
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REMEMBER, RETRIEVE AND GENERATE:
UNDERSTANDING INFINITE VISUAL CONCEPTS AS
YOUR PERSONALIZED ASSISTANT

Anonymous authors
Paper under double-blind review

Personalized Captioning
This is <K>, 
She lives in Korea.

Input image

This is <J>,
He is <K>’s boyfriend.

<J> <K>

<K> and <J> enjoying a relaxing afternoon 
at a trendy café.

Personalized Conversation
What is <K> doing?

Remember

Retrieve

Generate What’s the relationship between them?

User’s database

RAP-LLaVA

<K> is sitting at a table in a café, wearing a 
blue polka-dot dress. She is holding a glass 
of a pinkish drink with a straw and appears 
to be sipping from it. 

<J> is <K>’s boyfriend, based on the image, 
they appear to be enjoying each other's 
company at a café, Their relaxed body 
language and the casual setting imply a 
close and comfortable relationship.

Figure 1: Introduce some user-specific concepts to our RAP-LLaVA, it can remember them and
achieve excellent performance in a variety of personalized multimodal generation tasks.

ABSTRACT

The development of large language models (LLMs) has significantly enhanced the
capabilities of multimodal LLMs (MLLMs) as general assistants. However, lack
of user-specific knowledge still restricts their application in human’s daily life. In
this paper, we introduce the Retrieval Augmented Personalization (RAP) frame-
work for MLLMs’ personalization. Starting from a general MLLM, we turn it
into a personalized assistant in three steps. (a) Remember: We design a key-value
database to store user-related information, e.g., user’s name, avatar and other at-
tributes. (b) Retrieve: When the user initiates a conversation, RAP will retrieve
relevant information from the database using a multimodal retriever. (c) Generate:
The input query and retrieved concepts’ information are fed into MLLMs to gen-
erate personalized, knowledge-augmented responses. Unlike previous methods,
RAP allows real-time concept editing via updating the external database. To fur-
ther improve generation quality and alignment with user-specific information, we
design a pipeline for data collection and create a specialized dataset for person-
alized training of MLLMs. Based on the dataset, we train a series of MLLMs as
personalized multimodal assistants. By pretraining on large-scale dataset, RAP-
MLLMs can generalize to infinite visual concepts without additional finetuning.
Our models demonstrate outstanding flexibility and generation quality across a
variety of tasks, such as personalized image captioning, question answering and
visual recognition. The code, data and models will be available.
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1 INTRODUCTION

Recently, the development of large language models (LLMs) has significantly enhanced their lan-
guage processing and generating capabilities (Zhao et al., 2023b). Building on this foundation, the
integration of visual and textual ability through vision-language alignment brings powerful multi-
modal LLMs (MLLMs) (Yin et al., 2023; OpenAI, 2023; Gemini-Team, 2024; Liu et al., 2023b;
Zhang et al., 2024; Han et al., 2024). MLLMs have shown significant improvement in various tasks,
such as image description and question answering, highlighting their potential as human’s assistants.
However, their lack of user-specific knowledge continues to limit their effectiveness as personalized
assistants in daily life.

A qualified personalized assistant first needs to be able to recognize and remember user-related con-
cepts, such as the dog named 〈Lala〉 adopted by the user. Although existing MLLMs have been
trained on large-scale datasets and possess strong recognition and classification capabilities, directly
transferring this knowledge to a user’s personal concepts remains challenging. For instance, cur-
rent leading MLLMs cannot remember your dog’s name, even if you have mentioned it before, and
they lack awareness of your identity and preferences. Furthermore, the assistant should generate re-
sponses tailored to the user’s preferences and requirements. However, collecting extensive personal
information to train a unique assistant for each user is impractical.

To address this issue, the personalization of MLLMs has become a topic of growing interest, with
several approaches already being proposed. MyVLM (Alaluf et al., 2024) utilizes external classifica-
tion heads to recognize specific concepts, and learns an embedding for each concept to personalize
the outputs of vision language models (VLMs). Another concurrent work, Yo’LLaVA (Nguyen
et al., 2024), learns a few special tokens to represent each concept. However, both approaches ne-
cessitate continuous learning and updating of the model as new concepts emerge. This presents a
challenge in dynamic, ever-changing real-world scenarios, where the computing power of users’
personal devices is often limited, and all data must be stored locally for privacy concerns.

To address these challenges, we propose the Retrieval Augmented Personalization (RAP), designed
to allow MLLMs to update their supported concepts without additional training. Specifically, our
RAP works in three key steps. (a) Remember: RAP includes a designed database to help remember
each concept via storing its image and basic information, e.g., name, avatar and other attributes.
(b) Retrieve: When a user initiates a conversation, RAP will retrieve relevant information from the
database using a multimodal retriever. (c) Generate: The input query and retrieved concepts infor-
mation are incorporated into the MLLM’s input for personalized, knowledge-augmented generation.
RAP requires only one image per concept with its basic information for personalization. It allows
users to make real-time adjustments to the model’s outputs by modifying their personal databases,
eliminating the need for retraining. A more detailed comparison is presented in Table 1.

Another significant challenge is the lack of large-scale datasets for training MLLMs’ personalized
generation capabilities. To address this, we design a pipeline to collect extensive training data and
create a comprehensive dataset, which enables to train MLLMs to effectively understand and utilize
user-related information for generation. Based on this dataset, we train LLaVA (Liu et al., 2023b)
and Phi3-V (Rasheed et al., 2024) as novel personalized assistants and evaluate their performance
across various tasks, including personalized image captioning, question answering, and visual recog-
nition. Experimental results demonstrate that our RAP-MLLMs excel in wide range of personalized
generation tasks, showcasing excellent generation quality and flexibility.

Our contributions are summarized as follows:

• We propose the RAP framework for MLLMs’ personalization, allowing models to be trained
just once and adapt to diverse users and infinite new concepts without further training.

• We develop a pipeline for collecting large-scale data and create a dataset specifically designed
for the personalized training and evaluation of MLLMs. This dataset enables us to train a series
of MLLMs to function as personalized assistants.

• Our models demonstrate exceptional performance across various personalized multimodal gen-
eration tasks, including personalized image captioning and question answering. Additionally,
they exhibit a strong capability to recognize personal concepts within images.
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Table 1: Comparison of Different Personalization Methods. RAP needs only 1 image with its
personalized description, showing outstanding convenience and flexibility in practical applications.

Number of image Data requirement Support

Method Positive Negative Caption Description Question-Answer Real-time edit

Fine-tuning n - Yes Yes No ✗
MyVLM n 150 Yes No Yes ✗
Yo’LLaVA n 200 No No Yes ✗
RAP(Ours) 1 - No Yes No ✓

2 RELATED WORK

Multimodal Large Language Models. Recently, numerous advanced large language models
(LLMs) (Touvron et al., 2023; Zhang et al., 2023b; Chiang et al., 2023; Taori et al., 2023) have
been proposed, showing remarkable performance in addressing a wide range of tasks. The rapid de-
velopment of these LLMs has led to the emergence of multimodal LLMs (MLLMs) (OpenAI, 2023;
Gemini-Team, 2024; Liu et al., 2023b; Zhang et al., 2024; Han et al., 2024; Zhu et al., 2023), which
excel in general visual understanding and complex reasoning tasks. For instance, LLaVA (Liu et al.,
2023b;a) and MiniGPT-4 (Zhu et al., 2023) align visual and language modalities through visual in-
struction tuning, showcasing impressive capabilities in multimodal conversations. GPT4RoI (Zhang
et al., 2023c) and RegionGPT (Guo et al., 2024) enhance fine-grained understanding and reasoning
for specific regions by training on region-level instruction datasets. Despite these advancements in
tasks such as image captioning and question answering, the lack of user-specific knowledge restricts
the generation of personalized content, which hinders the practical application of MLLMs in daily
life. In this work, we focus on the personalization of MLLMs, enabling them to remember and
understand user-specific concepts, and generate personalized content tailored to user’s preferences.

Personalization of MLLMs. In the realm of artificial intelligence, personalization typically refers
to the process of tailoring a system, application, or model to meet the individual needs and prefer-
ences (Yeh et al., 2023; Woźniak et al., 2024; Shi et al., 2024). Substantial efforts have been made
to generate images of user’s personal objects or in certain context (Ruiz et al., 2023; Kumari et al.,
2023; Ham et al., 2024; Gal et al., 2022; Ye et al., 2023). For example, Dreambooth (Ruiz et al.,
2023) employs transfer learning in text-to-image diffusion models via fine-tuning all parameters for
new concepts. In this paper, we mainly aim at enabling MLLMs to remember and understand user-
specific concepts, and generate personalized language outputs. There are several works focusing on
the personalization of MLLMs, among which the most relevant works are MyVLM (Alaluf et al.,
2024) and Yo’LLaVA (Nguyen et al., 2024). MyVLM introduces the task of personalizing VLMs.
It utilizes external classification heads to recognize specific concepts, and learns an embedding for
each concept to personalize the outputs of VLMs. Yo’LLaVA personalizes LLaVA by extending its
vocabulary and learning specific tokens for each concept. However, both approaches require con-
tinuous model updates as new concepts emerge, which presents challenges in dynamic real-world
applications. In this work, we propose RAP framework for the personalization of MLLMs, enabling
models to be trained once while continuously updating supported concepts without further training.

Retrieval Augmented Generation. Retrieval-based methods for incorporating external knowledge
have proven effective in enhancing generation across a variety of knowledge-intensive tasks (Gao
et al., 2023; Zhao et al., 2023a; Asai et al., 2023; Xu et al., 2023; Yoran et al., 2023; Lin et al.,
2023b). DPR (Karpukhin et al., 2020) introduces Dense Passage Retrieval, marking a shift from
sparse to dense retrieval techniques. Later, MuRAG (Chen et al., 2022) proposes to use multimodal
knowledge to augment language generation. Self-Rag (Asai et al., 2023) introduces special tokens to
make retrieval adaptive and controllable. ERAGent (Shi et al., 2024) presents a comprehensive sys-
tem for retrieval-augmented language models. With the advancements in MLLMs, RAG has been
widely applied to multimodal generative tasks. For instance, FLMR (Lin et al., 2023a) employs
multi-dimensional embeddings to capture finer-grained relevance between queries and documents,
achieving significant improvement on the RA-VQA setting. While existing methods primarily en-
hance models’ performance by retrieving from external knowledge bases, few of them consider the
personalization task. Although RAG has been applied to image generation (Blattmann et al., 2022;
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User’s database

Name: <A>
A young woman who loves dog. Age: 22.

Crop region of interest

Name: <A>
A young woman who 
loves dog. Age: 22

Name: <Lala>
A German Shepherd dog.

Instruction: Please give 
a caption of this image.

Multimodal Large Language Model

User-related information

Response: <A> enjoys a sunny grooming session with her dog <Lala> in the countryside.

User’s input

Name: <Lala>
A German Shepherd dog.

Name: <H>
A man from America. Hobby: Traveling.

…            …

Real-time update

Proj. Proj. Proj.

Retriever

Open world 
detector

Figure 2: Retrieval-Augmented Personalization Framework. Region-of-interest detected by an
open world detector are used to retrieve concepts from the database. The images and accompanying
information of the retrieved concepts are then integrated into the input for the MLLM.

Zhang et al., 2023a) and image captioning (Li et al., 2024; Ramos et al., 2023), there is currently no
existing work focusing on personalizing MLLMs via RAG, to the best of our knowledge.

3 RETRIEVAL AUGMENTED PERSONALIZATION

Existing MLLMs typically align other modalities with language. For instance, LLaVA (Liu et al.,
2023b) projects visual tokens into text space, and then generates subsequent tokens using an LLM.
While these MLLMs perform well in various tasks, the lack of memory and comprehension of
personal concepts hinders effective user-specific responses. In this work, we mainly focus on per-
sonalizing MLLMs to generate tailored language responses, such as creating personalized captions
for user’s images and answering questions about personal concepts. In this section, we detail the
implementation steps of our proposed Retrieval Augmented Personalization (RAP). Unlike previ-
ous approaches that usually necessitate additional data collection and further training to learn new
concepts, our RAP does not require additional training as the user’s database expands. By pretrain-
ing on our dataset, our RAP-MLLMs can adapt to diverse users and infinite new concepts without
further training. In section 3.1, we present the RAP framework that is applicable to various types of
MLLMs, and then in section 3.2, we provide details of the proposed dataset.

3.1 RAP FRAMEWORK

Our RAP works in three main steps: Remember, Retrieve and Generate, as shown in Figure 2.

Remember. The premise of personalization is that the model can remember personal concepts and
relevant information, such as the dog named 〈Lala〉 adopted by 〈A〉. To facilitate this, we construct
a database M to store these personal concepts, which comprises an avatar, a name, and a brief
description for each concept. The key for each concept in the database is its visual feature, obtained
by feeding its image into a pre-trained image encoder E(·). Examples of our database are presented
in Figure 2. When a user initiates a conversation, the input can be represented as Q = (I, T ),
which may include both image I and some textual instructions T . The first step involves identifying
possible concepts within the input image that have been previously stored in the database. Previous
methods (Alaluf et al., 2024) typically need to learn an external classifier to determine whether a
concept appears in the input image, which requires a substantial amount of training data and can
only apply to specific concept. To enhance the generalizability of the recognition process, we do not
construct specific modules for each concept. Instead, we employ a universal detection model, such
as YOLO (Redmon et al., 2016) and YOLO-World Cheng et al. (2024), as recognition model R(·).
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Crop

Rotate Flip Novel view

This is <D>, give a description of him.
• A man wearing a bright orange T-shirt…

Augment

Instruction type 1: Visual Grounding
Instruction: Specify the rectangular boundaries of <D> in the image.
Answer: [0.12, 0.15, 0.44, 0.94]
Instruction type 2: Image Captioning & Description 
Instruction: Please give a caption of the image.
Answer: <D> is playing ultimate frisbee, he's getting ready to pick up the frisbee. 
              The game is played on a field of grass.
Instruction type 3: Question Answering: 
Instruction: What color is <D>’s shorts?
Answer: Black.

3D model

BackgroundConcept Information

Figure 3: Our pipeline for data collection. We first crop the target concept from the image based
on the dataset annotations and then query Gemini to generate its personalized description. We also
apply data augmentation to diversify these cropped images. Then we combine them with the original
image to derive a series of instructions and answers from Gemini.

Given the predefined setting P that specifies which categories should be remembered, the user’s
region-of-interest can be acquired via Iu = R(I, T |P ).

Retrieve. Identified region-of-interest will be used as query to retrieve from the database. For each
recognized component Iiu, we feed the image crop into the image encoder E(·) to get its visual
feature Qi = E(Iiu), which is a n-dimensional vector. Then we calculate the euclidean distance be-
tween the visual feature and each key kj ∈ M, which is calculated as Dist(Qi, kj) =

∥∥Qi − kj
∥∥.

The Top-K image-text pairs {(I1, T1), (I2, T2), · · · (Ik, Tk)} with the lowest distances are selected.
We also introduce retrieval using concept names, such as ⟨sks⟩ for a unique concept. When the user
mentions the name of an object documented in the database, our model retrieves its related informa-
tion from the database. This also enables our model to respond to text-only queries effectively.

Generate. Each pair Mj = (Ij , Tj) provides related information about a user’s personal concept
and will be incorporated into the input of the MLLM. Take LLaVA (Liu et al., 2023b) as an example,
the image Ij is first encoded by a pre-trained vision encoder, such as CLIP (Radford et al., 2021),
to obtain their visual tokens Zj . These image tokens are then projected by a projector into language
tokens Hv

j , which could be understood by the language model. Simultaneously, corresponding text
information Tj are transformed into text tokens Hq

j . During training, we keep parameters of the
detector and retriever frozen, just train the MLLM. Given the target output sequence Xa of length
L, the probability of the target answers Xa computed as:

p(Xa|I, T,M1, · · ·Mk) =

L∏
i=1

pθ(Xa,i|I, T<i,M1, · · ·Mk, Xa,<i)

3.2 PERSONALIZATION DATASET

Most existing MLLMs struggle to generate personalized outputs even if additional concept informa-
tion is provided, and there is currently no large-scale dataset for personalized training of MLLMs.
To this end, we design a pipeline for data creation and curate a novel dataset specifically for the per-
sonalized training and evaluation of MLLMs. We use Gemini-1.5 (Gemini-Team, 2024) to generate
annotations for our dataset. An overview of our pipeline and dataset is presented in Figure 3.

The first component of our dataset is dedicated to visual grounding. In this task, a MLLM is trained
to determine whether a specific concept is in an image, particularly identifying if the person or object
in a reference image appears in the given image. When a positive match is detected, we also require
the model to provide the bounding box for the identified concept. For single-concept grounding, we
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primarily use the RefCOCO dataset (Kazemzadeh et al., 2014). Based on RefCOCO’s annotations,
we crop target concepts from the images and assign names to them, which serve as references for
specific concepts. We then query Gemini to generate concise descriptions about properties of the
concepts in these cropped regions, by which we construct a large-scale database including numer-
ous different concepts. The training data pairs images and these descriptions as queries and the
corresponding bounding boxes as outputs. However, data generated in this way is insufficient to
simulate the complexity of real-world recognition, especially when the target concept in the ref-
erence and input image is captured from different perspectives. To address this, we incorporate
the ILSVRC2015-VID video object detection dataset (Russakovsky et al., 2015), TAO (Dave et al.,
2020) and CustomConcept101 (Kumari et al., 2023) to enrich our dataset. For multi-object ground-
ing, we use the Object365 dataset (Shao et al., 2019) to construct our training data.

The second component of our dataset is designed for instruction following. This section includes
training data for tasks such as image captioning, image description and question answering. For the
image captioning and description data, we provide cropped images of target concepts, accompanied
by their names and related information from the large-scale database, then query Gemini to generate
a caption or description that reflects the concepts depicted in the entire image. For question answer-
ing, we first design a set of seed questions to serve as examples. These examples are used to prompt
the annotator, Gemini, to generate new questions and corresponding answers. This iterative process
facilitates the creation of a rich and diverse collection of conversations that MLLMs can learn from.
We construct such data using RefCOCO (Kazemzadeh et al., 2014), Object365 (Shao et al., 2019),
TAO (Dave et al., 2020) and CustomConcept101 (Kumari et al., 2023) dataset.

To enhance alignment with real-world scenarios, it is essential to collect data featuring the same
identity in various environments. Thus, we also include multiple images about the same individual
from the CelebA dataset (Liu et al., 2015) and produce question answering data about the individual.
To further diversify the dataset, we apply image editing techniques for data augmentation. This
includes performing random rotations and flips on the cropped images, as well as generating novel
views of the concepts by diffusion models. Specifically, we use Inpaint-Anything (Yu et al., 2023) to
separate the foreground from the background, and use Wonder3D (Long et al., 2024) and Sith (Ho
et al., 2024) to synthesize novel views of foreground object or person respectively. Finally, we
combine these elements to generate images of the target concept from different perspectives.

In the generation step, the MLLM needs to prioritize accurate and contextually relevant information.
Considering that retrieval results can be inaccurate, potentially leading to unreasonable answers, we
construct negative samples by incorporating noise elements into the additional input while preserv-
ing the original output. This approach trains the model’s discrimination capability. By exposing
the MLLM to both relevant and irrelevant information during training, it learns to discern and fil-
ter out noise, enhancing its robustness at inference time. Additionally, we include a subset of the
LLaVA-Instruct-665k visual instruction dataset (Liu et al., 2023a) to retain general knowledge from
the original MLLM. Further details about our dataset can be found in Appendix D.

4 EXPERIMENT

Implementation Details. We conduct experiments on LLaVA-1.5-13B (Liu et al., 2023b) and Phi3-
V-3.8B (Rasheed et al., 2024), resulting in two personalized MLLMs, RAP-LLaVA and RAP-Phi3-
V. We select YOLO-Worldv2 (Cheng et al., 2024) as the detector and construct a multimodal re-
triever using Facebook AI Similarity Search (FAISS) (Johnson et al., 2021), employing a pre-trained
CLIP ViT-L/14-336 (Radford et al., 2021) as the visual encoder. Due to the context length limitation
of the backbone language model, for RAP-LLaVA and RAP-Phi3-V, we retrieve the 2 and 3 different
concepts with the highest similarity, respectively. More details can be found in Appendix C.

Training. In the training phase, we skip the recognition and retrieval procedures, instead perform
instruction tuning to train the MLLMs. We adhere to most settings from the original experiment
of LLaVA (Liu et al., 2023b), except for using a maximum learning rate of 1e-4 and training for 1
epoch. We employ low-rank adapters (Hu et al., 2022) to reduce the number of trainable parameters,
and train our models on 8 A100 GPUs with a valid batch size of 64.

Evaluation. We primarily focus on tasks that require both visual and language understanding.
Specifically, we address image captioning and question answering in Section 4.1 and 4.2, and com-
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Table 2: Qualitative Comparison on Image Captioning. Image examples of target concepts are
shown in the left and captions generated are shown in the right.

Image Caption

dog*

LLaVA: A man is sitting at a table with a dog, and there are wine
glasses and a fork on the table.
LLaVA-LoRA: 〈collie dog〉 looking pleased as she shares a meal
with her owner.
MyVLM: 〈dog*〉 positioned on a chair by a black table, holding a
wine glass in her hand. A white dog sits on the floor beside her. . .
RAP-LLaVA(Ours): 〈dog*〉 is a very good boy, and he loves to sit
at a table with his owner. They are enjoying a meal.

H

T

LLaVA: A man and a woman are standing in a kitchen, preparing
food together. The woman is cutting lettuce on a cutting board,
while the man watches her. There are several tomatoes . . .
LLaVA-LoRA: 〈H〉 and 〈K〉 are preparing a meal together.
MyVLM: 〈T〉 and her friend 〈H〉 are looking very serious as they
take in the scenery.
RAP-LLaVA(Ours): 〈H〉 is helping 〈T〉 prepare a salad in the
kitchen.

B

W

G

Phi3-V: A group of stuffed animals, including a blue one, are sitting
on a black surface.
LLaVA-LoRA: 〈B〉, 〈G〉 and 〈W〉 are happily exploring the grass-
land.
MyVLM: 〈G〉 and his crew are always ready to jump into a new
adventure.
RAP-Phi3-V(Ours): 〈W〉 is hanging out with 〈G〉 and 〈B〉 on the
lawn. They are having a great time playing!

pare our models with baseline methods on visual recognition. In Section 4.3, we compare the cost
of personalization with existing methods, and present results of ablation studies in Section 4.4.

4.1 PERSONALIZED IMAGE CAPTIONING

In this section, we evaluate our models on generating personalized image captions with user’s spe-
cific concepts. We extend the dataset introduced by MyVLM (Alaluf et al., 2024) via adding 16 new
concepts, which include both objects and humans, forming 8 concept pairs that appear together in
images. For each pair, there are 8-13 images used for testing. This multiple concepts setting presents
additional challenges for personalization.

Settings. We compare our models with MyVLM and finetuning based method LLaVA-LoRA (Hu
et al., 2022). We do not include Yo’LLaVA since it does not porvide open-sourced model. For
LLaVA-LoRA and MyVLM, the training dataset contains 1 image accompanied by 5 captions for
each concept. This simulates the real-world challenge of collecting high-quality training data for
each concept, which is both difficult and time-consuming. For LLaVA-LoRA, we train it with cap-
tions of the training images for 3 epochs, applying low-rank adapters (Hu et al., 2022) and the same
hyperparameters as our models. For MyVLM, following their training process, we first train the
classification head with the positive and 150 negative images, then train the corresponding concept
embedding with the provided captions for each concept. For our models, we construct a database
where each concept is represented by a cropped image and a personalized description. Details of
our database could be found in Appendix G. All remaining images are used as test samples. This
evaluation process is repeated three times using different seeds, and we report the average results.

Qualitative Comparison. In Table 2, we present image captions generated by different methods
to make a comparison. While LLaVA and Phi3-V generally provides brief and clear captions for
most test images, its lack of understanding of the user’s specific concepts restricts it from generat-
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Table 3: Quantitative Evaluation on Image Caption-
ing. We report Recall, Precision and F1-score in the ta-
ble, the best result in each metric is bold and the second
is underlined.
Method LLM Recall Precision F1-score

LLaVA-LoRA Vicuna-13B 82.97 93.28 87.82
MyVLM Vicuna-13B 84.65 86.37 85.50

RAP-LLaVA Vicuna-13B 93.51 96.47 94.97
RAP-Phi3-V Phi3-V-3.8B 88.14 95.10 91.49

Figure 4: Performance under varying
number of personalized concepts.

50 100 150 200 250 300
Number of Concepts

85

90

95

F1
-s

co
re

MyVLM
LLaVA-LoRA

RAP-Phi3-V
RAP-LLaVA

Table 4: Quantitative Evaluation on Question Answering and Visual Recognition. The best
result in each setting is bold and the second is underlined. Evaluation results of GPT-4V are also
provided as reference. Weighted results are computed as arithmetic means.

Method Train #Image Question Answering Visual Recognition
Visual Text Weighted Positive Negative Weighted

GPT-4V+Prompt ✗ 1 0.866 0.982 0.924 0.809 0.992 0.901
GPT-4V+Prompt ✗ 5 0.887 0.987 0.937 0.851 0.998 0.925

LLaVA ✗ - 0.899 0.659 0.779 0.000 1.000 0.500
LLaVA-LoRA ✓ 1 0.900 0.583 0.741 0.988 0.662 0.825
LLaVA-LoRA ✓ 5 0.935 0.615 0.775 0.997 0.444 0.721
MyVLM-LLaVA ✓ 5 0.912 - - 0.994 0.845 0.919
Yo’LLaVA ✓ 5 0.929 0.883 0.906 0.949 0.898 0.924

RAP-LLaVA(Ours) ✗ 1 0.935 0.938 0.936 0.979 0.982 0.980
RAP-Phi3-V(Ours) ✗ 1 0.941 0.850 0.896 0.922 0.988 0.955

ing a more personalized caption. LLaVA-LoRA and MyVLM can generate personalized captions,
however, the limited training data often results in imprecise outputs, particularly noticeable when
multiple concepts are present in the same image. In contrast, our models produce clear and accurate
captions based on the database content, which also ensures the reliability of the outputs. Additional
examples of personalized captions generated by the models could be found in Appendix E.

Quantitative Evaluation. We employ recall, precision and the comprehensive metric F1-score as
our evaluation metrics. Recall is calculated as the percentage of correct occurrences of target con-
cepts, while precision is the ratio of correct concept names to the total number of concept names pre-
sented. The experimental results are shown in Table 3. From the results, we find that the finetuning
based model LLaVA-LoRA achieves higher performances than MyVLM. Notably, the classification
heads of MyVLM exhibit higher error rates when the number of positive images is limited, leading
to weaker performance. Our models demonstrate superior performance in both recall and precision
metrics, highlighting the advantages of our RAP-MLLMs in data efficiency.

Influence of Number of Learned Concepts. In real-world scenario, users’ personal databases
typically expand over time. Next, we evaluate the performance of various methods with varying
numbers of learned concepts. We extend the database with hundreds of new concepts selected
from RefCOCO dataset (Kazemzadeh et al., 2014), ensuring no overlap with the test dataset. For
LLaVA-LoRA and MyVLM, we provide images containing the target concepts along with their
captions as training data, and we assess the models’ performance on the original test dataset. The
results are presented in Figure 4. As the number of learned concepts increases, performance of all
methods declines. More learned concepts result in increased recognition errors, leading to a drop in
performance. Our RAP-MLLMs maintain the highest performance under different settings.

4.2 PERSONALIZED QUESTION ANSWERING

Settings. In this section, we evaluate different methods on the benchmark of personalized question
answering introduced by Yo’LLaVA (Nguyen et al., 2024), which contains both visual-based and
text-only questions about user’s personal concepts. For each concept, we generate a description that
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Figure 5: Time Cost of Personalization. We
conduct experiment with 2 A800 GPUs.
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Figure 6: Performance of Our Retriever. Top-
K recall rates under varying database size N.

serves as the concept’s information in our database. For LLaVA-LoRA, we feed these descriptions
and corresponding images to train the model to describe the properties of concepts. Additionally, we
incorporate text-only queries and answers to enhance the model’s understanding of specific concepts
from textual perspectives. The training dataset for Yo’LLaVA and MyVLM consists of 5 positive
images with question answering pairs and 200 negative images for each concept. For GPT-4V
(OpenAI, 2023), images and related information about the concepts mentioned in the questions are
provided as supplementary prompt. Additional details on the baselines are provided in Appendix C.

Results and Analysis. The experimental results are provided in Table 4. LLaVA and LLaVA-LoRA
both perform well in visual based question answering, because substantial information of the target
concept can be obtained from the images. However, their performance is quite poor when images
of the target concept mentioned in the question are not available. MyVLM performs well in visual
question answering but does not support text-only question answering. Yo’LLaVA excels in text-
only question answering, but its performance is still limited by the insufficient information provided
by the learned tokens of a concept. In contrast, our models demonstrate balanced performance
in both visual and text-only question answering. By providing a single image, our RAP-LLaVA
surpasses baseline methods and achieves performance comparable to that of GPT-4V.

Visual Recognition. We also evaluate the models’ recognition abilities for a more comprehensive
comparison. In this task, the MLLMs are required to determine whether a personal concept exists
in an image. We query them with ”Is 〈sks〉 in the image? Answer with a single word or phrase.”,
where 〈sks〉 is replaced by corresponding concept name. For positive images, the desired response
is ”Yes” and ”No” for negative. Results show that, without understanding of personal concepts,
the vanilla LLaVA consistently outputs negative responses. After training on the target concepts,
LLaVA-LoRA, MyVLM and YoLLaVA tend to give positive responses, but struggle to differentiate
between concepts, resulting in weaker performance on negative images. Our models demonstrate
exceptional performance in both positive and negative scenarios, achieving the best overall results.

4.3 COST OF PERSONALIZATION.

We further compare the costs of personalization. As shown in table 1, existing methods usually
struggle with continuous updates or have high demands for training data. For finetune-based method
like LLaVA-LoRA, while they can achieve satisfactory performance, finetuning the model each
time a new concept emerges incurs substantial computational costs. MyVLM and Yo’LLaVA learn
an embedding or some new tokens to represent the new concept without updating the pre-trained
MLLM’s parameters, however, they require multiple labeled images of the target concept and a large
number of negative images, which poses significant challenges for data collection. In contrast, our
RAP requires only 1 image with its related information provided by the user, achieving outstanding
performance across various personalized generation tasks. At the same time, by modifying images
and descriptions in the database, RAP enables real-time editing of personalized generation settings.
We present examples of real-time concept editing in Table 10.

Time Cost. We also evaluate the time cost associated with different methods for learning a set of
user’s concepts. The results are presented in Figure 5. MyVLM has to train an external recognition
model for each concept and learn an embedding to adjust the model’s outputs. Similarly, Yo’LLaVA
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Table 5: We evaluate model’s performance with
perfect retrieval, and test contributions of each
dataset component.
Setting Recall Precision F1-score

RAP-LLaVA 93.51 96.47 94.97
Skip retrieval 96.16 (+2.7) 100.0 (+3.5) 98.04 (+3.1)

- Data aug 89.25 (-4.3) 98.01 (+1.5) 93.42 (-1.6)

- Neg samples 95.74 (+2.2) 58.21 (-38.3) 72.40 (-22.6)

Table 6: Evaluation on Multimodal Bench-
marks. RAP-LLaVA maintains most knowl-
edge of original LLaVA.
Method MMMU InfoSeek

LLaVA 0.364 0.205
LLaVA-LoRA 0.359 0.205
RAP-LLaVA 0.361 0.218
RAP-LLaVA(With KB) 0.369 0.344

needs to learn new tokens for each concept. During the optimization process, both approaches
necessitate multiple forward and backward pass of the MLLM, resulting in significant time con-
sumption. In contrast, our RAP only requires time for encoding the image and adding its embedding
to the database, which can be accomplished in just a few seconds. This significantly enhances the
convenience and practicality of our models in practical applications.

4.4 ABLATION STUDY.

Retriever. The recall rate of the retriever is crucial for a RAG system. We first assess the retriever’s
performance on the personalized captioning dataset. We use the detection model to identify potential
concepts and retrieve the K concepts with the highest similarity from the database. The Top-K recall
rates for varying values of K and database sizes N are presented in Figure 6. Results indicate that as
the database size increases, the retriever’s performance declines, while a larger K generally enhances
the recall rate. Notably, even with 500 personal concepts to remember, the Top-5 recall rate is still
able to surpass 90%, which guarantees the effectiveness of our RAP framework.

Generation Ability of MLLM. We skip the recognition and retrieval processes, providing the
MLLM with relevant information of each concept present in the image to evaluate the generation
capability of the trained MLLM. The results, shown in Table 5, indicate that when relevant con-
cept information is supplied, our RAP-LLaVA achieves superior generation performance, obtaining
100% precision without outputting irrelevant concepts as well as a higher recall rate.

Dataset Composition. We conduct experiments to assess contribution of each component in our
dataset. First, we remove data generated through data augmentation and train the original LLaVA.
The results indicate a obvious decrease in the recall metric for image captioning, resulting in lower
overall performance. We further exclude constructed negative samples from the dataset and retrain
the model, then we find that it performs poorly on precision metric. This suggests a diminished
ability to discriminate against noisy concepts not present in the image.

Multimodal Benchmark. We also evaluate our model’s performance on several traditional mul-
timodal benchmarks, including MMMU (Yue et al., 2024) and InfoSeek (Chen et al., 2023). We
assess our models’ performance both with and without external knowledge base. Details of the
knowledge base are provided in Appendix C. We evaluate on the validation set of MMMU, and 5K
questions sampled from the validation set of InfoSeek. We use the official scripts to get the results,
which are presented in Table 6. From the results, our RAP-LLaVA retains most general knowledge
of the original LLaVA. It also equips the MLLM with the ability to retrieve information from an
external knowledge base, demonstrating superior performance in knowledge intensive tasks.

5 CONCLUSION

In this paper, we introduce the RAP framework for personalizing MLLMs. This framework enables
MLLMs to understand an infinite number of user-specific concepts, generate personalized captions
and respond to user-related queries. To enhance the quality of the generated content and better
align outputs with user’s configuration, we curate a large-scale dataset for personalized training of
MLLMs. Using this dataset, we train a series of MLLMs to function as personalized assistants.
Experimental results show that RAP-MLLMs achieve exceptional performance in various personal-
ized generation tasks while preserving the general knowledge of the original MLLMs. Moreover,
our RAP framework allows real-time adjustments to generation settings. It eliminates the need for
retraining on new concepts and provides significant flexibility in personalized generation.
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Stanisław Woźniak, Bartłomiej Koptyra, Arkadiusz Janz, Przemysław Kazienko, and Jan Kocoń.
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A APPENDIX OVERVIEW

• Section B: Additional evaluations of our models.

• Section C: More experiment details.

• Section D: More details of RAP dataset.

• Section E: Additional demonstrations.

• Section F: Analysis on limitations of our work.

• Section G: Examples of the personalized database.

B ADDITIONAL EVALUATION RESULTS

Table 7: Ablation studies on Question Answering and Visual Recognition. Weighted results are
computed as arithmetic means.

Method Question Answering Visual Recognition
Visual Text Weighted Positive Negative Weighted

RAP-LLaVA 0.935 0.938 0.936 0.979 0.982 0.980
- Data aug 0.924 (-0.011) 0.918 (-0.020) 0.921 (-0.015) 0.943 (-0.036) 0.988 (+0.006) 0.965 (-0.015)

- Neg samples 0.918 (-0.017) 0.933 (-0.005) 0.925 (-0.011) 0.958 (-0.021) 0.985 (+0.003) 0.971 (-0.009)

Ablation Studies. We conduct ablation experiments on the question answering and recognition
benchmark, experimental results are present in Table 7. The results further demonstrate that our
data augmentation and the constructed negative samples also contribute to the model’s performance.

C MORE EXPERIMENTAL DETAILS

Implementation details. We utilize YOLO-Worldv2-X (Cheng et al., 2024) as the detection model,
setting detection classes to include all categories stored in the database to reduce the interventions
from unrelated objects. We construct a multimodal retriever using Facebook AI Similarity Search
(FAISS) (Johnson et al., 2021), employing a pre-trained CLIP ViT-L/14-336 (Radford et al., 2021)
as the visual encoder. Each key in the database is generated by inputting the image of a concept
into the CLIP visual encoder, resulting in a 768-dimensional vector. Considering the restriction of
context length of the backbone language model, we retrieve the 2 most similar images from the
database for each region of interest. And then, we select 2 and 3 different concepts with the highest
similarity among all as supplementary inputs for RAP-LLaVA and RAP-Phi3-V, respectively.

External knowledge base. For MMMU (Yue et al., 2024), we use 30K images paired with corre-
sponding captions from Wikipedia as the external knowledge base. During testing, we retrieve the
three most similar images based on the question’s image and incorporate only the textual knowledge
to the input. For InfoSeek (Chen et al., 2023), we randomly sample 5K questions from the validation
set and construct a knowledge base containing 50K entities from Wikipedia database provided by
the authors, which includes all relevant entities associated with the questions. For each question, we
retrieve the most similar entity and add only the textual knowledge to the input.

Baselines. For MyVLM, we find that when the training data is very limited, it is quite hard for
the classification head to work effectively. Therefore, we use data augmentation to help improve
its performance. Specifically, we crop the single image into several pieces containing the target
concept to improve the accuracy of classification heads. To distinguish between multiple possible
different concepts that may appear in the image, we use 〈sks1〉, 〈sks2〉. . . as concept identifiers. For
YoLLaVA, as there is no open-source code or model available, we present its experimental results
as reported in the original paper (Nguyen et al., 2024).
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D DETAILS OF DATASET

D.1 DATASET COMPOSITION

• We provide a summary of the composition of our dataset in Figure 7, which visually represents
the distribution of different components.

• Table 8 presents detailed numerical data for each part.

• In Table 9, we specify the sources for each component of our dataset.

Figure 7: Composition of our dataset.

Image Description Question Answering
Image Captioning LLaVA-Instruction
Recognition Visual Grounding

Table 8: Statistics of our dataset.
Type Size

Visual Grounding 100K
Recognition 40K
Caption & Description 37K
Question Answering 16K
LLaVA-Instruction 67K

Total 260K

Table 9: Data source.
Type Source Dataset

Visual Grounding RefCOCO (Kazemzadeh et al., 2014), TAO (Dave et al., 2020)
ILSVRC2015-VID (Russakovsky et al., 2015), Object365 (Shao et al., 2019)

Recognition CustomConcept101 (Kumari et al., 2023), CelebA (Liu et al., 2015)

Caption & Description RefCOCO (Kazemzadeh et al., 2014), TAO (Dave et al., 2020)
Object365 (Shao et al., 2019), CustomConcept101 (Kumari et al., 2023)

Question Answering
RefCOCO (Kazemzadeh et al., 2014), TAO (Dave et al., 2020)

Object365 (Shao et al., 2019), CustomConcept101 (Kumari et al., 2023)
CelebA (Liu et al., 2015)

LLaVA-Instruction LLaVA-Instruct-665K (Liu et al., 2023a)

D.2 INSTRUCTIONS

In this section, we present the instruction templates used to create our dataset:

• Table 17 contains instructions for visual grounding and recognition.

• Table 18 includes example instructions for image captioning.

• Table 19 presents example instructions for image description.

• Table 20 presents example questions used for question answering synthesis.

E ADDITIONAL DEMONSTRATIONS

In this section, we provide more qualitative results obtained by various models.

• In Table 10, we demonstrate how our models achieve real-time editing of concepts by modifying
the database.

• In Table 11, we demonstrate the real-time addition of new concepts by updating the database.

• In Table 13, we present additional image captions generated by RAP-LLaVA and other methods.
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Table 10: Examples of Concept Editing. Based on the information recorded in the database, our
RAP-LLaVA can provide reliable and accurate answers.

Image Concept Information in the Database

dog*

1. A white and gray dog with long fur. He has black eyes.
His favorite food is chicken.
2. A white and gray dog with long fur. He has black eyes.
His favorite food is beef.

Question: What is 〈dog*〉’s favorite food?

1. RAP-LLaVA: Chicken.

2. RAP-LLaVA: His favorite food is beef.

Table 11: Examples of Concept Updating. The first caption is generated when toy2 not yet stored
in the database. Once the new concept is added, RAP-LLaVA can recognize both toy1 and toy2.

Image Concept Information in the Database

toy1 A plush toy. It is orange with a yellow belly and a brown
nose.

toy2
This is a plush toy of the bluey character. It is a light
blue color with a purple patch on its head, and its ears are
yellow.

Question: Give a caption of this image.

1. RAP-LLaVA: 〈toy1〉 is ready for bed! He’s snuggled up with
his friend, a blue and yellow dog plushie. They’re both look-
ing so cozy and ready for a good night’s sleep!

(Add new concept 〈toy2〉 to the database)
2. RAP-LLaVA: 〈toy1〉 and 〈toy2〉 are ready for bed! They

are both snuggled under the covers with their favorite stuffed
animals.

• In Table 14, we present additional image captions generated by RAP-Phi3-V and other methods.

• In Table 15, we provide demonstrations of image description generated by RAP-LLaVA and
LLaVA.

• In Table 12, we present qualitative results on personalized conversation of our models.

• In Table 16, we provide results on visual recognition of RAP-LLaVA. It also has the ability to
give precise bounding box of specific concept in the image.

F LIMITATION

Our proposed RAP framework is a retrieval-based method. The limitations of RAP mainly concern
the additional computational cost of generation and the precision of the retriever. While incorpo-
rating external information effectively generates more specific answers, it inevitably increases the
context length for MLLMs, leading to additional computational overhead during the generation pro-
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cess. We will further explore ways to mitigate this computational burden. Another limitation is the
personalization performance of our RAP-MLLMs depends on the retriever’s capability This pro-
poses need for a robust multi-modal retriever that can discern intricate features to enhance retrieval
precision. Despite these limitations, RAP offers a timely solution for MLLM personalization. By
retrieving from a user’s specific database, RAP facilitates reliable and flexible personalized genera-
tion, which is valuable in practical applications.

G EXAMPLES OF THE PERSONALIZED DATABASE

We give some visualized examples of our database in Table 21. For each concept in the database,
users need to provide an image with its name and an optional personalized description to give addi-
tional information. During inference, the images, names and other information of retrieved concepts
are integrated into the input for the MLLM. Users have the flexibility to define the name and person-
alized description based on their preferences, and our RAP-MLLMs will generate answers according
to the provided information.
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Table 12: Examples of personalized conversations obtained by RAP-LLaVA.
Image Concept Information in the Database

my cat
A tabby cat with its eyes closed is laying on a light grey
surface. The cat’s fur is a mix of light and dark brown
stripes.

Question: Where is 〈my cat〉?
RAP-LLaVA: 〈my cat〉 is on a staircase.

Question: What is the type of 〈my cat〉?
RAP-LLaVA: 〈my cat〉 is a tabby cat.

Question: What is the type of 〈my cat〉?
RAP-LLaVA: 〈my cat〉 is a tabby cat with a mix of light and
dark brown stripes.

Image Concept Information in the Database

A 〈A〉 is a smiling Asian man with short black hair, wearing
glasses and a grey sweater.

Question: Can you see 〈A〉 in this photo?
RAP-LLaVA: Yes, 〈A〉 is captured in this image.

Question: What color is 〈A〉’s shirt?
RAP-LLaVA: 〈A〉 is wearing a purple shirt.

Question: What is 〈A〉’s right hand holding?
RAP-LLaVA: Chopsticks.

Image Concept Information in the Database

dug
〈dug〉 is a golden retriever from the movie Up. He has a
brown coat and a big, goofy smile, wearing a collar with
some round objects.

(Text-only conversation)

Question: Can you describe 〈dug〉 in detail?
RAP-LLaVA: 〈dug〉 is a golden retriever from the movie Up.
He has a brown coat and a big, goofy smile. He is wearing
a collar with some round objects. He looks very happy and
playful.

Image Concept Information in the Database

C
〈C〉 is a young woman with long blonde hair, wearing a
white sleeveless shirt. She has bright red lipstick and light
makeup.

(Text-only conversation)

Question: What color is 〈C〉’s hair?
RAP-Phi3-V: 〈C〉’s hair is blonde.

Question: What color of clothes does she like?
RAP-Phi3-V: She likes white clothes.
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Table 13: Additional qualitative comparison on image captioning between RAP-LLaVA and other
methods.

Image Caption

doll*

LLaVA: A blue coffee cup sits next to two dolls on a window sill.
LLaVA-LoRA: 〈doll*〉 positioned on a windowsill with a blue mug
containing pencils
MyVLM: 〈doll*〉 is found sitting beside a window ledge with a cup
and toothbrushes nearby. In the image, 〈doll*〉 appears to be peace-
fully resting, possibly enjoying the view or taking a break.
RAP-LLaVA(Ours): 〈doll*〉 and her friend are ready for a fun day
at the office! They’re ready to take on any challenge that comes
their way.

mug*

LLaVA: A wooden shelf holds several potted plants, including a
large clay pot and a small vase. The shelf is positioned near a wall,
and the plants are arranged in a visually appealing manner.
LLaVA-LoRA: 〈mug*〉 on a wooden shelf next to a plant and two
potted plants.
MyVLM: 〈mug*〉 on a a blue and white tiled floor next to indoor
plants, a shelf with pots and a vase.
RAP-LLaVA(Ours): A brown ceramic tiki mug with the face of a
tiki head, 〈mug*〉, sits on a wooden shelf with two potted plants.

my cat

LLaVA: A cat is sitting on a ledge near a staircase.
LLaVA-LoRA: 〈my cat〉 sitting on a staircase, looking down.
MyVLM: 〈my cat〉 in a typical pose, gripping the banister of a stair-
case. He is wearing a collar.
RAP-LLaVA(Ours): 〈my cat〉 is relaxing on the stairs. Look at
those eyes! What a beautiful cat.

teapot*

my cat

LLaVA: A cat is laying on a blanket on a couch, next to a colorful
teapot.
LLaVA-LoRA: 〈my cat〉 reclining on a chair with a 〈teapot*〉 beside
MyVLM: 〈teapot*〉 on the couch near an orange, yellow, and blue
teapot. The cat is laying on a blanket, and the teapot is placed on a
table.
RAP-LLaVA(Ours): 〈my cat〉 is taking a well-deserved nap next to
〈teapot*〉.

H

T

LLaVA: A man and a woman are walking down a street, with the
man taking a selfie using his cell phone. They are both smiling as
they walk, and the man is holding his phone . . .
LLaVA-LoRA: 〈H〉 and 〈K〉 are looking happy as they walk down
the street together.
MyVLM: 〈H〉 and 〈T〉 are looking very serious as they take in the
scenery.
RAP-LLaVA(Ours): 〈T〉 is walking down the street with her friend
〈H〉.

parrot1

parrot2

LLaVA: Two colorful parrots are perched on a palm tree, sitting next
to each other.
LLaVA-LoRA: 〈parrot1〉 and 〈parrot2〉 are looking very serious as
they perch on a palm frond.
MyVLM: 〈parrot1〉 and 〈parrot2〉 look so cute together.
RAP-LLaVA(Ours): 〈parrot1〉 and 〈parrot2〉 are both beautiful
birds. 〈parrot1〉 has a bright red beak and 〈parrot2〉 has a light blue
head and pink feet. They are both perched on a branch.
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Table 14: Additional qualitative comparison on image captioning between RAP-Phi3-V and other
methods.

Image Caption

sheep*

Phi3-V: A small white sheep figurine is sitting on a wooden table
next to a plant.
LLaVA-LoRA: 〈sheep*〉 positioned next to a potted plant on a
wooden table.
MyVLM: 〈sheep*〉 positioned within a square shape within a vase
made of metal positioned on a table made of wood.
RAP-Phi3-V(Ours): 〈sheep*〉 is ready to play on the shelf with the
plant!

dog1

Phi3-V: A brown and white dog is sitting on the grass with a leash
attached to it.
LLaVA-LoRA: 〈dog1〉 sitting on the grass with a look of determi-
nation.
MyVLM: on a cheerful note, 〈dog1〉 restfully resides, surrounded
by the soothing sounds of nature.
RAP-Phi3-V(Ours): This is a picture of 〈dog1〉, a cute dog with
light brown and white fur. He looks happy and playful.

bull*

Phi3-V: A bottle of wine is displayed next to a wooden cow statue.
LLaVA-LoRA: 〈bull*〉 positioned next to a bottle of supreme caber-
net sauvignon.
MyVLM: 〈gold pineapple〉 pars the bottle of wine. A bottle of wine
sits next to a bottle of wine.
RAP-Phi3-V(Ours): 〈bull*〉 stands guard over a bottle of
SUPREME wine.

funko pop*

Phi3-V: A small figurine of a basketball player is placed on top of a
box.
LLaVA-LoRA: 〈funko pop*〉 sitting on a desk next to a box and a
monitor.
MyVLM: 〈funko pop*〉 stands out in a photo set against a dark
background.
RAP-Phi3-V(Ours): 〈funko pop*〉 is ready to dominate the court!

J

K

Phi3-V: A man and woman are sitting at a table in a restaurant,
having a conversation and enjoying their time together.
LLaVA-LoRA: 〈J〉 and 〈K〉 enjoying a meal together.
MyVLM: 〈J〉 and 〈K〉 enjoying their time together.
RAP-Phi3-V(Ours): 〈J〉 and 〈K〉 are enjoying a drink at a bar.

cup*

head*

Phi3-V: A small statue of a man wearing glasses is sitting next to a
cup on a table.
LLaVA-LoRA: A table hosts 〈cup*〉 and a sculpture of a head wear-
ing glasses.
MyVLM: A table with 〈cup*〉, an espresso cup, and a ceramic mug
depicting a face wearing glasses sits on a wooden surface.
RAP-Phi3-V(Ours): 〈head*〉 and 〈cup*〉 are ready for their morn-
ing coffee.
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Table 15: Qualitative results of personalized image description obtained by RAP-LLaVA.
Image Description

my cat

LLaVA: The image features a large, fluffy cat sitting on a counter-
top, possibly in a kitchen. The cat is positioned near a sink and
appears to be resting or sleeping. The countertop is covered with a
towel, providing a comfortable surface for the cat to lay on . . .

RAP-LLaVA(Ours): The image shows 〈my cat〉, a tabby cat with
its eyes closed, laying on a light grey surface. The cat’s fur is a mix
of light and dark brown stripes. The cat is relaxed and comfortable.

toy3

LLaVA: The image features a small metal robot figure, possibly
a toy, standing on a table or counter. The robot is positioned in
the center of the scene, surrounded by a variety of leaves scattered
around it. The leaves are of different sizes and . . .

RAP-LLaVA(Ours): The image shows a toy figurine of Iron Man,
a superhero from Marvel comics. He is wearing a silver and red suit
of armor and is standing on a surface covered in leaves. The toy is
called 〈toy3〉.

pillow*

LLaVA: The image features a chair with a pillow on it, which has
a picture of a sheep on it. The chair is positioned in front of a desk
with a laptop and a monitor on it. The laptop is placed on the left
side of the desk, while the monitor is on the right side . . .

RAP-LLaVA(Ours): The image shows a chair with a 〈pillow*〉 on
it. The 〈pillow*〉 is a pattern of flowers, leaves, and a sheep wearing
glasses with a flower crown. There is also a laptop and a computer
monitor in the background.

toy4

LLaVA: The image features a bookshelf filled with various books.
On the shelf, there are two Rubik’s cubes, one green and one white,
sitting next to each other. The bookshelf is well-stocked with
books, occupying most of the shelf space . . .

RAP-LLaVA(Ours): The image shows a bookshelf with books on
it. There are two toys on the shelf. One is a 〈toy4〉, which looks like
a cat with orange fuzzy ears and a brown cord attached. The other
is a Rubik’s cube.

toy2

toy1

LLaVA: The image features a bed with two stuffed animals, a dog
and a cat, lying on it. The dog is positioned on the left side of the
bed, while the cat is on the right side. The stuffed animals are placed
close to each other, giving the impression of a cozy and . . .

RAP-LLaVA(Ours): The image shows two plush toys, 〈toy1〉 and
〈toy2〉, lying in bed together. 〈toy2〉 is a light blue plush with a
purple patch on its head and yellow ears. 〈toy1〉 is an orange plush
with a yellow belly and a brown nose. They are both looking at the
camera.

Bond

Anya

LLaVA: The image features a young girl hugging a large white dog
in a room. The girl is wearing a black dress and appears to be en-
joying her time with the dog. The dog is positioned close to the girl,
and they seem to be sharing a tender moment together . . .

RAP-LLaVA(Ours): 〈Anya〉 is a young girl with pink hair and big
green eyes. She is wearing a black dress and black shoes. She is
standing in a room with wooden floors and is hugging a white dog
named 〈Bond〉. 〈Bond〉 is wearing a black bow tie. The dog is
standing on its hind legs and is looking at the camera. The room is
decorated with a blue rug and a wooden cabinet . . .
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Table 16: Qualitative results of personalized concept recognition obtained by RAP-LLaVA. We use
green rectangle to show the bounding box in the image.

Image Conversation

head*

Question: Is 〈head*〉 in this image?

RAP-LLaVA: Yes, 〈head*〉 is in the photo.

Question: Give 〈head*〉’s bounding box in the image.

RAP-LLaVA: [0.57, 0.67, 0.68, 0.84]

head*

Question: Is 〈head*〉 in this image?

RAP-LLaVA: No, 〈head*〉 is not part of this photograph.

toy*

Question: Can you identify if 〈toy*〉 is captured in this picture?

RAP-LLaVA(Ours): Yes, 〈toy*〉 is visible in this picture.

Question: Please provide 〈toy*〉’s bounding coordinates in the
image.

RAP-LLaVA: [0.42, 0.19, 0.54, 0.39]

toy*

Question: Can you identify if 〈toy*〉 is captured in this picture?

RAP-LLaVA(Ours): 〈toy*〉 is not captured in this image.

A

Question: Can you confirm if 〈A〉 appears in this photo?

RAP-LLaVA(Ours): Yes, 〈A〉 is in this photo.

Question: Describe 〈A〉’s position in the image.

RAP-LLaVA(Ours): [0.24, 0.12, 0.72, 0.98]

A

Question: Can you confirm if 〈A〉 appears in this photo?

RAP-LLaVA(Ours): 〈A〉 is not present in this photograph.
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Table 17: Instructions for visual grounding and recognition.�

�

�

�

Visual recognition:
• Is ⟨V⟩ visible in this picture?

• Is ⟨V⟩ in this image?

• Do you see ⟨V⟩ in the photo?

• Is ⟨V⟩ present in this photograph?

• Can you identify if ⟨V⟩ is captured in this picture?

• Is ⟨V⟩ depicted in this image?

• Does the picture feature ⟨V⟩?
• Can you confirm if ⟨V⟩ appears in this photo?

• Is ⟨V⟩ included in this shot?

• Is ⟨V⟩ shown in this image?

• Can you tell if ⟨V⟩ is part of this photograph?

• Is there any sign of ⟨V⟩ in this picture?

• Can you detect ⟨V⟩ in the photo?

• Is ⟨V⟩ captured in this image?

• Do you recognize ⟨V⟩ in this picture?
Visual grounding:
• Give 〈V〉’s bounding box in the image.
• Describe 〈V〉’s position in the image.
• Please provide the coordinates of the bounding box for 〈V〉 in the given image.
• Specify the rectangular boundaries of 〈V〉 in the image.
• Give 〈V〉’s position in the following image.
• Please provide 〈V〉’s bounding coordinates in the image.
• Indicate the bounding box for 〈V〉 in the image.
• Show the bounding box for 〈V〉 in the picture.
• Specify 〈V〉’s bounding box in the photograph.
• Mark 〈V〉’s bounding box within the image.

Table 18: Instructions for image captioning.�

�

�

�

Image caption:
• Give a caption of the image.
• Give a personalized caption of this image.
• Provide a brief caption of the image.
• Summarize the visual content of the image.
• Create a short caption of the image.
• Offer a short and clear interpretation of the image.
• Describe the image concisely.
• Render a concise summary of the photo.
• Provide a caption of the given image.
• Can you provide a personalized caption of this photo?
• Could you describe this image concisely?
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Table 19: Instructions for image description.�

�

�

�

Image description:
• Describe the image.
• Give a description of the image.
• Give a description of the image in detail.
• Give a short description of the image.
• Describe the image in detail.
• Please provide a description of the image.
• Can you give me details about the image?
• Could you explain what’s shown in the image?

Table 20: Seed questions used for question answering synthesis.�

�

�

�

Person:
• What is 〈H〉’s hair color?
• What is 〈H〉’s height (estimated)?
• What is 〈H〉’s skin tone?
• What is 〈H〉’s eye color?
• What style of clothing is 〈H〉 wearing?
• Does 〈H〉 have any visible tattoos?
• Does 〈H〉 wear glasses or contact lenses?
• Does 〈H〉 have any facial hair?
• What is 〈H〉’s approximate age?
• What is 〈H〉’s build or body type?
• What is 〈H〉 doing?
Object:
• What color is 〈O〉?

• What pattern is on 〈O〉?

• What shape does 〈O〉 have?

• What size is 〈O〉?

• What is the texture of 〈O〉?

• Is 〈O〉 shiny or matte?

• What material is 〈O〉 made of?

• Does 〈O〉 have any patterns or designs on it?

• Is 〈O〉 new or worn?

• Does 〈O〉 have any visible brand or logo?

• Is 〈O〉 functional or decorative?
Multi-concept question:
• What do 〈C1〉 and 〈C2〉 have in common?

• What activity are 〈C1〉 and 〈C2〉 engaged in?

• Where could 〈C1〉 and 〈C2〉 be located?

• What is the most noticeable difference between 〈C1〉 and 〈C2〉?

• What are they doing?
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Table 21: Examples of our database. A concept should be provided with an image and its personal-
ized description.

Image Concept Information

Anya A young girl with pink hair and big green eyes.

doll* This is a cute figurine of a girl wearing a pink and blue
dress, holding a white bubble.

toy1 A plush toy. It is orange with a yellow belly and a brown
nose.

toy2
This is a plush toy of the bluey character. It is a light
blue color with a purple patch on its head, and its ears are
yellow.

statue*
This is a figurine of a cat. The cat has a blue body with
yellow, red, and green stripes and a long tail that is also
striped.

cat* A small ginger kitten with bright blue eyes looks up at the
camera.

H A young man is wearing a plain tan t-shirt. His hair is
short and curly.

dog* A white and gray dog with long fur. He has black eyes.

T A young woman with blonde hair is wearing a white tank
top and blue jeans.
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