986
(0.001)

0.990
(0.001)

0.997
(0.001)

0.998
(0.001)

DRYBEAN AUROC ↑ 0.995
(0.001)

0.996
(0.001)

0.996
(0.001)

0.994
(0.001)

0.998
(0.001)

0.996
(0.001)

0.995
(0.001)

0.995
(0.001)

0.997
(0.001)

0.996
(0.001)

Rank avg ↓ 6.33 5.56 8.00 7.44 3.33 5.67 5.44 3.67 3.44 2.89

4.4 APPLICATION TO HIGH-DIMENSIONAL DATA

To see whether ANOVA-NODE is applicable to high-dimensional data, we analyze three additional
datasets with input dimensions ranging from 136 to 699. See Table 8 of Appendix for details of
these three datasets. For ANOVA-N1ODE, we include all main effects into the model. For ANOVA-
N2ODE, however, the number of second order interactions is too large so that considering all the
main effects and second order interactions would be difficult unless very large computing resources
are available. A simple alternative is to screen out unnecessary second order interactions a priori
and include only selected second order interactions (and all the main effects) into the model. In
the experiment, we use Neural Interaction Detection (NID, Tsang et al. (2017)) for the interaction
screening. The number of selected interactions is given in Appendix C.2.

From Table 4 and Table 5, we observe that ANOVA-NODE shows favorable prediction performance
compared with NAM and NBM and estimates the components more stably on high-dimensional
datasets. In addition, note that the RMSE of NB2M with all second order interactions on MICROSOFT
dataset is reported as 0.750 by Radenovic et al. (2022). That is, screening interactions using NID
does not hamper prediction performance much.

Table 4: Prediction performance on high-dimensional datasets. We report the averages (standard devia-
tions) of the prediction performance for 10 randomly sampled training data from the high-dimensional datasets.
The bold faces highlight the best results.

GAM GA2M

Dataset Measure
ANOVA
N1ODE

NA1M NB1M NID +
ANOVA
N2ODE

NID + NA2M NID + NB2M

MICROSOFT RMSE ↓ 0.756 (0.001) 0.774 (0.001) 0.770 (0.001) 0.754 (0.001) 0.761 (0.001) 0.755 (0.001)
YAHOO RMSE ↓ 0.787 (0.002) 0.797 (0.002) 0.783 (0.002) 0.779 (0.001) 0.793 (0.002) 0.779 (0.002)

MADELON AUROC ↑ 0.587 (0.02) 0.587 (0.02) 0.582 (0.03) 0.605 (0.01) 0.568 (0.03) 0.594 (0.02)

4.5 ANOVA-NODE WITH MONOTONE CONSTRAINTS

Monotone constraint. In practice, prior knowledge that some main effects are monotone func-
tions are available and it is needed to reflect this prior knowledge in the training phase. A notable
example is the credit scoring model where certain input features should have monotone main effects
(Chen & Li, 2014; Chen & Ye, 2022). An additional advantage of ANOVA-NODE is to accommo-
date the monotone constraints in the model easily. Suppose that fj is monotonically increasing.

Then, ANOVA-NODE can estimate fj monotonically increasingly by letting the θj in ANOVA-
NODT hj(xj |ϕj) be less than or equal to 0. See Appendix B.1 for details.

Application to Image data. Monotone constraint helps avoiding unreasonable interpretation. To
illustrate this advantage, we conduct an experiment with an image dataset. We use CELEBA (Liu

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Stability scores on the high-dimensional datasets. For each dataset, stability scores of of GAM
(GA2M) models normalized by the that of ANOVA-N1ODE (ANOVA-N2ODE) are presented. Lower stability
scores imply more stable interpretation. The bold faces highlight the best results.

GAM GA2M

Dataset
ANOVA
N1ODE

NA1M NB1M NID +
ANOVA
N2ODE

NID + NA2M NID + NB2M

MICROSOFT (Qin & Liu, 2013) 1.000 2.967 3.933 1.000 2.075 2.225
YAHOO (Yahoo, 2010) 1.000 1.760 2.520 1.000 1.834 1.514

MADELON (Guyon, 2004) 1.000 1.957 2.014 1.000 1.184 1.132

Figure 4: Plots of the functional relations of ‘No Beard’ and ‘Wearing Lipstick’ on CELEBA dataset
estimated by ANOVA-N1ODE with and without the monotone constraint.

et al., 2015) dataset which has 40 binary attributes for each image. To apply ANOVA-NODE to
CELEBA dataset, we consider Concept Bottleneck Model (CBM, Koh et al. (2020)) similar to the
one used in Radenovic et al. (2022). In CBM, rather than directly inputting the embedding vector
derived from an image data through a CNN into a classifier, the CNN initially predicts each concept
accompanied with each image. Then, these predicted values of each concept are subsequently used
as the input of a DNN classifier. For our experiment, we use a pretrained ResNet18, where the last
layer consists of a linear transformation with a softmax activation function, and we replace the final
DNN classifier with ANOVA-NODE.

Among the attributes, we set ‘gender’ as the target label and the remaining attributes are set as
concepts for images. Since ‘male’ is labeled as 1 and ‘female’ as 0, a higher value of each component
results in a higher chance of being classified as ‘male’.

Figure 4 presents two functional relations of the main effects of the concepts ‘No Beard’ and ‘Wear-
ing Lipstick’, estimated on a randomly sampled training dataset with and without the monotone
constraint. Note that the functional relations are quite different even though their prediction per-
formances, which is given in Table 15 of Appendix E.1.2, are similar. It is a common sense that
an image having the concept of ‘No Beard’ and ‘Wearing Lipstick’ has a higher chance of being
a female and thus the functional relations are expected to be decrease. Figure 4 illustrates that a
completely opposite result to our common sense could be obtained in practice. Implications of the
opposite functional relations to interpretation of each image are discusses in Appendix E.1.2.

4.6 ADDITIONAL EXPERIMENTS

In Appendix L, we confirm that the component estimation of ANOVA-N2ODE becomes highly
unstable when the sum-to-zero condition is not imposed, and in Appendix M, we discuss a method
for enforcing the sum-to-zero condition after training NAM or NBM.

5 CONCLUSION

In this paper, we propose a novel XAI model called ANOVA-NODE for estimating the functional
ANOVA model stably based on Neural Oblivious Decision Tree (NODT). We theoretically demon-
strate that ANOVA-NODE can approximate a smooth function well. We also empirically show that
prediction performance of ANOVA-NODE is comparable to its competitors.

One way to make ANOVA-NODE computationally more efficient is to combine ANOVA-NODE
and NBM (Radenovic et al., 2022), which has significantly fewer weight parameters. We explored
this approach, and the algorithm and results of the experiment are given in Appendix G.2. Even
though this algorithm is computationally more efficient than ANOVA-NODE itself, analyzing high-
dimensional data is still computationally demanding due to too many components. In general,
scaling-up interpretable AI algorithms is a promising future research topic.
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Reproducibility Statement. The complete proofs of the theoretical results are presented thor-
oughly and rigorously in Appendix A. Details regarding the experimental implementation, datasets,
libraries, and hyper-parameters are outlined in Appendix C. Furthermore, the proposed ANOVA-
NODE in this paper is an ensemble of ANOVA-NODT, and Appendix B provides a detailed expla-
nation of ANOVA-NODT. Therefore, by referring to Appendix B, ANOVA-NODT can be imple-
mented for each component S, and the ensemble ANOVA-NODE can also be easily implemented.
Finally, We will provide the source code and make it open access by uploading it on the web after
acceptance.
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Supplementary material

Appendix

A PROOFS FOR THEORETICAL RESULTS

A.1 PROOF OF PROPOSITION 3.1

For a given function f , consider two component functions sets {f1
S , S ∈ S} and {f2

S , S ∈ S} such
that

f(x) =
∑
S∈S

f1
S(xS) =

∑
S∈S

f2
S(xS)

for every x ∈ X , where each component function satisfies the sum-to-zero condition (1).

For any S, V ∈ S such that S ̸= V , we have S\V ̸= ∅ or V \S ̸= ∅. Assume S\V ̸= ∅ without loss
of generality. For i1, i2 ∈ {1, 2} and s ∈ S\V , we get∫

X
f i1
S (XS)f

i2
V (XV )dΠ

p
j=1µj

=

∫
X[p]\{s}

[∫
Xs

f i1
S

(
xS\{j} = XS\{j},xS = XS

)
dµs

]
f i2
V (XV )dΠj ̸=sµj

= 0

by the sum-to-zero condition, and hence∫
X
(f1

S(XS)− f2
S(XS))(f

1
V (XV )− f2

V (XV ))dΠ
p
j=1µj = 0.

Then, we obtain∑
S∈S

∫
X
(f1

S(XS)− f2
S(XS))

2dΠp
j=1µj

=
∑
S∈S

∫
X
(f1

S(XS)− f2
S(XS))

2dΠp
j=1µj

+
∑

S,V ∈S,S ̸=V

∫
X
2(f1

S(XS)− f2
S(XS))(f

1
V (XV )− f2

V (XV ))dΠ
p
j=1µj

=

∫
X

[∑
S∈S

(
f1
S(XS)− f2

S(XS)
)]2

dΠp
j=1µj

=

∫
X
[f(X)− f(X)]

2
dΠp

j=1µj

= 0.

To sum up, we have f1
S(·) ≡ f2

S(·) almost everywhere for S ∈ S, which completes the proof.

□
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A.2 PROOF OF THEOREM 3.3

Challenging part of Theorem 3.3. The most important and challenging part of Theorem 3.3 is
decomposing the ensemble function fE , which approximates the true function well, into ANOVA-
NODTs.

Case of d = 1. It is enough to show that for every j ∈ [p], there exists a set of ANOVA-NODTs
{hS( · |ϕj,k)}KS

k=1 such that ∥∥∥∥∥g0,j(·)−
KS∑
k=1

hS(·|ϕj,k)

∥∥∥∥∥
∞

<
ϵ

p
.

We denote σ(x) := 1/(1 + exp(−x)) as the sigmoid function. We consider ν = 1 for simplicity,
which results in entmaxν((x, 0)

′) = σ(x). Also, we assume that µj for j ∈ [p] admits a density
with respect to Lebesgue measure which is bounded above and below. In cases where the density
does not exist, such as the empirical distribution, we can construct a K-equal-sized partition of Xj

and then handle regions with zero measure and non-zero measure separately, similar to the proof
described below.

Let 0 < pL < pR < ∞ be the lower and upper bound of the density of µj , respectively. Let
{Ωk}Kk=1 = {[χk−1, χk)}Kk=1 be a interval partition of Xj such that µj(Ωk) =

1
K . We have |χk −

χk−1| ≤ 1
pLK for k ∈ [K]. For γ = 1/K3, we define ℓk(·) as

ℓ1(x) = 1− σ

(
x− χ1

γ

)
,

ℓk(x) = σ

(
x− χk−1

γ

)
− σ

(
x− χk

γ

)
, k ∈ {2, . . . ,K − 1}

ℓK(x) = σ

(
x− χK−1

γ

)
.

Note that for every x ∈ Xj ,
∑K

k=1 ℓk(x) = 1 and 0 ≤ ℓk(·) ≤ 1 holds for every k ∈ [K]. Also,
{ℓk}Kk=1 have the following properties.

Lemma A.1. For any k ∈ [K], we have

EXj [ℓk(Xj)I(Xj /∈ Ωk)] <
3pU
K2

and

EXj
[ℓk(Xj)I(Xj ∈ Ωk)] >

1

3K
.

The proof of Lemma A.1 is provided in Section A.3. Now, we consider the ensemble function

fE(x) =

K∑
k=1

δkℓk(x),

where δk is defined as

δk =
EXj

[ℓk(Xj)g0(Xj)]

EXj [ℓk(Xj)]
.
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For any x ∈ Xj , we have∣∣∣∣g0(x)− fE(x)

∣∣∣∣ = ∣∣∣∣g0(x)− K∑
k=1

δkℓk(x)

∣∣∣∣
=

∣∣∣∣ K∑
k=1

(g0(x)− δk)ℓk(x)

∣∣∣∣
≤

K∑
k=1

|g0(x)− δk|ℓk(x)

=

K∑
k=1

∣∣∣∣g0(x)− EXj [ℓk(Xj)g0(Xj)]

EXj
[ℓk(Xj)]

∣∣∣∣ℓk(x)
=

K∑
k=1

∣∣∣∣EXj
[ℓk(Xj)g0(x)]− EXj

[g0(Xj)ℓk(Xj)]

EXj
[ℓk(Xj)]

∣∣∣∣ℓk(x)
≤ L

K∑
k=1

∣∣∣∣EXj
[ℓk(Xj)|x−Xj |]
EXj [ℓk(Xj)]

∣∣∣∣ℓk(x). (3)

Let r ∈ [K] is the index of partition such that x ∈ [χr−1, χr). For k ∈ {r − 1, r, r + 1}, we have

EXj
[ℓk(Xj)|x−Xj |]
EXj [ℓk(Xj)]

≤
EXj

[ℓk(Xj)|x−Xj |I(Xj ∈ Ωk)]

EXj [ℓk(Xj)I(Xj ∈ Ωk)]
+

EXj
[ℓk(Xj)|x−Xj |I(Xj /∈ Ωk)]

EXj [ℓk(Xj)I(Xj ∈ Ωk)]

≤
EXj

[ℓk(Xj)(
2

pLK )I(Xj ∈ Ωk)]

EXj [ℓk(Xj)I(Xj ∈ Ωk)]
+

2a · EXj
[ℓk(Xj)I(Xj /∈ Ωk)]

EXj [ℓk(Xj)I(Xj ∈ Ωk)]

≤ 2

pLK
+

12aCmax

K

≤C ′

K
,

for some constant C ′ > 0, where the third inequality holds by Lemma A.1. For k ≤ r − 2, we have
x ≥ χr−1 and χk ≤ χr−2 and hence

|ℓk(x)| ≤1− σ

(
x− χk

γ

)
≤1− σ

(
χr−1 − χr−2

γ

)
<

1

1 + exp(K)
.

Also, for k ≥ r + 2, we have x ≤ χr and χk−1 ≥ χr+1 and hence

|ℓk(x)| ≤σ

(
x− χk−1

γ

)
≤σ

(
χr − χr+1

γ

)
<

1

1 + exp(K)
.

To sum up, we get

|g0(x)− fE(x)| ≤(3)

≤L

(
C ′

K
+

K − 1

1 + exp(K)

)
.
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Now, for fE(x) =
∑K

k=1 δkℓk(x), our goal is to show that there exists a set of ANOVA-NODTs
{hS( · |ϕj,k)}KS

k=1 such that
KS∑
j=1

hS(x|ϕS,j) = fE(x)

for every x ∈ Xj . To derive the result, we use the following lemma.
Lemma A.2. For every T ∈ {2, . . . ,K}, we define

ℓ1,T (x) = 1− σ

(
x− χ1

γ

)
,

ℓt,T (x) = σ

(
x− χt−1

γ

)
− σ

(
x− χt

γ

)
, t ∈ {2, . . . , T − 1}

ℓT,T (x) = σ

(
x− χT−1

γ

)
.

Then, for any given T ∈ {3, . . . ,K} and for any ρ1, . . . , ρT satisfying

EXj

[
T∑

t=1

ρtℓt,T (Xj)

]
= 0, (4)

there exist κ1, . . . , κT−1, η and τ such that
T∑

t=1

ρtℓt,T (x) =

T−1∑
t=1

κtℓt,T−1(x) + [η · c1(x|χT−1, γ) + τ · c2(x|χT−1, γ)] , (5)

EXj

[
T−1∑
t=1

κtℓt,T−1(Xj)

]
= 0, EXj

[η · c1(Xj |χT−1, γ) + τ · c2(Xj |χT−1, γ)] = 0. (6)

The proof of Lemma A.2 is provided in Section A.3. Since

EXj
[fE(Xj)] = EXj

[
K∑

k=1

δkℓk(Xj)

]

=

K∑
k=1

EXj
[ℓk(Xj)g0(Xj)]

EXj
[ℓk(Xj)]

EXj [ℓk(Xj)]

=

K∑
k=1

EXj
[ℓk(Xj)g0(Xj)]

= EXj

[ K∑
k=1

ℓk(Xj)g0(Xj)

]
= EXj [g0(Xj)]

= 0,

we can decompose fE(x) using Lemma A.2 by numerical induction. Note that ρ1ℓ1,2(·) + ρ2ℓ1,2(·)
with EXj

[ρ1ℓ2,2(Xj) + ρ2ℓ1,2(Xj)] = 0 is an ANOVA-NODT and for k ∈ {2, . . . ,K},
η · c1(·|χT−1, γ) + τ · c2(·|χT−1, γ) with EXj

[η · c1(Xj |χT−1, γ) + τ · c2(Xj |χT−1, γ)] is also
an ANOVA-NODT. Hence, we can find a set of ANOVA-NODTs {hS( · |ϕj,k)}KS

k=1 such that∥∥∥∥∥g0,j −
KS∑
k=1

hS(x|ϕj,k) = fE(x)

∥∥∥∥∥
∞

< L

(
C ′

K
+

K − 1

1 + exp(K)

)
.

By choosing sufficiently large K, we obtain the assertion.

□
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A.3 PROOFS FOR AUXILIARY LEMMAS

Lemma A.1. For x ≤ χk−1 − 1
K2 , we have

|ℓk(x)| ≤σ

(
x− χk−1

γ

)
≤σ

(
− 1

K2γ

)
=

1

1 + exp(K)
.

Also, for x ≥ χk + 1
K2 , we have

|ℓk(x)| ≤1− σ

(
x− χk

γ

)
≤1− σ

(
1

K2γ

)
=

1

1 + exp(K)
.

Hence, we obtain

EXj [ℓk(Xj)I(Xj /∈ Ωk)] ≤P
(
Xj ∈

(
χk−1 −

1

K2
, χk−1

)
∪
(
χk, χk +

1

K2

))
+

1

1 + exp(K)

<
3pU
K2

.

Also, for x ∈
[
χk−1 +

1
K2 , χk − 1

K2

]
, we have

ℓk(x) ≥σ

(
x− χk−1

γ

)
− σ

(
x− χk

γ

)
≥σ(K)− σ(−K)

>
1

2

for sufficiently large K. Hence, we obtain

EXj
[ℓk(Xj)I(Xj ∈ Ωk)] >P

(
Xj ∈

[
χk−1 +

1

K2
, χk − 1

K2

])
· 1
2

>
1

3K
.

Lemma A.2. We define

η := −EXj
[ℓT,T (Xj)](ρT − ρT−1),

τ :=

T−1∑
t=1

EXj
[ℓt,T (Xj)](ρT − ρT−1),

κt := ρt − η, t ∈ [T − 1].
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Then, we obtain (5) by

T−1∑
t=1

κtℓt,T−1(x) + [η · c1(x|χT−1, γ) + τ · c2(x|χT−1, γ)]

=

T−2∑
t=1

(ρt − η)ℓt,T (x) + (ρT−1 − η) · σ
(
x− χT−2

γ

)
+ (τ − η) · σ

(
x− χT−1

γ

)
+ η

=

T−2∑
t=1

(ρt − η)ℓt,T (x) + (ρT−1 − η) ·
(
σ

(
x− χT−2

γ

)
− σ

(
x− χT−1

γ

))
+ (ρT−1 − η) · σ

(
x− χT−1

γ

)
+ (ρT − ρT−1) · σ

(
x− χT−1

γ

)
+ η

=

T−1∑
t=1

(ρt − η)ℓt,T (x) + (ρT − η) · σ
(
x− χT−1

γ

)
+ η

=

T∑
t=1

(ρt − η)ℓt,T (x) + η

=

T∑
t=1

ρtℓt,T (x),

where the second equality holds by

τ − η =

T∑
t=1

EXj
[ct(Xj)](ρT − ρT−1) = ρT − ρT−1.

Also, since we have

EXj
[η · c1(x|χT−1, γ) + τ · c2(x|χT−1, γ)]

= η ·
(
1− EXj

[ℓT,T (Xj)]
)
+ τ · EXj

[ℓT,T (Xj)]

= η + EXj
[ℓT,T (Xj)](τ − η)

= −EXj [ℓT,T (Xj)](ρT − ρT−1) + EXj [ℓT,T (Xj)](ρT − ρT−1)

= 0,

we obtain (6) by (4) and (5).
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Case of d = 2. The proof for the case of d = 2 is too complex to express by mathematical
notation, so we explain the process of decomposing the ensemble function fE into ANOVA-NODTs,
which is the most important part of Theorem 3.3, using a top example. Consider the ensemble
function fE(x1, x2) which is defined as below, with 9 height parameters: We explain the process of
decomposing fE into 4 ANOVA-NODTs in 2 steps.

fE(x1, x2) = β11

(
1 − σ

(
x1 − b11

γ11

))(
1 − σ

(
x2 − b12

γ12

))
+ β21

(
σ

(
x1 − b11

γ11

)
− σ

(
x1 − b21

γ21

))(
1 − σ

(
x2 − b12

γ12

))
+ β31σ

(
x1 − b21

γ21

)(
1 − σ

(
x2 − b12

γ12

))
+ β12

(
1 − σ

(
x1 − b11

γ11

))(
σ

(
x2 − b12

γ12

)
− σ

(
x2 − b22

γ22

))
+ β22

(
σ

(
x1 − b11

γ11

)
− σ

(
x1 − b21

γ21

))(
σ

(
x2 − b12

γ12

)
− σ

(
x2 − b22

γ22

))
+ β32σ

(
x1 − b21

γ21

)(
σ

(
x2 − b12

γ12

)
− σ

(
x2 − b22

γ22

))
+ β13

(
1 − σ

(
x1 − b11

γ11

))
σ

(
x2 − b22

γ22

)
+ β23

(
σ

(
x1 − b11

γ11

)
− σ

(
x1 − b21

γ21

))
σ

(
x2 − b22

γ22

)
+ β33σ

(
x1 − b21

γ21

)
σ

(
x2 − b22

γ22

)

Figure 5: Decomposition fE into f1 and f2. Each cell represents the support created by
{b12, b22, b12, b21} and βij is the height parameter corresponding to each cell.

Step 1) Decomposition of fE . As shown in Figure 5, fE can be decomposed into f1 and f2 which
satisfy the sum-to-zero condition, and f1 and f2 are defined as

f1(x1, x2) = (β11 − α1)

(
1 − σ

(
x1 − b11

γ11

))(
1 − σ

(
x2 − b12

γ12

))
+ η1σ

(
x1 − b11

γ11

)(
1 − σ

(
x2 − b12

γ12

))
+ (β12 − α2)

(
1 − σ

(
x1 − b11

γ11

))(
σ

(
x2 − b12

γ12

)
− σ

(
x2 − b22

γ22

))
+ η2σ

(
x1 − b11

γ11

)(
σ

(
x2 − b12

γ12

)
− σ

(
x2 − b22

γ22

))
+ (β13 − α3)

(
1 − σ

(
x1 − b11

γ11

))
σ

(
x2 − b22

γ22

)
+ η3σ

(
x1 − b11

γ11

)
σ

(
x2 − b22

γ22

)
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and

f2(x1, x2) = α1

(
1 − σ

(
x1 − b21

γ21

))(
1 − σ

(
x2 − b12

γ12

))
+ ϕ1σ

(
x1 − b21

γ21

)(
1 − σ

(
x2 − b12

γ12

))
+ α2

(
1 − σ

(
x1 − b21

γ21

))(
σ

(
x2 − b12

γ12

)
− σ

(
x2 − b22

γ22

))
+ ϕ2σ

(
x1 − b21

γ21

)(
σ

(
x2 − b12

γ12

)
− σ

(
x2 − b22

γ22

))
+ α3

(
1 − σ

(
x1 − b21

γ21

))
σ

(
x2 − b22

γ22

)
+ ϕ3σ

(
x1 − b21

γ21

)
σ

(
x2 − b22

γ22

)

where αi = −(β3i−β2i)E
[
σ

(
X1−b21

γ21

)]
, ϕi = (β3i−β2i)E

[
1−σ

(
X1−b21

γ21

)]
and ηi = β2i−αi

for i = 1, 2, 3. It is easy to check that f1 and f2 satisfy the sum-to-zero condition.

Figure 6: Decomposition f2 into f21 and f22. Each cell represents the support created by
{b12, b22, b21} and βij is the height parameter corresponding to each cell.

Step 2) Decomposition of f2. Similar to step 1, f2 can be decomposed into f22 and f12, as de-
scribed in Figure 6. Note that f22 and f12 are ANOVA-NODTs which are defined as

f21(x1, x2) = τ11

(
1 − σ

(
x1 − b21

γ21

))(
1 − σ

(
x2 − b22

γ22

))
+ τ21σ

(
x1 − b21

γ21

)(
1 − σ

(
x2 − b22

γ22

))
+ τ12

(
1 − σ

(
x1 − b21

γ21

))
σ

(
x2 − b22

γ22

)
+ τ22σ

(
x1 − b21

γ21

)
σ

(
x2 − b22

γ22

)

where τ11 = −E
[
σ

(
X2−b22

γ22

)]
(α3−α2) and τ12, τ21, τ22 are uniquely determined by sum-to-zero

condition, and

f22(x1, x2) = h11

(
1 − σ

(
x1 − b21

γ21

))(
1 − σ

(
x2 − b12

γ12

))
+ h21σ

(
x1 − b21

γ21

)(
1 − σ

(
x2 − b12

γ12

))
+ h12

(
1 − σ

(
x1 − b21

γ21

))
σ

(
x2 − b12

γ12

)
+ h22σ

(
x1 − b21

γ21

)
σ

(
x2 − b12

γ12

)
where h11 = α1 − τ11 and h12, h21, h22 are uniquely determined by sum-to-zero condition. Also,

another function f1 can be decomposed into two ANOVA-NODTs in the same way as f2 is decom-
posed.

Case of d ≥ 3. Similar to the toy example at d = 2, the ensemble function fE can also be
decomposed into ANOVA-NODTs when d ≥ 3.
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B DETAILS FOR ANOVA-NODT

In this section, we describes the specific form of ANOVA-NODT hS for S ⊆ [p].

B.1 ANOVA-NODT FOR THE MAIN EFFECT.

Without loss of generality, we assumes that S = {i}. We can express ANOVA-NODT as:

hi(xi) = β1,ic1(xi|b1,i, γ1,i) + β2,ic2(xi|b1,i, γ1,i), (7)

where (β1,i, β2,i)
′ are the height parameters of the terminal nodes,

c1(x|b1,i, γ1,i) = 1− entmaxν

((
x− b1,i
γ1,i

, 0

)′)
1

.

c2(x|b1,i, γ1,i) = 1− c1(x|b1,i, γ1,i)
and b1,i and γ1,i are learnable parameters. To satisfy the sum-to-zero condition, we require

E[hi(Xi)] = β1,iE[c1(Xi|b1,i, γ1,i)] + β2,iE[c2(Xi|b1,i, γ1,i)]
= 0

Without loss of generality, for a given θi ∈ R, let β1,i = θi. Then, we have β2,i = −I
(b1,i,γ1,i)
1,i θi,

where I
(b1,i,γ1,i)
1,i = −E[c1(Xi|b1,i,γ1,i)]

E[c2(Xi|b1,i,γ1,i)]
.

Therefore, the equation (7) is expressed as

hi(xi) = θic1(xi|b1,i, γ1,i) + θiI
(b1,i,γ1,i)
1,i c2(xi|b1,i, γ1,i),

where θi, b1,i and γ1,i are learnable free parameters.

Monotone constraint. c1(xi|b1,i, γ1,i) is a decreasing function with respect to xi, and accord-
ingly, c2(xi|b1,i, γ1,i) is an increasing function with respect to xi. Therefore, if θi is greater than 0,
then hi(xi) becomes a decreasing function with respect to xi since I

(b1,i,γ1,i)
1,i is always less than 0.

B.2 ANOVA-NODT FOR SECOND ORDER INTERACTION.

Without loss of generality, we consider the component S = {i, k}. For simplicity, we denote
ch(xi|bz,(i,k), γz,(i,k)) as ch,z(xi). Then, for the component S, ANOVA-NODT can be expressed
as:

h(i,k)(xi, xk) = β(1,1)′,(i,k)c1,1(xi)c1,2(xk)

+ β(1,2)′,(i,k)c1,1(xi)c2,2(xk)

+ β(2,1)′,(i,k)c2,1(xi)c1,2(xk)

+ β(2,2)′,(i,k)c2,1(xi)c2,2(xk),

where (β(1,1)′,(i,k), β(1,2)′,(i,k), β(2,1)′,(i,k), β(2,2)′,(i,k)) are the height parameter vector of the ter-
minal nodes and

c1,t(x) = 1− entmaxν

((
x− bt,(i,k)

γt,(i,k)
, 0

)′)
1

c2,t(x) = 1− c1,t(x)

for t = 1, 2. To satisfy sum-to-zero condition, hi,k has to meet the followings: for xk ∈ Xk,

E[h(i,k)(Xi, xk)] = β(1,1)′,(i,k)c1,2(xk)E[c1,1(Xi)]

+ β(1,2)′,(i,k)c2,2(xk)E[c1,1(Xi)]

+ β(2,1)′,(i,k)c1,2(xk)E[c2,1(Xi)]

+ β(2,2)′,(i,k)c2,2(xk)E[c2,1(Xi)]

= 0
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and for xi ∈ Xi,

E[h(i,k)(xi, Xk)] = β(1,1)′,(i,k)c1,1(xi)E[c1,2(Xk)]

+ β(1,2)′,(i,k)c1,1(xi)E[c2,2(Xk)]

+ β(2,1)′,(i,k)c2,1(xi)E[c1,2(Xk)]

+ β(2,2)′,(i,k)c2,1(xi)E[c2,2(Xk)]

= 0.

The following conditions are a rephrase of the above conditions:

β(1,1)′,(i,k)E[c1,1(Xi)] + β(2,1)′,(i,k)E[c2,1(Xi)] = 0

β(1,2)′,(i,k)E[c1,1(Xi)] + β(2,2)′,(i,k)E[c2,1(Xi)] = 0

β(1,1)′,(i,k)E[c1,2(Xk)] + β(1,2)′,(i,k)E[c2,2(Xk)] = 0

β(2,1)′,(i,k)E[c1,2(Xk)] + β(2,2)′,(i,k)E[c2,2(Xk)] = 0

For θi,k ∈ R, let β(1,1)′,(i,k) = θi,k. Then, ANOVA-NODT h(i,k)(xi, xk) can be expressed as

h(i,k)(xi, xk) = θi,kc1,1(xi)c1,2(xk)

+ θi,kI1,(i,k)c1,1(xi)c2,2(xk)

+ θi,kI2,(i,k)c2,1(xi)c1,2(xk)

+ θi,kI3,(i,k)c2,1(xi)c2,2(xk)

where

I1,(i,k) = −E[c1,2(Xk)]

E[c2,2(Xk)]

I2,(i,k) = −E[c1,1(Xi)]

E[c2,1(Xi)]

I3,(i,k) = I1,(i,k)I2,(i,k).

and θi,k as well as b1,(i,k), γ1,(i,k) and b2,(i,k), γ2,(i,k) are learnable free parameters.
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C DETAILS OF THE EXPERIMENTS

All models except XGB were trained via Adam optimizer. Likewise in Popov et al. (2019), we set
ν = 1.5 for entmaxν in all the experiments. All experiments are run with RTX 3090, RTX 4090,
and 24GB memory.

C.1 DETAILS FOR SYNTHETIC DATASETS

Table 6: Test suite of synthetic functions.

f (1) Y = 10X1 + 10X2 + 20(X3 − 0.3)(X3 − 0.6) + 20X4 + 5X5 + 10 sin(πX1X2) + ϵ

f (2) Y = πX1X2
√
2X3 − sin−1(X4) + log(X3 +X5)− X9

X10

√
X7
X8

−X2X7 + ϵ

f (3) Y = exp |X1 −X2|+ |X2X3| −X
2|X4|
3 + log(X2

4 +X2
5 +X2

7 +X2
8 ) +X9 + 1

1+X2
10

+ ϵ

Table 7: Distribution of input features in synthetic functions.

f (1) X1, X2, X3, X4, X5 ∼iid U(0, 1)

f (2) X1, X2, X3, X6, X7, X9 ∼iid U(0, 1) and X4, X5, X8, X10 ∼iid U(0.6, 1).

f (3) X1, X2, X3, X4, X5, X6, X7, X8, X9, X10 ∼iid U(−1, 1)

The synthetic function f (1) is a slightly modified version of Friedman’s synthetic function used in
Chipman et al. (2010). f (2) and f (3) are taken from the synthetic functions used in the interaction
detection experiments in Tsang et al. (2017). We generate 15K data samples from the distribution in
the Table 7 and functions in the Table 6. Also, we divide them into train, validation and test datasets
with ratio 0.7, 0.1 and 0.2, respectively. For all of the synthetic functions, the number of trees for
component S, KS , is set to 30.

C.2 DETAILS OF THE EXPERIMENTS WITH REAL DATASETS.

Table 8: Descriptions of real datasets.

Dataset Size Number of features Problem Number of Class

CALHOUSING 21k 8 Regression -
WINE 4k 11 Regression -

ONLINE 40k 58 Regression -
ABALONE 4k 10 Regression -

FICO 10k 23 Classification 2
CHURN 7k 39 Classification 2
CREDIT 284k 30 Classification 2
LETTER 20k 16 Classification 2

DRYBEAN 13k 16 Classification 7

MICROSOFT 960k 136 Regression -
YAHOO 700k 699 Regression -

MADELON 2.6k 500 Classification 2

CELEBA 200K Classification 2
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Table 9: KS in ANOVA-N1ODE and ANOVA-N2ODE
Dataset ANOVA-N1ODE ANOVA-N2ODE

CALHOUSING 10 10
WINE 100 10

ONLINE 10 10
ABALONE 50 10

FICO 30 30
CHURN 10 10
CREDIT 10 5
LETTER 50 10

DRYBEAN 50 100
MICROSOFT 10 10

YAHOO 10 10
MADELON 10 40

Implementation of baseline model. We conduct experiments for all baseline models (NAM,
NBM, NODE-GAM, NODE) using the official source code. For XGB, we utilize the xgboost pack-
age (Chen & Guestrin, 2016) for our experiments.

Data descriptions. Table 8 summarizes the descriptions of 9 real datasets we analyze in the nu-
merical studies.

Data preprocessing. Minimax scaling is applied to NAM and NBM, while standard scaling was
used for NODE-GAM, NODE, and XGB. For ANOVA-NODE, transformation using quantiles of a
uniform distribution is performed to satisfy sum-to-zero condition stably during training. Addition-
ally, all categorical features is encoded using one-hot encoding.

Learning rate. For all models except XGB, we set the learning rate of Adam optimizer as 5e-3
and batch size is 4096. We find the optimal learning rate of XGB via grid search.

Model hyperparameters. Table 9 presents the number of NODTs KS used in ANOVA-N1ODE
and ANOVA-N2ODE for real datasets. In NA1M, the dimensions of the hidden layers of each com-
ponent consists of [64,32,16] for MICROSOFT, YAHOO and MADELON, and [64,64,32] for other
datasets. In NA2M, the hidden layers consist of [64,32,16] for the ONLINE, CREDIT and DRYBEAN
datasets, [64,16,8] for MICROSOFT, YAHOO and MADELON, and [64,64,32] for the other datasets.

For XGB, NODE, and NODE-GAM, we randomly split the train, validation and test data into the
ratio 70/10/20 and evaluated its performance on the validation dataset using the model trained on the
train dataset. We repeated this process 10 times with randomly split data, resulting in 10 prediction
performance values for the validation datasets. Then, we selected the optimal hyper-parameters by
the grid search based on the average of the prediction performance values for the validation datasets.

Finally, with the optimal hyper-parameters selected earlier, we fixed the model’s hyper-parameters
and used the 10 train-test dataset pairs obtained from the previous data splitting to train the model
on the train datasets and evaluate its performance on the test datasets.

For XGB, the range of hyper-parameters for the grid search is as below.

• The number of tree : {50,100,200,300,400,500,600,700,800,900,1000}
• max depth : {3 , 5 , 7}
• learning rate : {0.0001, 0.005, 0.01, 0.05 , 0.1}

For NODE, NODE-GA1M and NODE-GA2M, the range of hyper-parameters for the grid search is
as below.

• The number of layer : {2, 4, 8}
• tree depth : {6, 8}
• The number of trees in each layer : {256, 512}
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Selected components by NID for high-dimensional datasets. Table 10 presents the number of
components used in training ANOVA-N2ODE and baseline models. All main effects are used, and
the second order interactions are selected using NID (Tsang et al., 2017). For MICROSOFT, 300
second order interactions are used; 500 for YAHOO, 500; and 300 for MADELON.

Table 10: The number of components used in training ANOVA-N2ODE, NA2M, and NB2M.
Dataset MICROSOFT YAHOO MADELON

# of selected components 136(Main) + 300(2nd) 699(Main) + 500(2nd) 500(Main) + 300(2nd)

C.3 EXPERIMENT DETAILS FOR IMAGE DATASET.

For CELEBA image dataset, we use the joint bottleneck model in Koh et al. (2020). The main idea
of the joint bottleneck model (Koh et al., 2020) is not to directly input the embedding vector derived
from image data through a CNN into a classifier for classification. Instead, CNN predicts given
concepts (attributes) for the image, and the predicted values for these concepts are then used as an
input of classifier. In Koh et al. (2020), they used DNN as a classifier which is a black box model.
In this paper, we replace DNN with ANOVA-NODE, NAM, NBM and NODE-GAM. For CNN, we
linear heads on the bottom of the pretrained ResNet18.

All models are trained via the Adam optimizer with a 1e-3 learning rate and the batch size for
training is 256. In ANOVA-N1ODE and ANOVA-N2ODE, KS is set to 10 and 3, respectively. In
NA1M and NA2M, we use a neural network consisting of 3 hidden layer with sizes (64, 16,8) and
(64,4,2), respectively. In NB1M and NB2M, we use 100 basis neural networks consisting of 3 hidden
layer with sizes (256,128,128) and (128,64,64) for the basis model, respectively. Also, for NODE-
GA1M and NODE-GA2M, the number of trees is set to 125 and 50, respectively, and the depth and
the number of layers are set to be 6 and 4, respectively.
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D ABLATION STUDIES.

D.1 THE CHOICE OF THE NUMBER OF TREES IN ANOVA-NODE.

Table 11 presents the averages and standard deviations of prediction performance of ANOVA-NODE
based on 10 randomly sampled data of ABALONE datasets for various values of the number of trees
KS . We observe that KS around 50 yields the best results for ANOVA-N1ODE and KS around 10
for ANOVA-N2ODE. We report that similar results are obtained for other datasets.

Table 11: Results of prediction performance for various numbers of trees.
The number of trees for each component 1 5 10 50 100

ANOVA-N1ODE 2.176 (0.09) 2.163 (0.08) 2.160 (0.09) 2.135 (0.09) 2.159 (0.08)
ANOVA-N2ODE 2.103 (0.08) 2.102 (0.08) 2.087 (0.08) 2.105 (0.08) 2.122 (0.08)

D.2 IMPACT OF THE INITIAL VALUES OF MODEL PARAMETERS TO STABILITY

We investigate how the choice of initial values of the model parameters affects the stability of the es-
timated components by ANOVA-NODE, NAM and NBM by analyzing a synthetic dataset generated
from f (1).

We conducted 5 trials on the same train/test/validation dataset, and the results are presented in Figure
7 ,8 and 9. We observe that NA2M and NB2M frequently estimate the true function inaccurately.
In contrast, ANOVA-N2ODE consistently estimates the components accurately regardless of the
choice of the initial values.

Figure 7: Plots of the functional relations of the main effects in ANOVA-N2ODE on synthetic datasets
generated from f (1).
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Figure 8: Plots of the functional relations of the main effects in NA2M on synthetic datasets generated
from f (1).

Figure 9: Plots of the functional relations of the main effects in NB2M on synthetic datasets generated
from f (1).
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E ILLUSTRATION OF INTERPRETABILITY OF ANOVA-NODE.

E.1 ILLUSTRATION OF INTERPRETABILITY

We consider the two concepts of interpretation: Local and Global which are roughly defined as:

Local Interpretation: Information about how each feature of a given datum affects the prediction.
SHAP is a notable example of local interpretation. For the functional ANOVA model, the predictive
values of each component at a given datum would be considered as local interpretation.

Global Interpretation: Information about how each feature is related to the final prediction
model. The importance scores of each feature (e.g. global SHAP (Molnar, 2020)) and the func-
tional relations between each feature and the prediction model (e.g. the dependency plot of SHAP
(Molnar, 2020) are examples of global interpretation. For the functional ANOVA model, the im-
portance score, which can be defined as the l1 norm of the corresponding component as is done in
Section 4.2, and the functional relation identified by the functional form of each component are two
tools for global interpretation.

E.1.1 ILLUSTRATION OF INTERPRETABILITY ON CALHOUSING DATASET.

Table 12: Feature descriptions of CALHOUSING dataset.
Feature name Index Description Feature type

MedInc 1 Median income in block Numerical
HouseAge 2 Median house age in block Numerical
AveRooms 3 Average number of rooms Numerical
AveBedrms 4 Average number of bedrooms Numerical
Population 5 Population in block Numerical
AveOccup 6 Average house occupancy Numerical
Latitude 7 Latitude of house block Numerical

Longitude 8 Longitude of house block Numerical

Local Interpretation on CALHOUSING dataset. We conduct an experiment on CALHOUSING
(Pedregosa et al., 2011a) dataset to illustrate local interpretation of ANOVA-N1ODE. Note that
ANOVA-N1ODE is given as

f̂ANOVA-N1ODE(x) =

8∑
j=1

f̂j(xj).

Thus, it is reasonable to treat f̂j(xj) as the contribution of xj to f̂(x). In fact, we have seen in
Section 3.1 that this contribution is equal to SHAP (Lundberg, 2017). As an illustration, for a given
datum

x = (−0.2378,−0.4450, 0.0036,−0.1531, 0.3814,−0.067, 0.5541,−0.1111)⊤,

the contributions of each feature to f̂(x) are

(f̂1, ..., f̂8) = (−4.9900, 0.3278,−0.0456, 0.4432,−0.1730, 2.7521,−11.6190, 6.5184).

That is, the 7th variable contributes most to the prediction value of f̂(x), which can be interpreted
as ‘the housing price is low because the latitude is not good’.

Global Interpretation on CALHOUSING dataset. Figure 10 and Table 13 present the functional
relations of each input feature to the prediction model learned by ANOVA-NO1DE and their impor-
tance scores. From these results, we can see that the location is the most important features and the
housing price on the south-west area is the most expensive.

Table 14 describes the 10 most important components with descending order of the importance
scores of ANOVA-NO2DE normalized by the maximum importance score. The results are bit differ-
ent from those of ANOVA-NO1DE. In particular, the interaction between ‘latitude’ and ‘longitude’
emerges as a new important feature while the main effects of ‘latitude’ and ‘longitude’ become less
important.
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Figure 10: Plots of the functional relations of the main effects in ANOVA-N1ODE on CALHOUSING
dataset.

Figure 11: Contour plots of the functional relations of the interactions in ANOVA-N2ODE on CALHOUS-
ING dataset.

Table 13: Importance scores of ANOVA-N1ODE on CALHOUSING dataset.
Feature index 7 8 1 6 3 2 4 5

Importance score 1.000 0.906 0.564 0.284 0.107 0.093 0.057 0.049

Table 14: Importance scores of ANOVA-N2ODE on CALHOUSING dataset.
Feature index 6 (7,8) (1,7) (3,8) 7 (1,8) (4,8) (2,7) (1,5) 8

Importance score 1.000 0.347 0.324 0.268 0.258 0.247 0.212 0.194 0.193 0.178

E.1.2 INTERPRETABILITY AND PREDICTION PERFORMANCE ON CELEBA DATASET.

Prediction performance with and without the monotone constraint. Table 15 presents the pre-
diction performances of two estimates of ANOVA-NODE with and without monotone constraint.
Prediction performances are similar regardless of the monotone constraint but interpretation of the
estimated model can be quite different which is discussed in the followings.

Global interpretation on CELEBA dataset. Table 16 gives the the importance scores (normalized
by of the maximum important score) of 3 components obtained by ANOVA-N1ODE on a randomly
sampled data from CELEBA dataset.

Local interpretation on CELEBA dataset. In Table 17, we observe that Image 2-1 of Figure 12
is correctly classified when the monotone constraint is applied, whereas it is misclassified without
the monotone constraint. Despite Image 2-1 of Figure 12 having ‘No Beard’, ‘Heavy Makeup’, and
‘Wearing Lipstick’, the scores for these features makes the probability of male increase. However,
ANOVA-N1ODE with the monotone constraint does not provide these unreasonable interpretations
and classifies the image correctly.

In Image 2-2 of Figure 12, we observe that ANOVA-N1ODE with the monotone condition assigns
a negative score to ‘No Beard’ that increases the probability of being classified as female. How-
ever, ANOVA-N1ODE without the monotone condition assigns a positive score to ‘No Beard’ that
increases the probability of being classified as male, even though ‘No Beard’ is present.

Note that we can understand why ANOVA-N1ODE with the monotone constraint classifies Image
2-2 of Figure 12 incorrectly because there is no bear in the image. In contrast, it is not easy to
understand why ANOVA-N1ODE without the monotone constraint classifies Image 2-1 of Figure
12 incorrectly. That is, imposing the monotone constraint is helpful to learn more reasonably inter-
pretable models.
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Table 15: Results of prediction performance of ANOVA-NODE with and without the monotone con-
straint.

Measure ANOVA-N1ODE ANOVA-N2ODE
Without Monotone constraint Accuracy ↑ 0.985 (0.001) 0.986 (0.001)

With Monotone constraint Accuracy ↑ 0.984 (0.001) 0.985 (0.001)

Comparison with baseline models in terms of prediction performance. In Table 18, we ob-
serve that the prediction performances of ANOVA-N1ODE and ANOVA-N2ODE are comparable or
superior to their competitors.

Attributes to which monotone constraints are applied. For attributes ‘Bald’, ‘Big Nose’, ‘Goa-
tee’ and ‘Mustache’, we apply the increasing monotone constraint, while for attributes ‘Arched Eye-
brows’, ‘Attractive’, ‘Heavy Makeup’, ‘No Beard’, ‘Wearing Earrings’, ‘Wearing Lipstick’, ‘Wear-
ing Necklace’, ‘Wearing Necktie’, we used the decreasing monotone constraint.

Table 16: Importance scores for the 3 important components.
Components Monotone No Beard Wearing Lipstick Heavy Makeup

Score X 0.794 0.465 0.210
Score O 0.757 0.738 0.227

Table 17: Results of local interpretation with and without the monotone constraint.
Image index Monotone Heavy Makeup No beard Wearing Lipstick classified label True label

2-1 X 0.030 0.035 0.093 male female
2-1 O -0.080 -0.161 -0.106 female female
2-2 X 0.036 0.104 0.095 male male
2-2 O -0.081 -0.183 -0.106 female male

Figure 12: Misclassified two images.

Table 18: Accuracies (standard deviations) on CELEBA dataset.
ANOVA-N1ODE NODE-GA1M NA1M NB1M ANOVA-N2ODE NODE-GA2M NA2M NB2M

0.985 (0.001) 0.981 (0.006) 0.982 (0.002) 0.980 (0.002) 0.986 (0.001) 0.981 (0.006) 0.986 (0.001) 0.980 (0.002)
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F ADDITIONAL EXPERIMENTS FOR THE STABILITY OF ANOVA-NODE.

F.1 STABILITY OF THE ESTIMATED COMPONENTS ON VARIATIONS OF TRAINING DATA

We investigate the stability of components estimated by ANOVA-N1ODE and ANOVA-N2ODE
when training data vary. We use CALHOUSING (Pedregosa et al., 2011a) and WINE (Cortez et al.,
2009) datasets and compare ANOVA-NODE with NAM and NBM.

Experiment for CALHOUSING dataset. Figures 13, 14 and 15 present the plots of the functional
relations of the main effects estimated by ANOVA-N1ODE, NA1M, and NB1M for 5 randomly sam-
pled training datasets. Figures 13, 14 and 15 present the plots of the functional relations of the main
effects estimated by ANOVA-N2ODE, NA2M, and NB2M for 5 randomly sampled training datasets.
We observe that the 5 main components estimated by ANOVA-N1ODE and ANOVA-N2ODE are
relatively much more stable compared to NAM and NBM. Note that as seen in Figure 17, we ob-
serve that in NA2M, some components are estimated as a constant function, which would be partly
because the main effects are absorbed into the second order interactions.

Experiment for WINE dataset. Figures 19, 20 and 21 present the plots of the functional relations
of the main effects estimated by ANOVA-N1ODE, NA1M, and NB1M for 5 randomly sampled
training datasets. Figures 22, 23 and 24 present the plots of the functional relations of the main
effects estimated by ANOVA-N2ODE, NA2M, and NB2M for 5 randomly sampled training datasets.
The results are similar to those of CALHOUSING dataset.

Figure 13: Plots of the functional relations of the main effects in ANOVA-N1ODE on CALHOUSING
dataset.
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Figure 14: Plots of the functional relations of the main effects in NA1M on CALHOUSING dataset.

Figure 15: Plots of the functional relations of the main effects in NB1M on CALHOUSING dataset.

Figure 16: Plots of the functional relations of the main effects in ANOVA-N2ODE on CALHOUSING
dataset.
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Figure 17: Plots of the functional relations of the main effects in NA2M on CALHOUSING dataset.

Figure 18: Plots of the functional relations of the main effects in NB2M on CALHOUSING dataset.

Figure 19: Plots of the functional relations of the main effects in ANOVA-N1ODE on WINE dataset.
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Figure 20: Plots of the functional relations of the main effects in NA1M on WINE dataset.

Figure 21: Plots of the functional relations of the main effects in NB1M on WINE dataset.

Figure 22: Plots of the functional relations of the main effects in ANOVA-N2ODE on WINE dataset.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Figure 23: Plots of the functional relations of the main effects in NA2M on WINE dataset.

Figure 24: Plots of the functional relations of the main effects in NB2M on WINE dataset.

F.2 STABILITY OF ANOVA-SHAP ON CALHOUSING DATASET

We conduct an experiment to evaluate the stability of ANOVA-SHAP on CALHOUSING dataset.
We calculate the global importance of features for 10 trials using the l1 norm of the ANOVA-
SHAP values defined in (2). Finally, we compute the stability score of ANOVA-SHAP as the av-
erage of Hamming distance between the global importance ranks across all pairs in the trials. Table
19 presents the results of stability scores of ANOVA-SHAP which are normalized by the that of
ANOVA-N1ODE (ANOVA-N2ODE). We confirm that our model provides significantly more stable
ANOVA-SHAP interpretations compared to other baseline models.

Table 19: Results of average of Hamming distance. A smaller distance indicates that the interpretation of
ANOVA-SHAP is more stable.

Model ANOVA-N1ODE NA1M NB1M
Average of Hamming distance 1.000 6.188 2.408

Model ANOVA-N2ODE NA2M NB2M
Average of Hamming distance 1.000 5.157 2.663

F.3 SCATTER PLOTS OF STABILITY SCORE

In this section, we present the scatter plots of the stability score on WINE dataset. It is obvious that
ANOVA N1ODE as well as ANOVA N2ODE are more stable in estimation of the components than
NAM and NBM.
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Figure 25: Scatter plots of the stability scores on WINE dataset. Figures (a) and (d) are the scatter plots for
the stability scores of the main effects, where the x-axis is the stability score of ANOVA-N1ODE and the y-axis
is the stability scores of NA1M in (a) and NB1M in (d). Figures (b) and (e) are the scatter plots for the stability
scores of the main effects, where the x-axis is the stability score of ANOVA-N2ODE, and the y-axis is the
stability score of NA2M in (b) and NB2M in (e). Figures (c) and (f) compare the stability scores of the second
order interactions of ANOVA-N2ODE to those of NA2M and NB2M. Each dot in the scatter plots corresponds
to each component.
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G ADDITIONAL EXPERIMENTS ON HIGH-DIMENSIONAL DATASETS

G.1 RESULTS OF UNNORMALIZED STABILITY SCORE.

Table 20 presents the original stability scores SC(f)/|S| of the normalized stability scores presented
in Table 1.

Table 20: Results of stability scores in each model on the real datasets.
Dataset ANOVA-N1ODE NA1M NB1M ANOVA-N2ODE NA2M NB2M

CALHOUSING 0.012 0.045 0.039 0.035 0.071 0.075
WINE 0.011 0.058 0.043 0.049 0.087 0.065

ONLINE 0.031 0.076 0.054 0.052 0.072 0.072
ABALONE 0.008 0.013 0.026 0.028 0.047 0.038

FICO 0.035 0.046 0.046 0.048 0.089 0.075
CHURN 0.017 0.027 0.047 0.047 0.089 0.080
CREDIT 0.021 0.069 0.025 0.036 0.089 0.053
LETTER 0.017 0.022 0.014 0.026 0.075 0.081

DRYBEAN 0.028 0.074 0.070 0.053 0.088 0.081

G.2 EXTENSION TO NEURAL BASIS MODEL

Similarly to NBM (Radenovic et al., 2022), we can consider extension of ANOVA-NODE using
ANOVA-NODTs as basis functions. We call this extension model as NBM-NODE. Consider basis
ANOVA-NODTs i.e., {hk(x|ϕk) : R −→ R, k = 1, ..., B}, then the NBM-N1ODE fNBM-N1ODE(x)
is defined as

fNBM-N1ODE(x) =

p∑
j=1

f j

NBM-N1ODE
(xj)wj (8)

where f j

NBM-N1ODE
(xj) =

∑B
k=1 hk(xj |ϕk)ajk for j = 1, ..., p and and hk(x|ϕk) satisfy the sum-to-

zero condition with respect to the uniform distribution for µj . NBM-N1ODE can be easily extended
to NBM-N2ODE in a similar way as Radenovic et al. (2022).

Figures 26 and 27 show the plots of the functional relations of the main effects estimated by NBM-
N1ODE on the WINE dataset and the CALHOUSING dataset Table 21 shows the prediction perfor-
mance of NBM-N1ODE, and Table 22 presents the results of stability scores normalized by the that
of ANOVA-N1ODE. We observe that NBM-N1ODE also exhibits similar prediction performance
and stability to ANOVA-N1ODE.

Figure 26: Plots of the functional relations of the main effect estimated by NBM-N1ODE on 5 randomly
sampled training data from CALHOUSING dataset.
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Figure 27: Plots of the functional relations of the main effects estimated by NBM-N1ODE on 5 randomly
sampled training data from WINE dataset.

Table 21: Results of prediction performance.
CALHOUSING WINE

NBM-N1ODE 0.604 (0.001) 0.720 (0.02)
ANOVA-N1ODE 0.614 (0.001) 0.725 (0.02)

Table 22: Results of stability score.
ANOVA-N1ODE NBM-N1ODE NA1M NB1M

CALHOUSING 1.000 0.750 3.750 3.250
WINE 1.000 1.571 5.273 3.364
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H ADDITIONAL EXPERIMENTS FOR COMPONENT SELECTION

Table 23 presents the averages and standard deviations of the prediction performance of the models
used in the component selection experiment. The three models perform similarly.

Table 23: The results of prediction performance. We report the averages and standard deviations of RMSEs
of ANOVA-N2ODE, NA2M and NB2M on 10 synthetic datasets generated from f (1), f (4) and f (3).

GA2M

Synthetic function Measure
ANOVA
N2ODE NA2M NB2M

f(1) RMSE ↓ 3.483
(0.03)

3.474
(0.03)

3.511
(0.03)

f(2) RMSE ↓ 0.076
(0.001)

0.088
(0.005)

0.075
(0.001)

f(3) RMSE ↓ 0.161
(0.003)

0.183
(0.016)

0.137
(0.003)
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I ADDITIONAL EXPERIMENTS FOR PREDICTION PERFORMANCE OF
DECISION TREE

Table 24 presents the averages and standard deviations of the prediction performance of decision
tree (Breiman, 2017) for 10 trials. We implemented a decision tree by using the scikit-learn python
package (Pedregosa et al., 2011b) and turned by using the optuna python package based on below
range of hyper-parameters.

• Range of max depth = [2 ,12]
• Range of min samples leaf = [2,10]
• Range of min samples split = [2,10]
• Range of max leaf nodes = [2,10]

Table 24: Results of the prediction performance in decision tree and ANOVA-NODE.
Dataset Measure Decision Tree ANOVA-N1ODE ANOVA-N2ODE

CALHOUSING RMSE ↓ 0.671 ( 0.02 ) 0.614 ( 0.01 ) 0.512 ( 0.01 )
WINE RMSE ↓ 0.811 ( 0.03 ) 0.725 ( 0.02 ) 0.704 ( 0.02 )

ONLINE RMSE ↓ 1.119 ( 0.26 ) 1.111 ( 0.25 ) 1.111 ( 0.25 )
ABALONE RMSE ↓ 2.396 ( 0.08 ) 2.135 ( 0.09 ) 2.087 ( 0.08 )

FICO AUROC ↑ 0.704 ( 0.02 ) 0.799 ( 0.007 ) 0.800 ( 0.007 )
CHURN AUROC ↑ 0.676 ( 0.03 ) 0.839 ( 0.012 ) 0.842 ( 0.012 )
CREDIT AUROC ↑ 0.890 ( 0.02 ) 0.983 ( 0.005 ) 0.984 ( 0.006 )
LETTER AUROC ↑ 0.745 ( 0.001 ) 0.900 ( 0.003 ) 0.984 ( 0.001 )

DRYBEAN AUROC ↑ 0.975 ( 0.0002 ) 0.995 ( 0.001 ) 0.997 ( 0.001 )

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

J ADDITIONAL EXPERIMENTS FOR RUNTIME ON VARIOUS DATASETS.

We conducted additional experiments to assess the improvement in scalability. We consider NA1M,
which has 3 hidden layers with 16, 16, and 8 units; 10 basis DNNs for NB1M, which has 3 hidden
layers with 32, 16, and 16 units; 10 trees for each component in ANOVA-N1ODE; and 10 basis
functions in NBM-N1ODE. Table 25 presents the results of runtime in NA1M, NB1M, ANOVA-
N1ODE, and NBM-N1ODE on ABALONE, CALHOUSING, and ONLINE datasets. Note that our
computational environment consists of RTX 3090 and RTX 4090.

Table 25: Results of runtime in NA1M, NB1M, ANOVA-N1ODE, and NBM-N1ODE.
Dataset Size of dataset # of features NA1M NB1M ANOVA-N1ODE NBM-N1ODE

ABALONE 4K 10 6.6 sec 3.0 sec 4.2 sec 1.5 sec
CALHOUSING 21K 8 14.1 sec 4.1 sec 9,7 sec 3.5 sec

ONLINE 40K 58 68 sec 15.6 sec 70 sec 9,8 sec
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K ADDITIONAL EXPERIMENTS FOR APPLICABILITY OF ANOVA-SHAP

As explained in Section 3.1, ANOVA-SHAP value of the estimated ANOVA-NODE model can be
easily calculated from the estimated components. To evaluate the similarity between ANOVA-SHAP
and SHAP without feature independence, we compare ANOVA-SHAP and SHAP values of the
estimated ANOVA-N2ODE model on CALHOUSING dataset, where SHAP is computed using Deep-
SHAP of Lundberg (2017). Note that the computation time of ANOVA-SHAP was approximately
1,600 times shorter than that of Deep-SHAP.

Figure 28 presents the boxplots of the absolute differences between ANOVA-SHAP and Deep-SHAP
values at each data point for the 8 features, based on 1,000 data points which are randomly sampled
from the test data, where ANOVA-SHAP values of NAM and NBM are calculated by the equation
(2) with the estimated components by NA2M and NB2M, respectively. The absolute differences
between ANOVA-SHAP and Deep-SHAP of ANOVA-NODE are distributed around zero which
indicates that ANOVA-SHAP is a computationally efficient alternative to Deep-SHAP for ANOVA-
NODE. In contrast, the boxplots for NA2M and NB2M, which either are far from zero or have large
variations in many cases, imply that the formula (2) of ANOVA-SHAP is only applicable when the
components satisfy the sum-to-zero condition. The results for stability of ANOVA-SHAP are given
in Appendix F.2.

Figure 28: Boxplots of the absolute differences between Deep-SHAP and ANOVA-SHAP values.
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L ANOVA-NODE WITHOUT SUM-TO-ZERO CONDITION

We investigate the performance of ANOVA-NODE without the sum-to-zero condition, which we
denote GAM-NODE, by analyzing CALHOUSING and WINE datasets. In GAM-NODE, all of the
heights at the terminal nodes of ANOVA-NODE are learnable parameters.

Table 26: Comparison of ANOVA-NODE and GAM-NODE. We report the averages of RMSE and stability
score (normalized by the that of ANOVA-N1ODE or NOVA-N2ODE) for 10 trials.

ANOVA-N1ODE GAM-N1ODE ANOVA-N2ODE GAM-N2ODE
CALHOUSING 0.614 (1.000) 0.580 (1.500) 0.512 (1.000) 0.502 (1.690)

WINE 0.725 (1.000) 0.713 (2.550) 0.704 (1.000) 0.690 (1.300)

Table 26 presents (RMSE, stability score) of ANOVA-NODE and GAM-NODE based on 10 ran-
domly selected datasets. Without the sum-to-zero condition, we observe increasing in the stability
score. In particular, when the second order interactions are in the model, the main effects are esti-
mated very unstably.

In Table 26, we observe that the prediction performance of GAN-NODE is (slightly) better than
that of ANOVA-NODE. One reason could be that ANOVA-NODE is more vulnerable to the local
minima problem. Further studies would be worth pursuing.

Figure 29 and 30 present the plots of the functional relations of the main effects on CALHOUSING
and WINE dataset in GAM-N2ODE. We observe that GAM-N2ODE estimates the components more
unstable compared to ANOVA-N2ODE.

Comparison between NODE-GAM and ANOVA-NODE. In NODE-GAM (Chang et al., 2021),
the feature function F c of NODT at detph c is a sparse weighted sum of input features by using
entmaxν and temperture parameter T . In other words, for a given depth D and c = 1, ..., D, F c is
defined as below.

F c(x) = x · entmaxν

(
θF
T

)
=

p∑
j=1

xjwj

where θF = (θF1, ..., θFp)
⊤ is a learnable parameter and wj = entmaxν

(
θF
T

)
j

. They expect

the weights {w1, ..., wp} to be trained as 0 or 1, but these weights may not all be 0 and 1. In other
words, in NODE-GA1M, NODTs may estimate the higher-order components rather than main ef-
fects. Therefore, it is difficult to consider NODE-GAM as the functional ANOVA model which
decomposes a high-dimensional function into the sum of low-dimensional functions. Furthermore,
in NODE-GAM, we can not obtain the estimated component function.

However, the feature function F c of ANOVA-NODT for component S at depth c uses only the input
features corresponding to S. For c = 1, ..., |S|, we use feature funtion defined as

F c(x) = (xS)c

ANOVA-NODE estimates component fS by an ensemble of ANOVA-NODTs corresponding to S.
Therefore, ANOVA-NODE is a functional ANOVA model. Therefore, although both NODE-GAM
and ANOVA-NODE utilize NODT, they are fundamentally different models.
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Figure 29: Plots of the functional relations of the main effects on 5 randomly sampled training data from
CALHOUSING datasets.

Figure 30: Plots of the functional relations of the main effects on 5 randomly sampled training data from
WINE datasets.
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M ON THE POST-PROCESSING FOR THE SUM-TO-ZERO CONDITION

We have seen that NA2M and NB2M are competitive in prediction performance even though they
are poor in estimating the components. There is a way to transform any estimate of a component to
one that satisfies the sum-to-zero condition (Lengerich et al., 2020).

We consider a estimated GAdM f̂(x) = β0 +
∑d

k=1

∑
Sk⊆[p] f̂Sk

(xSk
) where Sk is a component

for |Sk| = k. We write fS instead of fS(xS) for notational simplicity since x is fixed. First of all,
for component Sd, we can transform f̂Sd

into

f̃Sd
= f̂Sd

+

d∑
k=1

∑
V⊆Sd,|V |=k

(−1)d−k

∫
XV

f̂Sd
dΠj∈V µj

where f̃Sd
satisfies the sum-to-zero condition. Next, for k = 1, ..., d, we redefine f̂Sd−k

into

f̂Sd−k
= f̂Sd−k

− (−1)d−k

∫
XSk

f̂Sd
dΠj∈Sk

µj

where Sd−k = Sd\Sk. If this process is performed sequentially for all components in order, all f̃Sk

terms in f̂(x) = β̃0 +
∑d

k=1

∑
Sk⊆[p] f̃Sk

(xSk
) satisfy the sum-to-zero condition.

Let us consider performing post-processing for GAdM on a given dataset. The computational order
for post-processing of a single point x is O(dnd−1). Therefore, if post-processing is carried out
for all data points, the computational order becomes O(dnd). In other words, not only global in-
terpretation (e.g., l1 norm, functional relation plots, etc.) but also local interpretation is practically
infeasible. Furthermore, performing post-processing requires storing a dataset, which causes mem-
ory efficiency issues.

Additionally, in GAdM, when post-processing is performed, and then calculating the ANOVA-
SHAP ϕj(x) for a given point x requires a computational order of O(pd−1dnd), which is even
more demanding.

Table 27 compares the stability scores of the main effects of ‘Latitude’ and ‘Longitude’ for ANOVA-
N2ODE, NA2M and NB2M, and Figure 31 draws the 5 functional relations of the main effects
of ‘Latitude’ and ‘Longitude’ estimated by ANOVA-N2ODE, NA2M and NB2M on 5 randomly
sampled training data. It is observed that NA2M and NB2M are still unstable even after the post-
processing, which indicates that instability in NAM and NBM is not only from unidentifiability but
also instability of DNN.

The situation becomes different when we apply the post-processing to GAM-NODE. Table 28
presents the stability scores of ANOVA-N2ODE and post-processed GAM-N2ODE normalized by
the stability score of ANOVA-N2ODE, and Figure 32 presents the plots of the functional relations
of the main effects estimated by GAM-N2ODE on 5 randomly sampled training data. Interestingly,
unlike NAM and NBM, it is observed that GAM-N2ODE becomes more stable after post-processing.

The post-processing would not be a practically usable method since computation cost is too large
for calculating the integration. The order of computation for the post-processing GAM-NdODE is
O(nd), where n is the number of data points to which the post-processing is applied.

Table 27: Stability scores for ‘Latitude’ and ‘Longitude’.
Model ANOVA-N2ODE NA2M NB2M

Latitude 0.006 0.067 0.104
Longitude 0.015 0.094 0.103
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Figure 31: Plots of the functional relations of ‘Latitude’ and ‘Longitude’.

Table 28: Stability scores of the post-processed GAM-N2ODE on CALHOUSING dataset.
Model ANOVA-N2ODE post-processed GAM-N2ODE

Stability score 1.000 1.257

Figure 32: Plots of the functional relations of the main effects in post-processed GAM-N2ODE on CAL-
HOUSING dataset.
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N DISCUSSION OF RELATED LITERATURE.

In this section, we describes the comparison between ANOVA-NODE and additive higher-order
factorization machines (AHOFMs, Rügamer (2024)).

Higher-Order Factorization Machines (HOFMs). Higher-Order Factorization Machines
(HOFMs, Blondel et al. (2016)) are a Factorization Machine(FM) which considers up to higher-
order interaction. Blondel et al. (2016) proposed an algorithm that efficiently learns HOFMs using
the properties of the ANOVA kernel, even as the input dimension p increases.

Additive higher-order factorization machines (AHOFMs). AHOFMs (Rügamer, 2024)) ap-
proximate each component in the functional ANOVA model using a spline basis representation.
That is, for j = 1, ..., p, AHOFMs estimate fj by

fj(xj) =

Mj∑
m=1

Bm,j(xj)βm,j

where {B1,j , ..., BMj ,j} are the basis functions and {b1,j , ..., bMj ,j} are the coefficients. Furth-
more, for high-order interaction S, AHOFM estimates fS via extended spline basis representation
which used the tensor product spline. Finally, Rügamer (2024) proposed an algorithm for efficiently
learning AHOFMs, which applies the method used in HOFMs to AHOFMs, taking higher-order
interactions into account.

Comparison between ANOVA-NODE and AHOFMs. We first describe a comparison of the
scalability between AHOFMs and ANOVA-NODE, followed by the applicability of AHOFM to
ANOVA-NODE, and finally, the differences between ANOVA-NODE and AHOFM.

If all higher-order interactions are considered, the method proposed by Rügamer (2024)) is more
efficient in terms of scalability compared to ANOVA-NODE. However, the experiments in this pa-
per show that considering interactions up to the second order is sufficient for real data. Moreover,
when all higher-order interactions are considered in the functional ANOVA model, it is likely to be
overfitted.

Since ANOVA-NODT is also a model represented by the spline basis representation of equation (2)
in Rügamer (2024)(entmax can be viewed as basis function) factorization method can be used to
improve the scalability of ANOVA-NODE. Applying the method used by AHOFMs to ANOVA-
NODE seems like an interesting research topic, but in this paper, we proposed NBM-NODE in
Appendix G.2, which enhances the scalability of ANOVA-NODE by utilizing the method by which
Radenovic et al. (2022) improved the scalability of NAM (Agarwal et al. (2021)).

There are two main differences between ANOVA-NODE and AHOFMs: one is whether the basis
function is learned, and the other is whether the sum-to-zero condition is satisfied. To be specific,
AHOFMs do not learn the basis function, but ANOVA-NODE can be seen as learning the basis
function by learning the parameters γ and b in the entmax function. Also, since AHOFMs do not
satisfy the sum-to-zero condition, the estimated components are not identifiable. However, unlike
AHOFMs, the estimated components by ANOVa-NODE are identifiable. That is, ANOVA-NODE
provides more reliable interpretations than AHOFMs.
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