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ABSTRACT

We present PHYCO, a framework for learning implicit constitutive laws from
monocular observations of Gaussian splatting. Existing implicit methods often
suffer from local minima under noisy supervision and lack physical interpretabil-
ity, while explicit approaches rely on predefined constitutive equations, limiting
generalizability. To address these issues, our framework, PHYCO, introduces two
key innovations. First, we propose Edge-Aware Depth Consensus Anchors to es-
tablish robust geometric constraints from sparse observations, circumventing un-
reliable pixel-level supervision. Second, a Multi-Hypothesis Physics Verifier inte-
grates classical constitutive models as differentiable hypotheses, providing strong
physical priors to regularize the optimization while preserving the flexibility of
implicit modeling. This unified approach ensures physical plausibility without
sacrificing generality. Extensive experiments on synthetic, real-to-sim, and real-
world datasets demonstrate that PHYCO significantly outperforms existing meth-
ods, achieving state-of-the-art performance in learning accurate and generalizable
physical dynamics from monocular videos.

1 INTRODUCTION

Understanding the intrinsic dynamics of objects is crucial for spatial intelligence and its applica-
tions, which require accurate digital modeling, interaction, and manipulation, following the physical
laws (Yin et al., 2021; Juarez et al., 2021; Billard & Kragic, 2019; Nair et al., 2022). While humans
can effortlessly infer basic physical properties from videos (e.g., bouncing balls or viscous fluid
flow), extracting precise physical explanations from visual signals remains an open challenge.

Prior works have utilized Al models to achieve the goal of understanding the intrinsic dynamics
(Chen et al., 2022; Jiang et al., 2024; Huang et al., 2020; 2024; Liu et al., 2024b). A common
approach involves employing differentiable physics simulators (Dubied et al., 2022; Xue et al., 2023)
to obtain object motion information, followed by using differentiable renderers (Mildenhall et al.,
2021; Kerbl et al., 2023) to generate images. Regarding modeling of material constitutive laws,
these approaches fall into two paradigms: explicit and implicit parameterization.

Explicit modeling (Huang et al., 2024; Liu et al., 2024a; Li et al., 2023; Zhang et al., 2024) builds
upon classical continuum mechanics, constructing differential equation systems with predefined
constitutive models (Drucker & Prager, 1952; der Wissenschaften zu Gottingen, 1922) (e.g., Hyper-
elastic (Stomakhin et al., 2012)) and explicit physical parameters like Young’s modulus and Pois-
son’s ratio. Through differentiable simulators (Hu et al., 2018a; Jiang et al., 2016), these methods
achieve pixel-level supervision. Although enabling visual alignment, their effectiveness critically
depends on predefined constitutive models: (1) This severely limits generalization as manual model
specification and fine parameter tuning are required for different materials (Li et al., 2023); (2) They
struggle with complex real-world materials exhibiting deeply coupled physical properties (Liu et al.,
2024a).

In contrast, implicit parameterization methods model constitutive relations through neural networks
(Ma et al., 2023; Li et al., 2022). NeuMA (Cao et al., 2024) introduces the first method to align
implicit constitutive models with visual observations. However, the implicit modeling paradigm,
while maintaining generalization ability, introduces significant interpretability issues (Raissi et al.,
2019) and optimization challenges—models easily converge to suboptimal solutions when handling
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noisy and sparse supervision (especially monocular videos) or complex material behaviors (Wang
et al., 2023).

These conflicting trade-offs between explicit and implicit material modeling methods lead to our
core research proposition: How to reliably learn intrinsic dynamics from monocular videos while
preserving the generalization advantages of implicit modeling?

To bridge these gaps, we propose PHYCO, a physics-consistent learning framework to unify visual-
physical bidirectional alignment for learning implicit constitutive laws from monocular videos. Un-
like prior works, our method introduces two key innovations: (1) The Edge-Aware Depth Consen-
sus Anchors extract robust geometric constraints from sparse observations, avoiding color domain
shift-induced failures; (2) A Multi-Hypothesis Physics Verifier dynamically injects physics priors
by treating classical constitutive models as differentiable hypotheses, ensuring plausibility without
sacrificing flexibility. Extensive experiments validate that PHYCO significantly outperforms exist-
ing methods in both synthetic and real-world scenarios, paving the way for generalizable physics
learning from monocular videos.

2 RELATED WORKS

2.1 PHYSICS-GROUNDED DYNAMIC 3D GENERATION

Dynamic 3D generation aims to capture an object’s motion over time. While traditional NeRF-
based models (Park et al., 2021; Fang et al., 2022; Kaneko, 2024; Feng et al., 2024b) are limited
by predefined material assumptions, recent Gaussian-based methods (Kerbl et al., 2023; Feng et al.,
2024a; Tan et al., 2024) show significant progress. For instance, Spring-Gaus (Zhong et al., 2024)
uses spring-mass systems for elastic reconstruction, but still relies on an explicit model.

Some works attempt to learn physical knowledge from diffusion models for dynamic 3D Gaussian
Splatting (GS) generation (Zhang et al., 2024; Liu et al., 2024a; Huang et al., 2024; Lin et al.,
2025). However, diffusion models inherently lack rigorous physics-based image synthesis capabili-
ties (Croitoru et al., 2023; Poole et al., 2022), making their implicit physical priors unreliable for pre-
cise perception tasks (Li et al., 2024). Moreover, these methods often rely on explicit physical model
specifications (e.g., rigid (Liu et al., 2024b)/elastic body (Zhong et al., 2024) assumptions), limiting
generalizable modeling. NeuMA (Cao et al., 2024) pioneers the optimization of neural constitutive
laws directly from observational images without specific predefined physical laws. Nevertheless,
under sparse supervision (such as monocular supervision and low frame rate) and highly complex
physical properties (Xu et al., 2015; Xu & Barbic¢, 2017; Feng et al., 2024a), single-modality visual
optimization suffers from local minima. Our method significantly enhances optimization stability in
complex material scenarios by leveraging reliable multi-modal cues from sparse supervision.

2.2 MATERIAL CONSTITUTIVE LAWS

In continuum mechanics, material constitutive laws (Arruda & Boyce, 1993; der Wissenschaften zu
Gottingen, 1922; Chhabra & Patel, 2023) govern responses to deformation and external forces. Con-
ventional approaches for learning material constitutive laws (Cai et al., 2024; Liu et al., 2024a) en-
force explicit constitutive laws via predefined nonlinear polynomial bases (e.g., elastic (Fung, 1967)
/ plastic (Drucker & Prager, 1952) / fluid models (Chhabra & Patel, 2023) ) and optimize param-
eters like Young’s modulus or Poisson’s ratio under rendering-based supervision. While ensuring
physical consistency, these methods require manual design of constitutive equation forms (Liu et al.,
2025) and initial parameters, severely limiting generalizable modeling (Meng et al., 2025).

Recent advances explore implicit neural constitutive modeling (Raissi et al., 2019; Cai et al., 2021;
Lu et al.,, 2021). NCLaw (Ma et al., 2023) pioneers hybrid NN-PDE (neural network and partial
differentiable equations), yet relies on precise particle-level annotations. NeuMA (Cao et al., 2024)
further incorporates low-rank adaptation(LoRA) (Hu et al., 2022) to align implicit laws with visual
observations via differentiable rendering, without particle-level supervision. However, pure visual
supervision lacks physical interpretability (Aira et al., 2024), and sparse or low-quality observations
often lead to optimization ambiguity — implicit laws, despite their generalization potential, struggle
to converge to physically plausible solutions without prior guidance. Our work proposes a hybrid
constitutive framework that introduces a physical prior knowledge repository to regularize implicit
optimization while avoiding overfitting to specific explicit models. This approach synergizes the op-
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timization stability of explicit laws with the generalization capabilities of implicit laws, maintaining
physical plausibility and accuracy under sparse supervision.

3 METHOD

3.1 PROBLEM STATEMENT

Given static 3D Gaussian kernels (Kerbl et al., 2023) of an object G(i) = {p(¢), a(i),A(i),c(i)},
where p(7), a(i), A(i), ¢(7) are the center, opacity, covariance matrix, and spherical harmonic coef-
ficients of each gaussian kernel, and its corresponding monocular dynamic video {I; }~_;, we aim to
learn implicit constitutive laws through a dynamical system My governed by elastodynamics (Fung,
1977):

p0¢:VP+p0bv P :g(Fe)v Fe = V(b? (l)
where P is the first Piola-Kirchhoff stress tensor, p is the object density, and b is the body force.

Here, ¢ denotes the deformation map, and ¢ is its acceleration. £ is defined by the elastic constitutive
law. We discretize Eq. (1) and obtain the dynamical system My:

St+1:M9(St), Vt:O717...7T—17 (2)

where the states for physical simulation at ¢-th time step s; = {xy, v¢, FL}. x4, v, F, are the particle
positions, velocities, and elastic deformation gradients, respectively. 6 is the neural parameters in
M. We provide details on preprocessing the gaussian kernels to particles for simulation in App. I.

To align My with the observation I;, we use a differentiable renderer R producing ft =
R(st; K, Q), where K, Q denotes the camera’s intrinsic and extrinsic matrices. Relying solely
on this rendering-based supervision, however, is insufficient to overcome the challenges posed by
sparse and noisy monocular video. The inherent geometric ambiguities from the single viewpoint
and material ambiguities in the dynamics make the optimization landscape intractable. To establish
a robust learning pipeline that addresses these fundamental issues, we propose our novel framework,
PHYCoO, short for physics-consistent learning (see Fig. 1). PHYCO operates through three coordi-
nated mechanisms: First, we fine-tune neural material laws via low-rank adaptation (LoRA), ensur-
ing compatibility with PDE-based physical simulations while maintaining parameter efficiency. Sec-
ond, geometric ambiguities are resolved through the edge-aware depth consensus anchor that jointly
optimize global motion coherence and local edge-aligned features. Finally, the multi-hypothesis
physics verifier eliminates material ambiguities by enforcing hypothesis-driven physical constraints
during sparse-view optimization, balancing generalization with dynamical consistency.

Next, we will provide a detailed explanation of each component in our framework. Sec. 3.2 intro-
duces the differentiable neural material constitutive laws and the LoRA finetuning process, which
serve as the foundation for our optimization task. Sec. 3.3 presents our strategy, edge-aware depth
consensus anchor, designed to address the challenges of color inconsistency and geometric ambigu-
ity in single-view scenarios. In Sec. 3.4, to tackle the unreliability of visual signals, we introduce
multi-hypothesis physics verifier, a regularization approach that incorporates physical prior knowl-
edge without compromising the model’s generalization capability. This method avoids the need for
specifying any explicit parameters and prevents the model from converging to suboptimal solutions.

3.2 NEURAL MATERIAL CONSTITUTIVE LAWS

Our work adopts the same dynamical system My as NCLaw (Ma et al., 2023) for state transitions.
My is composed of the neural elasticity law &, , explicit Euler method (Hu et al., 2018b; Sulsky
et al., 1995), and neural plasticity law Py, . We use the basic physical prior model Mo = {&o, Po}
provided by NCLaw for state transitions. To align the model with observations without compromis-
ing the model’s fundamental capabilities, instead of training all parameters in Mg, we use LoRA
(Hu et al., 2022) for finetuning. Specifically, we have My = {&,, Py, }, Where £y, = & + A&y,
and 'ng =P+ A’P@p.

The dynamical system My advances physical states through three stages as shown in Alg. 1: (1)
Stress evaluation via neural constitutive law &, that computes first Piola-Kirchhoff stress P; from
elastic deformation gradient F*; (2) Dynamics integration where operator Z implements semi-
implicit Euler integration to update positions x;1 and velocities v, under inertia and body forces;
(3) Plasticity update through network Py, that modifies Firial to account for plastic deformation. The
implementation details are provided in App. G.
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Figure 1: Overview of our PHYCO framework. PHYCO introduces three key technical compo-
nents: (1) We employ Low-Rank Adaptation (LoRA) to fine-tune fundamental neural material
laws while maintaining seamless integration with partial differential equation (PDE)-based physi-
cal simulation processes. (2) To address geometric ambiguities, we propose Edge-Aware Depth
Consensus Anchors that resolve shape inconsistencies through joint alignment of global motion
patterns and local geometric features. (3) For material ambiguity mitigation in sparse-view scenar-
ios, we introduce the Multi-Hypothesis Physics Verifier that enforce physically consistent priors
while preserving generalization capabilities through hypothesis-space constraints.

Algorithm 1 Time Stepping with Neural Constitutive Laws

Require: State s; = {x;,v:,F.}
Ensure: Next state s;41
Stress Evaluation:
for each material pointi = 1to N do
P/ &, (Fe';0.)
end for
Euler Integration:
Xiy1, Vip1, FO e T(x, v, Py)
Plasticity Update:
for each material point: = 1 to N do
end for ’

3.3 EDGE-AWARE DEPTH CONSENSUS ANCHORS

Standard pixel-level color matching supervision used by methods like NeuMA (Cao et al., 2024)
is unreliable for monocular video due to domain shifts and geometric ambiguities. To overcome
this, we propose the Edge-Aware Depth Consensus Anchor. Instead of using color, our approach
establishes robust geometric constraints by enforcing consensus between the rendered depth and
depth maps generated by a pre-trained monocular depth estimator, focusing on stable object regions.

Given a rendered image Irenger € R *W >3, a rendered depth map Dienger € R *W and a ground-
truth (GT) image Iy € REXWX3 we first calculate the overall motion loss:

Emask: = ||M'render - MgtH%; (3)

where M, .cnqer and Mg, are the object region masks on the rendered and GT images, respectively.
Mask information can offer a basic alignment, but it doesn’t help solve color inconsistency and 3D
geometric ambiguity.

We then utilize a pre-trained depth estimation network D (Yang et al., 2024) to generate relative
depth maps Dy, where the predicted depth values are geometrically consistent but lack absolute
metric scale. A feature matching network F (Sarlin et al., 2020; DeTone et al., 2018) extracts [NV 2D
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correspondence pairs {(p;, ¢:)}~;, where p; = (z;,y;) and ¢; = (, /) denote matched coordi-
nates in Jrender and Iy, respectively. To mitigate depth estimation errors near object boundaries, we
define the edge region Mg through a single morphological opening operation:

Medge =Mo K, xr, 4)

where o denotes morphological opening (erosion followed by dilation) with a r x r rectangular
kernel K. The stable interior region is correspondingly obtained as Mgpie = M \ Megge-

For each correspondence pair (p;, ¢;), we validate depth consensus in their local neighborhoods. Let
Np, and N, represent k X k regions centered at p; in Dienger and g; in Dy, respectively. We compute
the Spearman’s rank correlation coefficient ~y; (Sedgwick, 2014) for each pair (p;, ¢;) between depth
values in these neighborhoods:

62‘1;:1(74‘7 - Sj)2
RE 1)

i =1-= &)

where 7; and s; are the ranks of the j-th depth value in IV,,, and N,,. A consensus indicator function
&(pi, q;) thresholds 7:

d(piqi) = 1(vi > 7), (6)
with 7 as the correlation threshold. Only pairs in M, satisfying ¢(p;, g;) = 1 are retained in the
anchor set A = {(p;, ¢;) | pi € Msapte A ¢(pi,qi) = 1}.

Our geometric alignment objective consists of two complementary components: a global alignment
term that enforces overall consistency, and an anchor-level supervision term that preserves local
geometric fidelity. The complete loss function is formulated as:

£geo = )\1 ||Prender - Pg1||2 + )\2 Z (_'Yi); @)
(piqi)€A

global alignment

anchor-level supervision

where Prenger and Py represent the matched point sets from rendered and ground truth images, re-
spectively. The first term maintains global geometric consistency between the complete point sets,
while the second term focuses on preserving precise local relationships through geometrically veri-
fied anchor pairs .A. The weighting factors A\; and A, balance these complementary objectives. This
hierarchical strategy combines broad-scale alignment with locally constrained refinement for robust
optimization.

3.4 MULTI-HYPOTHESIS PHYSICS VERIFIER

To resolve material ambiguity in sparse-view settings, we design a physics verification process that
evaluates candidate constitutive laws through parameter stability analysis. The key observation is
that valid physical laws should produce consistent parameter estimates across deformation states,
whereas invalid hypotheses lead to parameter divergence.

The elastic deformation gradient FL € RV *3%3 (spatial derivative of deformation map ¢°) serves
as input, while the outputs are physics residuals R., R, quantifying deviation from plausible laws.
Various candidate laws H. (elastic) and H,, (plastic) are defined in App. H (Chhabra & Patel, 2023;
Drucker & Prager, 1952; Fung, 1967; der Wissenschaften zu Gottingen, 1922), serving as our con-
stitutive hypotheses. These candidate laws are widely used (Meng et al., 2025; Liu et al., 2025) in
the field of materials. For each candidate law, we use F.[S,:,:] to evaluate whether the implicit
material models align with this law, where S C {1, ..., N'} is a fixed subset of indices to reduce the
calculation cost.

The Multi-Hypothesis Physics Verifier (Alg. 2) operates through three key phases to enforce physical
consistency. First, it performs standard elastic-plastic simulation steps: (1) elastic stress prediction
via &, , (2) Euler integration through Z, and (3) plasticity correction using Py, . Next, the algorithm
solves inverse problems to estimate explicit parameters © for each candidate law (HF, H,") that
minimize the discrepancy with learned material responses on a sampled subset S. The credibility
weights w are computed as inverse variance measures (with smoothing factor €), assigning higher
confidence to laws with stable parameter estimates. Finally, physical residuals K. and R,, penalize
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Algorithm 2 Multi-Hypothesis Physics Verifier

Require: '
FL e RV*®3 3, = {HEVC |, Hy = {HP Iy, €. (FL — P, Py, : (FI — Fitl), e,
Sc{1,...N}

Ensure:

Fitt RERE
Elastic Stress Prediction: P’ + & _(F?!)
Eular Integration: F'4! < 7(P?)
Plasticity Correction: FLt! < P, (Fiial)
Parameter Solving:
FLS « F![S, ]
Fterial,S . ngal[s’ : :]
for k = 1to K do
OF  arg min | &, (FL) — HE(FLS; OF) 2

of
k 1
We < Var{©F}+e
end for

for m = 1to M do ' i
oy ar%g}in [Py, (FiiahS) — I (FUihS; ©7m)||3,

m. 1
wp Var{ ) e e
end for

RE 4 SO0, wh |, (FL) — HE(FLE[BK])]|%
R = SN W[ Py, () — 37 (5 E[O)) |2,

deviations from credible laws using weighted combinations of hypothesis deviations, where E[O)]
represents averaged stable parameters. These residuals provide physical priors for £, and Py,
respectively during optimization.

Overall Optimization Objectives. In summary, the overall optimization objectives of the neural
elastic model &, and the neural plasticity model Py, are

ﬁe = )\mﬁmask + Agﬁgeo + Re» ®)

»Cp = MnLomask + )\g»cgeo + Rp 9

respectively, where \,,, and A, are balance factors. We provide a theoretical analysis of the conver-
gence properties of our optimization framework in App. J.

4 EXPERIMENTS

Experimental Setup. To comprehensively evaluate the superiority of our method, we conduct sys-
tematic validation across three data dimensions: fully synthetic, real-to-sim, and real-world.

We conduct all experiments on a single NVIDIA A800 80GB GPU. Our framework is computa-
tionally efficient, and a detailed analysis comparing its training time, inference speed, and memory
usage against the baseline is provided in the App. F for interested readers.

For synthetic experiments, we utilize the NeuMA dataset (Cao et al., 2024) which provides bench-
mark videos with multiple physical material properties. However, its idealized color consistency
assumption (where ground-truth videos achieve perfect pixel alignment with rendered sequences)
fails to reflect prevalent color discrepancies in real physical scenarios. To address this limitation, we
construct a more challenging synthetic benchmark containing six material types (elastomers, gels,
rubber, plasticine, granular materials, and non-Newtonian fluids) across diverse object geometries
(spheres, ducks, pawns, cats, fish, and bottles). Our enhanced benchmark is introduced in the App. A

To bridge the gap between synthetic and real-world scenarios, we introduce a novel real-to-sim
dataset. This dataset is created by first capturing high-quality 3D Gaussian Splatting models of real
objects, including dragon, wolf, and pudding. We then use these static models as initial states in a
physics simulator to generate dynamic sequences with complex material properties. This setup pro-
vides ground-truth physics while retaining the geometric and appearance complexity of real objects.
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For real-world validation, we adopt the SpringGaus dataset (Zhong et al., 2024) containing tri-view
video sequences of four moving objects. Distinct from existing methods relying on multi-view
supervision, we strictly constrain our approach to monocular video supervision, better aligning with
practical application constraints. This setting significantly increases modeling difficulty but better
demonstrates the method’s practical value.

Baseline Methods. We evaluate our method under monocular video supervision, comparing against
state-of-the-art approaches including NCLaw and NeuMA on synthetic data, while employing
SpringGaus’ original method and NeuMA migrated models for real-world validation. Our approach
specifically addresses the challenging but practical monocular setting, in contrast to methods like
GIC (Cai et al., 2024) and PAC-NeRF (Li et al., 2023) which require dense multi-view supervision
as mandatory input. We further exclude approaches such as PhysDreamer (Zhang et al., 2024) and
Physics3D (Liu et al., 2024a) from comparison since their reliance on predefined explicit constitutive
models and diffusion guidance (Croitoru et al., 2023) fundamentally violates our general modeling
assumptions of learning implicit constitutive laws directly from visual observations.

Evaluation Metrics. We follow previous work to evaluate the performance: (1) Chamfer Distance
(Butt & Maragos, 1998; Erler et al., 2020) for geometric consistency, (2) SSIM (Wang et al., 2004)
for structural similarity, (3) PSNR (Hore & Ziou, 2010) for pixel-level reconstruction accuracy, and
(4) LPIPS (Zhang et al., 2018) for perceptual similarity.
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Figure 2: Chamfer distance during physical simulation. Our method consistently maintains lower
Chamfer Distance than baseline methods throughout the physical simulation process, demonstrating
that the learned implicit physical properties effectively represent the intrinsic dynamics of objects.
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Figure 3: Quantitative comparison on the synthesized dataset with rendering metrics. Our
method achieves superior performance across all three image quality metrics (PSNR, SSIM, and
LPIPS) compared to baseline approaches, demonstrating that our rendered videos more accurately

capture the intrinsic dynamics of physical objects.
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4.1 EVALUATION ON SYNTHETIC DATASET

We evaluate physical simulation accuracy by computing Chamfer Distance (CD) between predicted
and ground-truth particle positions in synthetic experiments as shown in Tab. 1. Results demonstrate
that under the challenging benchmark with color inconsistency and sparse supervision signals, our
method effectively captures implicit physical laws from visual data, achieving significantly lower
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CD values than baselines. This validates the method’s effective modeling capability in complex
observation conditions.

Table 1: Quantitative comparison in the synthesized dataset in Chamfer distance. We com-
pare our method against baselines NCLaw (Ma et al., 2023) and NeuMA (Cao et al., 2024). Our
method consistently achieves a 48% average lower Chamfer Distance (compared to ground-truth)
than NeuMA across diverse object geometries and material properties, demonstrating its superior
capability in learning intrinsic dynamics from monocular videos.

Material Elastomer Gel Rubber Plasticine Granular Non-Newtonian

Object Ball Duck  Pawn Cat Fish Bottle Average
NCLaw 4.085 2934 2.031 1.909 0.536 1.631 2.188
NeuMA 1.123 1.863  0.517 0.844 0.322 1.056 0.954
Ours 0.922 0.702  0.200 0.318 0.077 0.757 0.496

Fig. 2 illustrates temporal CD variations during physical simulation. Notably, our method main-
tains alignment with the GT throughout the simulation, while baselines gradually deviate from GT
trajectories with increasing timesteps. This confirms the method’s robustness in long-term physical
evolution modeling.

Further quantitative comparisons on rendering metrics are provided in Fig. 3. Experiments show
that our method accurately captures motion patterns despite increased material complexity, whereas
baselines exhibit significant distortion under interference. This validates our method’s capability in
extracting essential physical laws from noisy observations, even without direct qualitative visualiza-
tion in the main paper.

4.2 EVALUATION ON REAL-TO-SIM DATASET

We use our newly introduced real-to-sim dataset, consisting of dragon, wolf, and pudding, to as-
sess the generalization capability of our method on complex geometries derived from real objects.
Further details on the creation of our dataset are available in App. B. Tab. 2 shows the quantitative
results, where PhyCo consistently outperforms the baselines.Fig. 4 provides a qualitative compar-
ison on this dataset. Our method successfully learns plausible dynamics for complex objects like
the dragon, wolf and pudding, generating renderings that are both physically consistent and visually
aligned with the ground truth. In contrast, baseline methods struggle to capture the correct defor-
mation, resulting in noticeable artifacts and unrealistic motion. This highlights our framework’s
superior ability to generalize to challenging, realistic scenarios.

Table 2: Quantitative comparison on the real-to-sim dataset in Chamfer distance. Our method
achieves the lowest error, validating its ability to generalize learned physical laws to complex, real-
world geometries.

Object Plasticine Dragon  Sand Wolf  Gel Pudding
NCLaw (Ma et al., 2023) 25.021 49.420 38.149
NeuMA (Cao et al., 2024) 3.527 9.803 13.804
Ours 2.081 5.842 0.906

4.3 EVALUATION ON REAL-WORLD DATASET

To verify the generalization capability in real scenarios, we conduct monocular supervision experi-
ments on the SpringGaus dataset (Zhong et al., 2024). Notably, while the original SpringGaus setup
employs tri-view video supervision, our study strictly uses single-view videos as supervision sig-
nals. As shown in Fig. 5, under monocular supervision, PHYCO successfully disentangles implicit
physical properties from observations and demonstrates strong generalization under strict monocular
constraints.

4.4 ABLATION AND GENERALIZATION STUDIES

To further validate our framework, we conduct comprehensive ablation and generalization studies,
with full details provided in App. E and App. D. Our ablation analysis confirms that both the Edge-
Aware Depth Consensus Anchors and the Multi-Hypothesis Physics Verifier are critical compo-
nents, as removing either results in a significant performance drop. Furthermore, our generalization
experiments demonstrate that the learned physical properties are transferable to novel multi-object
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Figure 4: Qualitative comparison on the real-to-sim dataset. Our method accurately captures the
complex dynamics of objects derived from real-world scans (e.g., dragon, wolf, pudding), producing
physically plausible and visually superior results compared to the baselines.
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Figure 5: Qualitative comparison on real-world dataset. On real-world datasets, our method

achieves superior rendered image quality using only monocular video supervision, while baseline
approaches fail to reliably learn object physical properties under the same monocular supervision
constraints. We also present quantitative results (PSNR / LPIPS) between predictions and observa-
tions (with background filtered) in the bottom row.

interaction scenarios, indicating that our method successfully captures intrinsic material properties
rather than overfitting to the training scenes.

5 CONCLUSION

We presented PHYCO, a framework for learning implicit constitutive laws from monocular videos
through visual-physical bidirectional alignment. By integrating Edge-Aware Depth Consensus An-
chors and a Multi-Hypothesis Physics Verifier, our method achieves stable optimization under sparse
and noisy supervision while preserving physical interpretability. Quantitative results show signifi-
cant improvements on synthetic data (48% lower Chamfer Distance than NeuMA), strong general-
ization on a challenging real-to-sim benchmark, and higher quality than other baselines in real-world
monocular experiments. Future work may extend to dynamic multi-object interaction modeling or
more real-world experiments.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we have included our core implementation and custom
dataset in the supplementary materials. Specifically, the submitted supplementary ZIP file contains:
(1) The source code for our PHYCO framework, including the implementation of the Edge-Aware
Depth Consensus Anchors and the Multi-Hypothesis Physics Verifier. (2) Our complete real-to-sim
dataset, which includes the corresponding dynamic video sequences for dragon, wolf, and pudding
assets. All necessary details required to run our experiments are documented in the appendix.
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A DETAILS ON THE ENHANCED SYNTHETIC DATASET

In this section, we present technical details of our PHYCO0-Synthetic benchmark for learning intrin-
sic object dynamics.

While NeuMA(Cao et al., 2024) provides a geometry-based synthetic dataset spanning elastomers
to plastic bodies, its configurations exhibit three critical simplifications. Our benchmark introduces
three critical improvements over prior synthetic datasets:

* Dynamic Lighting Interference: We incorporate randomized lighting interference in dy-
namic videos to explicitly break the color consistency between rendered static Gaussians
and observed frames, addressing the unrealistic environmental uniformity in NeuMA. The
training frame rate is reduced to practical 125/250 FPS (while retaining 2000 FPS raw data)
to match real-world acquisition constraints.

* Compound material modeling: Materials are synthesized through compound constitutive
laws combining a primary and an auxiliary physical effects, systematically reflecting the
dominance-subordination relationships observed in real-world material behaviors, unlike
NeuMA’s oversimplified single-constitutive representations.

* Practical Frame Rates: NeuMA uses 1000/2000 FPS supervision videos, which are be-
yond practical acquisition capabilities. We adopt practical frame rates (125/250 FPS) for
training while preserving full 2000 FPS data for completeness

This design ensures both physical fidelity and reproducibility while maintaining backward compat-
ibility with existing methods.

The details are shown in the Tab. 3. And the impact of lighting interference is shown in Fig. 6

Table 3: Details about our synthesized dataset.

Asset Material Step Size(s) FPS(training)

Ball Elastomer le-3 250
Duck Gel le-3 250
Pawn Rubber Se-4 125

Cat Plasticine Se-4 125

Fish Granular Se-4 125
Bottle | Non-Newtonian Se-4 125

- ——
NeuMA Ours

Figure 6: We introduce randomized lighting perturbations to the rendered outputs, thereby
increasing the challenge level for optimization tasks.

B DETAILS ON THE REAL-TO-SIM DATASET

To further bridge the gap between synthetic benchmarks and real-world complexity, we curated a
challenging real-to-sim dataset. The creation process begins by capturing high-fidelity 3D models of
real objects—a dragon statue, a wolf figurine, and a pudding dessert—which are then reconstructed
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as high-quality 3D Gaussian Splatting scenes. These static reconstructions serve as the initial state
for our physics simulations.

We then employ an MPM-based simulator to generate dynamic video sequences. By assigning
distinct and complex material properties (e.g., plasticine, granular material, and gel) to these realistic
geometries, we produce physically accurate ground-truth dynamics for objects with intricate shapes
and textures. This dataset is crucial for evaluating a model’s ability to generalize learned physical
laws to the variety seen in real-world applications. The details for each asset are provided in Tab. 4.

Table 4: Details of our real-to-sim dataset assets. Each asset originates from a real-world object
and is used to generate a dynamic sequence with specified material properties via MPM simulation.

Asset | Material  Step Size(s) FPS (training)

dragon | Plasticine le-3 250
wolf Granular le-3 250
pudding Gel le-3 250

C QUALITATIVE VISUALIZATION ON THE SYNTHETIC DATASET

In this section, we provide a qualitative comparison of our method against baselines on the purely
synthetic dataset. It is worth noting that the synthetic data provides a relatively controlled and
simplified environment (e.g., uniform backgrounds, less complex textures) compared to the real-to-
sim and real-world datasets. Consequently, all methods are capable of achieving reasonably good
performance, and the visual differences are not as pronounced.

However, as shown in Fig. 7, a closer inspection of the results for the Cat (Plasticine) and Ball
(Elastomer) assets reveals the superiority of our approach. By zooming in, one can observe that
our method, PHYCO, generates dynamic sequences with more plausible surface deformations and
fewer visual artifacts. This demonstrates that even in simpler scenarios, our physics-regularized
framework produces higher-fidelity results.

1 1
: Time : Time
NCLaw : : . o
| |
1 1 -
NeuMA | o D | qamm »
! ! o _afl
1 1
Ours o D | e )
: -~ )
TR LR o e e e =
GT I g D 1 -5 . e
1 1
1 - 1 _« S l:l
1 1

Figure 7: Qualitative comparison on the synthetic dataset. While the overall quality is compa-
rable due to the simplicity of the task, a closer look at the Cat and Ball examples shows that our
method produces results with higher physical fidelity and fewer artifacts than the baselines.

D GENERALIZATION RESULTS

In this section, we demonstrate that the physical properties learned by our method can be transferred
to novel objects and effectively support multi-object interaction rendering. As shown in Fig. 8, we
apply distinct learned physical attributes to identical object instances, verifying that our implicitly
acquired properties correctly manifest the materials’ intrinsic dynamics.

E ABLATIVE STUDY

This section presents ablation studies validating the effectiveness of our proposed modules, with
quantitative results presented in Tab. 5. The tabulated results demonstrate that our EDCA framework
and the Multi-Hypothesis Physics Verifier collectively yield significant improvements in optimiza-
tion performance.
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Figure 8: Multi-objects interaction with different materials properties.

Table 5: Ablative study in the synthesized dataset in Chamfer distance.

Material Elastomer Gel Rubber Plasticine Granular Non-Newtonian
Object Ball Duck  Pawn Cat Fish Bottle
Ours w/o EDCA 3.842 3.045 1.975 1.821 0.559 1.531
Ours w/o Physics Verifiers 1.024 0.694 0.243 0.510 0.084 0.769
Ours 0.922 0.702  0.200 0.318 0.077 0.757

F COMPUTATIONAL COST ANALYSIS

To provide a comprehensive analysis of the computational requirements of our method, we bench-
marked PHYCO against the baseline NeuMA on the real-world dataset. All experiments were con-
ducted on a single NVIDIA A800 80GB GPU to ensure a fair comparison.

The detailed results are presented in Table 6. As shown, our method demonstrates superior compu-
tational efficiency during the training phase. On average, PHYCO achieves its best performance in
approximately 51.2 minutes, which is significantly faster than NeuMA’s average of 73.3 minutes.
The inference times for both methods are comparable, with our method being marginally faster. The
memory footprint of our method is slightly higher, which is expected due to the additional com-
ponents of the Edge-Aware Depth Consensus Anchors and the Multi-Hypothesis Physics Verifier.
However, the increase is minimal and does not pose a significant overhead.

Table 6: Comparison of computational cost on the real-world dataset. In each cell, the format is:
NeuMA / Ours. Best results are in bold.

| Bun Burger Dog Pig | Average

Training time (min) | 58.4/59.3 77.6/43.1 89.5/483 66.0/55.1 | 73.3/51.2
Inference time (sec) | 31.9/32.0 32.7/31.1 325/31.5 323/31.2 | 324/31.5
Memory Cost (GB) | 27.0/28.6 37.7/39.3 21.8/23.3 29.0/30.6 | 28.9/30.5

G MATERIAL POINT METHOD FOR PHYSICAL SIMULATION

This section provides a systematic derivation of the Material Point Method (MPM) Jiang et al.
(2016); Sulsky et al. (1995) time integration scheme (Algorithm 1) from continuum mechanics prin-
ciples.
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G.1 GOVERNING EQUATIONS

The formulation begins with the Eulerian conservation laws. Mass conservation and momentum
balance are expressed as:

Dp
= V. 10
D= PV (10)
Dv
—— =V. b 11
P D V.o + pb, (11)

where p is density, D(-)/Dt denotes material derivative, o is Cauchy stress, and b represents body
forces. Mass conservation is inherently enforced through Lagrangian particle advection.

G.2 WEAK FORMULATION

The weak form of momentum balance is obtained by multiplying by a test function w and integrating
over domain 2

/pa~wdQ:/(V'a)~wdQ+/pb~wdQ. (12)
Q Q Q

Applying the divergence theorem yields:

/pa-wdQ:—/a:deQ+ w-TdS
Q Q o0

(13)
+ / pb - wdS).
Q
G.3 SPATIAL DISCRETIZATION
MPM employs dual discretization with material points and background grid, leading to:
G Q
> Mapay = =Y VTV N, (xi)
b=1 i=1
14
A (14)
+ Z MiNa(Xi)bi,
i=1
where:
* Mgy =), M;Nq(x;)Ny(x;) is consistent mass matrix
V9, M; are initial volume and mass
e 1, = J,;0; denotes Kirchhoff stress
* N,(-): grid basis function for node a
* (), G: material point and grid node counts
G.4 TEMPORAL DISCRETIZATION
Explicit Euler time integration gives:
G n+1 n Q
Vb —Vy _ 0__n n
bz_:lMabT =- 2_; ViV N (x7)
- = 15
5 (15)
+> M;N4(x}')b}.
i=1

G.5 ALGORITHMIC IMPLEMENTATION
The discretized system is implemented as Alg. 3 under MLS-MPM framework:

The neural constitutive models contribute to two critical components: 1) stress computation via
neural elasticity law, and 2) plasticity correction through trial deformation gradient projection.
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Algorithm 3 MPM Algorithm

Require: Position x}', velocity v;', and elastic deformation gradient F¢'; for each material point
1=1,...,Q at time t".
Ensure: Updated position X?H, velocity V?H, and trial elastic deformation gradient F
each material point at time ¢"*1.
1: Particle-to-Grid Transfer: For each grid node b =1, ..., G, compute:

n+1
e,trial, i for

Q
mp = 30 Ny e) M,
=1

Q
mpvi =Y Ny(x}') M; v,
=1

n n y PO n n
ob — Z J(Fe,i) M U(Fe,i) VNb(xi )7
i=1 ’
< Lo
' = J(EFT,) — b(x}') Np(x}).
b lzzl ( e,z) Mz (X’L ) b(X’L )
2: Solve Eulerian Governing Equations: For each grid node b =1, ..., G, compute:
1
- n+1 n n
VbJr :W(fv,b—i_fb)’

b

Avpitt = vt AL,
V?'H =vy + AV£L+1.

3: Grid-to-Particle Transfer: For each material pointi = 1,. .., Q, update:

G
n+1l __ n n+1
Vi = E :Nb(xi)vb )
b=1

G
Flin = (I +ALY vt e vm(ﬁ)) F7,.
b=1

4: Update Particle Positions: For each material point: = 1,..., @, update:

XM= x4 AtV
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H CONSTITUTIVE HYPOTHESIS

This section details our constitutive hypotheses for material modeling Ma et al. (2023), establishing
four distinct constitutive assumptions for both elastic and plastic behaviors respectively.

H.1 ELASTICITY MODELS
1. Corotated Elasticity
P=2uF-R)F +)\J(J-1I (16)
* F: Deformation gradient (input)
« R =UV': Rotation from SVDF = UXV '
J = det(F): Volume change ratio
o u= 2(131,) A= (1+V§3(’f_2y): Lamé parameters

2. St.Venant-Kirchhoff (StVK)

P=2uFE+AJ(J-1)I, E= %(FTF —1) (17)

* E: Green-Lagrange strain tensor
* Maintains same y, A definition as Corotated

3. Volume Elasticity Mode-dependent pressure term:

p_ k(J — J DI (Zir.an? (18)
AJ(J—1I (Taichi)
* K= %,u -+ A: Bulk modulus
* ~: Adiabatic index (default 2)
4. Sigma Elasticity Logarithmic strain formulation:
P = Uldiag(2ulno; + A Y Ino;)]UT (19)
e g;: Singular values of F
¢ Strain defined as ¢; = Ino;
H.2 PLASTICITY MODELS
1. Identity Plasticity
FP =F (20)
* No plasticity effect
2. Sigma Plasticity Volumetric preservation:
FP = J'/31 (21)
* Enforces J = det(F?) =1
3. Von Mises Plasticity Yield condition and strain update:
leqer|| > 22, €4 € — Ay—0e¥ 22)
2p l[€dev |l
* €doy = € — %tr(e)I: Deviatoric strain
* 0y Yield stress
4. Drucker-Prager Plasticity Frictional yield criterion:
atr(e) + |leqev]] > ¢ (23)
s a= 23{28 sin (f: Friction parameter

* c: Cohesion, ¢: Friction angle
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I PREPROCESSING GAUSSIAN KERNELS FOR SIMULATION

A fundamental challenge in applying physics to scenes reconstructed via 3D Gaussian Splatting is
that the representation is superficial; the Gaussians are concentrated on the object’s exterior, creating
a hollow shell. Such models fail to exhibit realistic volumetric dynamics, often collapsing under
external forces. To overcome this limitation, we propose a procedure to densify the interior volume.

Our method populates the void regions by first interpreting the collection of surface Gaussians as
a continuous opacity field. This field is then rasterized onto a 3D volumetric grid. We employ a
robust ray-casting technique to classify grid cells as either internal or external. A cell is designated
as internal if probes sent out in multiple directions all intersect regions of high opacity, confirming
it is enclosed by the object’s surface. To enhance accuracy, we verify this condition by checking the
number of surface crossings.

Each particle seeded in the interior must be initialized with appropriate attributes. We assign visual
properties, such as opacity and spherical harmonics, by sampling from the closest particle in the
original surface reconstruction. The covariance matrix for each new particle is initialized as an
isotropic sphere, with a radius computed from its representative volume V). This densification
ensures that the simulated object has a proper internal structure, allowing for the accurate simulation
of volumetric effects and preventing unrealistic structural failures.

J THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of the convergence properties of our proposed opti-
mization algorithm. Our goal is to prove that the optimization of the total loss function, regularized
by our Multi-Hypothesis Physics Verifier, converges to a stationary point.

ASSUMPTIONS

To facilitate the proof, we make the following reasonable assumptions.

Assumption 1 (Structure of the Ground Truth Model). We assume that the true constitutive laws
for elasticity, £*, and plasticity, P*, can be decomposed into a dominant, explicit model from our
hypothesis sets (H., Hp) plus a minor perturbation term (0., 6p ).

E'=HI+0. and P*=H\+5,, (24)

where H) € H. and ’H’; € H,, are the ground truth explicit models. The perturbation terms are
assumed to be small, i.e., their norms are bounded: ||d.|| < €5 and ||0,|| < €5 for some small
€s > 0.

Assumption 2 (Expressiveness of the Neural Network). We assume that the neural networks &y,
and Py, are universal approximators, possessing sufficient capacity to represent the true constitutive
laws. This implies the existence of optimal parameters 0 and 0, such that Eg: = £* and Pox =P~

Assumption 3 (Smoothness and Boundedness). The total loss function L(0), the neural network
models £, and Py,, and all explicit hypotheses H are Lipschitz continuous with respect to their
inputs and parameters. This implies that their gradients are bounded.

Assumption 4 (Well-posedness of the Inverse Problem). The inverse problem of solving for the
physical parameters © in Algorithm 2 (the ‘argmin‘ step) is locally well-posed. When the neural
model’s output is close to that of an explicit model, the estimated parameters are unique and stable.

ANALYSIS OF THE PHYSICS VERIFIER R

We first prove a key lemma regarding the behavior of our physics-based regularizer, k.

Lemma 1 (Properties of the Physics Verifier). Under Assumptions 1-4, when the neural network
model &y, is sufficiently close to the ground truth model £*, the physics verifier R. provides a
meaningful penalty that is minimized as Eg, — E*. Its gradient guides the optimization towards the
structure dominated by the true explicit model H.

Proof. Let the error between the current network and the true model be A, such that &, = £* +
Ay = (HL+6e) + Ae.
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When the verifier evaluates the correct hypothesis HZ, it attempts to fit HZ(67) to the output of &, .
Since the dominant component of £, is HJ, by Assumption 4, the estimated parameters ©7 will be
stable across different material points. Consequently, the variance var{©Z} will be small, and the
corresponding credibility weight w! will be large.

Conversely, for any incorrect hypothesis 7! where [ # 7, fitting it to the data generated by &_ will

result in unstable parameter estimates (:)le with high variance. Thus, the weight w! will be close to
Zero.

As aresult, the summation for the physics residual RE will be dominated by the term corresponding
to the true hypothesis H?:

K
RL =" wh[|€, — HESEIOF)|IF ~ wil|€s, — HI(5EOD)]}. (25)
k=1

Substituting the expression for £, and noting that E[@é] approximates the true parameters of HJ,
we get: _ _ _ _

Re = wll| (ML +0e + Ao) = HF = wlllde + AcllF (26)
This shows that the verifier penalizes the deviation A, of the neural network from the true model
structure. Minimizing R? with gradient descent therefore corresponds to minimizing ||A.||%, push-
ing &, towards £*. A symmetric argument holds for the plasticity model Py, .

PROOF OF CONVERGENCE
With the behavior of the regularizer established, we can now prove the convergence of the overall
algorithm.

Theorem 1 (Convergence to a Stationary Point). Under Assumptions -4, the optimization of the
total loss function L(0) = X\gLgeo + AmLmask + R via gradient descent with a sufficiently small
learning rate 1) ensures that the gradient of the loss function converges to zero:

lim [[VL(0)|| = 0. 27
k—oc0

Proof. Let L(0) be the total loss function. As the component losses (Lgeo, Limask) and the regular-
izer R are non-negative, the loss function L(6) is bounded below by 0.

The gradient descent update rule is 01 = 0 — nVL(0;). From Assumption 3 (Lipschitz con-
tinuity), the Descent Lemma states that for a sufficiently small learning rate n > 0 (specifically,
N < 2/Lsmooth Where L0t 18 the Lipschitz constant of VL), the loss decreases at each step
unless the gradient is zero:

L(Bk+1) < L(6) = IV (28)

This inequality shows that the sequence of loss values { L(6})} is monotonically decreasing. Since it
is also bounded below, the Monotone Convergence Theorem guarantees that the sequence converges
to a finite limit L*.

Summing the inequality from k¥ = 0 to IV:

N

N
> (L(8) = L(Bi)) = 3 D IVLEO)] 29)
k_

k=0 =0

The left-hand side is a telescoping sum, which simplifies to L(6p) — L(On+1). As N — oo, this
converges to the finite value L(6p) — L*.

PN
L(fo) — L" > §I;||VL(91§)||2- (30)

Since the sum of the series > ||V L(6y)||? is finite, its terms must converge to zero. Therefore, we
conclude that limy, o ||V L(6k)||* = 0, which implies that the norm of the gradient itself converges
to zero. 0
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