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ABSTRACT

Chain-of-Thought (CoT) improves large language model (LLM) reasoning by
making intermediate steps explicit. Many methods still rely on fixed human ex-
emplars and ignore structural cues such as entity relations, which can lead to con-
fident but faulty reasoning paths. This paper presents Structure-driven Dynamic
Active Chain-of-Thought (SDA-CoT), a framework that combines uncertainty-
based exemplar selection with structure-aware reasoning to address these issues.
SDA-CoT uses Bayesian Active Learning (BAL) to select exemplars with high
uncertainty and strong expected value, applies entity and relation extraction to
build relational structures, and then produces reasoning paths that remain logi-
cally coherent and consistent with context. Across three dataset families (com-
monsense reasoning, logical reasoning, and math word problems) and two LLMs
(LLaMA2-13B and DeepSeek-R1), SDA-CoT surpasses standard CoT methods.
In LLaMA2-13B, the accuracy increases by 9% on average, with a gain of 12%
on GSM8K. In DeepSeek-R1, the average gain is 8%. The combination of en-
tity–relation analysis with adaptive prompting produces robust and interpretable
CoT and provides the first empirical evidence that BAL can significantly improve
CoT reasoning in LLMs.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020; Chowdhery et al., 2023; OpenAI, 2023) have
changed natural language processing (NLP) by showing strong in-context learning on tasks such as
question answering, arithmetic reasoning, and commonsense inference. One widely used strategy
for complex problem solving is Chain-of-Thought (CoT) prompting (Wei et al., 2022b). When a
prompt asks the model to break a problem into explicit steps, CoT makes the reasoning trace visible
and often improves prediction accuracy.

Recent studies find that CoT behavior depends on the phrasing of exemplars. As shown in Figure 1,
even a simple task that mixes arithmetic and proportion can shift course after small edits to the
preceding exemplars. With an ill-suited exemplar (Prompt 1), the model performs a spurious com-
putation and wrongly concludes that John lost to five opponents by misusing percentage arithmetic.
With a well-structured exemplar (Prompt 2) that gives consistent logic and clear structure, the model
reaches the correct answer of four opponents. These observations point to two challenges: exem-
plar choice governs the faithfulness of the reasoning process, and fixed prompts lack the flexibility
needed to match task uncertainty and structural fit.

Despite broad interest in CoT, common practice has clear limits. Many methods use fixed, human-
written exemplars (Wei et al., 2022b; Zhou et al., 2023) or template prompts that do not adapt
across tasks. Such designs neglect task-specific uncertainty, often producing confident but erro-
neous reasoning chains, as shown in Figure 1. They also ignore structural cues in text, including
entity interactions and relational dependencies, which matter for multi-hop and logical reasoning
(Liu et al., 2024). Fixed exemplars transfer poorly across tasks that vary in difficulty or required
domain knowledge. As a result, LLMs remain brittle in settings that call for dynamic, context-aware
reasoning paths.

In this work, we introduce Structure-driven Dynamic Active Chain-of-Thought (SDA-CoT), a
framework that integrates structural reasoning and dynamic prompting into a unified architecture
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to address these limitations. First, it represents structural information, such as entity types, rela-
tions, and exemplars dependencies, as a latent graph, so the model can organize its reasoning in a
coherent way. Second, it adapts its reasoning path by actively selecting high-quality exemplars that
are strongly associated with high model uncertainty. In this way, SDA-CoT avoids spurious chains
induced by mismatched prompts and produces task-aware, logically consistent reasoning trajecto-
ries.

Q: Jean has 30 lollipops. Jean eats 2 of the lollipops. With 
the remaining lollipops, Jean wants to package 2 lollipops 
in one bag. How many bags can Jean fill? 
A: Let's think step by step. Jean starts with 30 lollipops. 
He eats 2 of them, so the number of lollipops remaining is 
calculated as 30 - 2 = 28. Then, with the remaining 
lollipops, he wants to package 2 lollipops in one bag, so 
the number of bags he can fill is determined by dividing 
the remaining lollipops by 2, which is 28 / 2 = 14 bags. 
Therefore, Jean can fill 14 bags with lollipops.
Q: John arm wrestles 20 people.  He beats 80%.  How 
many people did he lose to?
A: Let’s think step by step.

A: Let's think step by step. John arm wrestled 20 people and 
beat 80% of them. To find out how many people he beat, we 
calculate 80% of 20, which is 20 / 0.8 = 25. This means he beat 
25 people. Since he only arm wrestled 20 people in total, and he 
beat 25, he must have lost to 25 - 20 = 5 people. Therefor, John 
lost to 5 people.

Q: A bag has a 5% discount. If it is marked $140, how 
much will you pay after the discount?
A: Let's think step by step. The bag is marked at $140. A 
5% discount means you pay 95% of the original price 
(since 100% - 5% = 95%). So, the final price is calculated as 
95% of $140. Converting 95% to a decimal gives 0.95. 
Then, multiply $140 by 0.95:  $140 × 0.95 = $133 . 
Therefore, you will pay $133 after the discount.
Q: John arm wrestles 20 people.  He beats 80%.  How 
many people did he lose to?
A: Let’s think step by step.

A: Let’s think step by step. John arm wrestled 20 people and 
beat 80% of them. So, the number of people he beat is 
calculated as 20 * 0.80 = 16 people. To find out how many 
people he lost to, subtract the number of people he beat from 
the total number of people he arm wrestled: 20 - 16 = 4 people. 
Therefore, John lost to 4 people.

Prompt 1 Prompt 2

Figure 1: Example of the CoT prompting. The prompt influences how LLMs reach the final answer.

Specifically, SDA-CoT consists of three modules: (i) a structure extractor that builds relational
representations by analyzing entity interactions and implicit dependencies; (ii) a dynamic reason-
ing planner that evaluates uncertainty across multiple CoT paths and expands the most informative
ones; and (iii) a CoT generator that combines structural cues with uncertainty-aware exemplars to
produce task-adaptive reasoning chains. Unlike prior methods that treat structural analysis and CoT
as separate components, SDA-CoT couples them, yielding context-sensitive reasoning with stable
logic and greater adaptability.

The contributions of this work are summarized as follows:

• SDA-CoT integrates entity and relation analysis with dynamic exemplar selection, enabling
structure-aware CoT rather than relying on fixed templates. This design reduces reasoning
errors caused by prompt mismatches and enhances the ability of LLMs to handle complex
logical reasoning tasks.

• This is the first work to demonstrate that Bayesian active learning enhances CoT reasoning
in LLMs. Our composite acquisition rule for exemplar selection combines disagreement,
entropy, and confidence variance, targeting highly uncertain cases and providing annotation
chains that calibrate reasoning across tasks.

• Comprehensive experiments on six benchmarks (StrategyQA, CSQA, LogiQA, HotpotQA,
2WikiMultiHopQA, GSM8K) with LLaMA2-13B and DeepSeek-R1 show consistent gains
over strong CoT variants, with an average improvement of 7.12%.

• CoT increases model stability and interpretability and produces more accurate and reliable
reasoning paths in domains that require multi-hop inference and arithmetic reasoning.

2 RELATED WORK

2.1 CHAIN OF THOUGHT

Chain-of-Thought (CoT) prompting has become a standard approach for LLMs to handle complex
reasoning through intermediate steps that lead to a final answer (Wei et al., 2022b; Kojima et al.,
2022). Early studies show that even a short prefix such as “Let’s think step by step” can elicit multi-
hop inference without additional training (Kojima et al., 2022). To increase stability and robustness,
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several methods have been proposed. Auto-CoT (Zhang et al., 2023b) constructs exemplars automat-
ically, and Complex-CoT (Fu et al., 2023b) adjusts the depth of reasoning to match task difficulty.

Most methods still rely on fixed exemplars or prompt templates, which limits adaptation to new tasks
or shifts in input distribution. Conventional CoT approaches also pay little attention to structural
cues such as entity dependencies and relational hierarchies, which matter for logical and multi-hop
reasoning. This work combines CoT prompting with structure-aware entity–relation modeling and
active prompt adaptation, and it produces reasoning chains that are more targeted and easier to
interpret.

2.2 BAYESIAN ACTIVE LEARNING

Active Learning (AL) reduces annotation cost by iteratively choosing informative samples for la-
beling (Li et al., 2025). Conventional AL often uses simple confidence scores that do not capture
uncertainty under scarce data or parameter ambiguity. In many settings, uncertainty measures such
as entropy or disagreement are treated separately (Xu & Zhang, 2024; Li et al., 2025), and the result
is weaker sample ranking. The effect is acute for CoT exemplar selection: ambiguous reasoning
paths or conflicting intermediate steps can lower LLM performance.

Bayesian Active Learning (BAL) (Houlsby et al., 2011b) models a posterior over predictions and
treats uncertainty in a unified way. It separates aleatoric noise from epistemic uncertainty (Kendall
& Gal, 2017), and this split directs selection toward samples that are both ambiguous and informa-
tive. Rather than relying on point scores, BAL estimates predictive distributions; prior work reports
gains in image recognition (Gal et al., 2017), neural machine translation (Cheng et al., 2025), and
text classification (Ash et al., 2020), with better sample efficiency than heuristic AL. The same
approach suits conditions with few labels, distribution shift, or multi-step inference, such as CoT
reasoning with LLMs. In our use, BAL supports an uncertainty-driven strategy for exemplar choice
in CoT prompting. We combine disagreement, entropy, and confidence variance to capture comple-
mentary views of predictive uncertainty—variance is measured across stochastic passes or model
variants—and we pick the hardest and most informative pool items. We then add manual chains
for these items to the exemplar set, which lowers ambiguity in the model’s reasoning and improves
stability across varied inputs.

2.3 NAMED ENTITY RECOGNITION & RELATION EXTRACTION

Named Entity Recognition (NER) and Relation Extraction (RE) are core tasks in information ex-
traction; they identify entities and classify their relations in unstructured text (Detroja et al., 2023).
With LLMs, NER has moved from sequence labeling to generation-based paradigms (Wang et al.,
2025). This shift allows models to adapt to diverse domains. RE has also been cast as a question
answering task (Efeoglu & Paschke, 2024), with prompt-based methods that work in zero-shot and
few-shot settings.

Recent studies have emphasized the importance of leveraging entity and relation structures to en-
hance reasoning. For example, ERA-CoT (Liu et al., 2024) adds explicit and implicit relational
triplets to the CoT pipeline; this design helps models separate entity semantics and reason in a
more grounded way. Many approaches still treat structure extraction and CoT prompting as separate
steps. SDA-CoT links NER and RE with dynamic reasoning so that the reasoning path is refined
in response to relational cues and exemplar uncertainty. The result is higher accuracy and clearer
reasoning in tasks that require multi-hop inference.

3 METHOD

The SDA-CoT framework enhances multi-step reasoning by combining structural analysis with
adaptive exemplar selection. The framework comprises three components: (i) uncertainty exem-
plar selection; (ii) structure-aware entity and relation extraction; and (iii) final answer inference
with LLMs. Figure 2 provides an overview of the workflow and a complete summary of all symbols
is provided in Appendix D.
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James wanted to find an old underground map from 
the 50s.  Where might he look for one?

The artist was sitting quietly pondering, then 
suddenly he began to paint when what struck him?

...
The weasel was becoming a problem, it kept getting 
into the chicken eggs kept in the what?

...

Unlabeled Question

Fill into the question

Few-shot CoT

Q: What do people use to absorb extra ink from a...
A:The answer must be an item...The answer is blotter.

Q: What home entertainment equipment ...
A:The answer require cable...The answer is television.

Q: <Unlabled Question>

Zero-shot CoT

Q: <Unlabled Question>
A:Let’s think step by step.

The artist was sitting quietly pondering, then 
suddenly he began to paint when what struck him?

Uncertainty Value：1.0

...

The weasel was becoming a problem, it kept getting 
into the chicken eggs kept in the what?

Uncertainty Value：1.0

The weasel was becoming a problem, it kept getting 
into the chicken eggs kept in the what?

Uncertainty Value：0.2

...

...

(John, something, had to bring)

Q:Because John was first violin, he had to bring something 
important to work ever day. What did he need to bring to 
work?

Test Question

John, violin, 
something, 
work.

1.Entities：

①(John, violin, is first of)
②(John, something, had to bring)
③(violin, something, requires)
④(violin, work, used at)

2.Relation extraction and 
inference:

3.Score(>7)：
①

②

③

④

9>7

9>7

6<7

(John, something, had to bring)

Uncertainty Exemplars 

Q: The artist was sitting quietly pondering...
A: The artist is pondering, which suggests 
deep thought or reflection...

Q: The weasel was becoming a problem...
A:  A weasel is a small, agile animal known 
for sneaking into places...

...

Entities and Relationships 

Entities: 
     John, violin, something, work
Relationships:
     (John, violin, is first of) 
     (John, something, had to bring)

Test Question

Q:Because John was first violin, he had to bring 
something important to work ever day. What did 
he need to bring to work?
A: store B: obesity C: orchestra D: violin case

D:violin case!

① Uncertainty-driven Exemplar Selection

② Structure-aware Entity and Relation Extraction

③ Final Answer Prediction

8>7

Figure 2: Overview of the SDA-CoT framework. (1) Uncertainty-driven Exemplar Selection:
Using either few-shot or zero-shot CoT prompting, the unlabeled questions in the Dtrain are com-
pleted by leveraging the reasoning capabilities of the LLM to generate m candidate answers for
each question. The k most uncertain questions are then selected into E according to the uncertainty.
(2) Structure-aware Entity and Relation Extraction: For each test input in Dtest, extract entities
and infer both explicit and implicit relations among them. Use the LLM to analyze these relations
and identify the valid ones. (3) Final Answer Prediction: High-quality annotated exemplars, ex-
tracted entities, valid relations, and test questions are fed into LLM for reasoning, which leads to the
final answer.

3.1 UNCERTAINTY EXEMPLAR SELECTION

This step selects a small subset of highly uncertain questions from a large dataset to form the ex-
emplar set E. Uncertainty in LLMs includes epistemic uncertainty (stemming from limited model
knowledge) and aleatoric uncertainty (arising from data noise). Samples with high uncertainty often
occur near decision boundaries or in out-of-distribution regions; labeling such samples helps reduce
epistemic gaps and improves performance.

We first forward the LLM m times to obtain m answers for each question, and finally acquire the
top-k questions with the highest uncertainty. For stability, few-shot CoT prompting is applied using
annotated examples from the training set Dtrain (Wei et al., 2022a). Importantly, our framework does
not rely on few-shot prompting: uncertainty is defined by the model’s confidence distribution over
outputs, which is independent of input format (Hüllermeier & Waegeman, 2021). CoT serves as a
prefix intervention (i.e., do(prefix = CoT)). As long as the core variables Xcore remain unchanged,
the variance of the output distribution is unaffected (Zhang et al., 2025), making zero-shot prompting
equally applicable.

Sample selection follows BAL, which chooses informative samples by maximizing expected infor-
mation gain (Houlsby et al., 2011a):

x∗
i = argmax

x∈U
I(θ; y|x,Dtrain) = argmax

x∈U
E (1)

where U is the unlabeled pool. To approximate the posterior p(θ | D) for LLMs, we perform k
stochastic forward passes with decoding randomness (e.g., top-p sampling, temperature τ ). This
yields outputs {y1, y2, . . . , yk}, which are used to compute three complementary metrics of uncer-
tainty: disagreement, entropy, and variance.
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Disagreement. Disagreement quantifies epistemic uncertainty by measuring variability among
predictions under different posterior samples. Exact integration is intractable for LLMs, so we
approximate p(y | xi,Dtrain) via k stochastic forward passes. Given predictions {y1, . . . , yk}, the
score is:

Udis(xi) = 1− 1

k(k − 1)

∑
i̸=j

ϕ(yi, yj), (2)

where ϕ is a task-specific semantic similarity function. This formulation captures variability across
structured and unstructured outputs, consistent with epistemic exploration in BAL.

Entropy. Entropy measures the dispersion of the empirical output distribution. Given predictions
{y1, . . . , yk} with empirical distribution p̂(y):

Uent(xi) = −
∑
y∈V

p̂(y) log p̂(y). (3)

Low entropy reflects high confidence (predictions concentrate on one outcome), while high entropy
signals diverse reasoning paths and ambiguous inputs, making such cases valuable for exemplar
selection.

Variance. Variance evaluates stability in model confidence across sampled predictions. Each out-
put yi is paired with a score si (e.g., log probability or normalized likelihood). The variance is

Uvar(xi) =
1

k − 1

k∑
i=1

(si − s̄)2, s̄ =
1

k

k∑
i=1

si. (4)

High variance indicates inconsistent confidence across outputs, exposing epistemic uncertainty and
highlighting samples where calibration is most needed.

3.1.1 COMPOSITE SELECTION AND ANNOTATION

The three metrics are integrated into a weighted acquisition function:

α(xi) = λ1Udis(xi) + λ2Uent(xi) + λ3Uvar(xi). (5)

Here λ1, λ2, and λ3 balance the importance of each signal. Samples with the highest α(xi) are
selected, manually annotated with reasoning chains, and added to the exemplar set. This human-in-
the-loop process grounds exemplars in reliable logic and improves calibration, ultimately yielding
more robust reasoning trajectories.

Table 1: Entity types.

Type Example sentences
PEOPLE Turing is a giant of computer science
ORGANIZATION The IPCC warned about the cyclone.
LOCATION The Mt.Santias loop is in Sunshine Canyon.
Geo-Political Entity Palo Alto is raising the fees for parking.
Facility Consider the Golden Gate Bridge.
Vechicle It was a classic Ford Falcon.

3.2 STRUCTURE-AWARE ENTITY AND RELATION EXTRACTION

Entity extraction. Building on the extraction capabilities of LLMs (Huang et al., 2025), each test
question is supplied to the model with high-quality prompt instructions and the set of potential entity
types in Table 1. For a given input qj , the model lists entities ej contained in the question and assigns
a predicted type to each ej . Confidence is assessed with self-consistency (SC): for a candidate entity
within qj , the model produces n independent extractions; the entity is retained when the vote count
exceeds ⌈n/2⌉. This procedure filters out noisy or irrelevant items and produces the entity set S.

5
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Relation extraction and inference. In zero-shot prompting, the objective is to map relations
among entities. Explicit relations are directly stated in the text. For input qj , the model extracts
triples (eq, er, rel) and verifies them with SC, yielding the explicit set:

Re =
⋃

q,r∈S
{(eq, er, rel)} (6)

Because Re contains relations directly stated in the input, LLMs can read these pairs and then use
them to support inference of pairs not written in the text.

After collecting explicit relations, the next step is to infer implicit pairs so that the model can recover
the relational structure of the sentence. An implicit pair is not stated verbatim but is supported by S
andRe. For example: “Because John was first violin, he had to bring something important to work
every day. What did he need to bring to work?” The link between John and violin is explicit and can
be extracted, whereas the link between violin and something is unstated and must be inferred using
S and Re. Since multi-step reasoning is required, additional information is provided: the query qj
together with Re is given to the model, which returns l implicit relations ranked by relevance. Let
an intermediate step be Ta = (ea, ea+1, rela); such steps form a chain T1, T2, . . . , Tn−1 that yields
an interpretable triple T1→n = (e1, en, relx), where n is the chain length. The inferred set is:

R′
i =

⋃
q,r∈S

{(eq, er, relx)} (7)

where relx denotes relations produced during the reasoning step.

Relation validation. To ensure reliability, we adopt Self-Correction (Yan et al., 2025), treating
the LLM as a scoring function. A reliability threshold scoth is fixed. The model receives the
original text together with all candidate relations and, for each triple, returns a score sco(i, j, k) that
reflects its plausibility. Triples with higher scores are treated as more likely to be correct. Relations
that score below the threshold are removed because they would misguide downstream reasoning,
whereas those at or above the threshold are kept as reliable instances. The resulting set of implicit
relations is:

Ri =
⋃

q,r∈S,sco(i,j,k)≥scoth

{(eq, er, relx)} (8)

which records all retained pairs (eq, er) together with the inferred label relx.

3.3 INFERENCE

The final stage concerns answer inference, where previously derived information is combined and
used to make predictions. Three sources are used: (i) high-quality exemplars E; (ii) the entity set S;
and (iii) the validated relation setRvalid = Re∪Ri. Together, these components provide a structured
context that guides the LLM during reasoning. Formally, for a test query qj , the input prompt to the
LLMM is:

Prompt(qj) = {E,S,Rvalid, qj}, (9)
where exemplars E supply reasoning patterns, entities S anchor the problem context, and relations
Rvalid give the links required for multi-hop inference. With this context, the model conditions its
reasoning on both the surface text and the structured semantic information.

To further stabilize predictions, we employ SC. The LLM is queried n times with stochastic decod-
ing, producing reasoning chains {y1, . . . , yn}. The final answer is obtained by majority vote:

y∗ = argmax
y∈{y1,...,yn}

Count(y), (10)

where Count(y) denotes the frequency of prediction y. This mechanism suppresses spurious rea-
soning and amplifies the most reliable inference trajectory.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and models. To evaluate the effectiveness and generalizability of SDA-CoT, we conduct
experiments spanning three categories of reasoning: commonsense reasoning, logical reasoning, and

6
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mathematical problem solving. Specifically: (i) for commonsense reasoning, we use StrategyQA
(StrQA) (Geva et al., 2021) and CommonsenseQA (CSQA) (Talmor et al., 2019), which test the
model’s ability to leverage implicit knowledge beyond surface text; (ii) for logical reasoning, we
adopt LogiQA (Liu et al., 2020), HotpotQA (HPQA) (Yang et al., 2018), and 2WikiMultiHopQA
(2WikiQA) (Ho et al., 2020), which evaluate multi-hop and structurally complex reasoning; (iii)
for math word problems, we use GSM8K (Cobbe et al., 2021), a standard benchmark for assessing
chain-of-thought reasoning in mathematical contexts. Table 5 summarizes these datasets.

We evaluate SDA-CoT using two representative LLMs: LLaMA2-13B(Touvron et al., 2023) and
DeepSeek-R1 (DeepSeek-AI et al., 2025), to evaluate the proposed SDA-CoT framework. Specif-
ically, LLaMA2-13B is a transformer-based language model, and it has been widely adopted as a
strong baseline for natural language understanding and reasoning tasks. Deepseek-R1 is a reasoning-
centered LLM that incorporates mechanisms encouraging deep thinking, making it particularly well-
suited for complex, multi-hop, and mathematical reasoning tasks.

Baselines. To ensure a comprehensive evaluation, we compare against several representative base-
lines. Vanilla LM, which relies solely on in-context learning without reasoning traces; Chain-of-
Thought (CoT) (Wei et al., 2022b) improves reasoning by generating explicit intermediate steps,
while CoT-SC (Wang et al., 2023b) enhances its robustness via majority voting across multiple rea-
soning paths; We also consider more advanced variants such as Auto-CoT (Zhang et al., 2023a),
which automatically selects exemplars, and Complex-CoT (Fu et al., 2023a), which adapts rea-
soning to task difficulty; Plan-and-Solve (PS) (Wang et al., 2023a) further structures reasoning
into a planning phase followed by detailed problem solving; CDW-CoT (Fang et al., 2025), which
dynamically constructs prompts through clustering and distance-weighted selection.

4.2 EXPERIMENTAL ANALYSIS

4.2.1 MAIN RESULT

Table 2: Main results (%). The best score are highlighted in bold, and the second-best one is
underlined. CoT-SC@5 represents retrieving five CoT reasoning chains when applying SC princi-
ples.

Model Methods CSQA StrQA LogiQA HPQA 2WikiQA GSM8K

LLaMA2-13B

Vanilla LM 57.2 58.3 24.5 34.2 28.2 17.8
CoT 55.1 64.2 30.2 37.1 32.4 18.9
CoT-SC@5 57.2 66.8 32.4 36.8 34.6 21.2
Auto-CoT 56.8 66.5 31.9 37.5 35.2 25.1
Complex-CoT 54.8 65.2 32.1 37.1 35.1 23.8
PS 56.8 66.2 31.6 36.9 34.2 22.4
CDW-CoT 61.4 70.1 33.4 40.1 37.6 24.1
SDA-CoT(ours) 67.5 78.5 41.6 45.3 44.9 37.5

DeepSeek-R1

Vanilla LM 63.6 69.4 26.8 41.7 36.6 49.0
CoT 61.4 74.5 35.0 44.4 42.1 66.9
CoT-SC@5 63.3 75.6 36.8 44.8 44.8 71.3
Auto-CoT 62.8 74.9 37.2 45.1 45.1 73.6
Complex-CoT 62.4 73.5 37.2 44.5 44.5 76.5
PS 63.9 74.8 36.4 45.2 45.2 72.6
CDW-CoT 69.4 80.1 43.0 49.0 46.2 74.2
SDA-CoT(ours) 76.2 86.7 50.3 53.0 52.5 80.0

Table 2 summarizes the results across six benchmarks, SDA-CoT consistently outperforms all base-
lines, including the strong adaptive method CDW-CoT. On average, SDA-CoT improves perfor-
mance by 9% with LLaMA2-13B and by 8% with DeepSeek-R1. The largest improvement occurs
on GSM8K, where SDA-CoT improves accuracy by over 12% on LLaMA2-13B.
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Mechanistic perspective. SDA-CoT improves reasoning through two complementary mecha-
nisms. The uncertainty exemplar selection prioritizes informative cases where the framework ex-
hibits high predictive variance. This exposes the model to diverse, challenging reasoning patterns
and prevents overfitting to trivial examples. In parallel, entity and relation extraction improves the
framework’s ability to capture relational dependencies within a question. By explicitly extracting
both explicit and implicit entities and relations, SDA-CoT establishes a structured reasoning context
that aligns with CoT generation. This is especially beneficial for multi-hop reasoning and arithmetic
decomposition, where reasoning must go beyond surface level text.

Empirical insights. Conventional CoT and its variants improve reasoning quality compared to
vanilla LM, yet their performance is limited, especially on HPQA and 2WikiQA. This suggests that
simply increasing reasoning paths is insufficient to capture the dependencies required for complex
reasoning. SDA-CoT addresses this limitation by incorporating entity and relation structures, en-
abling the framework to dynamically adapt reasoning steps to the problem. Notably, this advantage
is markedly enhanced in DeepSeek-R1, which has been specifically optimized for reasoning.

Impact of LLMs. The two LLMs highlight complementary aspects of SDA-CoT. LLaMA2-13B,
as an open source model, demonstrates the fundamental effectiveness of our approach even without
specialized reasoning mechanisms. DeepSeek-R1, designed for reasoning tasks, shows that SDA-
CoT can further enhance models already optimized for deep reasoning.

4.2.2 ABLATION STUDY

Table 3: Ablation study.

Model Methods CSQA StrQA LogiQA HPQA 2WikiQA GSM8K

LLaMA2-13B

w/o ES 60.2 71.5 34.4 40.3 39.2 28.1
Only EE 63.7 71.1 31.8 41.3 39.8 35.1
w/o ERI 64.4 74.5 33.2 42.3 40.4 36.9
w/o ERE 64.9 73.7 33.7 42.6 40.7 37.8
SDA-CoT 67.5 78.5 41.6 45.3 45.0 37.5

DeepSeek-R1

w/o ES 70.8 80.2 43.7 50.2 47.3 73.2
Only EE 71.5 81.1 41.4 48.6 48.0 79.3
w/o ERI 74.5 83.9 46.2 50.6 50.9 80.4
w/o ERE 73.9 84.5 46.9 50.7 50.2 79.6
SDA-CoT 76.2 86.7 50.3 53.0 52.5 80.0

We perform an ablation study to quantify the contribution of the principal components in SDA-CoT.
Table 3 reports results under four reduced settings: (i) w/o ES — removing uncertainty exemplar
selection; (ii) Only EE — retaining only entity extraction, without relation modeling; (iii) w/o ERI
— removing implicit relation inference; and (iv) w/o ERE — removing explicit relation extraction.

Exemplar selection. Removing the ES causes the largest performance decline, with accuracies
dropping by 7%–9% across both LLMs. This confirms that exemplar selection is crucial, as it en-
sures exposure to diverse and high uncertainty exemplar. Declines are particularly sharp on GSM8K,
underscoring its importance for math word problems.

Structural reasoning. EE, ERI, and ERE each provide complementary gains. When structural
reasoning is partially disabled, the model loses between 3%–5% on average. EE provides a strong
foundation for tasks requiring numerical alignment, as explicit extraction of entities and quantities
can be helpful for math problems. Implicit relation inference is especially critical for logical and
multi-hop datasets, where unstated but derivable relations form the LLM of multi-step reasoning.
Explicit relation extraction provides stable anchors that constrain reasoning paths, reducing error
spreading and improving the accuracy of CoT.

Interaction effects. The full SDA-CoT consistently outperforms some variants by 6%–10%,
demonstrating complementary between exemplar selection and structural reasoning. High uncer-
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Table 4: Accuracy (%) of SDA-CoT on sentences with few entities and relations (entities ≤ 2,
relations ≤ 2) across different reasoning categories. Results are reported with and without Uncer-
tainty exemplar selection module. The experiment is conducted based on LLaMA2-13B.

Setting CSQA StrQA LogiQA HPQA 2WikiQA GSM8K

Entity extraction accuracy

SDA-CoT (with ES) 65.2 76.1 39.8 43.2 42.1 36.0
SDA-CoT (w/o ES) 63.9 74.8 38.5 41.9 40.7 34.7

Explicit relation accuracy

SDA-CoT (with ES) 61.7 72.8 37.1 40.5 39.2 32.8
SDA-CoT (w/o ES) 60.1 71.2 35.6 39.0 37.8 31.4

Implicit relation accuracy

SDA-CoT (with ES) 55.9 67.5 33.4 36.1 35.0 29.7
SDA-CoT (w/o ES) 54.2 65.9 31.8 34.7 33.5 28.2

SDA-CoT (with ES) 58.0 69.8 35.0 38.0 36.8 30.9

tainty exemplars supply rich clues, while entity and relation modeling provide structure, together
forming a feedback loop that enhances reliability and interpretability.

4.2.3 ANALYSIS OF SENTENCES WITH FEW ENTITIES AND RELATIONS

During the experiments, we observed that SDA-CoT faces limitations when handling simple sen-
tences with ”few entities and relations”: the chains tend to be short, structural evidence is limited,
and relation extraction is often incomplete. As shown in Table 4, when sentences contain only a
small number of entities and relations, the accuracy of implicit relation inference is constrained by
the chain effect of entity count and explicit relation count. Although implicit relation accuracy de-
creases under these conditions, SDA-CoT still achieves state-of-the-art performance compared with
other CoT methods. This advantage arises because entity and relation extraction transforms sparse
semantic cues into structured schemas, thereby constraining reasoning paths under low-connectivity
conditions. At the same time, uncertainty exemplar selection supplements the model with highly
uncertain samples, allowing it to access diverse reasoning examples even when evidence is insuffi-
cient.

On the LogiQA dataset, entity recognition accuracy increased from 38.5% to 39.8%, and implicit
relation accuracy rose from 31.8% to 33.4%. On GSM8K, entity extraction and implicit relation
accuracy improved by 1.3% and 1.5%, respectively. Although the gains are modest, they reduce
fluctuations in performance on low-density inputs. These results indicate that even simple sentences
may still contain deep level entity relations.

5 CONCLUSION

This paper presents SDA-CoT, a structure-driven and dynamically adaptive framework for CoT. It
combines uncertainty-aware exemplar selection with structure-based entity and relation extraction
to reduce the sensitivity of CoT to exemplar phrasing and to improve performance on tasks with long
texts or many complex entity relations. Experiments on multiple benchmarks show that SDA-CoT
improves reasoning accuracy and generalization and outperforms prior CoT methods. The results
indicate that structural signals guide LLM reasoning and can reduce the fragility of the exemplar
design. The method can add computational overhead during structure extraction. Future work will
study lighter structural representations. These directions may further raise the reliability and inter-
pretability of LLM reasoning.
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A DATASETS

Table 5 presents detailed information on the datasets used in the experiments. Because the CSQA,
HPQA, 2WikiQA, and GSM8K datasets are extremely large (e.g., 192,606 entries in 2WikiQA), we
randomly sampled from them to balance experimental cost and evaluation effectiveness.

Table 5: Overview of the datasets.

Dataset Domain / Task Size
StrQA Commonsense reasoning 2061
CSQA Commonsense reasoning 5761
LogiQA Logical reasoning 7424
HPQA Logical reasoning 5008
2WikiQA Logical reasoning 1900
GSM8K Math word problems 4644

B IMPLEMENTATION

B.1 HARDWARE DEVICES AND PARAMETER CONFIGURATION

Table 6: Experimental environment and parameter configuration.

Category Description
Programming Language Python 3.10
Operating System Windows 10
Processor 12th Gen Intel(R) Core(TM) i9-12900H
GPU Configuration 2 × NVIDIA A100 GPUs

The experimental setup was designed to ensure both reproducibility and computational efficiency.
As shown in Table 6, all experiments were implemented in Python 3.10 on Windows 10, using
a 12th Gen Intel Core i9-12900H processor and two NVIDIA A100 GPUs to support large-scale
model operations.

The DeepSeek-R1 model was accessed through the SiliconFlow API1 , and the open-source
LLaMA2-13B model was obtained locally for experimentation. Within the proposed framework,
the temperature was set to 0.1 for entity extraction and explicit extraction, 0.4 for implicit extrac-
tion, and 0.7 during the final inference stage. This configuration follows the principle that lower
temperatures yield more definitive outputs, while higher temperatures encourage greater diversity
in reasoning. For exemplar selection, we adopted the method of Wei et al. (2022b). The number
of exemplars was fixed at 6 for StrQA, 7 for CSQA, and 8 for LogiQA, HPQA, 2WikiQA, and
GSM8K. SC was applied in two stages: relation extraction and inference. Each implicit relation pair
was evaluated five times, and during the reasoning stage, each question was processed ten times.
To validate implicit relation pairs, we set the threshold scoth to 7, retaining only high quality pairs.
When no pair reached this value, the three pairs with the highest scores were selected instead.

B.2 EVALUATION METRIC

We use accuracy and exact match as the evaluation metric for different datasets. Specifically, for
multiple-choice datasets such as StrQA, CSQA, and LogiQA, accuracy is computed by checking
whether the selected option matches the ground-truth answer. For problems like GSM8K, where
the output is a number, we use regular expressions for exact match judgment of the answers. For
open-ended datasets like 2WikiMQA that do not contain question options, predictions are com-
pared against answer alternatives using the exact match criterion. The same processing approach is
adopted for different methods across these datasets.

1https://siliconflow.cn/
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B.3 PROMPT TEMPLATE

The following is the prompt template used by SDA-CoT to structure the CoT. All prompts are used
in a zero-shot setting and operate solely on the initial questions.

Entities extraction

Extract all named entities from the given sentence, possible entities may include: [in-
dividuals, organizations, locations, ..., percentages].
Sentence: [ qj ]

Entities: [ ]

Explicit relation extraction

Given a sentence and its entities, extract all explicitly stated relations as triples in the
form: (Entity1, Entity2, Rel). Output only triples, without explanations or extra text.
Sentence: [ qj ]

Entities: [ Ej ]
Relations: [ ]

Implicit relation extraction

Given a sentence, its entities, and all explicit relations, infer possible implicit relations
between entities. For each entity pair, output implicit relations as triples in the form:
(Entity1, Entity2, Relation). Output only triples, without explanations or extra text.
Sentence: [ qj ]

Entities: [ Ej ]

Explicit relations: [ Re ]

Implicit relations: [ ]

Relation validation

Given a sentence and all implicit relations, assign a confidence score from 0 to 10,
where higher values indicate greater likelihood of correctness. Output each as a
quadruple: (Entity1, Entity2, Relation, Score). Output only results, without explana-
tions or extra text.
Sentence: [ qj ]

Entities: [ Ej ]

Implicit relations: [ Ri ]

Implicit relation scores: [ ]
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Inference

Given a sentence, its entities, and all relations, answer the question based only on this
information.
Sentence: [ qj ]

Entities: [ Ej ]

Explicit relations: [ Re ]

Implicit relations: [ Ri ]

Answer:

C DISCUSSIONS

C.1 EFFECTS OF POOL SIZE.

Table 7: Performance of DeepSeek-R1 with varying numbers of sampled generations.

Number StrQA HPQA 2WikiMHQA GSM8K
1 78.1 43.9 48.6 70.4
5 82.8 50.4 50.3 77.2
10 86.7 53.0 52.5 80.0
15 89.9 53.5 53.1 81.5
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Figure 3: Performance of DeepSeek-R1 with different numbers of sampled generations.

We investigate how the number of sampled model generations m used for SC influences downstream
reasoning accuracy. Results in Table 7 and Figure 3 show that increasing m generally improves
performance, as larger pools yield more reliable uncertainty estimates and higher-quality exemplar
selection. Better exemplars enhance few-shot prompts, compounding the benefits of SC itself.
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In our pipeline, we use multiple generations to estimate per-instance uncertainty (disagree-
ment/entropy/variance). Larger m yields more reliable uncertainty estimates, improving the se-
lection of high-value exemplars for annotation. Better exemplars produce higher-quality few-shot
prompts during inference, amplifying downstream benefits—this effect compounds the direct gains
obtained from SC alone. The trade-off is computational cost versus robustness. Increasing m lin-
early raises inference overhead, while providing sublinear accuracy returns after a certain point.
Based on the presented results, we recommend m=10 as a default: it captures most of the attain-
able improvement with reasonable cost.

Our experiments reveal that arithmetic reasoning (GSM8K) exhibit larger sensitivity to m, reflecting
the need to explore diverse numerical decompositions and implicit inference chains. Multi-hop
reading comprehension tasks (HotpotQA, 2WikiMHQA) tend to saturate earlier, suggesting that a
modest ensemble of chains often suffices to capture the necessary evidence aggregation behavior.

C.2 EFFECTS OF SELF-CONSISTENCY.

To disentangle the role of SC, we evaluate SDA-CoT under two settings: (i) the full SDA-CoT
framework with SC applied during inference, and (ii) a variant w/o SC, where the final-stage SC
mechanism is removed while all previous stages remain intact. The results are reported in Figure 4.

These results highlight two distinct roles of SC within SDA-CoT. Specifically, in exemplar selection
stage, SC operates through the generation of multiple model outputs (denoted as m), which guides
the choice of informative exemplars for subsequent stages. In contrast, during inference stage, SC
aggregates multiple answer samples (n) to produce a more stable and reliable prediction. Although
both implementations of SC share a common reliance on sampling diverse CoT trajectories, their
contributions to the overall reasoning pipeline are inherently complementary: exemplar selection
stage leverages SC to refine exemplar quality, whereas inference uses SC to stabilize the final output.

The observed performance improvements attributed to inference stage further validate the necessity
of this latter application of SC: even after integrating exemplar-driven prompting and structure-aware
reasoning—two core components designed to refine the reasoning process—residual variability in
the model’s final predictions remains non-negligible, and this variability can be effectively mitigated
through the deployment of SC.

CSQA StrategyQA LogiQA HotpotQA 2WikiMHQA GSM8K
30
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Figure 4: Effects of self-consistency

C.3 CASE STUDY

To provide a clearer understanding of how SDA-CoT improves reasoning compared with standard
CoT, we present case studies on two representative tasks: HotpotQA and GSM8K.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Illustrative HotpotQA example comparing CoT and SDA-CoT reasoning chains.

Method Reasoning Chain (excerpt)
CoT “Document A mentions X. Document B mentions Y. Therefore, the answer is Z.”

(Incorrect: failed to connect X and Y)
SDA-CoT “Extract entity X from Document A. Entity Y from Document B is related via [ex-

plicit relation]. Implicitly, X is connected to Y through [reasoned link]. Therefore,
the answer is Z.” (Correct)

Table 9: Illustrative GSM8K example comparing CoT and SDA-CoT reasoning on a math word
problem. Exemplar selection helps the model avoid spurious reasoning even under single-sample
inference.

Method Reasoning Chain (excerpt)
Baseline CoT “John had 25 apples, he gave away 7, then he had 25 + 7 = 32.” (Incorrect:

arithmetic slip due to misapplied operation)
SDA-CoT “Exemplar-guided prompt highlights subtraction in similar problems. Entity ex-

traction: John (25 apples), gave away (7). Correct relation: subtraction. Step:
25 − 7 = 18. Therefore, John has 18 apples left.” (Correct: exemplar selection
+ structural reasoning)

Multi-hop reasoning (HotpotQA). Table 8 shows an example that requires aggregating evidence
across two documents. CoT often retrieves the correct entities but fails to link them coherently,
leading to an incorrect answer. In contrast, SDA-CoT first extracts entities and explicit relations,
then infers implicit relations to connect intermediate facts. This module yields a consistent chain,
reinforced by SC in the final stage. The result is a correct prediction with improved interpretability.
Notably, entity and relation structures prevent the model from drifting into irrelevant reasoning
paths, which we observed in more than 30% of CoT outputs.

Arithmetic reasoning (GSM8K). Math word problems in GSM8K are highly sensitive to rea-
soning errors, since even small slips can yield incorrect answers while the reasoning chain appears
plausible. Table 9 illustrates a typical error: the CoT incorrectly applies addition instead of subtrac-
tion. SDA-CoT avoids this mistake through two mechanisms:

• Uncertainty exemplar selection ensures that high uncertainty math word problems are in-
cluded in the exemplar pool. These exemplars expose the model to diverse solution patterns
and guide it away from spurious reasoning in single question inference.

• entity extraction identifies numerical quantities, while relation modeling ensures the correct
arithmetic operation is applied.

At the final stage, SC further stabilizes predictions by aggregating reasoning chains. Even without
aggregation, prompts substantially reduce single question errors. This demonstrates that exemplar
selection and structural reasoning jointly improve both robustness and accuracy in math word prob-
lems.

The core advantage of SDA-CoT is that structure-aware reasoning constrains the reasoning path,
reducing spurious or inconsistent outputs. Furthermore, uncertainty-based exemplar selection pro-
vides informative demonstrations that improve robustness. These effects are reinforced by SC,
which filters noise during inference. Together, these mechanisms yield not only higher accuracy
but also more stable and interpretable reasoning processes.

D NOTATION

For clarity, we provide a detailed summary of all notation used in the Method section. Table 10
serves as a complete reference.
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Table 10: Summary of notation used in the proposed framework.

Symbol Description
Dtrain Labeled training dataset
Dtest Test dataset
U Unlabeled pool of questions
E Exemplar set selected from Dtrain
m Number of candidate answers per question
k Number of top uncertain questions retained
si Confidence score associated with prediction yi
qj A test query
ej Entity extracted from question qj
S Extracted entity set
Re Set of explicit relations extracted from the text
R′

i Candidate set of inferred implicit relations
Ri Validated set of implicit relations
scoth Threshold for filtering reliable relations
Rvalid Final validated relation set,Re ∪Ri

M The large language model (LLM)

E ALGORITHM OF UNCERTAINTY EXEMPLAR SELECTION

Algorithm 1 provides the description of the proposed uncertainty-driven exemplar selection proce-
dure. The goal is to construct a compact exemplar set E from the training set Dtrain by prioritiz-
ing samples with high epistemic and aleatoric uncertainty. The algorithm integrates disagreement,
entropy, and variance into a weighted acquisition function, followed by human annotation of the
selected exemplars. Inputs include the training data, a large language modelM, decoding parame-
ters, and the number K of exemplars to select. The output is an annotated exemplar set E used for
few-shot reasoning and calibration.

Algorithm 1 Uncertainty-Driven Exemplar Selection

Require: Training set Dtrain, number of generations k, top-K selection size, LLM modelM, CoT
strategy (few-shot or zero-shot), uncertainty weights λ1, λ2, λ3

Ensure: Annotated exemplar set E
1: Initialize E ← ∅
2: for each question xi ∈ Dtrain do
3: Apply CoT to form input prompt qi using CoT strategy
4: Generate k reasoning chains {y1, y2, . . . , yk} fromM(qi) via stochastic decoding
5: Compute pairwise semantic similarity ϕ(yj , yl) for all j ̸= l
6: Udis(xi)← 1− 1

k(k−1)

∑
j ̸=l ϕ(yj , yl)

7: Estimate output frequency p̂(y) and compute entropy:
8: Uent(xi)← −

∑
y∈V p̂(y) log p̂(y)

9: Compute confidence scores {sj} for each yj , then:
10: s̄← 1

k

∑k
j=1 sj

11: Uvar(xi)← 1
k−1

∑k
j=1(sj − s̄)2

12: Compute combined uncertainty score:
13: α(xi)← λ1Udis(xi) + λ2Uent(xi) + λ3Uvar(xi)
14: end for
15: Select top-K samples S = {xi | highest α(xi)}
16: for each xi ∈ S do
17: Manually annotate reasoning chain and final answer (CoTi, ai)
18: E ← E ∪ {(xi,CoTi, ai)}
19: end for

return E
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F THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model only to refine the written paragraphs, making them more fluent and
readable. No other aspects of the work used large language models beyond this text refinement.

G CODE

Our implementations for all experiments is available at https://anonymous.4open.
science/r/SDA-CoT-F6D6/.
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