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Abstract

Existing federated learning (FL) studies usually001
assume the training label space and test label002
space are identical. However, in real-world ap-003
plications, this assumption is too ideal to be004
true. A new user could come up with queries005
that involve data from unseen classes, and such006
open-vocabulary queries would directly defect007
such FL systems. Therefore, in this work, we008
explicitly focus on the under-explored open-009
vocabulary challenge in FL. That is, for a new010
user, the global server shall understand her/his011
query that involves arbitrary unknown classes.012
To address this problem, we leverage the pre-013
trained vision-language models (VLMs). In014
particular, we present a novel adaptation frame-015
work tailored for VLMs in the context of FL,016
named as Federated Multimodal Prototyping017
(Fed-MP). Fed-MP adaptively aggregates the018
local model weights based on light-weight019
client residuals, and makes predictions based020
on a novel multimodal prototyping mechanism.021
Fed-MP exploits the knowledge learned from022
the seen classes, and robustifies the adapted023
VLM to unseen categories. Our empirical eval-024
uation on various datasets validates the effec-025
tiveness of Fed-MP.026

1 Introduction027

Federated learning (FL) emerges as a new machine028

learning (ML) paradigm that trains ML models029

from decentralized data sources (McMahan et al.,030

2017). The decentralized nature of FL makes it031

a promising solution for privacy-sensitive applica-032

tions across numerous domains (e.g., natural lan-033

guage processing (Liu et al., 2021), multimodal034

learning (Che et al., 2023), visual recognition (Liu035

et al., 2020)). In FL, there exists a central server036

storing a global model, and a set of clients. The037

clients will collaboratively train the global model038

without sharing their private data. While numerous039

FL studies have been proposed, the elusive open-040

vocabulary challenge is largely under-explored.041

Client 1

Server 

Data:
Dog 
Deer 

Data:
Car  
Ship

Q: What are these?

A: Deer11

Existing FL approaches 
can only predict from 
previously seen class. 

😞

Heterogeneous FL

Client 2

User: Unseen class

Figure 1: A non open-vocabulary FL model could only
return a prediction from the seen classes for an open-
vocabulary query.

Traditional FL studies (e.g., domain-generalized 042

federated learning) usually assume that the label 043

space of training data and test data is identical. 044

Based on this assumption, the proposed FL meth- 045

ods are not open-vocabulary by design. However, 046

in real-world applications, new users might send 047

queries that involve novel classes, e.g., identifying 048

an object in a photo. If the category of this object 049

is never seen in the training data, then traditional 050

FL systems simply fail and can only predict from 051

previously seen classes as shown in Figure 1. 052

Indeed, in centralized ML, there exist methods 053

to predict unseen classes (Shu et al., 2018; He et al., 054

2022; Changpinyo et al., 2017). However, they usu- 055

ally require a huge amount of the training data and 056

could not tackle new addition of unseen classes 057

over time (Kuchibhotla et al., 2022). More impor- 058

tantly, the unique challenge of data heterogeneity 059

in FL makes centralized methods inapplicable to 060

train FL models (Jiang et al., 2022; Xu et al., 2022; 061

Zhang et al., 2023). The data heterogeneity in FL 062

is the heterogeneity in client data distributions. For 063

instance, in Figure 1, there are only images of dog 064

and deer in client 1, and client 2 only has images 065

of car and ship. Such non-i.i.d. data across clients 066

is heterogeneous data. Therefore, in this work, we 067

explicitly focus on the open-vocabulary challenge 068
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in FL: how can we build an FL framework that is069

open-vocabulary?070

On the other hand, exploiting the pre-trained071

vision-language models (VLMs) (e.g., CLIP) for072

FL has recently gained increased attention for their073

strong generalization ability (Lu et al., 2023). With074

CLIP, the community could address data hetero-075

geneity, personalization and generalization in FL076

(Lu et al., 2023; Yang et al., 2023; Guo et al.,077

2023a). Technically, to adapt CLIP for specific078

FL applications, existing methods mainly adopt079

prompt learning. Prompt learning optimizes a set080

of learnable soft prompt vectors, and prepends081

them to input embeddings (Lu et al., 2023; Yang082

et al., 2023; Guo et al., 2023a). As such, domain-083

specific knowledge is integrated into the features084

extracted by CLIP, leading to improved perfor-085

mance on downstream tasks. Unfortunately, these086

learned prompts usually suffer from generalizing087

well to novel unseen classes during test, and yet,088

no proper solution has been developed.089

Therefore, in this work, we focus on addressing090

the elusive open-vocabulary challenge in FL. To the091

best of our knowledge, we are the first to propose092

a CLIP-based FL framework that is explicitly tai-093

lored for the open-vocabulary setting. To achieve094

open-vocabulary FL, we propose a federated fine-095

tuning framework tailored for VLMs: Federated096

Multimodal Prototyping or Fed-MP. Intuitively,097

Fed-MP has two design objectives: 1) low commu-098

nication overhead between the server and clients099

in FL: given the large size of CLIP, Fed-MP must100

be light-weight and affordable in terms of model101

training in an FL application; 2) open-vocabulary:102

the global model shall understand the queries that103

involve arbitrary unseen classes.104

To this end, Fed-MP consists of two modules.105

Firstly, Fed-MP adaptively aggregates the local106

model weights based on the similarity between new107

queries and perturbed client prompt representations.108

These prompt representations are perturbed by a set109

of learnable parameters, which is defined as client110

residuals. Client residuals protect clients’ class in-111

formation by perturbing the text representations.112

In addition, with client residuals, locally learned113

visual concepts are integrated into the perturbed114

prompt representations as well. This similarity-115

based design is realistic and practical in terms of116

real-world applications: a user comes to use the117

FL system, and she/he sends a set of queries to118

the server. In return, the server should adaptively119

obtain an aggregated model that is aligned with the120

interest of the user. Secondly, we design a multi- 121

modal prototyping mechanism to make predictions 122

for the open-vocabulary queries. The multimodal 123

prototypes include text prototypes and visual pro- 124

totypes. The text prototypes are the original en- 125

coded text prompts in the new queries. As for the 126

visual prototypes, they are normalized visual fea- 127

tures extracted by CLIP image encoder with pseudo 128

labeling. During inference, Fed-MP predicts for 129

a query image based on its weighted distance to 130

text prototypes and visual prototypes. Both mod- 131

ules are designed to exploit the knowledge learned 132

from the seen classes during training. Under Fed- 133

MP, the adapted CLIP model generalizes well to 134

test images from unseen classes, achieving open- 135

vocabulary federated learning. 136

We summarize the contributions of our paper as 137

follows1: 138

1. To the best of our knowledge, Fed-MP is the 139

first VLM-based FL framework that explicitly 140

addresses the open-vocabulary challenge in 141

FL applications. 142

2. Technically, to build Fed-MP, we present a 143

novel adaptive aggregation protocol and a 144

novel multimodal prototyping mechanism. 145

3. Extensive experimental results on 6 image 146

classification datasets suggest that Fed-MP 147

can effectively improve model performance 148

on test data from unseen categories, outper- 149

forming the state-of-the-art baselines. 150

2 Related Work 151

2.1 Federated Learning with Domain 152

Generalization 153

Domain generalization (DG) in FL aims to im- 154

prove model’s generalization on the unknown test 155

clients or the unknown global data with domain 156

shifts. Due to privacy concerns (no data exchange) 157

and data heterogeneity, existing centralized DG 158

methods become inapplicable and infeasible in FL 159

(Jiang et al., 2022; Zhang et al., 2023; Xu et al., 160

2022; Sun et al., 2023). Therefore, a few studies 161

start to investigate DG in FL. For instance, Jiang 162

et al. (2022) propose to establish a harmonized 163

feature space on the frequency domain and aggre- 164

gate local models with flat optima, so that both 165

local shift and global shift could be rectified. In 166

1We adopt publicly available datasets and have submitted
our code as technical appendix.
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comparison, for generalization, Zhang et al. (2023)167

introduce a variance reduction regularizer to en-168

courage fairness of the generalization gap among169

the clients. Finally, in (Sun et al., 2023), feature170

distribution matching is proposed to learn domain-171

invariant client features, so that the model general-172

izes to unseen clients. However, the above methods173

all assume that the label space of training data and174

test data is identical: all tested categories have to be175

seen during training despite domain shifts. In other176

words, these methods are not open-vocabulary, and177

could not handle queries with unseen classes.178

2.2 Federated Learning with Vision-Language179

Models180

Recently, integrating vision-language models (e.g.,181

CLIP) into FL has gained increased attention for182

their strong generalization ability. For instance,183

Guo et al. (2023a,b) focus on learning soft tex-184

tual prompts to personalize CLIP on client data,185

whereas Li et al. (2023) leverage visual prompts186

to achieve the same goal. In addition to prompt187

learning, Lu et al. (2023); Chen et al. (2023); Qiu188

et al. (2023) fine-tune CLIP with light-weight neu-189

ral networks (i.e., adapters) to adapt CLIP to FL190

applications. However, the above methods are not191

deliberately designed for open-vocabulary settings.192

Even though the method presented in (Qiu et al.,193

2023) was tested with open-vocabulary queries, its194

performance purely counts on the unreliable gen-195

eralization of the learned adapter. In comparison,196

in this work, we explicitly focus on addressing197

the open-vocabulary challenge in FL, and present198

the first FL framework that is tailored for open-199

vocabulary queries.200

3 Preliminaries201

3.1 Federated Learning202

Assume there are K clients in an FL application.203

For all clients, each data point is characterized by204

an input feature x ∼ X and a label y ∼ Y . On205

client k, its local dataset D(k) is denoted as D(k) =206

{(x(k)1 , y
(k)
1 ), ...|(x(k)i , y

(k)
i ) ∼ p(k)}, where p(k)207

represents the local data distribution on client k.208

For simplicity, if not specified, we use the nota-209

tions without the client index k to represent an210

arbitrary client.211

To find the optimal global model f∗
θ in an FL212

application, McMahan et al. (2017) propose Feder-213

ated Averaging (FedAvg). Under FedAvg, at each214

round, each local client firstly receives a copy of215

the global model fθ from the central server and 216

trains the model with its own data. This leads to 217

different local models (f (1)
θ , f

(2)
θ , ..., f

(K)
θ ). Then, 218

clients send the trained model weights to the cen- 219

tral server. Finally, on the central server, the global 220

model will be updated using a weighted-average 221

of the received model weights based on the size of 222

each local dataset. 223

Note that, the local data distributions on differ- 224

ent clients could be non-i.i.d. and have exclusive 225

label spaces. More importantly, in a real-world ap- 226

plication, a new user of the FL system might send 227

queries that involve objects from unseen categories. 228

For instance, in Figure 1, the training classes are 229

dog, deer, car, and ship, whereas the test query is 230

an image of horse. 231

3.2 CLIP: Contrastive Language-Image 232

Pre-training 233

CLIP is a language-grounded image classifier. It 234

predicts which images are paired with which texts. 235

Formally, we use fI to denote the CLIP image 236

encoder, and fT for the CLIP text encoder. The 237

inference process and training process of CLIP are: 238

• Inference: For a query image x and |Y| 239

classes, we firstly craft a set of candidate 240

prompts that contain class information (e.g., 241

{a photo of [class 1], a photo of 242

[class 2]...}). Then, CLIP encodes x into 243

a visual representation z, and encodes the 244

candidate prompts into text representations 245

{tcandidate1 , tcandidate2 , ..., tcandidate|Y|}. Af- 246

ter computing cosine similarity between the z 247

and candidate prompt representations, CLIP 248

selects the prompt with the highest cosine sim- 249

ilarity as the final prediction: 250

ŷ = argmax
c

exp
(
cos(z, tcandidatec)/τ

)∑
c′ exp

(
cos(z, tcandidatec′ )/τ

) ,
where z = fI(x),

tcandidatec = fT (a photo of [class c]),

c ∈ {1, 2, ..., |Y|}.
(1)

251

• Training: For a training set D, we construct a 252

ground truth prompt tgti for each image xi. 253

For xi, its ground truth prompt contains tex- 254

tual description of its class label yi. Then, the 255

CLIP contrastive loss (Radford et al., 2021) is 256

computed over all visual representations zis 257
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and text representations tgtis:258

LCLIP =
1

|D|

|D|∑
i=1

− log
ezi·tgti∑|D|
j=1 e

zi·tgtj

+
1

|D|

|D|∑
i=1

− log
ezi·tgti∑|D|
j=1 e

zj ·tgti
.

(2)259

4 Algorithm260

4.1 Parameter-Efficient Adaptation261

Given existing parameter-efficient finetuning262

(PEFT) methods, any of them could be used by263

Fed-MP to adapt the CLIP model in FL. In our im-264

plementation, we choose to add a small two-layer265

fully connected network for the visual modality266

as in (Lu et al., 2023). Formally, we define the267

adapter as fA. As shown in Figure 2, for an in-268

put image x, fA takes its visual representation as269

input, i.e., fA(z), z = fI(x). fA returns a vector270

of normalized importance scores with the same271

dimensionality of z. Finally, the adapted visual272

representation z′ is computed by multiplying fA(z)273

with z element-wisely:274

z′ = fA(z)⊙ z, where z = fI(x). (3)275

Note that during training, the weights of visual276

adapter are sent to the global server for aggregation277

instead of the entire CLIP model.278

4.2 Client Residuals279

In an open-vocabulary setting, a new user will send280

test queries that involve unseen data categories.281

Thus, to fully exploit the learned knowledge from282

client data, it is critical to consider the semantic283

closeness between the clients and the new user284

when performing model aggregation. Intuitively,285

the importance weights of local clients should be286

increased if they are semantically closer to the new287

user. For instance, client 1 only contains images288

and prompts of ’Doberman’, and client 2 only has289

images and prompts of ’Tabby cat’. Assume a test290

query contains an image of a dog, and the candi-291

dates prompts are ’a photo of German shepherd’292

and ’a photo of Welsh Corgi’. In this example, the293

test class names ’German shepherd’ and ’Welsh294

Corgi’ are unseen during training. However, it is295

intuitive that client 1 is semantically closer to the296

test query than client 2. The reason is that the297

prompts of client 1 and the test prompts are all298

related to dog. Therefore, when aggregating the299

global model, the importance weight of client 1 300

should be higher than client 2. 301

However, existing studies mainly use FedAvg 302

without considering such semantic closeness, and 303

therefore, are not adaptive to open-vocabulary 304

queries. Moreover, directly comparing client class 305

names and the test classes causes privacy leakage: 306

it requires the clients to share class information 307

with the server. Therefore, we proposed to add 308

a set of learnable perturbations to perturb the en- 309

coded text prompts for all clients. Such design 310

protects class information on clients. More impor- 311

tantly, these perturbations will interact with images 312

during training. As such, they provide aligned se- 313

mantic information from both texts and images. 314

Formally, we define such perturbations as client 315

residuals. The client residuals on a specific 316

client are a set of learnable perturbations ∆ = 317

{δ1, δ2, ..., δ|Y|}. Each δc ∈ ∆ corresponds to a 318

specific class c, and has the same dimensional- 319

ity of a prompt representation. When computing 320

the prompt presentations with residuals, CLIP will 321

element-wisely add them to the prompt represen- 322

tations of corresponding classes. For instance, for 323

the ground truth prompt of sample (xi, yi), its 324

prompt representation with residual is computed as 325

t
′
gti

= tgti + δyi , (4) 326

where δyi is the perturbation for class yi (Figure 2). 327

With both trainable adapter and client residuals, 328

the adaptation loss of CLIP on the training set D = 329

{(xi, yi)} is computed as follows: 330

Ladp(fA, δ) =
1

|D|

|D|∑
i=1

− log
ez

′
i ·t

′
gti∑|D|

j=1 e
z
′
i ·t

′
gtj

+
1

|D|

|D|∑
i=1

− log
ez

′
i ·t

′
gti∑|D|

j=1 e
z
′
j ·t

′
gti

.

(5) 331

In Equation 5, z
′

represents the adapted visual rep- 332

resentation. t
′
gt is the perturbed text presentation. 333

After training, the client residuals are added to 334

the encoded candidate prompts, according to the 335

class names. This process returns a set of perturbed 336

representations of candidate prompts: 337

T ′ = {t′candidate1 , t
′
candidate2 , ..., t

′
candidate|Y|

},
(6) 338

where t
′
candidatec

= tcandidatec + δc. The client 339

will send T ′ to the central server along with the up- 340

dated adapter. This process will not lead to privacy 341
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(e.g. Dobermann, Chihuahua, Corgi.) 

Image  
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Text  
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Element-wise 
product
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Residual CLIP
Loss

Addition

CLIPCLIPCLIP

Adaptive Agg. 

Figure 2: The training and aggregation process of Fed-MP. On clients, the adapters and residuals are trained using
local data. In adaptive aggregation, only the adapter weights are aggregated.

leakage, as the class names and the training data342

are not shared with the server.343

4.3 Adaptive Model Aggregation with Client344

Residuals345

After receiving f
(1)
A , f (2)

A , ..., f (K)
A and T ′(1), T ′(2),346

..., T ′(K), the central server will then aggregate347

the adapter weights based on the queries from the348

new user. The aggregation protocol is based on the349

similarity between the queries of the new user and350

the perturbed prompt representations of different351

clients, namely T ′(1), T ′(2), ..., T ′(K).352

In particular, assume the new user has a set of353

unlabeled test images Dtest and a set of candidate354

prompts. Note that the test label space Ytest and355

the client label space Y(k) is mutually exclusive:356

Ytest ∩ Y(k) = ∅, k = 1, ...,K.357

The first step of adaptive aggregation is to en-358

code the test candidate prompts using the CLIP text359

encoder. This returns a set of prompt representa-360

tions that correspond the test classes:361

Ttest = {ttest1 , ttest2 , ..., ttest|Ytest|
},

where ttestc = fT (a photo of [test class c]).

(7)
362

For instance, in Figure 1, test prompts could be "a363

photo of [horse]" and "a photo of [cat]",364

where both [horse] and [cat] are classes never365

seen during training:366

Next, the server measures the semantic closeness367

between the new user and all clients. Specifically, it368

computes the expected similarity between Ttest and369

T ′(1), T ′(2), ..., T ′(K), respectively. For instance,370

we define the expected similarity between the new371

user and client k as ξk. It is computed via: 372

ξk = E
ttest∼Ttest,t

′
candidate∼T ′(k)

[
cos(ttest, t

′
candidate)

]
=

1

|Ytest||Y(k)|

|Ytest|∑
l=1

|Y(k)|∑
m=1

cos(ttestl , t
′(k)
candidcatem

).

(8)

373

Note that Equation 8 computes the averaged cosine 374

similarity between any two encoded prompts, one 375

from the new user and one from client k. More- 376

over, Equation 8 does not cause privacy leakage as 377

elaborated in Section 4.2. 378

After computing the expected similarity for all 379

clients, the server aggregates the adapter weights: 380

θ∗A =
1∑
k e

ξk

K∑
k=1

eξk · θ(k)A . (9) 381

In Equation 9, θ∗A is the aggregated adapter weights. 382

θ
(k)
A represents the adapter weights uploaded by 383

client k. Compared to FedAvg, Equation 9 takes 384

the semantic closeness of the new user and the 385

clients into account. The rationale behind this de- 386

sign is that semantically closer clients have learned 387

more useful visual concepts related to the open- 388

vocabulary queries, whereas other clients may only 389

learned irrelevant concepts. As such, useful visual 390

concepts should be highlighted and integrated to 391

the adapted CLIP by up-weighting corresponding 392

adpater weights. 393

4.4 Multimodal Prototyping 394

Recall that during inference, for a query image, 395

CLIP will compare the cosine similarity between 396

its visual representation and the representations of 397

candidate prompts (Equation 1). In this context, 398

these prompt representations are by default text 399
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prototypes for the test classes. This is because the400

predictions are produced by measuring the distance401

(cosine similarity) between the text prototypes and402

the representation of the input image. Thus, the403

representations of candidate prompts are defined as404

the textual prototypes {p1, p2, ..., p|Ytest|}:405

{p1, p2, ..., p|Ytest|}, where pi = ttesti . (10)406

However, the global model has never seen textual407

prototypes of unseen classes. This leads to poor408

generalization.409

Therefore, based on the aggregated global model,410

we further propose to develop a new set of visual411

prototypes. In particular, inspired by (Iwasawa412

and Matsuo, 2021), for each test class, we define a413

visual prototype set. Formally, for test class c, its414

visual prototype set is defined as Qc.415

If the new user send an extensive amount of416

queries, the global server may need to process them417

in mini-batches sequentially. In this case, we fur-418

ther introduce a time stamp n to denote the tempo-419

ral order of the test process. Meanwhile, the update420

process follows the same temporal order. At n = 0,421

Qs are initialized as empty sets. Then, for a test422

sample x at time step n, the visual prototypes are423

updated as follows:424

Qn+1
ŷ =

{
Qn

ŷ ∩ { z′

||z′||}, if H(x) ≤ ϵ

Qn
ŷ , otherwise

(11)425

where z′ is the adapted representation of x. ŷ is the426

pseudo prediction calculated by the adapted CLIP:427

ŷ = argmaxc
exp

(
cos(z′,ttestc )/τ

)
∑

c′ exp
(
cos(z′,ttestc′ )/τ

) . H(x) is428

the entropy of the predictive probabilities, used429

to evaluate the quality of the prediction: H(x) =430 ∑
c=1−P (ŷ = c|x)logP (ŷ = c|x) as in (Iwasawa431

and Matsuo, 2021). ϵ is a confidence threshold.432

According to Equation 11, only one prototype433

set (class ŷ) would be updated based on the pseudo434

prediction. Moreover, in our implementation, we435

implemented Equation 11 in an efficient way, so436

that there is no need to save all the visual represen-437

tations (Appendix A).438

Eventually, with the visual prototypes, Fed-MP439

computes the prediction for the next x based on its440

distance towards the centroids of the multimodal441

prototypes. Specifically, under multimodal proto-442

typing, CLIP makes the prediction for x by select-443

ing the closest multimodal prototypes:444

ŷ = argmax
c

[
cos(z′, pc) + cos(z′, q̄c)

]
, (12)445

Wrong predictions

(a) w/o Prototyping (b) with Prototyping

Figure 3: T-SNE visualization on test classes from Cal-
tech101.

where pc is the textual prototype of [test class 446

c] and q̄c is the centroid of visual prototypes of 447

[test class c]: 448

q̄c =
1

|Qc|
∑
q∈Qc

q. (13) 449

The rationale behind multimodal prototyping is: 450

if a test sample obtains a high-quality prediction, 451

then it could serve as a template for other test sam- 452

ples. Moreover, under Fed-MP, the adapted visual 453

representations are semantic-aware, because the 454

global model aggregation is based on the seman- 455

tic closeness between the clients (training classes) 456

and new user (test classes). Therefore, in addition 457

to textual prototypes, the visual prototypes could 458

also contribute to the model generalization on test 459

data from unseen classes. For instance, in Figure 3 460

(a), there are many errors for the green class if 461

only textual prototypes are used. In contrast, after 462

performing multimodal prototyping, many wrong 463

predictions are corrected (Figure 3 (b)). The overall 464

framework is summarized in Appendix B. 465

5 Experiments 466

We evaluate the proposed Fed-MP mainly on open- 467

vocabulary image classification, which is one of 468

the prevailing applications for VLMs. In addition, 469

we also provide an ablation study to understand the 470

function of the modules within Fed-MP. Finally, 471

we conduct robustness studies to evaluate the ro- 472

bustness of Fed-MP in regards to the number of 473

training samples per class. 474

5.1 Experimental Setup 475

Dataset We use 6 different image classification 476

datasets in our experiments. They cover a wide 477

range of classification challenges, which includes 478

Caltech101(Fei-Fei et al., 2004) for generic objects 479

6



Dataset Metrics FedAvg (NN) FedKA (NN) PromptFL FedTPG FedCLIP Fed-MP (ours)

Caltech101
A ↑ 0.5090±0.0627 0.5652±0.0526 0.9920±0.0015 0.9909±0.0037 0.9185±0.0285 0.9936±0.0010

ΦP ↑ 0.6172±0.0064 0.6542±0.0472 0.9799±0.0044 0.9806±0.0043 0.8746±0.0253 0.9848±0.0030

ΦR ↑ 0.6613±0.0053 0.6962±0.0477 0.9785±0.0044 0.9721±0.0148 0.9740±0.0050 0.9908±0.0014

ΦF1 ↑ 0.6071±0.0047 0.6472±0.0522 0.9784±0.0047 0.9741±0.0122 0.9106±0.0213 0.9876±0.0020

UCF101
A ↑ 0.6491±0.0869 0.6465±0.0312 0.8582±0.0093 0.8473±0.0424 0.8855±0.0178 0.9127±0.0225

ΦP ↑ 0.6622±0.0989 0.6823±0.0596 0.8231±0.0038 0.8168±0.0715 0.8841±0.0258 0.9212±0.0238

ΦR ↑ 0.6491±0.0869 0.6564±0.0312 0.8502±0.0093 0.8473±0.0424 0.8855±0.0178 0.9127±0.0255

ΦF1 ↑ 0.6318±0.0921 0.6404±0.0385 0.8318±0.0093 0.8185±0.0576 0.8760±0.0229 0.9086±0.0298

Food101
A ↑ 0.5521±0.0055 0.5474±0.0046 0.9240±0.0203 0.9257±0.0359 0.9719±0.0008 0.9828±0.0005

ΦP ↑ 0.5888±0.0048 0.5876±0.0038 0.9438±0.0104 0.9430±0.0229 0.9731±0.0007 0.9829±0.0005

ΦR ↑ 0.5521±0.0055 0.5474±0.0046 0.9240±0.0203 0.9257±0.0359 0.9719±0.0008 0.9828±0.0005

ΦF1 ↑ 0.5655±0.0054 0.5624±0.0044 0.9162±0.0260 0.9124±0.0463 0.9721±0.0008 0.9828±0.0005

Flower102
A ↑ 0.6365±0.0421 0.7462±0.0258 0.8628±0.0826 0.9025±0.0394 0.8829±0.0215 0.9098±0.0251

ΦP ↑ 0.6649±0.0419 0.7992±0.0350 0.9026±0.0348 0.9013±0.0464 0.8734±0.0063 0.9175±0.0224

ΦR ↑ 0.6916±0.0594 0.8209±0.0408 0.9132±0.0323 0.9051±0.0420 0.8977±0.0143 0.9289±0.0205

ΦF1 ↑ 0.6421±0.0435 0.7902±0.0361 0.8872±0.0485 0.8883±0.0525 0.8696±0.0135 0.9132±0.0253

FGVC
A ↑ 0.3369±0.0182 0.3476±0.0216 0.7682±0.0193 0.7661±0.0065 0.7841±0.0089 0.8082±0.0199

ΦP ↑ 0.3512±0.0225 0.3633±0.0257 0.7324±0.0511 0.7932±0.0032 0.8007±0.0034 0.8225±0.0119

ΦR ↑ 0.3499±0.0128 0.3646±0.0239 0.7387±0.0256 0.7404±0.0089 0.7657±0.0131 0.8014±0.0292

ΦF1 ↑ 0.3338±0.0185 0.3480±0.0228 0.7063±0.0224 0.7328±0.0093 0.7408±0.0134 0.7842±0.0336

StanfordCars
A ↑ 0.2844±0.0076 0.2842±0.0123 0.9635±0.0063 0.9519±0.0164 0.9590±0.0025 0.9721±0.0032

ΦP ↑ 0.3190±0.0056 0.3125±0.0048 0.9624±0.0078 0.9596±0.0125 0.9640±0.0021 0.9751±0.0026

ΦR ↑ 0.2822±0.0084 0.2823±0.0124 0.9636±0.0064 0.9506±0.0168 0.9598±0.0024 0.9716±0.0033

ΦF1 ↑ 0.2861±0.0090 0.2833±0.0092 0.9619±0.0076 0.9505±0.0172 0.9586±0.0025 0.9720±0.0032

Average
A ↑ 0.4947±0.1394 0.5245±0.1621 0.8948±0.0746 0.8974±0.0734 0.9003±0.0618 0.9299±0.0634

ΦP ↑ 0.5339±0.1433 0.5665±0.1739 0.8907±0.0873 0.8991±0.0709 0.8950±0.0588 0.9340±0.0571

ΦP ↑ 0.5310±0.1591 0.5613±0.1877 0.8947±0.0809 0.8902±0.0776 0.9091±0.0730 0.9314±0.0646

ΦF1 ↑ 0.5111±0.1449 0.5452±0.1767 0.8803±0.0915 0.8794±0.0820 0.8880±0.0761 0.9247±0.0704

Table 1: Open-vocabulary classification performance with different schemes. We report Accuracy A, Precision ΦP ,
Recall ΦR and F1 score ΦF1. Fed-MP achieves the superior performance over all baseline methods.

classification; Food101(Bossard et al., 2014), Flow-480

ers102(Nilsback and Zisserman, 2008), Stanford-481

Cars(Krause et al., 2013) and FGVCAircraft(Maji482

et al., 2013) for fine-grained classification; UCF101483

(Soomro et al., 2012) for action recognition.484

Baseline algorithms and models We compare485

Fed-MP against to two groups of methods. The486

first group is federated learning with traditional487

neural networks: (1) FedAvg; (2)FedKA. FedKA488

is a state-of-the-art federated domain generalization489

method based on feature distribution matching. For490

both FedAvg and FedKA, we use a ResNet-18(He491

et al., 2016) pre-trained on ImageNet(Deng et al.,492

2009). The second group of baselines are meth-493

ods that combine CLIP and FL: (1) PromptFL, a494

federated prompt tuning method; (2) TPG, a feder-495

ated text-driven prompt generation method; (3) Fed-496

CLIP, a federated adapter-style finetuning method.497

For PromptFL, TPG, FedCLIP, as well as Fed-MP,498

CLIP with configuration of ViT-L/14@336px is se-499

lected as the backbone model. For all methods, the500

aggregated global model is used for the evaluation501

on all different datasets. 502

Federated learning setup To simulate the open- 503

vocabulary setting, we split the classes of each 504

dataset into two groups, one as training classes 505

and the other as test classes. The data from train- 506

ing classes are available for local model training, 507

whereas the images from test classes are only avail- 508

able during test time. Moreover, we consider a 509

non-i.i.d. heterogeneous FL setting as in (Qiu 510

et al., 2023). The training classes are disjointly 511

distributed to different clients. That is, the classes 512

of one client is mutually exclusive with the classes 513

of any other clients. In a real-world application, 514

it is usually hard for all clients to collect a huge 515

amount of data. As such, we also consider a data- 516

sparse setting, where all clients only have a few 517

images per class for training as in (Qiu et al., 2023). 518

The data is distributed over 10 clients, and there 519

are 10 training images per class for all datasets (2 520

for validation). All samples of test classes are used 521

for validation (20%) and test (80%). In robustness 522

study, we modified the amount of training images 523
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per class. We repeat experiments for 5 times and524

report the mean and standard deviation in all tables.525

Further implementation details are in Appendix A.526

5.2 Open-vocabulary Generalization527

We report the main results on open-vocabulary gen-528

eralization for all baselines and datasets in Table 1.529

The best results are highlighted in bold and the530

second-best results are highlighted with underlines.531

We observe: (1) Traditional FL methods could not532

address the open-vocabulary challenge. For exam-533

ple, FedKA only achieves an averaged accuracy534

of 0.5245 over all datasets. (2) Fed-MP outper-535

forms baselines on all datasets w.r.t. all metrics.536

For instance, on accuracy, Fed-MP outperforms the537

best baseline by 3% on average. (3) Across dif-538

ferent datasets, Fed-MP consistently demonstrates539

superior performance, while the baseline methods540

are sensitive to different datasets. For instance,541

PromptFL could achieve comparable accuracy of542

0.9920 as Fed-MP’s 0.9936 on Caltech101. How-543

ever, on UCF101, PromptFL only achieves 0.8582544

accuracy, which is significantly lower than Fed-545

MP with 0.9127. We attribute such sensitivity to546

the unreliable generalization ability of the base-547

lines, as they are not deliberately designed for548

open-vocabulary settings. (4) Across different met-549

rics, Fed-MP consistently outperforms baselines,550

whereas the baselines are sensitive to the evaluation551

metrics. For instance, on Flower102, PromptFL552

achieves a high precision of 0.9026, but a low ac-553

curacy of 0.8628. Similarly, on the same dataset,554

TPG achieves a high accuracy of 0.9025, but a low555

F1 score.556

5.3 Ablation Study557

Next, we conduct an ablation study to understand558

the functionality of adaptive aggregation (A. A.)559

and multimodal prototyping (M. P.) in Fed-MP.560

Due to space limit, we report the results on 4561

datasets. The results are shown in Table 2. We562

observe that removing either module could cause563

a degradation of the model performance. For in-564

stance, without adaptive aggregation, the accuracy565

of Fed-MP on Caltech101 drops from 0.9936 to566

0.9857. After removing multimodal prototyping,567

the accuracy on Caltech101 drops to 0.9332.568

5.4 Robustness Study569

In this section, we conduct a robustness study w.r.t.570

the number of training samples per class. This is571

a key factor affecting the finetuning quality. In572

Dataset Metrics Fed-MP w/o A. A. w/o M. P.

Caltech101

A ↑ 0.9936±0.0010 0.9857±0.0029 0.9332±0.0197

ΦP ↑ 0.9848±0.0030 0.9700±0.0058 0.8898±0.0219

ΦR ↑ 0.9908±0.0014 0.9894±0.0020 0.9784±0.0042

ΦF1 ↑ 0.9876±0.0020 0.9790±0.0038 0.9238±0.0174

UCF101

A ↑ 0.9127±0.0225 0.9073±0.0352 0.8818±0.0100

ΦP ↑ 0.9212±0.0238 0.9105±0.0374 0.8911±0.0126

ΦR ↑ 0.9127±0.0255 0.9073±0.0352 0.8818±0.0100

ΦF1 ↑ 0.9086±0.0298 0.9013±0.0408 0.8702±0.0127

Food101

A ↑ 0.9828±0.0005 0.9827±0.0006 0.9718±0.0005

ΦP ↑ 0.9829±0.0005 0.9828±0.0006 0.9731±0.0005

ΦR ↑ 0.9828±0.0005 0.9827±0.0006 0.9718±0.0005

ΦF1 ↑ 0.9828±0.0005 0.9827±0.0006 0.9720±0.0005

Flower102

A ↑ 0.9098±0.0251 0.9003±0.0340 0.8736±0.0240

ΦP ↑ 0.9175±0.0224 0.8886±0.0353 0.8729±0.0102

ΦR ↑ 0.9289±0.0205 0.9123±0.0319 0.8945±0.0131

ΦF1 ↑ 0.9132±0.0253 0.8875±0.0391 0.8684±0.0131

Table 2: Ablation Study.

particular, we change it from 2 to 16, and keep the 573

number of clients as 10. The results are shown 574

in Figure 4. We observe that Fed-MP is generally 575

robust against the number of training samples. On 576

Flower102 and FGVC, Fed-MP is relatively more 577

sensitive to the number of training samples. This is 578

because that different kinds of flowers and aircraft 579

are more difficult to distinguish compared to food 580

types and car makes. 581

4 6 8 10 12 14 16
Num of Training Samples per Class

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

4 6 8 10 12 14 16
Num of Training Samples per Class

0.85

0.90

0.95

Pr
ec

isi
on

4 6 8 10 12 14 16
Num of Training Samples per Class

0.80

0.85

0.90

0.95

1.00

Re
ca

ll

4 6 8 10 12 14 16
Num of Training Samples per Class

0.80

0.85

0.90

0.95

1.00

F1
Caltech101
UCF101

Food101
Flower102

FGVC
StanfordCars

Figure 4: Robustness study w.r.t. number of training
samples.

6 Conclusion 582

This work is the first to address the open- 583

vocabulary challenge in FL applications. In partic- 584

ular, we present Fed-MP, a novel open-vocabulary 585

FL framework that is tailored for finetuning VLMs 586

for FL applications. Fed-MP provides an effec- 587

tive solution to make high-quality predictions for 588

queries that involve novel unseen categories. Ex- 589

tensive experimental results on various datasets 590

demonstrate the effectiveness of our method. 591
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7 Limitations592

One limitation of this work is that our method in-593

troduces extra hyperparameters. For different ap-594

plications, one might need to finetune these hy-595

perparameters, which brings extra computational596

cost. As for the actually trainable modules, there597

is only a small two-layer network and light-weight598

perturbations. Another limitation of this work is599

that our method does not take the inherent bias of600

the pre-trained VLM into account. However, it is601

known that the pre-trained foundation models usu-602

ally have encoded the bias in the pre-training data603

(e.g., stereotypical data, racism and hate speech).604

Such bias could have negative ethical implications605

on downstream FL applications. Therefore, a fu-606

ture research direction is to develop a benign, fair,607

open-vocabulary FL framework.608

Ethics Statement609

Our work provides a data-efficient and privacy-610

aware solution to address the open-vocabulary611

problem in federated learning. Our method auto-612

matically generalizes to a new user and is capable613

of answering her/his queries that involve data from614

novel categories. In terms of real-world applica-615

tions, with Fed-MP, the update frequency of the616

deployed FL model could be drastically reduced,617

and there is no need to collect huge amount of618

training data for novel classes. The above two ad-619

vantages of Fed-MP reduce the risk of collecting620

private user data.621
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Appendix A: Implementation Details 765

Hyperparameters For Fed-MP and all baseline methods that use CLIP, the learning rate is initialized 766

as 1e-5. The learning rate for baseline methods that use ResNet-18 is 5e-4. The models are optimized 767

via AdamW. The local training epoch is 2 and the global epoch is also 2. For all methods with key 768

hyperparameters, we firstly performed grid search with the resolution of 0.1 until find the best performance. 769

Based on that, we further reduce the search resolution to 0.01 until find best performance. In terms of 770

the confidence threshold ϵ, on Caltech101, UCF101, Flower102, we use 20% of the maximum entropy 771

given the distribution of the datasets on different clients. As for FGVC, Food101, we set ϵ equal to 30% 772

of maximum entropy. For StanfordCars, we used 10%. Our hardware is NVIDIA A40. 773

Baseline Implementation We use ImageNet pre-trained ResNet-18 as the backbone model for FedAvg 774

and FedKA. Upon implementation, we modify and re-train the classification head of the pre-trained 775

ResNet-18 to fit it into our classification problem. Moreover, when performing aggregation and inference, 776

these classification heads are not used, because they can not provide predictions for unseen classes. 777

Therefore, we only aggregate the feature extraction modules of the finetuned ResNet-18 to obtain the 778

global model. As for inference, we use the aggregated feature extractor to produce adapted representations. 779

Using extracted representations, we further perform K-means clustering and linear sum assignment, to 780

map the representations onto the unseen test classes. K-means and linear sum assignment is implemented 781

using the SciPy library. 782

Evaluation Metrics In Table 1, we use the scikit-learn library to compute the macro-averaged F1. Due 783

to class imbalance, it is likely that F1 score is lower than precision and recall at the same time. 784

Implementation of Multimodal Prototyping Finally, when implementing multimodal prototyping, we 785

do not save all the visual prototypes for the sake of efficiency. Instead, we only dynamically update and 786

save the centroid of each visual prototype set. For each class, this could be done with following steps: 787

• At time step n, the centroids of all prototypes are computed; 788

• Save the centroids and the number of prototypes used for each class; 789

• At the next time step n+1, if there is a new prototype added to the prototype set of a specific class c, 790

then the sum of previous prototypes of will be reproduced by
∑

q∈Qc
q = q̄c · |Qc|; 791

• Update the new centroid of the visual prototype for class c: q̄c =
∑

Qc
q+ z′

||z′||
|Qc|+1 . 792
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A Appendix B: Overall Framework793

Algorithm 1: Fed-MP (Training)

1 Input CLIP image encoder fI , CLIP text encoder fT , adapter fA, datasets of local clients
D1,D2, ...,DK ;

2 Hyperparameters Learning rate; Initialize the visual adapter fA ;
3 Clients download fI , fT and fA ;
4 for k=1,2,...,K do
5 Receive trainable models: f (k)

A = fA ;
6 Initialize the client residual ∆(k) ;
7 for local epochs do
8 Compute normal visual representations: z = fI(x) ;
9 Compute adapted visual representations: z′ = z + fA(z);

10 Compute normal visual representations: t = fT (A photo of [class c]) ;
11 Compute perturbed text representations: t′ = t+ δ;
12 Compute CLIP adaptation loss Ladap with Equation 5;

13 Update f
(k)
A and ∆(k) with gradient descent;

14 end
15 Obtain perturbed text representations T ′(k) by adding δ ∈ ∆(k) to t.
16 end
17 Output Send f

(k)
A and T ′(k) to the central server ;

Algorithm 2: Fed-MP (Inference)

1 Input CLIP image encoder fI , CLIP text encoder fT , adapter weights f (1)
A , f (2)

A ,...f (K)
A , perturbed

client text representations T ′(1), T ′(2),...,T ′(K), test data Dtest, test prompts Ttest;
2 Hyperparameters Confidence threhold ϵ; Compute the expected similarity between the test user

and clients using Equation 8;
3 Obtain fA by aggregating the adapter weights using Equation 9;
4 Initialize the visual prototypes as empty sets ;
5 for x ∈ Dtest do
6 Compute the centroids for the visual prototypes with Equation 13;
7 Compute the prediction with Equation 12;
8 Update the corresponding visual prototype set using ’the original pseudo prediction and

Equation 11;
9 end

10 Output Predictions for Dtest ;
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