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Abstract

Slot-filling and intent detection are the backbone of conversational agents such
as voice assistants, and are active areas of research. Even though state-of-the-art
techniques on publicly available benchmarks show impressive performance, their
ability to generalize to realistic scenarios is yet to be demonstrated. In this work,
we present NATURE, a set of simple spoken-language oriented transformations,
applied to the evaluation set of datasets, to introduce human spoken language
variations while preserving the semantics of an utterance. We apply NATURE to
common slot-filling and intent detection benchmarks and demonstrate that simple
perturbations from the standard evaluation set by NATURE can deteriorate model
performance significantly. Through our experiments we demonstrate that when
NATURE operators are applied to evaluation set of popular benchmarks the model
accuracy can drop by up to 40%.

1 Introduction

The past decade has seen a proliferation of voice assistants (VAs) and conversational agents in our
daily lives. This has been possible due to the progress in the fields of natural language understanding
(NLU), spoken language understanding (SLU) and natural language processing (NLP). Commercial
VAs are typically pipeline systems with an NLU engine which attempts to categorize and understand
user intent. The main component of the NLU engine is a slot-filling (SF) and intent detection (ID)
model. State-of-the-art models [40, 49, 50] generally report a high accuracy and F1 score on popular
benchmarks such as ATIS [19] or SNIPS [5] which may give an impression that the problem is
solved. However, these benchmarks do not model the distinctive variations of spoken-language and
the characteristics that a VA must handle in real scenarios.

It has been observed across the fields of NLP and NLU that state-of-the-art deep learning models
fit on the spurious, surface-level patterns of the datasets [33, 55, 22]. A growing body of work has
demonstrated this on challenging evaluation sets designed by perturbing an existing evaluation set.
These perturbations include character-level additions, deletions and swaps for machine translation [2],
character-level adversarial perturbations to trick neural classifiers [9], using a masked language model
to generate adversarial perturbations [11] and a heuristic based word substitution model to generate
semantically plausible adversarial text [23] among others.
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Utterance Task: Model Prediction Errors
play party anthems
→ ploy party anthems ID: Play_Music

→ Search_Creative_Work

play some sixties music
→ plays some sixties music SF: [sixties]:year

→ [sixties]:year; [plays]:album

listen to dragon ball: music collection
→ like listen to dragon ball: music collection

ID:
Search_Creative_Work
→ Play_Music

SF: [dragon ball: music collection]:object_name
→ [dragon ball]:artist; [collection]:album

Table 1: Examples of NATURE-perturbed utterances with badly predicted slots and/or intent. The
perturbed utterance is preceded by a →.

Making a large, diverse, spoken-language oriented, multilingual benchmark would be ideal. However
this is a labor-intensive, time-consuming, and expensive commitment. As a trade-off between less
costly annotation and more realistic data, we propose a framework that focuses on perturbing the
existing evaluation set by applying simple, spoken-language oriented, realistic operators1 that modify
the input sentence without perturbing the original meaning. In this paper, we introduce the NATURE
(Natural Alterations of Textual Utterances for Realistic Evaluation) framework, a compilation of
operators that preserve the original semantics while adding realistic spoken-language characteristics
to the evaluation set. In addition to producing realistic data, the score analysis of the evaluation sets
perturbed with a single operator helps pinpoint the superficial and heuristic dependencies of each
model. To the best of our knowledge, no work has attempted to demonstrate that the benchmarks and
models for the dual tasks of SF and ID rely on frequent heuristic patterns. Table 1 shows examples of
perturbed utterances where a state-of-the-art model [40] correctly predicted the label for the original
utterance but failed for the perturbed utterance.

2 Related Work

2.1 Realizing models use shortcuts

A growing number of studies identify a tendency in NLU models to leverage the superficial features
and language artifacts instead of generalizing over the semantic content. A naive way to force
generalization is to automatically add noise to the training set, however, as demonstrated by [2],
models trained on synthetic noise do not necessarily perform well on natural noise, requiring a more
elaborate approach. Given our incapacity to control the features these models learn, each task requires
an in-depth analysis and a data or model modification that guides it to the correct answer. For the
political claims detection task [38] and [7] unveil a strong bias towards the claims made by frequent
actors that require masking the actor and its pronouns during training to improve the performance.
Other works have focused on the artifact and heuristic over-fitting for the natural language inference
(NLI) task [17, 39, 53, 33, 37] or for the question-answering (QA) task [21]. The work of [12] focuses
on the artifacts in named entity recognition task and [1] shows that substituting Named Entities (NEs)
influences the robustness of BERT-based models for different tasks (NLI, co-reference resolution and
grammar error correction).

2.2 Alternative evaluation

Some researchers have proposed evaluation sets with naturally occurring adverse sentences for
different tasks such as HANS for natural language inference (MNLI) [33] or PAWS [55] and
PAWS-X [51] for paraphrase identification. Another strategy involves a systematic perturbation of
the evaluation set [29]. This has gained popularity in recent years with a growing interest in more
challenging and adversarial evaluation frameworks. However, a more challenging evaluation set has

1By realistic, we mean that modified utterances remain semantically similar to the original intention in a
real-life scenario.
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to ensure high quality annotation, which is why many papers have suggested a human-in-the-loop
approach [24, 10, 25]. But these approaches are costly, specially due to the number and quality of
annotators necessary to produce a high-quality output. Generalization is more easily achieved when
the training data is large and diverse. A model can be effective, yet, if it is only fed with small and/or
similar data, it will have difficulties to achieve robustness. Some researchers [32, 54, 6, 35, 36] use
data augmentation strategies to improve the training data and help boost a model’s performance.

Other researchers follow a different path and suggest evaluating by perturbing the evaluation set using
multiple task-agnostic rule-based transformations. These slightly alter the form of the data while
affecting very little the semantic content. In this category, we can cite the works of [44] (Checklist
tool) and [14] (RobustnessGym).

2.3 Spoken-Language perturbation methods

There have been a few works that have done research on spoken-language oriented perturbation
methods. Some seek to simulate automatic speech recognition (ASR) errors [48, 46, 28, 16]. Whether
using mappings of common ASR errors or based on the acoustic word embedding approach [3], these
strategies cannot work for SF and ID because we may loose the token-by-token semantic labeling
that is required for SF.

Other works have devised methods that change the sentence form while keeping track of the semantic
labeling [52, 27]; although they are not presented as spoken-language oriented. Such approaches,
whether they emulate non-native speaker errors or produce counterfactual versions of the original
utterances, use value-substitution techniques that require high-quality label-token dictionaries for
each new dataset.

In NATURE, we aim to produce spoken-language oriented perturbations [3, 48, 46, 28, 16], such that
the utterances remain semantically similar [44, 14]. without using costly label-token dictionaries [34,
30, 29] and human-in-the-loop techniques [24, 10, 25].

3 Methodology

We divide the NATURE operators into three categories - fillers, synonyms and speako (or similar
sounding). Since these operators are intended to introduce human speech inspired small perturbations
in SF and ID evaluation, it is desirable for a trained model to maintain its performance under NATURE
perturbations. Table 2 gives a few examples of these operators.

3.1 Fillers

Fillers are ubiquitous in everyday spoken language and often appear in transcribed human-to-human
dialog corpora (such as the Switchboard corpus [13], composed of approximately 1.6% fillers [45]).

Fillers serve as hesitation markers (e.g.: Bring me the, like, Greek yogurt. I’ve heard it’s really, you
know, savoury.) or as introduction/closure of a turn of speech (e.g., Now, bring me the Greek yogurt
please and thank you. Actually, I’ve heard it’s really savoury, right?).

Because they are semantically poor (lacking essential meaning) and therefore do not change the
overall meaning of an utterance, fillers are intentionally cleaned off in SF and ID benchmarks.
Although we could design a pre-processing step to remove fillers from a VA system it is more
interesting to study the impact of fillers and to test the capacity of models, specially those pre-trained
on language modeling, to generalize over utterances with fillers.

We propose 4 different filler operators:

• Beginning-of-sentence (BOS): a small introductory filler phrase at the beginning of the
utterance, such as: so, like, actually, okay so, so okay, so basically, now or well.

• End-of-sentence (EOS): a small conclusive filler phrase at the end of the utterance, such as:
if you please, please and thank you, if you can, right now, right away, would you mind ?

• Pre-verb: a filler word or sequence of words appearing before the utterance’s verb or verbal
phrase, such as: like, basically or actually.
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evaluation set Example sentence

Original add tune to sxsw fresh playlist

BOS Filler okay so add tune to sxsw fresh playlist

Pre-V. Filler like add tune to sxsw fresh playlist

Post-V. Filler add tune actually to sxsw fresh playlist

EOS Filler add tune to sxsw fresh playlist if you can

Synonym V. play tune to sxsw fresh playlist

Synonym Adj. add tune to sxsw cool playlist

Synonym Adv. add prior to sxsw fresh playlist

Synonym Any mix tune to sxsw fresh playlist

Synonym StopW add tune the sxsw fresh playlist

Speako add tua to sxsw fresh playlist

Table 2: Processed variants of original utterances from the SNIPS corpus. The tokens labeled as
music_item appear with a dotted underline and the tokens labeled as playlist show a dashed underline.
In SNIPS, the sxsw token is part of a playlist name and an abbreviation of South by Southwest.

• Post-verb: a filler word or sequence of words appearing after the utterance’s verb or verbal
phrase, such as: basically, actually, like or you know.

BOS and EOS operators simply add a filler at the very beginning or the end of the utterance,
respectively. The pre-verb and post-verb operators require us to find the part-of-speech (POS) tag of
the utterance tokens 2. Then, the filler is put at the correct place. We add a fail-safe rule to ensure
that a filler is added if no verb is found where expected. To that end, we use the overly-recurrent
filler, like, and the first appearing NE as a pivot instead of the first appearing verb e.g., let’s check like
avengers).

3.2 Synonyms

A synonym is a word that can be interchanged with another word in the context, without changing
the meaning of the whole. To replicate this semantic operation, we select the POS corresponding to
the NATURE operator (verb, adjective, adverb, etc.). Then, we select a word of that type in the input
utterance and make a list of corresponding potential synonym candidates (with the same POS tag) to
replace it. Next, we use a pre-trained BERT-base model with a language modeling head to produce
corresponding probabilities of synonym candidates. We use this BERT-based model instead of a
human populated dictionary (such as Wiktionary) since not all dictionary entries show synonyms.

To summarize, we first randomly choose a POS tag and find a target token which has this tag in our
utterance. Then we replace the target with a special [MASK] token. We feed this utterance into BERT
and obtain a list of candidates with their probabilities.

In case a sentence contains no token with the target POS, we use the more common noun POS. We
observe an example in the synonym adv. row in Table 2.

As we can see in Table 3, not all BERT candidates are suitable synonyms of the target token. We
remove candidates that do not have the same POS of the target token. For a better performance, we
place each candidate in the sentence before getting its POS. We have 5 different synonym operators
based on different target POS: verb, adjective, adverb, any (at random between verb, adjective,
adverb or noun), stop-words (grammatical and most common words).

3.3 Speako

Some words sound similar to others but have a different meaning altogether (e.g., decent and descent,
this and these). This operator is based on the idea that anyone can make an error, but an efficient and
robust model should be able to recover a minor mistake using the context. Thus, we introduce speakos
(slip of the tongue, speech-to-text misinterpretation). These slips of the tongue appear commonly in

2We use the NLTK library to find the POS of the tokens.
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Figure 1: Overview of how each operator alters the original sentence, according to its type (filler,
synonymy, speako).

Token in context Wiktionary synonyms BERT candidates

let me buy
verb

it purchase,
accept, [...]

get, buy, present, make,
purchase, offer, give, sell, [...]

is it large
adj

? giant, big,
huge, [...]

unusual, big, dangerous,
large, powerful, [...]

i said it quickly
adv

rapidly,
fast

fast, well, strong, high,
good, deep, large, slow, [...]

give me freedom
noun

liberty,
license, [...]

rights, property, freedom,
status, goods, liberty, [...]

i found the
stopword

ball le the, second, also, third,
their, still, a, our, 2nd, [...]

Table 3: Target words (underlined) of various POS and their synonyms taken from the crowd-sourced
dictionary Wiktionary and candidates obtained using a pre-trained BERT language model.

oral human-to-human communication. According to some studies [20, 47] they represent between
48 and 67.4% of all oral errors, depending on the type of speaker. Although we do not find similar
studies for user-machine communication, we know this phenomenon is not exclusive to human-to
human communication and we expect them to appear in a similar amount.

To implement the speako operator, we use a prepared dictionary of tokens appearing 1000+ times
in the whole English Wikipedia3. We convert each entry of the dictionary into its representation
in International Phonetic Alphabet (IPA). We randomly select one token from the sentence, and
also convert it to IPA. We then calculate the similarity between it and the dictionary’s entries (using
Levenshtein distance) and replace it with the closest candidate. For instance, the sentence let me
watch (/wAtS/) a comedy video could be transformed into let me which (/wItS/) a comedy video).

Figure 1 shows how we alter the original utterance by the filler, synonymy and speako operators.

3We empirically observed that removing all tokens that had a co-occurrence lower than 1000 eliminated most
of the nonsensical strings and extreme misspellings and conserved most functional words.
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4 Experimental Setup

4.1 Data

In our work, we use 3 popular open-source benchmarks 4 which are summarized in Table 4:

Airline Travel Information System (ATIS) 5 [19] introduced an NLU benchmark for the SF and
ID tasks with 18 different intent labels, 127 slot labels and a vocabulary of 939 tokens. It
contains annotated utterances corresponding to flight reservations, spoken dialogues and
requests.

SNIPS 6 [5] proposed the SNIPS voice platform, from which a dataset of queries for the SF and ID
tasks with 7 intent labels, 72 slot labels and a vocabulary of 12k tokens were extracted.

NLU-ED 7 is a dataset of 25K human annotated utterances using the Amazon Mechanical Turk
service [31]. This NLU benchmark for the SF and ID tasks is comprised of 69 intent labels,
108 slot labels and a vocabulary of 7.9k tokens.

Following the common practice in the field [18, 15, 40, 43, 26]), we report the performance of SF
using the F1 score. Moreover, we propose an end-to-end accuracy (E2E) metric (sometimes referred
in the literature as the sentence-level semantic accuracy [40]). This metric counts true positives when
all the predicted labels (intent+slots) match the ground truth labels. This allows us to combine the SF
and ID performance in a single more strict metric.

Benchmark Train Valid. Eval.

ATIS Sent 4 478 500 893
Words 50 497 5 703 9 164
Voc 867 463 448

SNIPS Sent 13 084 700 700
Words 117 700 6 384 6 354
Voc 11 418 1 571 1 624

NLU-ED Sent 20 628 2 544 2 544
Words 145 950 18 167 17 347
Voc 7 010 2 182 2 072

Table 4: Dataset size information of ATIS, SNIPS and NLU-ED benchmarks.

Any dialog-based dataset extracted from real user situations has the potential of containing private
and security sensitive information. This is the main cause for the relatively low amount of datasets
for SF and ID. The benchmarks we mention are well known and cautiously cleaned (as presented
in Section 3). NATURE operators purposely avoid using any type of resource that would contain
personal information. To the best of our knowledge, our work is not detrimental to people’s safety,
privacy, security, rights or to the environment in any way.

4.2 Models

We use two different state-of-the-art models:

Stack-Prop+BERT [40] uses BERT as a token-level encoder that feeds into two different BiLSTMs,
one per each task. The output of the SF BiLSTM is added to the ID BiLSTM input in order
to produce a token-level intent prediction which is further averaged into a sentence-level
prediction.

Bi-RNN [49] uses two correlated BiLSTMs that cross-impact each other by accessing the other’s
hidden states and come to a joint prediction for SF and ID.

4We do not consider datasets for other VA related tasks such as multi-intent detection (e.g., MixATIS and
MixSNIPS [41]) or multi-turn dialog (e.g., SGD dataset [42]).

5CGNU General Public License, version 2
6Creative Commons Zero v1.0 Universal License
7Creative Commons Attribution 4.0 International License
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The pre-trained version of these models were not available8. For ATIS and SNIPS, we trained
the models using the same hyperparameters proposed in the documentation by [40]9 and [49]10,
respectively. For NLU-ED, we use the hyperparameters from SNIPS, as their size is comparable. The
trained models obtained comparable results to their published counterpart (see in Appendix Section
A). To train the models, we used 1 NVIDIA Tesla V100. It took between 3 and 71 hours to train the
Stack-Prop+BERT model [40] (depending on the size of the benchmark), and between 68 and 130
hours to train the Bi-RNN model [49].

4.3 Modified NATURE Evaluation Sets

Since the original evaluation sets only cover a limited set of patterns, we transform them by applying
the NATURE patterns to obtain evaluation sets of the same size as the original ones. As previously
illustrated, NATURE operators offer simple ways of perturbing utterances. In order to avoid rendering
utterances unrecognizable from their original version, we only apply one operator at a time and only
once in the sentence (e.g. we add 1 filler or synonymize 1 token or transform 1 token into its speako
version). We design 2 NATURE experimental evaluation sets: Random and Hard. In the Random
setting, for each utterance, we apply one operator at random and we repeat the random operator
selection 10 times and calculate the mean score.

For the Hard setting, we use the popular BERT fine-tuning model [8] 11 to filter-in the most challenging
operators. For each evaluation utterance, we select the operator with the lowest confidence score
(probability of the true class). In Table 5 we show the operator composition (by percentage) of the
Hard evaluation sets for each dataset.

The Random evaluation set is meant to show how a random small change in the sentence can influence
evaluation while the Hard evaluation set is meant to assess the lower-bound performance of how
much the model depends on similar pattern sentences to obtain the correct prediction.

Operator ATIS SNIPS NLU-ED

BOS Filler 0.8 0.1 2.5
Pre-V. Filler 6.0 3.7 16.0
Post-V. Filler 1.9 8.6 5.1
EOS Filler 9.0 52.3 8.3
Syn. V. 25.6 5.4 16.3
Syn. Adj. 29.2 15.0 23.4
Syn. Adv. 11.8 5.6 10.2
Syn. Any 5.3 1.1 4.8
Syn. StopW 3.2 2.7 6.4
Speako 7.2 5.4 6.9

Table 5: Composition (by percentage) of JointBERT-selected operators for the Hard experimental
evaluation set.

5 Results and Discussion

5.1 Qualitative Evaluation

Our assumption is that the operator-generated utterances share the same meaning and labeling as the
original sentence. In order to measure this, we conducted a small but representative multiple-choice
survey. We select 120 operator-perturbed utterances from the ATIS, SNIPS and NLU-ED benchmarks.
We selected at random 40 utterances from each benchmark, making sure they were also evenly
distributed between operators (12 utterances per operator). In addition to these, we cherry-picked 12
original utterances of high-quality that served as control. As we can see in the Survey Table in the

8https://github.com/LeePleased/StackPropagation-SLU and https://github.com/
ray075hl/Bi-Model-Intent-And-Slot

9300 epochs, 0.001 learning rate, 0.4 dropout rate, 256 encoder hidden dimensions, 1024 attention hidden
dimensions, 128 attention output dimensions, 256 word embedding dimensions for ATIS and 32 for SNIPS.

10500 epochs, max sentence length of 120, 0.001 learning rate, 0.2 dropout rate, 300 word embedding size,
200 LSTM hidden size

11More specifically, JointBERT [4] implemented at https://github.com/monologg/JointBERT.
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Appendix Section C, the control scores stayed high and therefore, there was no reason to invalidate
any participant’s annotations.

14 participants (NLP and ML researchers, with no links to this work) volunteered to participate in
this unpaid survey and consented verbally to the use of their data within the scope of this research.
To avoid a decrease in annotation quality (due to fatigue), we split the participants in 2 groups of
7 members and divided the utterances in two sets (each with 60 operator-perturbed + 12 control
utterances). We estimated the survey time to be 30-60 minutes, which was not far from the actual
time (27-53 minutes).

For each utterance, we asked the participants to evaluate the intent and slot labels as reasonable or
unreasonable.

Group 1 Group 2
Experiment Control Experiment Control

Slot 94.5 94.0 93.8 97.0
Intent 89.0 97.6 85.9 97.5

Table 6: Survey results and statistics per group. All scores appear as percentages and indicate
how the samples were perceived. A lower score indicates that more tokens and utterances have an
unreasonable label.

In Table 6 we observe a sizable decrease on the experiment side for Intent, which can be partially
explained by the disposition of some operators to perturb word types (such as verbs) that are highly
associated with the intent classification. We also observe that the Slot labeling results are high and
very close to the control scores. This indicates that (contrary to many DA strategies) the NATURE
operators maintain a close-to-ground-truth slot labeling.

5.2 Quantitative Evaluation

Table 7 shows the performances of the Stack-Prop+BERT and Bi-RNN models trained on the original
train data of ATIS, SNIPS and NLU-ED benchmarks. Models are evaluated on the Original, Random
and Hard evaluation sets. We also show the scores on 10 evaluation sets, each perturbed with a single
NATURE operator, where one operator is applied once to each utterance of the evaluation set. In
Table 7, for each benchmark, we report the F1 and accuracy on the SF and ID tasks respectively, and
the E2E metric. Furthermore, we report the unweighted average (Avg. column) of the aforementioned
scores on the three benchmarks. The perturbed evaluation set results are sorted in descending order
according to the averaged E2E metric. We notice that Stack-Prop+BERT outperforms Bi-RNN not
only on original, but also on all evaluation set variants. More precisely, we observe a gap of 6.3%,
8.7% and 5.9% on the Avg. E2E metric on the Orig, Random and Hard evaluation sets.

First, we observe a noticeable lowering in the scores on Random, and quite a radical change on Hard.
We consider the possibility that the Hard evaluation set incorporates more noise than the Random
evaluation sets, and this could be the cause of this low score. However, depending on the benchmark,
the sharpest operators are not always the ones expected to be most disruptive. Yet, the decrease in
score is extreme across all benchmarks and for both models.

As mentioned earlier, fillers contribute little to the semantics of an utterance and should not be
disruptive for the model. The speako operator is more disruptive semantically, specially for the
cases where the original token cannot be deduced from the context and the perturbed token. We
expect the synonym operators to be the most disruptive of the three since we modify the semantic
value of a whole word at a time. In Table 7 we observe that the model handles most filler operators
reasonably well, however, we are surprised to see the scores drop considerably for the EOS. As
shown on Table 7, the EOS operator drops the E2E accuracy of both models by about 40% on average
across all benchmarks. This suggests some syntax-level pattern dependence where the models use
the position of the tokens to achieve the correct predictions. The synonym operators, specially the
adverb and adjective, greatly deteriorate the performances. This decrease in score shines a light on
the importance of the token-level pattern, signaling that the models are using certain adjectives and
adverbs to make their predictions. Since, in the benchmarks, adjectives and adverbs are much less
diverse than the nouns and verbs, we infer that the models are using these words as prediction clues.
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Evaluation Set ATIS SNIPS NLU-ED Avg.
Slot
(F1)

Intent
(Acc)

E2E
(Acc)

Slot
(F1)

Intent
(Acc)

E2E
(Acc)

Slot
(F1)

Intent
(Acc)

E2E
(Acc)

Slot
(F1)

Intent
(Acc)

E2E
(Acc)

Stack-Prop+BERT

Orig 95.7 96.5 86.2 95.0 98.3 87.9 74.0 85.1 67.8 88.2 93.3 80.6
Rand 91.3 95.0 66.5 83.4 96.1 53.8 67.4 76.1 56.8 80.7 89.1 59.0
Hard 82.3 90.7 34.9 70.6 95.3 12.9 55.5 62.7 38.9 69.5 82.9 28.9

Pre-V. Filler 95.6 96.5 85.6 92.2 98.3 79.3 71.0 83.6 65.7 86.3 92.8 76.9
Syn. StopW 93.0 94.8 76.5 89.7 96.7 74.3 70.2 78.9 60.2 84.3 90.1 70.3
BOS Filler 95.6 96.2 85.8 86.5 97.1 54.9 72.5 80.8 63.9 84.9 91.4 68.2
Post-V. Filler 94.0 96.5 80.3 84.8 98.0 57.1 68.0 84.1 63.6 82.3 92.9 67.0
Syn. V. 90.1 95.3 63.6 88.4 95.1 66.7 68.5 74.2 56.5 82.3 88.2 62.3
Speako 92.9 92.7 72.5 77.9 94.6 45.3 69.5 74.2 57.6 80.1 87.2 58.5
Syn. Any 90.3 90.5 54.4 86.9 94.4 61.6 67.8 71.0 53.5 81.7 85.3 56.5
Syn. Adj. 84.7 92.7 42.4 78.2 95.4 44.4 60.2 69.7 47.2 74.4 85.9 44.7
Syn. Adv. 88.2 89.1 43.9 77.6 94.3 41.9 61.6 65.6 45.4 75.8 83.0 43.7
EOS Filler 88.9 96.3 54.1 72.1 97.7 13.1 63.9 78.0 53.6 75.0 90.7 40.3

Bi-RNN

Orig 94.9 97.6 84.7 89.4 97.1 76.6 66.4 80.9 61.7 83.6 91.9 74.3
Rand 89.9 94.3 61.8 75.6 94.1 39.0 60.6 70.8 50.1 75.4 86.4 50.3
Hard 79.9 92.0 27.6 62.4 92.9 7.0 49.6 58.8 34.4 64.0 81.2 23.0

Pre-V. Filler 94.7 97.3 82.2 84.6 96.4 60.0 63.3 80.1 59.3 80.9 91.3 67.2
Syn. StopW 90.6 94.7 72.7 80.5 95.4 56.4 62.3 73.2 52.7 77.8 87.8 60.6
BOS Filler 80.7 96.7 82.6 80.9 96.7 38.4 65.8 78.8 59.6 75.8 90.7 60.2
Post-V. Filler 93.8 96.9 80.3 77.9 96.6 37.4 62.6 79.3 56.6 78.1 90.9 58.1
Syn. V. 87.6 95.9 56.6 79.5 92.1 50.6 61.3 70.5 50.7 76.1 86.2 52.6
Speako 91.8 90.3 68.1 70.1 90.1 33.6 61.5 69.8 51.0 74.5 83.4 50.9
Syn. Any 89.2 90.4 52.6 77.8 91.4 40.6 62.0 67.3 49.1 76.3 83.0 47.4
Syn. Adj. 81.7 94.2 34.4 71.7 93.9 34.9 54.3 65.5 42.1 69.2 84.5 37.1
Syn. Adv. 87.2 85.1 38.4 69.9 92.1 29.0 54.7 61.4 40.3 70.6 79.5 35.9
EOS Filler 88.9 96.8 52.2 64.1 94.1 5.9 56.4 65.8 42.0 69.8 85.6 33.4

Table 7: SF, ID and E2E performances of BERT and RNN based models trained on ATIS, SNIPS,
and NLU-ED and evaluated on their original and NATURE-perturbed evaluation sets. We show
results on per-operator as well as on Random and Hard evaluation sets. Furthermore, we report the
unweighted average score on the 3 benchmark we considered. The lowest scores in each column
appear underlined.

Evaluation Set ATIS SNIPS NLU-ED Avg.
Slot
(F1)

Intent
(Acc)

E2E
(Acc)

Slot
(F1)

Intent
(Acc)

E2E
(Acc)

Slot
(F1)

Intent
(Acc)

E2E
(Acc)

Slot
(F1)

Intent
(Acc)

E2E
(Acc)

Stack-Prop+BERT

Orig 95.7 96.5 86.2 95.0 98.3 87.9 74.0 85.1 67.8 88.2 93.3 80.6

Checklist Contract. 95.6 96.6 85.8 94.6 98.2 86.8 73.8 84.6 67.4 88.0 93.1 80.0
Checklist NER 94.7 96.5 84.6 92.9 98.2 83.0 73.7 85.1 67.6 87.1 93.3 78.4
Checklist Typo 85.1 92.2 51.0 78.3 95.4 51.7 57.1 70.8 46.9 73.5 86.1 49.9
Checklist Punct. 85.2 96.6 42.8 71.7 97.7 20.4 55.4 26.3 16.7 70.8 73.5 26.6

Bi-RNN

Orig 94.9 97.6 84.7 89.4 97.1 76.6 66.4 80.9 61.7 83.6 91.9 74.3

Checklist Contract. 94.8 97.5 84.3 88.9 96.5 75.8 67.0 81.1 61.0 83.6 91.7 73.7
Checklist NER 93.8 97.5 83.0 89.5 96.7 78.2 67.6 81.7 61.5 83.6 92.0 74.2
Checklist Typo 81.6 92.1 43.2 70.1 92.7 37.8 49.5 66.4 41.6 67.1 83.7 40.9
Checklist Punct. 87.4 96.7 40.7 71.0 96.2 20.7 50.0 41.4 22.4 69.5 78.1 27.9

Table 8: SF, ID and E2E performances of BERT and RNN based models trained on ATIS, SNIPS,
and NLU-ED and evaluated on their original and CHECKLIST-perturbed evaluation sets. The lowest
scores in each column appear underlined.
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The speako operator scores suggest a good capacity of the models to overcome these variants and
generalize using the remaining context.

Interestingly, we notice that the drop of performances is highly strong on the E2E metric. For instance,
using the Stack-Prop+BERT model on the ATIS evaluation set, perturbed with the EOS filler
operator, we observe a 0.3% and 6.8% drop on SF and ID respectively but a 32.1% drop on E2E. We
use the E2E metric since it is more representative of the whole frame accuracy of real world scenarios
[15, 40], where a VA can only execute the expected command if the intent and all slots are correctly
predicted. A more concise illustration of Table 7 ’s results is shown on Figure 2 in the Appendix
Section D.

We also apply a general perturbation method, the Checklist tool [44]12 to evaluate model performance
on the three benchmarks. Although not designed for spoken language, some of the operators are
useful to diagnose the problem of over-fitting to spurious patterns and correlations. We use 4 that are
suitable for most sentences: the punctuation operator removes or adds a final punctuation according
to its presence or absence in the text, the typo operator swaps random characters with one of its
neighbours, the contraction operator replaces contracted words with their non-contracted version or
vice-versa (e.g., don’t → do not, cannot → can’t), the NER operator detects and replaces first names,
locations and numbers with other named entities of the same type. Table 8 shows the results and we
observe that the punctuation operator can reduce the E2E accuracy of both models by more than 45%
on average across all benchmarks. This supports the results we observed on NATURE.

6 Conclusions

Neural Network models have a black-box architecture that makes it hard to discern when they
correctly generalize over the input and when they resort to heuristic features that correlate to the
expected output.

We present the NATURE operators, apply them to evaluation sets of standard SF and ID benchmarks
and observe a significant drop of the state-of-the-art model scores. The different operators in our
framework help discern what surface patterns the model is exploiting.

These results should hopefully encourage the development of better, more challenging benchmarks
and the search for more robust models, capable of handling more realistic, fitting and spoken-language
oriented utterances.

For future work, we wish to expand the NATURE operators to include speech impediments (such as
lisp, stutter and dysarthria), extend the operators to be multi-lingual and work on multi-turn dialogue
and multi-intent detection tasks.

7 Acknowledgments

We would like to thank the team at Mindspore13, a new deep learning computing framework, for
partial support on this work. Moreover, we want to thank Prasanna Parthasarathi for his valuable
feedback and suggestions and the survey volunteers for their time and participation.

References
[1] S. Balasubramanian, N. Jain, G. Jindal, A. Awasthi, and S. Sarawagi. What’s in a name? are bert

named entity representations just as good for any other name? arXiv preprint arXiv:2007.06897,
2020.

[2] Y. Belinkov and Y. Bisk. Synthetic and natural noise both break neural machine translation.
arXiv preprint arXiv:1711.02173, 2017.

[3] S. Bengio and G. Heigold. Word embeddings for speech recognition. 2014.

[4] Q. Chen, Z. Zhuo, and W. Wang. Bert for joint intent classification and slot filling. arXiv
preprint arXiv:1902.10909, 2019.

12https://github.com/marcotcr/checklist
13https://www.mindspore.cn/

10

https://github.com/marcotcr/checklist
https://www.mindspore.cn/


[5] A. Coucke, A. Saade, A. Ball, T. Bluche, A. Caulier, D. Leroy, C. Doumouro, T. Gisselbrecht,
F. Caltagirone, T. Lavril, et al. Snips voice platform: an embedded spoken language
understanding system for private-by-design voice interfaces. arXiv preprint arXiv:1805.10190,
2018.

[6] X. Dai and H. Adel. An analysis of simple data augmentation for named entity recognition.
In Proceedings of the 28th International Conference on Computational Linguistics, pages
3861–3867, 2020.

[7] E. Dayanik and S. Padó. Masking actor information leads to fairer political claims detection.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 4385–4391, 2020.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[9] J. Ebrahimi, A. Rao, D. Lowd, and D. Dou. Hotflip: White-box adversarial examples for text
classification. arXiv preprint arXiv:1712.06751, 2017.

[10] M. Gardner, Y. Artzi, V. Basmova, J. Berant, B. Bogin, S. Chen, P. Dasigi, D. Dua, Y. Elazar,
A. Gottumukkala, et al. Evaluating models’ local decision boundaries via contrast sets. arXiv
preprint arXiv:2004.02709, 2020.

[11] S. Garg and G. Ramakrishnan. Bae: Bert-based adversarial examples for text classification.

[12] A. Ghaddar, P. Langlais, A. Rashid, and M. Rezagholizadeh. Context-aware adversarial training
for name regularity bias in named entity recognition. Transactions of the Association for
Computational Linguistics, 9:586–604, 2021.

[13] J. Godfrey, E. Holliman, and J. McDaniel. Switchboard: Telephone speech corpus for research
and development. In Proceedings of the 1992 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), volume 1, pages 517–520. IEEE, 1992.

[14] K. Goel, N. Rajani, J. Vig, S. Tan, J. Wu, S. Zheng, C. Xiong, M. Bansal, and C. Ré. Robustness
gym: Unifying the nlp evaluation landscape. arXiv preprint arXiv:2101.04840, 2021.

[15] C.-W. Goo, G. Gao, Y.-K. Hsu, C.-L. Huo, T.-C. Chen, K.-W. Hsu, and Y.-N. Chen. Slot-gated
modeling for joint slot filling and intent prediction. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers), pages 753–757, 2018.

[16] K. Gopalakrishnan, B. Hedayatnia, L. Wang, Y. Liu, and D. Hakkani-Tur. Are neural
open-domain dialog systems robust to speech recognition errors in the dialog history? an
empirical study. arXiv preprint arXiv:2008.07683, 2020.

[17] S. Gururangan, S. Swayamdipta, O. Levy, R. Schwartz, S. R. Bowman, and N. A. Smith.
Annotation artifacts in natural language inference data. arXiv preprint arXiv:1803.02324, 2018.

[18] D. Hakkani-Tür, G. Tür, A. Celikyilmaz, Y.-N. Chen, J. Gao, L. Deng, and Y.-Y. Wang.
Multi-domain joint semantic frame parsing using bi-directional rnn-lstm. In Interspeech, pages
715–719, 2016.

[19] C. T. Hemphill, J. J. Godfrey, and G. R. Doddington. The atis spoken language systems pilot
corpus. In Speech and Natural Language: Proceedings of a Workshop Held at Hidden Valley,
Pennsylvania, June 24-27, 1990, 1990.

[20] J. J. Jaeger. Kids’ slips: What young children’s slips of the tongue reveal about language
development. Psychology Press, 2004.

[21] R. Jia and P. Liang. Adversarial examples for evaluating reading comprehension systems. arXiv
preprint arXiv:1707.07328, 2017.

[22] D. Jin, Z. Jin, J. T. Zhou, and P. Szolovits. Is bert really robust? natural language attack on text
classification and entailment. arXiv preprint arXiv:1907.11932, 2019.

11



[23] D. Jin, Z. Jin, J. T. Zhou, and P. Szolovits. Is bert really robust? a strong baseline for natural
language attack on text classification and entailment. In Proceedings of the AAAI conference
on artificial intelligence, volume 34, pages 8018–8025, 2020.

[24] D. Kaushik, E. Hovy, and Z. C. Lipton. Learning the difference that makes a difference with
counterfactually-augmented data. arXiv preprint arXiv:1909.12434, 2019.

[25] D. Kiela, M. Bartolo, Y. Nie, D. Kaushik, A. Geiger, Z. Wu, B. Vidgen, G. Prasad,
A. Singh, P. Ringshia, et al. Dynabench: Rethinking benchmarking in nlp. arXiv preprint
arXiv:2104.14337, 2021.

[26] J. Krishnan, A. Anastasopoulos, H. Purohit, and H. Rangwala. Multilingual code-switching
for zero-shot cross-lingual intent prediction and slot filling. arXiv preprint arXiv:2103.07792,
2021.

[27] S. Li, S. Yavuz, K. Hashimoto, J. Li, T. Niu, N. Rajani, X. Yan, Y. Zhou, and C. Xiong.
Coco: Controllable counterfactuals for evaluating dialogue state trackers. arXiv preprint
arXiv:2010.12850, 2020.

[28] X. Li, H. Xue, W. Chen, Y. Liu, Y. Feng, and Q. Liu. Improving the robustness of speech
translation. arXiv preprint arXiv:1811.00728, 2018.

[29] H. Lin, Y. Lu, J. Tang, X. Han, L. Sun, Z. Wei, and N. J. Yuan. A rigorous study on named
entity recognition: Can fine-tuning pretrained model lead to the promised land? arXiv preprint
arXiv:2004.12126, 2020.

[30] T. Lin, O. Etzioni, et al. Entity linking at web scale. In Proceedings of the Joint
Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge Extraction
(AKBC-WEKEX), pages 84–88, 2012.

[31] X. Liu, A. Eshghi, P. Swietojanski, and V. Rieser. Benchmarking natural language understanding
services for building conversational agents. arXiv preprint arXiv:1903.05566, 2019.

[32] S. Louvan and B. Magnini. Simple is better! lightweight data augmentation for low resource
slot filling and intent classification. arXiv preprint arXiv:2009.03695, 2020.

[33] R. T. McCoy, E. Pavlick, and T. Linzen. Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. arXiv preprint arXiv:1902.01007, 2019.

[34] J. P. McCrae, A. Rademaker, E. Rudnicka, and F. Bond. English wordnet 2020: improving
and extending a wordnet for english using an open-source methodology. In Proceedings of the
LREC 2020 Workshop on Multimodal Wordnets (MMW2020), pages 14–19, 2020.

[35] J. Min, R. T. McCoy, D. Das, E. Pitler, and T. Linzen. Syntactic data augmentation
increases robustness to inference heuristics. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 2339–2352, 2020.

[36] N. S. Moosavi, M. de Boer, P. A. Utama, and I. Gurevych. Improving robustness by augmenting
training sentences with predicate-argument structures. arXiv preprint arXiv:2010.12510, 2020.

[37] A. Naik, A. Ravichander, N. Sadeh, C. Rose, and G. Neubig. Stress test evaluation for natural
language inference. arXiv preprint arXiv:1806.00692, 2018.

[38] S. Padó, A. Blessing, N. Blokker, E. Dayanik, S. Haunss, and J. Kuhn. Who sides with
whom? towards computational construction of discourse networks for political debates. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 2841–2847, 2019.

[39] A. Poliak, J. Naradowsky, A. Haldar, R. Rudinger, and B. Van Durme. Hypothesis only baselines
in natural language inference. arXiv preprint arXiv:1805.01042, 2018.

[40] L. Qin, W. Che, Y. Li, H. Wen, and T. Liu. A stack-propagation framework with token-level
intent detection for spoken language understanding. arXiv preprint arXiv:1909.02188, 2019.

12



[41] L. Qin, X. Xu, W. Che, and T. Liu. Agif: An adaptive graph-interactive framework for joint
multiple intent detection and slot filling. arXiv: Computation and Language, 2020.

[42] A. Rastogi, X. Zang, S. Sunkara, R. Gupta, and P. Khaitan. Towards scalable multi-domain
conversational agents: The schema-guided dialogue dataset. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 8689–8696, 2020.

[43] E. Razumovskaia, G. Glavaš, O. Majewska, A. Korhonen, and I. Vulić. Crossing the
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