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Abstract

The recently proposed optimization algorithm for deep neural networks Sharpness
Aware Minimization (SAM) suggests perturbing parameters before gradient cal-
culation by a gradient ascent step to guide the optimization into parameter space
regions of flat loss. While significant generalization improvements and thus reduc-
tion of overfitting could be demonstrated, the computational costs are doubled due
to the additionally needed gradient calculation, making SAM unfeasible in case of
limited computationally capacities. Motivated by Nesterov Accelerated Gradient
(NAG) we propose Momentum-SAM (MSAM), which perturbs parameters in the
direction of the accumulated momentum vector to achieve low sharpness without
significant computational overhead or memory demands over SGD or Adam. We
evaluate MSAM in detail and reveal insights on separable mechanisms of NAG,
SAM and MSAM regarding training optimization and generalization. Code is
available at https://github. com/MarlonBecker/MSAM.

1 Introduction

While artificial neural networks (ANNGS) are typically trained by Empirical Risk Minimization (ERM),
i.e., the minimization of a predefined loss function on a finite set of training data, the actual purpose
is to generalize over this dataset and fit the model to the underlying data distribution. Due to
heavy overparameterization of state-of-the-art ANN models (Nakkiran et al.} [2021), the risk of
assimilating the training data increases. As a consequence, a fundamental challenge in designing
network architectures and training procedures is to ensure the objective of ERM to be an adequate
proxy for learning the underlying data distribution.

One strategy to tackle this problem is to exploit the properties of the loss landscape of the parameter
space on the training data. A strong link between the sharpness in this loss landscape and the
models generalization capability has been proposed by |[Hochreiter and Schmidhuber] (1994) and
further analyzed in the work of |Keskar et al.| (2017). Following these works, [Foret et al.|(2021)
proposed an algorithm to explicitly reduce the sharpness of loss minima and thereby improve the
generalization performance, named Sharpness Aware Minimization (SAM). Built on top of gradient
based optimizers such as SGD or Adam (Kingma and Ba,|[2015), SAM searches for a loss maximum
in a limited parameter vicinity for each optimization step and calculates the loss gradient at this
ascended parameter position. To construct a computationally feasible training algorithm, SAM
approximates the loss landscape linearly so that the maximization is reduced to a single gradient
ascent step. Moreover, this step is performed on a single data batch rather than the full training set.
Unfortunately, the ascent step requires an additional forward and backward pass of the network and
therefore doubles the computational time, limiting the applications of SAM severely. Even though the
linear approximation of the loss landscape poses a vast simplification and |Foret et al.| (2021)) showed
that searching for the maximum with multiple iterations of projected gradient ascent steps indeed
yields higher maxima, these maxima, however, do not improve the generalization, suggesting that
finding the actual maximum in the local vicinity is not pivotal. Instead, it appears to be sufficient
to alter the parameters to find an elevated point and perform the gradient calculation from there.
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Following this reasoning, the ascent step can be understood as a temporary parameter perturbation,
revealing strong resemblance of the SAM algorithm to extragradient methods (Korpelevich, [1976)
and Nesterov Accelerated Gradient (Nesterov), [1983}; [Sutskever et al.| 2013)) which both calculate
gradients at perturbed positions and were also discussed previously in the context of sharpness and
generalization (Lin ez al., [2020a; Wen et al.| [2018]).

Commonly, measures to address generalization issues are applied between the data distribution and
the full training dataset (Keskar ez al.l 2017} |Li et al.| 2018)). Calculating perturbations on single
batches, as done by SAM, results in estimating sharpness on single batches instead of the intended
full training dataset.Thus motivated, we reconsider the effect of momentum in batch-based gradient
optimization algorithms as follows. The momentum vector not only represents a trace over iterations
in the loss landscape and therefore accumulates the gradients at past parameter positions, but also
builds an exponential moving average over gradients of successive batches. Hence, the resultant
momentum vector can also be seen as an approximation of the gradient of the loss on a larger subset -
in the limiting case on the full training dataset.

Building on these observations and the theoretical framework of SAM, which assumes using the
entire dataset for sharpness estimations, we present Momentum-SAM (MSAM). MSAM aims to
minimize the global sharpness without imposing additional forward and backward pass computations
by using the momentum direction as an approximated, yet less stochastic, direction for sharpness
computations. In summary, our contribution is as follows:

* We propose Momentum-SAM (MSAM), an algorithm to minimize training loss sharpness
without computational overhead over base optimizers such as SGD or Adam.

* The simplicity of our algorithm and the reduced computational costs enable the usage
of sharpness-aware minimization for a variety of different applications without severely
compromising the generalization capabilities and performance improvements of SAM.

¢ We discuss similarities and differences between MSAM and Nesterov Accelerated Gradient
(NAG) and reveal novel perspectives on SAM, MSAM, as well as on NAG.

* We analyze the underlying effects of MSAM, with a particular focus on the slope of the
momentum vector directions, and share observations relevant for understanding momentum
training beyond sharpness minimization.

* We validate MSAM on multiple benchmark datasets and neural network architectures and
compare MSAM against related sharpness-aware approaches.

1.1 Related Work

Correlations between loss sharpness, generalization, and overfitting were studied extensively (Hochre+
iter and Schmidhubei, [1994; Keskar et al.l [2017;|Lin et al., 2020b; [Yao et al.l [2018;|Li1 et al., 2018
Liu et al.l2020; Damian et al.,[2021)), all linking flatter minima to better generalization, while |Dinh
et al] (2017) showed that sharp minima can generalize too. While the above-mentioned works focus
on analyzing loss sharpness, algorithms to explicitly target sharpness reduction were suggested by
Zheng et al.| (2021));|Wu et al.|(2020); |Chaudhari et al.|(2017) with SAM (Foret ef al.| 2021) being
most prevalent.

SAM relies on computing gradients at parameters distinct from the current iterations position. This
resembles extragradient methods (Korpelevich, |[1976) like Optimistic Mirror Descent (OMD) (Judit,
sky et all,|2011) or Nesterov Accelerated Gradient (NAG) (Nesterov, |1983}; |Sutskever et al., 2013
which were also applied to Deep Learning, either based on perturbations by last iterations gradients
(Daskalakis et al.|[2018];|Lin et al.,[2020a)) or random perturbations (Wen ef al., 2018)).
Adaptive-SAM (ASAM) (Kwon et al., [2021)) accommodates SAM by scaling the perturbations
relative to the weights norms to take scale invariance between layers into account, resulting in a
significant performance improvement over SAM. Furthermore, Kim ef al.| (2022) refine ASAM by
considering Fisher information geometry of the parameter space. Also seeking to improve SAM,
GSAM (Zhuang et al.||2022) posit that minimizing the perturbed loss might not guarantee a flatter loss
and suggest using a combination of the SAM gradient and the SGD gradients component orthogonal
to the SAM gradient for the weight updates.

Unlike the aforementioned methods, several algorithms were proposed to reduce SAMs runtime,
mostly sharing the idea of reducing the number of additional forward/backward passes, in contrast to
our approach which relies on finding more efficient parameter perturbations. For example, Jiang ef al.
(2023)) are evaluating in each iteration if a perturbation calculation is to be performed. LookSAM



(Liu et al.,|2022)) updates perturbations only each k-th iterations and applies perturbation components
orthogonal to SGD gradients in iterations in between. M1 et al.|(2022) are following an approach
based on sparse matrix operations and ESAM (Du et al.l2022b) combines parameter sparsification
with the idea to reduce the number of input samples for second forward/backward passes. Similarly,
Bahri ef al.| (2021) and Ni et al.| (2022) calculate perturbations on micro-batches. Not explicitly
targeted at efficiency optimization, Mueller er al|(2023)) show that only perturbing Batch Norm
layers even further improves SAM. SAF and its memory efficient version MESA were proposed by
Du et al.| (2022a)), focusing on storing past iterations weights to minimize sharpness on the digits
output instead of the loss function. Perturbations in momentum direction after the momentum buffer
update resulting in better performance but no speedup where proposed by [Li and Giannakis| (2023).
Furthermore, several concepts were proposed to explain the success of SAM and related approaches
going beyond sharpness reduction of the training loss landscape (Andriushchenko and Flammarion)
2022; IMollenhoff and Khanl, [2023; |Andriushchenko ef al., [2023b]), with the influence on the balance
of features/activations being a promising alternative explanation (Andriushchenko ef al.| 2023aj
Springer et al.|[2024), which we also investigate in Appx.[A.6] Zhang et al|(2024) analyze how SAM
influences adversarial robustness, a question we explore for MSAM in Appendix [A.16]

2 Method

2.1 Notation

Given a finite training dataset S C X x ) where X is the set of possible inputs and ) the set of
possible targets drawn from a joint distribution ®, we study a model f,, : X — ) parameterized
by w € W, an element-wise loss function [ : W x X x YV — R, the distribution loss Lp (w) =
E(,y)~o (l(w,z,y)) and the empirical (training) loss Ls(w) = 1/[S| 32, ,yes l(w, z,y). If
calculated on a single batch B C S we denote the loss as L. We denote the L2-norm by || - ||.

2.2 Sharpness Aware Minimization (SAM)

While for many datasets modern neural network architectures and empirical risk minimization
algorithms, like SGD or Adam (Kingma and Bal [2015)), effectively minimize the approximation and
optimization error (i.e. finding low Ls(w)), reducing the generalization error (Lo (w) — Ls(w))
remains a major challenge. Following ideas of [Hochreiter and Schmidhuber| (1994), [Keskar et al.
(2017) observed a link between sharpness of the minimized empirical loss Lg(w°®") with respect
to the parameters and the generalization error. Intuitively, this follows from the observation that
perturbations in inputs (cf. adversarial training (Goodfellow et all |2015)) and perturbations in
parameters have a similar effect on network outputs (due to both being factors in matrix-vector
products) and that the generalization error is caused by the limitation to a smaller input subset which
resembles an input perturbation.

Without giving an explicit implementation, Keskar et al.|(2017) sketches the idea of avoiding sharp
minima by replacing the empirical loss minimization with a minimization of the highest loss value
within a ball in parameter space of fixed size p:

min max Lgs(w + €) e))
w|lel|<p
Foret et al.|(2021) propose a computationally feasible algorithm to approximate this training objective
via so-called Sharpness Aware Minimization (SAM). SAM heavily reduces the computational costs of
the inner maximization routine of Eq.[I|by approximating the loss landscape in first order, neglecting
second order derivatives resulting from the min-max objective, and performing the maximization
on single batches (or per GPU in case of m-sharpness). These simplifications result in adding one
gradient ascent step with fixed step length before the gradient calculation, i.e., reformulating the loss
as
VLg(w)
— pi .
IVLp(w)]|

The parameters are temporarily perturbed by €3AM in the direction of the locally highest slope with
the perturbation removed again after gradient calculation. Thus, the parameters are not altered
permanently. While performance improvements could be achieved (Foret ez al.| 2021} |Chen et
all, 2022), the computation of €3AM demands an additional backward pass and the computation

@

LiM(w) == Lp(w + €*M) where €M :



of L(w + €M) an additional forward pass, resulting in roughly doubling the runtime of SAM
compared to base optimizer like SGD or Adam.

Minimizing Eq. can also be interpreted as jointly minimizing the unperturbed loss function Lz(w)
and the sharpness of the loss landscape defined by

Sp(w) = Lp(w + €) — Lp(w). 3)

2.3 Momentum and Nesterov Accelerated Gradient

Commonly, SGD is used with momentum, i.e., instead of updating parameters by gradients di-
rectly (w1 = wy — nVLp, (w,) with learning rate 7), an exponential moving average of past
gradients is used for the updates. Given the momentum factor ;4 and the momentum vector
V41 = pv + VLg, (w;) the update rule becomes w41 = Wy — NV441-

The momentum vector has two averaging effects. First, it averages the gradient at different positions
in the parameter space w; and second, it averages the gradient over multiple batches 13; which can be
interpreted as an increase of the effective batch size.

The update step consists of the momentum vector of the past iteration and the present iterations gradi-
ent. While this gradient is calculated prior to the momentum vector update in standard momentum
training, NAG instead calculates the gradient after the momentum vector step is performed. The
update rule for the momentum vector thus becomes v; 1 = pv; + VLg, (wy — nuv;). Analogously
to Eq.[2] NAG can be formulated in terms of a perturbed loss function as

LS (w) = Lg(w + e¥*) where "9 = —puwv;. 4)
Since the perturbation vector e¥AS neither depends on the networks output nor its gradient at step ¢
no additional forward or backward pass is needed.

2.4 Momentum-SAM

Foret et al.|(2021) show that performing multiple iterations of projected gradient ascent in the inner
maximization does result in parameters with higher loss inside the p-ball (cf. Eq.[I)). However, and
counterintuitively, this improved inner maximization does not yield a better generalization of the
model. We conclude that finding the exact (per batch) local maximum is not pivotal to SAM. Inspired
by NAG and given that the theoretical framework of sharpness minimization is based on calculating
the sharpness on the full training dataset, we propose using the momentum vector as the perturbation
direction and call the resulting algorithm Momentum-SAM (MSAM) (further perturbations are
discussed in Appx.[A.7). Following the above notation, this yields the loss objective

Uy

LY (w) = Lg(w + "5*M) where MM = — ol

&)

Contrary to SAM, we perturb in the negative direction. While this seems counterintuitive at first
glance, negative momentum directions actually cause a loss increase and are thus suitable for
sharpness estimation. Since we use the momentum vector before it is updated, a step in the negative
direction of the momentum has already been performed in the iteration before. We observe that
this update steps overshoots the local minima in the direction of the former iterations momentum
vector. Thus, when evaluated on the batch of the new iteration, the momentum direction exhibits a
negative slope, caused by the high curvature in this direction. The stepsize by eM5AM is typically at
least one order of magnitude higher than learning rate steps, so we additionally overshoot eventually
occurring local minima in momentum direction and reach an increased perturbed loss which is used
for sharpness minimization. We empirically validate this in detail in Sec.[d.1] Sec.[A.T10]and Appx.
A3l

For an efficient implementation, we shift the starting point of each iteration to be the perturbed
parameters w; = w; — pv,/||v,|| (in analogy to common implementations of NAG) and remove
the final perturbation after the last iteration (see Alg.[I). All mentioned optimization strategies are
depicted in detail in Fig.|[I] Since SGD with momentum as well as Adam store a running mean of
gradients, MSAM does not take up additional memory and comes with negligible computational
overhead.

Furthermore, we confirm that a similar theoretical generalization bound as reported by |[Foret et al.
(2021) also holds for directions of high curvature as the momentum direction (see Appx.|A.I).
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Figure 1: Schematic illustrations of optimization algorithms based on SGD. NAG calculates gradients
after updating parameters with the momentum vector. SAM and MSAM calculate gradients at
perturbed positions but remove perturbations again before the parameter update step. See Alg. [T|for
detailed description of the efficient implementation of MSAM.

Algorithm 1: SGD with Momentum-SAM (MSAM,; efficient implementation)

Input: training data S, momentum g, learning rate 7, perturbation strength p
Initialize: weights wq <random, momentum vector vy < 0
fort < OtoT do

sample batch B; C S

L, (wi) = 1/|Bt| >0 e, Hwr, 2, 9)

// inc pert.

w; = wy + pH:’)—iH // remove last pert.
Vi1 = QU + // update momentum
Wi = Wy — NV // SGD step
W1 = Wil —PTrpr // next pert.
end
Wy = W1 + Pa // remove pert.
return wr

3 Experimental Results

3.1 Speed and Accuracy for ResNets on CIFAR100

In Tab. El, we show test accuracies for MSAM and related optimizers for WideResNet-28-10,
WideResNet-16-4 (Zagoruyko and Komodakis, [2016) and ResNet50 (He et al.l2016) on CIFAR100
(Krizhevsky and Hinton, [2009) and vision transformers (Dosovitskiy ez al.| 2021)) and ImageNet-1k
(Deng et al.,2009) next to the training speed. We first tuned the learning rate and weight decay for
SGD/AdamW and then optimized p for each model (see Appx.[A.T3]for more details). Additionally,

Table 1: Comparison against multiple (sharpness-aware) optimizers. Baseline optimizers are SGD
for CIFAR100 and AdamW for ImageNet. Please see Appx.[A.14]for experimental details. MSAM
outperforms optimizers of equal speed (AdamW/SGD and NAG) and alternative approaches for faster
sharpness reduction.

Optimizer CIFAR100 ImageNet Speed
WRN-28-10 | WRN-16-4 | ResNet-50 | ViT-S/32
SAM 84.16+0.12 79.25+0.10 83.36+0.17 69.1 0.52
Baseline 81.51+0.00 76.90+0.15 | 81.46+0.13 67.0 1.00
NAG 82.00+0.11 77.09+0.18 82.12+0.12 — 0.99
LookSAM 83.31+0.12 | 79.00+0.08 | 82.24+0.11 68.0 0.84
ESAM 82.71+0.38 77.79+0.11 80.49+0.40 66.1 0.62
MESA 82.75+0.08 78.32+0.08 81.94+0.26 69.0 0.77
MSAM (ours) | 83.21+0.07 | 79.1140.00 | 82.65+0.12 69.1 0.99




we conducted experiments with related approaches which seek to make SAM more efficient, namely
ESAM (Du et al.l [2022b)), LookSAM (Liu et al.| [2022) and MESA (Du et al.,2022a). While Du et al.
(2022a)) also proposed a second optimizer (SAF), we decided to compare against the memory-efficient
version MESA (as recommended by the authors for e.g. ImageNet). Note that LookSAM required
tuning of an additional hyperparameter. See Appx.[A.14]for implementation details on the related
optimizers. Optimizers of the same speed as MSAM (i.e. SGD/AdamW and NAG) are significantly
outperformed. While SAM reaches slightly higher accuracies than MSAM, twice as much runtime is
needed. Accuracies of MSAM and LookSAM do not differ significantly for WideResNets, however,
MSAM performs better on ResNet-50, is faster, and does not demand additional hyperparameter
tuning. For ESAM we observed only a minor speedup compared to SAM and the accuracies of
MSAM could not be reached. MESA yields similar results to MSAM for ViT on ImageNet but
performs worse on all models on CIFAR100 and is slower compared to MSAM.

3.2 ResNet and ViT on ImageNet Results

Moreover, we test MSAM for ResNets (He et al.,[2016)) and further ViT variants (Dosovitskiy et al.,
2021)) on ImageNet-1k (Deng ez al,[2009) and report results in Tab. 2] Due to limited computational
resources, we only run single iterations, but provide an estimate of the uncertainty by running 5
iterations of baseline optimizers for the smallest models per category and calculate the standard
deviations. During the learning rate warm-up phase commonly used for ViTs we set pyisam = 0.
SAM also benefits from this effect, but less pronounced, so we kept SAM active during warm-
up phase to stay consistent with related work (see Appx. [A.12] for detailed discussion). While
performance improvements are small for ResNets for MSAM and SAM, both optimizers achieve
clear improvements for ViTs. Even though slightly below SAMs performance for most models,
MSAM yields comparable results while being almost twice as fast.

In addition, we conducted experiments for ViT-S/32 on ImageNet when giving MSAM the same
computational budget as SAM (i.e. training for 180 epochs) yielding a test accuracy of 70.1% and
thus clearly outperforming SAMs 69.1% (also see Appx.[A.9).

Table 2: Test accuracies on ImageNet for baseline optimizers (SGD or AdamW), SAM and MSAM.
Estimated uncertainties: ResNet: £0.08, ViT (90 epochs): £0.17, ViT (300 epochs): +0.24. Im-
provements over baseline are given in green. MSAM yields results comparable to SAM for most
models while being ~ 2 times faster in all our experiments.

Model Epochs Baseline SAM MSAM
ResNet-50 100 SGD 76.3 | 76.6+0.3 | 76.5+0.2
ResNet-101 100 SGD 77.9 | 78.7+0.8 | 78.2+03
§ 300 AdamW  67.2 | T1.4+42 | 70.5+3.3
VIT-S32 | 90 | AdamW  67.0 | 69.1:2.1 | 69.1:2.

§ 300 AdamW  73.0 | 78.2+5.2 | 75.842.8
VIT-S/6 | 90 | AdamW 726 | 75.8:52 | 74.9:25
ViT-B/32 90 AdamW  66.9 | 70.4+35 | 70.243.3
ViT-B/16 90 AdamW  73.0 | 77.7+a7 | 75.7+2.7

3.3 Combination with other SAM Variants

As shown by Kwon ef al.|(2021)), weighting the perturbation components by the parameters signifi-
cantly improves SAM. Similarly, Mueller et al.| (2023) showed that applying the perturbations only
to the Batch Norm layers (loffe and Szegedy, 2015) yields further enhancements. Both of these
techniques can also be applied to MSAM, yielding test results similar to SAM (see Tab. [3).

4 Properties of MSAM

In the following we analyze the perturbation direction of MSAM, its similarities to SAM and the
loss sharpness in more detail. Additional experiments are presented in the appendix. These include
the observations that the perturbation normalization is not pivotal to MSAM and instead the binding
to the learning rate 7 discriminates NAG and MSAM (Appx.[A.2) and that MSAM reduces feature
ranks more effectively than SAM (Appx. [A.6).



Table 3: Test accuracy for different variants of MSAM/SAM on CIFAR100. Adaptive refers to
ASAM (Kwon et al.| 2021) and BN-only to applying the perturbance only to Batch Norm layers (cf.
Mueller et al.|(2023))). MSAM performs well with both variants.

Optimizer WRN-28-10 | WRN-16-4 | ResNet-50
SGD 81.51+0.09 76.90+0.15 | 81.46+0.13
vanilla SAM 84.16+0.12 79.25+0.10 | 83.36+0.17
MSAM | 83.21+0.07 79.11+0.00 | 82.65+0.12
adaptive SAM 84.74+0.13 79.96+0.13 | 83.30+0.06
MSAM | 84.15+0.13 79.89+0.00 | 83.48+0.08
SAM 84.57+0.07 79.73+0.24 | 84.51+0.17

BN-only

MSAM | 83.62+0.09 79.73+0.14 | 83.49+0.19

4.1 Negative and Positive Perturbation Directions

Instead of ascending along the positive gradient as in SAM, we propose perturbing along the negative
momentum vector (positive pMSAM in our notation) as it is also done by extragradient methods as
by [Lin et al.|(2020al). Counterintuitively, the cosine similarity between the momentum vector v;_1
and the gradient g; = VLp, (w;) is negative. Thus, the negative momentum direction actually
has a positive slope, so that perturbing in this direction resembles an ascent on the per-batch loss.
An update step in the momentum direction was already performed and the momentum direction is
typically of high curvature (see Appx.[A.4). The positive slope of the negative momentum direction
can thus be explained by the parameter update overshooting local minima if evaluated on the new
iterations batch. As a consequence, moving further in this direction yields valid sharpness estimates.
If not already caused by the SGD update step, the overshooting perturbation step will overshoot the
minima since the used perturbations are typically at least one order of magnitude larger than the
optimization step sizes. Positive momentum perturbations, instead, yield improper estimates of the
local sharpness since the minima which was overshot is approached again. We analyze this effect in
detail in Appx.[A.3] In addition, we provide direct evidence that the proposed perturbation results
in a loss increase suitable for sharpness estimations in Appx.[A.T0] The increased generalization of
MSAM directly follows from this phenomenon, which we show in our theoretical consideration in
Appx.[AT]based on a PAC-Bayes bound.

We did not observe any increase in test performance when perturbing in the positive momentum
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Figure 2: WideRestNet-16-4 on CIFAR100 A: Test accuracy for positive and negative p compared
against SGD and NAG. B: Train and test accuracy on logarithmic scale. C: Cosine similarity
between momentum vector v;_; and gradient g; = VLg, (w;). Momentum vector direction has
mostly negative slope during training and approaches zero at the end (caused by cosine learning rate
scheduler).

direction (negative pM3AM)_ In fact, negative p values cause a rapid decrease in test accuracy, whereas
positive p values cause a gain in test accuracy of more than 2% for a WideResNet-16-4 trained on
CIFAR100 as depicted in Fig. 2B, while NAG only provides minor improvements.

Fig. PIC shows the same data on logarithmic scale next to the test accuracy. The ordinate limits
are chosen such that baseline (SGD) accuracies as well as maximal gains by MSAM align. NAG
improves the training accuracy greatly, especially compared to the gains in test accuracy. This
underlines that NAG is designed to foster the optimization procedure (ERM) but does not improve the
generalization capabilities of the model. Similarly, for MSAM the maximal test accuracy is reached
for high values of p where the train accuracy dropped far below the baseline, emphasizing the effect
of MSAM on the generalization instead of optimization.



Furthermore, small negative values of p induce a steep decrease in training accuracy while the test
accuracy is not significantly affected, but drops for higher negative p. So the generalization improves
also for negative p values, however, the test performance does not, since the improved generalization
is overlaid by the decreasing training performance. This offers an additional explanation why MSAM
does not improve the test accuracy for positive momentum perturbations. A perturbation in the
positive momentum vector direction resembles a step back to past iterations which might result in
the gradient not encoding appropriate present or future information about the optimization direction
and thus seems to be ill-suited to reduce the training loss effectively, counteracting the benefits of
the increased generalization (smaller test-train gap). SAM might not suffer from this effect, since
the local (per batch) gradient does not encode much of the general optimization direction (which is
dominated by the momentum vector), hence, the perturbed parameters disagree with parameters from
previous iterations.

4.2 Similarity between SAM and MSAM

To support our hypotheses that MSAM yields a valid approximation for SAM’s gradient calculations,
we investigate the similarity between the resulting gradients. After searching for the optimal value,
we keep psam = 0.3 fixed, train a model with SAM, and calculate the gradients

gscp = VLg, (wy)
gsam = VLg, (w; + psamV Lz, (w)/||VLg, (w;)]])
gusam(pmsam) = VLg, (w; — pusamve/||ve|)

while we keep pmsam as a free parameter. To eliminate gradient directions which do not contribute
in distinguishing between SAM and SGD gradients, we first project gysam into the plane spanned
by gsam and gsgp and then calculate the angle 6 to gsam (see Fig.[3]A). By repeating this every 50
iterations for various values pysam and calculating the value of zero-crossing pg, we determine when
the maximal resemblance to SAM is reached (see Fig.[3B). As shown in Fig.[3[C, po reaches values
close to the optimal regime of pyps sy = 3 (cf. Fig. ) for most epochs. While this correlation does
not yield strict evidence it offers additional empirical support for the similarity between SAM and
MSAM gradients.
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Figure 3: A: Projecting gmsam into the plane of gsam and gsgp to measure SAM/MSAM similarity.

B: Varying pysam until maximal similarity is reached (i.e. # = 0) and determine pg. C: pysam at

maximal similarity pg is close to generalization optimality (pifl’é am> cf. Fig. ) for most epochs.

4.3 Loss Sharpness Analysis

As mentioned above, the SAM implementation performs the loss maximization step on a single
data batch instead of the full training set (L vs. Ls). To analyze the efficacy of SAMs sharpness
minimization, we therefore compare the sharpness (cf. Eq.[3) in the direction of local (per batch)
gradients for models after full training with SGD, SAM and MSAM as a function of the perturbation
scale p in Fig. JA. The minima in local gradient directions are shifted from p = 0, since parameters
found after training are usually not minima but saddle points (Dauphin ef al.|[2014). Compared to
the other optimizers, SAM successfully minimizes the sharpness, especially at optimal pop (as used
during training).

The sharpness in momentum direction (Fig. B) represents the MSAM objective (Eq. [5). Here
we do not include the negative sign in the definition of € (as in Eq. E[), hence pqp; is negative. As
expected, MSAM reduces this sharpness best. In contrast to the definition before, the sharpness is
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symmetric now for positive and negative signs. While MSAM only minimizes the sharpness in the
negative direction explicitly, the positive direction is reduced jointly, further supporting the validity
of perturbations in the negative momentum direction.

In Fig. Ep we choose filter-normalized random vectors as perturbations as in |Li ef al.|(2018)). Since
the loss landscape is rotational symmetric around the origin for multiple directions (as used in the
original paper), we confine our analysis to one perturbation direction allowing an easier comparison
(see Appx. [A.TT|for two perturbation directions). MSAM reaches the lowest sharpness, while both
MSAM and SAM, significantly flatten the loss. This might be caused by MSAM approximating
the maximization of L better due to the momentum vector v; being an aggregation of gradients of
multiple batches. Interestingly, this relates to the findings of [Foret et al.|(2021)) regarding m-sharpness,
where the authors performed the maximization on even smaller data samples (fractions of batches per
GPU in distributed training), yielding even better generalization. In this sense MSAM, reduces m even
further over ordinary SAM (m = 1). In the same line of argument and despite being more efficient,
MSAM oftentimes does not improve generalization compared to SAM. However, contradicting
the general idea behind correlations of generalization and sharpness, MSAM yields flatter minima
(if defined as in Fig. f[C), hence, indicating that explanations for the improved generalization of
SAM/MSAM go beyond the reduction in sharpness. Additionally, we show that SAM guides the
optimization through regions of lowest curvature compared to SGD and SAM in Appx. [A.4] and
yields low Hessian eigenvalues Appx.[A.5]

5 Conclusion

In this work we introduced Momentum-SAM (MSAM), an optimizer achieving comparable results to
the SAM optimizer while requiring no significant computational or memory overhead over optimizers
such as Adam or SGD, hence, halving the computational load compared to SAM and thus reducing
the major hindrance for a widespread application of SAM-like algorithms when training resources
are limited. Alternative efficient approaches (which are mostly based on simple sparsifications) are
all outperformed in speed and accuracy. Instead, we showed that perturbations independent of local
gradients can yield significant performance enhancements. In particular perturbations in the negative
momentum buffer direction yield substantial generalization improvements. While the negative sign
of the perturbations seemed counterintuitive at a first glance, we analyzed the loss landscape in
momentum direction in detail to show that a negative perturbation actually causes a loss ascent
(please also see the appendix for further analysis).

In summary, we not only proposed a new optimization method, but also offered a detailed empirical
analysis yielding multiple new perspectives on sharpness aware optimization and momentum training
in general.
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Appendix

A.1 Theoretical Analysis of MSAM

We build our analysis in analogy to |[Foret ef al.|(2021)). While Foret ef al.|(2021) proofed the existence
of an upper generalization bound if the parameters with the highest loss in a fixed p-ball are found,
we show that a similar bound can also be derived by simply assuming perturbations in directions of
high curvature. In practice this first assumption is fulfilled by the momentum vector v;, since the
directions of gradients are directions of high curvature. Secondly, if a properly tuned learning rate
is used, the slope in momentum direction after the parameter update is either close to zero or even
negative caused by overshooting marginally.

We state these two assumptions in Setting[I}] While we empirically validate the first assumption in
Appx.[A.4] we already showed and discussed evidence for the second assumption in the main text (cf.

Fig.2C).

Proposition 1 Let €,v € W with i.i.d. components €; ~ N(0,0) for some o > 0, then for any
p>0
E[1{jc,<py€” Hess(Ls(w))e] < p’k, (A1)

where K = ﬁtr[Hess(Lg(w))].

Proof W.L.O.G. we assume Hess(Ls(w)) to be diagonal. The claim then follows from the linearity
of the expectation and symmetry. O

Setting 1 Let w,v € W with ||v||2 = 1 such that:
s vTHess(Ls(w))v > &,
* VLg(w) v <0.
Lemma 2 Assume Settingand let € € W with €; ~ N(0, ), then it holds for any p > 0 that
E[1{ej,<pyLs(w +€)] < Ls(w — pv) + O(p?).
Proof Applying a Taylor expansion around w yields:

E[1{|efs<p) Ls(w + €)] < Ls(w — pv)
= E[l{je|a<p} VLs(w) - €] + E[1{je|,<pye” Hess(Ls(w))e] <

=0 szﬁ
—pVLs(w) - v+p*vT Hess(Ls(w))v + O(p?)
| —
>0
— K < v Hess(Ls(w))v + O(p?)
subtracting the O(p3)-term from the initial inequality then yields the claim. O

Theorem 3 Assume Setting|[I|then for any distribution ®, with probability 1 — § over the choice of
the training Set S ~ D,

2
dim(W) log (1+ 1202 (14 /058 )7) + 4108 51 + 0(1)
IS -1

Lo(w) < Ls(w—pv)+ +0(p%)

Proof  Using the bound from Lemma 2lwe adapt the proof of Theorem 2 in|Foret et al.|(2021) (i.e.
Eq. 13 and following) to show the claim. O

A.2 Normalization

To gain a better understanding of the relation between MSAM and NAG, we conducted an abla-
tion study by gradually altering the MSAM algorithm until it matches NAG. Firstly, we drop the
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normalization of the perturbation € (numerator in Eq. [5)), then we reintroduce the learning rate 7
to scale €, and finally set p = 1 to arrive at NAG. Train and test accuracies as functions of p are
shown in Fig.[A.T]for all variants. Dropping the normalization only causes a shift of p indicating
that changes of the momentum norm during training are negligible (contradicting |Dai et al.|(2023)).
However, scaling by 7 drastically impacts the performance. Since the model is trained with a cosine
learning rate scheduler (Loshchilov and Hutter, [2017)), p decays jointly with 5. The train accuracy
is increased significantly not only for p = 1 (NAG), but even further for higher p, while the test
performance drops at the same time when compared to MSAM. Thus, optimization is improved again
while generalization is not, revealing separable mechanisms for test performance improvements of
MSAM and NAG. High disturbances compared to the step size at the end of training appear to be
crucial for increased generalization. Extensively investigating the effect of SAM/MSAM during
different stages of training might offer potential to make SAM even more effective and/or efficient
(i.e. by scheduling p to only apply disturbances for selected episodes).

79.5 1 == MSAM
m— MSAM w/o0 norm p=1 97.54 p=1
79.0 | mmmm MSAM w/0 norur-scaling
5 Nag % 97.0 4
—SGD

96.5

Train Accurac;
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Perturbation Strength p Perturbation Strength p

Figure A.1: Test (A) and train (B) accuracy for WideResNet-16-4 on CIFAR100 for different
normalization schemes of MSAM in dependence on p. MSAM without normalization works equally
well. If the perturbation e is scaled by learning rate 7 train performance (optimization) is increased
while test performance (generalization) benefits only marginally.

A.3 Detailed Analysis of Negative Perturbation Direction

A.3.1 Overshooting of Local Minima

As discussed in the main text, negative momentum perturbations lead to a loss increase, which in turn
results in effective sharpness minimization. This effect is caused by overshooting local minima in the
momentum direction during the SGD update. We validate this by depicting the 1D-loss landscape
along the momentum direction v;_; (before being updated) calculated on the next iterations batch in
Fig.[A.2] As can be seen the SGD update from w;_; to w; does not approach the local minima on the
new batch but instead overshoots and results in a negative slope of the momentum buffer direction (i.e.
negative cosine similarity to the gradient). Thus, further perturbations (dashed arrow) in the negative
momentum direction result in an increase of the loss, allowing for effective sharpness estimations. It
is important to note that the loss is calculated on the new unused batch and the momentum buffer is
not updated yet. After updating the momentum buffer with the new batches gradient to v, the slope
of the new momentum direction turns positive again allowing for SGD to behave properly (cf. Appx.
[A.3.2). Additional analyses validating that overshooting is indeed the cause of negative momentum

slopes are given in AppX.
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WRN-16-4 on CIFAR100 averaged over 30 runs. Minima are overshot resulting in loss increase for
further perturbations in negative momentum direction as done by MSAM. Effect even occurs for low

(constant) learning rate of 7 = 0.01 used here while we use n = 0

.5 in the main manuscript.

We measure the effect of by the negative cosine similarity between the momentum vector v;_; (before
being updated) and the gradients. Additionally, to Fig. 2JC we make similar observations for all of

our studied models and datasets in Fig.
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A.3.2 Overshooting as Cause of Negative Momentum Slope

To validate that the effect of negative slope of the momentum dire

30 60 70 80 90

40 50
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and gradient g; = V Lg, (w;) for

ction (i.e. negative cosine similarity

to the gradient) is caused by the overshooting of minima, we perform the following experiments

depicted in Fig.
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scheduler), after performing the momentum update with the new batches gradient, for random and a
single fixed batch sampled from the validation dataset. WRN-16-4 on CIFAR100. Running average

over 50 iterations.

Only when using a learning rate scheduler, the cosine similarity approaches zero to the end of the
training. Since the learning rate decays close to zero at the end of the training, minima are not
overshot anymore.

After updating the momentum buffer with the current gradient, the slope turns positive with the
cosine similarity to the gradient being slightly below 0.5 since the updated momentum buffer v, is
a composition of the gradient itself (weighted by 1 = 0.9) and the former momentum buffer. This
allows for an effective Empirical Risk Minimization (ERM) by SGD despite the overshooting of
minima along the not-updated momentum direction.

For the last two experiments, we sample batches from the validation dataset, which are not used
for parameter updates, and thus yield gradients independent of the directions used for optimization.
We use these to construct an additional pair of gradients and a moving average of gradients (as the
momentum buffer) and calculate the cosine similarity between these two. Note that the validation
batches are sampled additionally to the training samples and are not used in any parameter updates.
When sampling only a single fixed batch from the validation set for gradient calculation as well as
construction of the moving average, the cosine similarity is close to 1 (fully correlated). Thus, the
parameter updates of the loss landscape (which are not correlated to the sampled batch), only have
minor impact on the gradient change.

However, if new random additional batches are sampled from the validation dataset in each iteration,
the cosine similarity stays positive, since no parameter updates are performed in these directions
and thus no overshooting occurs. In the first epochs the correlation the of the moving average and
gradients of new sampled batches even increases. We hypothesize that the common optimization
direction, when general information is learned in the early stages, causes this effect. In the later
stages of training, however, gradient information becomes more sample-specific.

A.3.3 Dependence of Cosine Similarity on Learning Rate 7, Momentum Factor . and Batch
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Figure A.5: WRN-16-4 on CIFAR100. Constant learning rate. Moving average over 50 iterations.

Negative cosine similarity (and thus overshooting) even for very small learning rates. Runs with large
learning rates still show overshooting when training is not possible anymore.
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Figure A.6: WRN-16-4 on CIFAR100. Constant learning rate. Moving average over 50 iterations.
Small p, i.e., faster forgetting of the momentum buffer, results in more overshooting.
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Figure A.7: WRN-16-4 on CIFAR100. Constant learning rate. Moving average over 50 iterations.
While larger batch sizes result in less stochasticity, the cosine similarity is reduced. This supports
that the negative slope is a property of the training-dataset loss landscape and not caused by limited
sampling.

A.4 Curvature

We calculated the loss curvature in momentum direction, gradient direction and in random direction in
Fig. [A]if training with SGD, SAM and MSAM for WRN-16-4 on CIFAR100. For this we calculate
e’ Hess(Ls(w ))e for direction vectors € (normalized to ||€||2 = 1) every 50 optimizer steps.

The curvatures in momentum directions are larger than the curvature random direction (which
tends towards the mean curvature as amount of parameters increase) for all optimizers and epochs,
validating Setting [T]in Appx.[A.T]and thus the suitability of momentum directions for sharpness
estimation (especially compared to random perturbations; cf. Appx.[A.7).

Additionally, the curvature in these directions offers a measure for the loss sharpness. Since a local
minimum of high curvature is approached, all three curvatures increase at the end of the training for
SGD. Similarly to Fig. ] SAM and MSAM are reducing the curvature best in their corresponding
perturbation direction and MSAM yields lower curvatures than SAM in random directions.
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Figure A.8: Curvature of random directions (RND), momentum (MOM) and gradient (GRAD) for
different optimizers.
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A.5 Eigenspectrum Analysis

We calculated the top 5 eigenvalues of the Hessian using the Lanczos algorithm for WideResNet-16-4
trained by SGD, SAM and MSAM on CIFAR-100.

Table A.1: Top 5 Hessian eigenvalues.

/\1 /\2 /\3 )\4 )\5
SGD 15.19 | 13.79 | 13.23 | 9.98 | 9.23

MSAM | 4.15 | 3.03 | 2.30 | 1.88 | 1.81
SAM 5.18 | 4.85 | 443 | 3.72 | 3.36

While SAM already effectively reduces the eigenvalues of the Hessian (and thus the curvature),
MSAM results in even lower Hessian eigenvalues. These findings align with the other sharpness
metrics discussed and further support the conclusion that MSAM leads to lower sharpness than SAM
(and SGD).

A.6 Feature Rank Analysis

Although MSAM approximates the loss calculation on the full training dataset more closely and
thus yields lower sharpness (measured as in Fig. [C) and lower curvature (Fig.[A.8] RND direction),
we do not see a positive correlation with generalization compared to SAM. Similarly to other
authors (Andriushchenko et al.l2023bj, |Dinh et al.| 2017 |Springer et al.l 2024), we also affirm, that
explanations for the improved generalization of SAM/MSAM go beyond direct causal relations to
sharpness minimization. In analogy toMueller et al.|(2023) and |Andriushchenko et al.| (2023a), we
investigated the hypothesis, that the improved generalization of SAM stems from low rank features.
For WRN-16-4 trained on CIFAR100 for features after the last convolutional block (before pooling)
we found feature ranks of 5019 for SGD, 4775 for SAM and 3791 for MSAM. MSAM reduces
the feature rank significantly more than SAM and thus helps to find more distinct and task specific
features.

A.7 Random and Last Gradient Perturbations

Instead of the momentum vector v; in MSAM, we also tried to use other perturbations ¢ which are
independent of the current gradient and thus do not bring significant computational overhead, namely
the last iterations gradients g;_ (cf.|Daskalakis er al.|(2018)); |Lin et al.|(2020a))) with positive and
negative sign as well as Gaussian random vectors (cf. Wen e al.| (2018))). For each variation, we
tested absolute perturbations (Fig.[A.9A)

)
ABS
€ = P (A.2)
[16]]
and relative perturbations (Fig.[A.9B)
REL _ , Slw| (A3)
[Gw]]

with weights w (multiplied element-wise) and, e.g., § = —v; for MSAM.
MSAM provides the only perturbation reaching SAM-like performance without inducing relevant
computational overhead.
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Figure A.9: Random perturbations and last gradient perturbations compared to SAM and MSAM.
A: Absolute perturbations, B: Relative perturbations, i.e., scaled by |w;| before normalization. All
perturbations normalized by L2-norm and scaled by p. WideResNet 16-4 trained on CIFAR100.
MSAM always better than other current gradient-independent perturbations.

A.8 Hyperparameter Stability

To show the stability of MSAM and its hyper parameter p, we varied the learning rate n and the
momentum factor 4 when optimizing a WRN-16-4 on CIFAR100 for fixed p = 2.2 and depict results
in Fig.[A.T0] MSAM yields stable performance increases compared to SGD and NAG over wide
ranges of hyperparameters. We made similar observations when comparing SGD and MSAM for
different number of epochs (cf. Fig.[A.TT).

79 SGD |
— NAG
78 m—MSAM |

Test Accuracy
Test Accurac;

0.(;22 (J.EJS Ui] U.:Z‘Z 0?5 i 0.6 UT7 UTS UTEJ (J.‘E)(S
Learning Rate 7 Momentum Factor pt
Figure A.10: WRN-16-4 on CIFAR100 fixed p = 2.2. A: Learning rate 7 ablation (log-scale). B:
Momentum factor y ablation.

A.9 Comparison with Same Computational Budgets

We compare MSAM and SAM (and SGD and NAG) when given the same computational budget for
WRN-16-4 on CIFAR100 for a wider range of epochs (up to 1200) in Fig.[A-T]] Le., running SAM
for half the number of epochs compared to other optimizers, resulting in the same number of network
passes for all optimizers. MSAM performs similar to NAG (and SGD) for short training times,
however, if trained until convergence of SGD/NAG or even longer (overfitting occurs; SGD/NAG
results decrease again) MSAM reaches higher test accuracies and overfitting is prevented. Due
to the additional forward/backward passes SAM performs worse compared to MSAM for limited
computational budgets. For long training times MSAM and SAM do not differ significantly.

We further support these observations by training a ViT-S/32 with MSAM with doubled number of
epochs (180) on ImageNet where we reach 70.1% test accuracy and thus clearly outperform SAMs
69.1% (cf. Tab.[2).
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Figure A.11: Comparing different optimizers when given the same computational budget. WRN-16-4
on CIFAR100.
A.10 Loss Ascent in Momentum Direction

To validate that the perturbation of the loss results in a loss increase, we show the perturbed and
unperturbed loss during training for different learning rates in Fig. [A712]
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Figure A.12: Loss before (Lg, (w;)) and after (Lg, (w; — pv:/||v¢||)) perturbation in momentum
direction as done by MSAM (p = 3) for WRN 16-4 on CIFAR100 for different learning rates.

A.11 3D Loss Landscapes

We show loss landscapes after training with SGD, SAM and MSAM for two random filter-normalized
perturbation directions as done by [Li et al| (2018) in Fig.[AT3] The sharpness/loss landscapes show
rotational symmetry. SAM and MSAM both reduce sharpness effectively, while MSAM reaches an

even flatter minimum.
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Figure A.13: 2D sharpness landscapes for two random filter-normalized perturbations (cf. [Li et al.
(2018)) as shown in Fig. 4C in 1D.

A.12 Effects of MSAM/SAM During ViT’s Warm-up Phase

We further investigate the effect of SAM/MSAM during warm-up phase in Tab.[A.2] As described

above, we do not apply MSAM during the warmup phase by default (i.e. setting p = 0) since if
doing so, we observe a drop in test accuracy from 69.1% to 66.1% which is below the AdamW
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baseline. We assume fluctuations of the momentum vector, that determines the perturbation direction
for MSAM, to cause instabilities during the warmup phase. A similar effect can be seen for SAM,
however, it is less pronounced, so that applying perturbations during the warm-up phase does not
thwart SAM hugely. Since we focused on proposing a computationally more efficient variant and not
on improving the generalization of SAM in this work, we thus decided to stay consistent with related
work and conduct our extensive experiments in Tab. [2] while applying SAM also during the warm-up
phase. Nevertheless, we would generally propose to apply SAM only after the warmup phase for
ViT models to further improve SAM. We think further investigating effects of p-scheduling for SAM
and MSAM is of high interest. E.g.,|Zhuang et al.|(2022) investigated to reduce p during training
(contrary to what our findings suggest) by binding it to the learning rate scheduling for SAM and
they did not notice benefits. Despite the discussion in Appx. we could not observe analogous
effects for ResNets (though we did not study these extensively).

Table A.2: Impact of application of SAM/MSAM during warm-up phase. ViT S/32 on ImageNet. By
default MSAM is applied after warmup phase only while SAM is always applied.
AdamW | SAM | SAM (after warmup only) | MSAM | MSAM (during warmup)
67.1 | 69.2 | 69.8 | 69.1 | 66.1

A.13 Training and Implementation Details

If not stated differently, we calculate uncertainties of mean accuracies by 68% CI estimation assuming
Student’s t-distribution.

We tuned weight decay and learning rates for our baseline models (SGD/AdamW) and did not alter
these parameters for the other used optimizing strategies. We used basic augmentations (horizontal
flipping, cutout and cropping) for CIFAR100 trainings and normalized inputs to mean 0 and standard
deviation 1. For ImageNet trainings we used Inception-like preprocessing (Szegedy et al.| [2015) with
224x224 resolution, normalized inputs to mean 0 and std 1 and clipped gradients L2-norms to 1.0.
We used ViT variants proposed by Beyer et al.|(2022). A full implementation comprising all models
and configuration files is available at https://github.com/MarlonBecker/MSAM. Experiments were
performed on up to 4 NVIDIA A100 GPUs.

Table A.3: Training Hyperparameters

CIFAR100 ImageNet
WideResNets | ResNet50 | ResNets ViTs
Base Optimizer SGD SGD SGD AdamW
Epochs 200 200 100 90/300
Learning Rate 0.5 0.1 1 le-3
LR-Scheduler cos cos cos cos + linear warm-up (8 epochs)
Label Smoothing 0.1 0.1 0.1 -

Batch Size 256 256 1024 1024

Weight Decay Se-4 le-3 le-4 0.1

A.14 Details on Optimizer Comparison

We report experimental details on the results presented in Tab. [I]in this section.

To calculate the speed, we conducted a full optimization on a single GPU for each model and dataset
combination, normalized the runtime by SGDs runtime and report the average over all runs per
combination.

We trained ViT-S/32 on ImageNet for 90 epochs for all models. Further hyperparameters not specific
to SAM variants are reported above in Appx.[A.T3] Due to limited computational capacities and
inline with related work, we did not perform runs for multiple random seeds for ImageNet trainings.
Thus, we did not report standard deviations for these runs.

We adapted official implementations of ESAM (Du et al.||2022b) and MESA (Du et al.| 2022a)) while
no official implementation was available for LookSAM (Liu et al.[2022).

For LookSAM, we fixed the trade-off parameter £ = 5 and conducted a thorough search on the
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additional hyper parameter «, since the value suggested for ViTs by the original authors (o = 0.7)
was not suitable for our experiments (also see Fig.[A.16). We decided to set o = 0.1, while runs for
a > 0.3 did not yield further performance increases. Full hyperparameter search results are reported
in Fig.[A.T4]

ESAM comprises two hyperparameter (y and [3) that steer the performance/runtime tradeoff which
we set to match those of the original paper (i.e. v = 5 = 0.5).

For MESA we tuned the regularization factor \ instead of the perturbation strength p.

Please also note the full p scan results presented in the next section (Fig.[A.T5]and Fig.[A.16)
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Figure A.14: Full results for p and « search for lookSAM (k = 5) on CIFAR100. Shaded cone: 68%
CI. Dots: Random Seeds. A: WideResNet-16-4. B: WideResNet-28-10. C: ResNet-50.

A.15 Full Hyper Parameter Search Results

We report our full p-hyperparameter search results in Fig. [AT3] Fig. [A.16 and Fig. [A17] In
consistency with related work, we report results for best p only, in the main text. We sam-
pled p with approximately even spacing on logarithmic scale with 6 datapoints per decade, i.e,
p€{.,0.1,0.150.22,0.34,0.5,0.67,1, 1.5, ...}, for experiments on CIFAR100 and with 4 data-
points per decade, i.e, p € {...,0.1,0.17,0.3,0.55, 1, 1.7, ...}, on ImageNet for experiments in Sec.
We used a slightly denser sampling for the visualizations in Sec. 4] but did not use those results for
comparisons against baselines or other methods.

While optimal values for p vary slightly between models and datasets, we do not observe higher
susceptibility to changes in p of MSAM compared to SAM.

Over all models and datasets we find higher optimal p values for MSAM compared to SAM. Per-
turbation vectors are normalized (L2-norm), so we conjecture components for parameters of less
importance to be more pronounced for momentum vectors compared to gradients on single batches.
For ViT models, we find optimal p values to be higher compared to ResNets. If chosen even higher,
heavy instabilities occur during training, up to models not converging, limiting performances espe-
cially for MSAM. Similar to the observations during warm-up phase discussed above, this effect is
more pronounced for MSAM. Notably, MSAM looses most performance against SAM on the biggest
ViT models and if trained for 300 epochs, when highest p values are optimal for SAM. This suggests,
that even better performances might be achievable for MSAM if the instability problems are tackled.
Strategies to do so might include e.g. clipping € or scheduling of p, which we intend to pursue in
future work.
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Figure A.15: Full results for p-search for different SAM/MSAM variants on CIFAR100. AM-
SAM/ASAM refer to adaptive-MS AM/adaptive-SAM as in[Kwon et al.| (2021)). For LookSAM we
set k = 5 and report only the best performing value of o = 0.1 (cf. Fig.|A.14). For MESA: A-search
results plotted on same axis. Shaded cone: 68% CI. Dots: Random Seeds. A: WideResNet-16-4. B:
WideResNet-28-10. C: ResNet-50.
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Figure A.16: Full results for p-search for different SAM/MSAM variants for ViT-S/32 trained for 90
epochs on ImageNet. For MESA: A-search results plotted on same axis.
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Figure A.17: Full results for p-search for all models tested on ImageNet (see Tab. @) A: Vision
Transformer (epochs in parentheses). B: ResNets.
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A.16 Adversarial Robustness

We evaluated the adversarial robustness of MSAM under attacks by PGD (Madry et al.| 2018)),
FGSM |Goodfellow et al.|(2018) and APGDT (Croce and Hein| (2020). We test several attack methods
on a WideResNet-16-4 trained on CIFAR-100. We used default hyperparameters and o = 0.1 for
gaussian noise and € = 1/255 for the other attack methods. Results shown inwere averaged over
3 randomly initialized runs per optimizer. MSAM improves adversarial robustness similarly to SAM.
In particular, under an undirected Gaussian noise attack, MSAM slightly outperforms SAM, further
supporting its effectiveness in sharpness minimization. These findings are consistent with those of
Zhang et al.|(2024)).

Table A.4: Adversarial Robustness of MSAM compared to SAM and SGD

Gaussian Noise | PGD | FGSM | APGDT
SGD 22.55 24.05 | 31.80 20.72
MSAM 26.86 28.92 | 35.46 27.06
SAM 25.77 30.22 | 35.30 26.08
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: All claims and contributions are reflected in the abstract.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses limitations to the studied datasets, models and methodol-
ogy.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

25



Justification: All assumptions are stated clearly and additionally justified empirically.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All hyperparameter scan results are given, code is provided and detailed
instructions of the method are presented.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Code can be found in the supplementary material and will be released upon
acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy]) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All hyperparameter scan results are given, code is provided and detailed
instructions of the method are presented.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Error bars as well as statistical significance analyses are given.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: We conduct experiments on different hardware settings, mainly NVIDIA A100
GPUs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: No ethically problematic experiments are presented.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: No social impact is expected.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No models or data is released.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: No licenced assests where used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

29


paperswithcode.com/datasets

13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Documented code can be found in the supplementary material and will be
released upon acceptance.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM were not used.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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