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Abstract

Attention has been widely adopted in many state-of-the-art deep learning models. While
the significant performance improvements it brings have attracted great interest, attention
is still poorly understood theoretically. This paper presents a new perspective to understand
attention by showing that it can be seen as a solver of a family of estimation problems. In
particular, we describe a convex optimization problem that arises in a family of estimation
tasks commonly appearing in the design of deep learning models. Rather than directly
solving the convex optimization problem, we solve its Fenchel dual and derive a closed-
form approximation of the optimal solution. Remarkably, the solution gives a generalized
attention structure, and its special case is equivalent to the popular dot-product attention
adopted in transformer networks. We show that T5 transformer has implicitly adopted the
general form of the solution by demonstrating that this expression unifies the word mask and
the positional encoding functions. Finally, we discuss how the proposed attention structures
can be integrated in practical models and empirically show that the convex optimization
problem indeed provides a principle justifying the attention module design.

1 Introduction

Attention-based deep neural networks are now integrated into cutting-edge language models that have revo-
lutionized a broad range of tasks: machine translation (Bahdanau et al., 2014; Luong et al., 2015), sentiment
classification (Wang et al., 2016), image captioning (Xu et al., 2015) and unsupervised representation learn-
ing (Devlin et al., 2019), etc. Especially, attention plays a pivotal role in the construction of the transformer
architecture (Vaswani et al., 2017), which has had a profound impact on the deep learning field.

Despite great empirical success, the design principle of attention has not been well studied in the literature,
and there is no in-depth understanding as to why attention-based models (e.g. BERT (Devlin et al., 2019))
have significantly better performance than other models. This lack of understanding impedes practitioners
from using attention layers confidently and appropriately, making it challenging to develop new attention-
based neural architectures.

In this paper, we offer a new perspective for understanding attention by showing that it is in fact a solver for
a certain type of optimization problem that corresponds to an inference task. We give several examples, all of
which can be characterized as follows: given 1) an unreliable estimate of the mean of an unknown distribution
p on Rd and 2) a preference distribution u on Rd encoding beliefs on p’s selection, the inference task is to get
a better estimate of p’s mean given its unreliable estimate and u. We derive a convex optimization problem
that is abstracted from the task and solve it by instead solving its Fenchel dual (Rockafellar, 1970, p.104).
Remarkably, the derived expression of the improved estimate of p gives a generalized attention structure
whose special case is equivalent to the popular dot-product attention (Luong et al., 2015) that is also applied
in the transformer network (Vaswani et al., 2017). In addition, we show that our generalized attention
expression has been implicitly adopted by T5 transformer (Raffel et al., 2020) as the expression unifies the
concept of word masks and its positional encoding functions. Extra examples are given to show how the
generalized attention structures can be used in practice. Also, experiments are performed, which validates
our theoretical work.
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2 Related work

Since 2019, several authors have investigated the properties and working mechanism of attention. This series
of works mainly addresses whether the attention mechanism can serve as a proxy of saliency (Michel et al.,
2019; Voita et al., 2019; Jain & Wallace, 2019; Wiegreffe & Pinter, 2019; Serrano & Smith, 2020; Vashishth
et al., 2020). Most of these works obtain insights into the attention mechanism by performing empirical
studies. The related methods include analyzing the behaviours of trained attention-based models (Clark
et al., 2019), pruning a few heads, analyzing the effects of altering the attention weights (Michel et al., 2019;
Voita et al., 2019), or a mixture of these (Jain & Wallace, 2019; Vashishth et al., 2020).

Apart from understanding attention empirically, some theoretical results presented by Brunner et al. (2019)
and Hahn (2020) show that the self-attention layers are not identifiable. This implies there could exist
multiple combinations of attention weights that can provide equally good final predictions. In particular,
such non-uniqueness means that the use of attention may complicate interpretability. Besides, Tsai et al.
(2019) present a new formulation of attention via the lens of kernels and show that attention can be seen
as applying kernel smoother over the inputs. Another important approach to understand attention is to
analyze its asymptotic behaviour when the number of heads and the network width approach infinity (Yang,
2019; Hron et al., 2020). In this limiting case, the entire network can be seen as a Gaussian process (Lee
et al., 2018) and its behaviours can be characterized by closed-form expressions that are not available in the
finite regime.

Very recently (since 2021) several theoretical works have appeared that study attention outside the asymp-
totic regime. Lu et al. (2021) set up a simple attention-based classification model and derive a closed-form
relationship between the word’s embedding norm and the product of its key and the query. They empirically
show that such relationship also exists in a more complicated and practical configuration. Ramsauer et al.
(2021) construct an equivalence relationship between attention and a newly proposed Hopfield network with
continuous states. In particular, they show that the new Hopfield network’s update rule is equivalent to the
attention mechanism used in transformers (Vaswani et al., 2017).

3 A motivating example

We first consider a seemingly unrelated example, to illustrate the key ingredients of this paper.

Assume a probability distribution p on Rd has a spherical Gaussian prior u ∼ N (µ, Id). Let hp denote the
mean of the unknown p. Given an unreliable observation b of hp, what is the best guess of hp? To solve
this problem, we may formulate the following optimization problem

p∗ = argmin
p

α

2

∥∥∥∥b−
∫

ap(a) da
∥∥∥∥2

+K(p, u), (1)

where α > 0 controls the relative strength of the two terms and K(p, u) denotes the KL divergence from p to
u. The basic idea behind (1) is that: although b is not reliable, it should not be too far from hp =

∫
ap(a) da.

Also, as u encodes the preferred value of p, we add the KL divergence term to show preference for p that is
close to u. As will be discussed later, such a formulation can be either obtained from the maximum likelihood
principle or from the maximum entropy principle (Jaynes, 1957a;b). In particular, Rioux et al. (2020) develop
(1) for image de-blurring by applying Maximum Entropy on the Mean (MEM), an information-theoretic
method due to Gamboa (1989) but not yet widely known in machine learning.

After obtaining the minimizer p∗ of (1), its mean
∫

ap∗(a) da gives our estimate of hp. Rioux et al. (Rioux
et al., 2020) prove, via Fenchel duality (Rockafellar, 1970, p.104) that the minimizer p∗ takes the form

p∗(a) = u(a) exp〈a,λ∗〉∫
u(a′) exp〈a′,λ∗〉 da′

, (2)

where
λ∗ = argmax

λ∈Rd

〈b,λ〉 − 1
2α ‖λ‖

2 − log
∫
u(a) exp〈a,λ〉 da. (3)
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Figure 1: A conceptual graph of the deep learning model that we work with. The block g(k) is the one we will
investigate. (a) plots the general structure of a sequence generation model, where block F (k) is responsible for
its k-th output. This paper focuses on F (k) with the architecture presented in (b) that contains component
g(k) inferring a distribution’s mean h(k) based on its noisy estimations from two aspects: its preference (prior)
distribution u(k) and a noisy estimation of its mean shift z(k) from u(k)’s. We will show that g(k) should
implement the expression presented in (c) whose special case is the familiar dot-product attention (Luong
et al., 2015).

Note that
∫
u(a) exp〈a,λ〉 da = exp(〈µ,λ〉 + 1

2 ‖λ‖
2) as it is the moment generating function (MGF) of

u ∼ N (µ, Id). Substituting the expression into (3) followed by setting the derivative with respect to λ to
zero yields λ∗ = α

α+1 (b − µ). By (2), p∗(a) ∝ exp(− 1
2 ‖a − µ‖

2 + 〈a,λ∗〉) ∝ exp(− 1
2 ‖a − (µ+ λ∗)‖2).

Substituting λ∗ = α
α+1 (b − µ) into it implies that p∗ follows a Gaussian distribution N ( 1

1+αµ + α
1+αb, Id).

Thus, our estimate of hp is 1
1+αµ+ α

1+αb.

The value α in equation 1 can also be considered as a measure of the reliability of the noisy observation
b, where a smaller α implies a less reliable b. Then, the estimate of hp should be less affected by b as
α approaches zero, which is well captured by our derived expression 1

1+αµ + α
1+αb. We will also see this

relationship in a more general setting in our subsequent discussions. While a more complicated analysis is
involved, the underlying principles are essentially the same.

In this paper, we focus on a similar optimization problem that estimates hp assuming that u is instead a
discrete distribution and is referred to as a preference distribution. The unreliable observation of the mean is
equivalently replaced by the noisy mean shift z from µ, which is referred to as evidence. We show that such
optimization problems naturally and frequently arise in neural network designs. By solving the optimization
problem, we derive a closed-form approximation for the estimate of hp, via Fenchel duality. The approxima-
tion then gives a generalized attention layer structure as shown in Fig 1. A special case of it is equivalent to
the familiar dot-product attention (Luong et al., 2015) that is also adopted in transformers (Vaswani et al.,
2017). Moreover, we will show that T5 transformer (Raffel et al., 2020) implicitly adopts our generalized
attention expression.

4 Setup of a design problem

Throughout the rest of the paper, we consider a machine learning problem in which the objective is to
predict an output quantity Y from a given input X. Additionally, Y may include K components, namely,
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be expressed as (Y (1), Y (2), . . . , Y (K)). To be more concrete, we present a few example machine learning
problems and let them run through our development.

Example: Translation Problem. In this problem, the input X is a sentence, or a sequence of words, in
the source language. Output Y is the sequence of words in the target sentence, where Y (k) denotes the kth

word.

Example: Image Captioning. In this problem, the input X is a raw image and output Y is the sequence
of words in the caption, where Y (k) is the kth word.

Example: Filling in the Blanks Task. This task has been used to train the BERT model (Devlin et al.,
2019). The input X is a sequence of words with certain percentage of words masked. The output Y are the
predicted masked words, where Y (k) denotes the kth masked one.

The objective of any of these problems and that we address in this paper is to learn a function F , mapping
from the space of X to the space of Y so that Y = F (X). We will denote by F (k) the part of F responsible
for predicting Y (k) (Fig 1a), namely, Y (k) = F (k)(X). Although we here express F as separate functions
(F (1), F (2), . . . , F (K)), we note that it is in fact possible that different F (k)’s share some component in
common. We now focus on the design of F (k).

We restrict the architecture of F (k) to the form in Fig 1b with the main focus on the inference of h(k). The
extraction of feature h(k) is via two parallel modules f (k)

evd and f
(k)
pref that directly operate on the input X

followed by a function g(k) (in Fig 1c), which we will design.

4.1 The Design Problem

We describe the problem of designing g as follows.

Suppose that there is an unknown distribution p(k) on Rd whose mean vector is h(k), namely,

h(k) =
∫
Rd

ap(k)(a) da. (4)

Let u(k) be another distribution on Rd that is generated as the output of a network module f (k)
pref . Here

u(k) is referred to as the preference distribution, which serves as a prior guess of p(k). Specifically u(k) puts
non-zero probability masses on M “template” vectors t(k)

1 , t(k)
2 , . . . , t(k)

M in Rd, and their probabilities are
respectively u(k)

1 , u
(k)
2 , . . . , u

(k)
M (which sum to 1). Collectively, we will denote the set {t(k)

1 , t(k)
2 , . . . , t(k)

M } of
templates by T(k).

The preference distribution u(k) is considered as a good approximation of p(k), in the sense that the support
of p(k) is contained in the set T(k) of templates. Note that if Rd is the word embedding space for a large
vocabulary, and if the size M of the template set T(k) is relative small, then restricting the support of p(k)

to within T(k) imposes a strong constraint on p(k).

On the other hand, u(k) is not a sufficiently accurate approximation of p(k), in the sense that u(k) may assign
probabilities to T(k) somewhat differently. Such inaccuracy shifts the mean µ(k) of u(k) from the mean h(k)

of p(k). Suppose that there is another piece of information z(k) ∈ Rd that is generated by another network
module f (k)

evd and provides information regarding the mean shift. In particular, we assume that z(k) is a noisy
version of the shift, more precisely,

z(k) = h(k) − µ(k) + ε, (5)

where ε ∼ N (0, σ2I) is the spherical Gaussian noise in Rd with covariance σ2I. We refer to z(k) as the
evidence.

Then the design problem is to construct a function, or a network block, g, which infers the unknown distri-
bution p(k) and hence its mean h(k) based on the evidence z(k) and the preference distribution u(k).
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Figure 2: The model architectures of the three running examples. For the f (k)
evd in (a) and (b), the dashed

links exist throughout the training and are replaced by the dotted ones in the generation stage.

4.2 Practical examples

The formulation of the design problem might seem peculiar at the first glance, but we will show via examples
(see Fig 2) that such a problem naturally arises in the construction of many machine learning models in
practice.

Example: Translation Problem. For the translation problem, consider the model implementation plotted
in Fig 2a that is similar to the one proposed in (Bahdanau et al., 2014). We will focus on the part of the
model responsible for inferring the kth word of the target sentence. In this model, h(k) corresponds to
the constructed feature according to (4) that serves as an estimate of the context vector collecting the
source sentence information. The estimated h(k) is then fed into a classifier f (k)

out to predict the kth word.
The preference distribution u(k) is generated by f

(k)
pref which takes the source sentence words as inputs.

In particular, the support of u(k) consists of the source sentence word embeddings T (called annotations
in (Bahdanau et al., 2014)) which are pre-processed by two LSTM layers.1 The preference weight for each
template depends on some positional encoding functions, which, in principle, should assign higher weights
to the templates appearing in the similar locations to the words we are inferring (that is, h(k) is assumed to
rely on the templates near tk more heavily).

Note that the inferred p(k)’s support must be a subset of u(k)’s as it is reasonable to assume that the target
sentence words only depend on those appearing in the source sentence. Besides, although the preference
weights specified by the positional encoding functions could provide some a priori information for the tem-
plates’ weights in p(k), they cannot be accurate as their inferences do not consider the previously generated
words Y (i<t). This results in the mean µ(k) shifted from h(k), which is estimated by z(k) = f

(k)
evd that takes

1In this model, given input X, all u(k)’s share the same support T. The superscripts of the templates are then omitted to
show their independence from k. Similar comments apply to implementations of the other two running examples.
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all the previously generated words Y (i<t) into account using another LSTM layer. Thus, h(k) and p(k) should
not be far from z(k) + µ(k) and u(k), respectively.

Example: Image Captioning. The caption generation model presented in Fig 2b has a similar architecture
reported in (Xu et al., 2015). This model shares the designs of f (k)

evd and f
(k)
out with the translation model

while f (k)
pref instead extracts the templates from a raw image using a CNN network. In general, a word’s

position in the caption is independent of the location of the object it describes in the image. Therefore, in
this model, all templates extracted by the CNN share the same preference weight.

As similar objects appear in an image would have similar features extracted by the CNN (for example, a
zebra and a horse), allowing similar templates not in T to participate in h(k)’s estimation would possibly
mix in information not contained in the raw image and harm the word inference accuracy. Therefore, we
could improve the estimate of h(k) by choosing p(k) similar to u(k) in the sense that p(k)’s support cannot
contain elements not in u(k)’s.

Intuitively, as the generation process proceeds, the context h(k) should be updated to provide relevant
information in the image to facilitate the next word inference. Such change is governed by the caption’s
semantic evolution, which is captured by z(k) = f

(k)
evd that predicts the shift of the mean µ(k) from h(k). For

this reason, µ(k) + z(k) serves as an estimate of h(k) and should not be far away from it. Likewise, u(k)

should be close to p(k).

Example: Filling in the Blanks Task. For the filling-in-the-blank tasks, let us consider a model archi-
tecture plotted in Fig 2c that is similar to the one used in BERT (Devlin et al., 2019). We focus on the
inference of the kth masked word, which is assumed to be the jth word of the input sentence. In this model,
f

(k)
pref and f

(k)
evd share the transformation layers (TL) that are commonly used in the natural language process-

ing (NLP) tasks to map one sequence of vector representations to another of the same length.2 Taking the
output sequence, f (k)

pref applies a linear map V to each of its elements to form T as the support of u(k) while
the preference weights are specified by some positional encoding functions. At the same time, z(k) = f

(k)
evd

estimates h(k)’s shift from the mean µ(k) due to the variation of the local information. For the same reasons
discussed in the previous two examples, we need µ(k) + z(k) close to h(k) while p(k) is close to u(k).

Notably the formulation of the problem is based on the assumption that the network modules f (k)
evd and f (k)

pref

are fixed and generate z(k) and u(k) satisfying the above assumed properties. In reality, f (k)
evd and f (k)

pref are in
fact obtained via training. However, we argue that if g is made to satisfy our design objective, then we can
at least interpret f (k)

evd and f (k)
pref obtained from training as serving to produce z(k) and u(k) with our desired

properties.

5 Formulation of an optimization problem

The discussion made in the previous section implies that the key optimization problem we are about to focus
on should ensure

1. h(k) is not too far from µ(k) + z(k), where h(k) is constructed by p(k) according to (4) and µ(k) is
the mean of the preference distribution u(k).

2. p(k) is close to u(k) while p(k)’s support is a subset of u(k)’s.

These two desiderata prompt us to optimize:

min
p

α

2

∥∥∥∥(µ+ z)−
∫
Rd

ap(a) da
∥∥∥∥2

+K(p, u) (6)

2Typical implementation of such layers include convolution layers, recurrent layers and self-attention layers.
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where α > 0 is responsible for the relative strength of the two terms (and can be interpreted as the reliability
of µ + z), K(p, u) denotes the KL divergence from p to u.3 By definition, K(p, u) has a finite value if and
only if p has zero values outside the support of u. Thus, both requirements in the second desideratum are
satisfied by using the KL divergence as a measure for the closeness of p and u. Let p̃ be the minimizer of
(6). The estimate of h is

ĥ =
∫
Rd

ap̃(a) da. (7)

Naturally, this optimization problem can be derived from three different, though, related perspectives.

A Maximum Likelihood Perspective. The optimization problem in (6) can be derived using the max-
imum log likelihood method by treating the KL-divergence term as a regularizer. According to (5), the
difference (µ + z) − h follows a Gaussian distribution N (0, σ2I). This implies the log likelihood function
`(z) ∝ − 1

2σ2 ‖(µ+ z)− h‖2. Maximizing it with the KL-divergence term as a regularizer is the same as
minimizing

1
2σ2 ‖(µ+ z)− h‖2 + ηK(p, u), (8)

where η > 0 controls the strength of the regularization. Substituting (4) into (8) followed by rearrangement
yields

min
p

1
2ησ2

∥∥∥∥(µ+ z)−
∫
Rd

ap(a) da
∥∥∥∥2

+K(p, u), (9)

which is equivalent to (6) by setting α−1 = ησ2.

A Maximum Entropy on the Mean Perspective. Consider a problem that seeks a distribution p such
that the expectation

∫
Rd ap(a) da is not far from µ+ z. In particular, we require∥∥∥∥(µ+ z)−

∫
Rd

ap(a) da
∥∥∥∥2
≤ 1

2α. (10)

Note that, given z, there are infinitely many p’s that satisfy the constraints, which makes it difficult to pick
a “best” p for later use. A technique known in information theory as the maximum entropy on the mean
(MEM) (Rioux et al., 2020; Gamboa, 1989) solves this problem by picking the best guess of the ground truth
p∗ that simultaneously satisfies (10) and minimizes the KL divergence to the distribution u. That is,

p̃= argmin
p
K(p, u) s.t.

∥∥∥∥(µ+ z)−
∫
Rd

ap(a) da
∥∥∥∥2
≤ 1

2α,

which is also the minimizer of (6) according to Equation (18) of (Rioux et al., 2020) and Corollary 4.9
of (Borwein & Lewis, 1992).

A Bayesian perspective. Given observed data, Bayesian inference allows us to derive a distribution of the
parameters of a statistical model. By considering µ+z as the observed data and p as a model parameter, we
will show that picking the p that minimizes (6) is the same as choosing the p that has the largest probability
in the derived distribution. In (5), we have assumed that (µ+z)−h follows a spherical Gaussian distribution
N (0, σ2I), where h is the mean of p. Therefore, given p, we also have

Pr(µ+ z|p) = Pr(µ+ z|h) ∝ exp
(
− 1

2σ2 ‖(µ+ z)− h‖2
)
. (11)

Here, we let the prior distribution of p satisfy

Pr(p|u) ∝ exp (−ηK(p, u)) , (12)

3As we will focus on a single step of sequence predictions, we simplify our notations by omitting superscript (k) in the rest
of our discussions.
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where η > 0 is a super parameter that controls the probability decreasing speed as p deviates from u. Then
the posterior distribution of p satisfies

Pr(p|µ+ z, u) ∝ Pr(µ+ z|p) Pr(p|u)

∝ exp
(
− 1

2σ2 ‖(µ+ z)− h‖2 − ηK(p, u)
)
.

Finding p∗ that maximizes Pr(p|µ+ z, u) is the same as finding

p∗ = arg min
p

{
1

2σ2 ‖(µ+ z)− h‖2 + ηK(p, u)
}

= arg min
p

{
1

2ησ2 ‖(µ+ z)− h‖+K(p, u)
}
,

which is equivalent to (6) by setting α−1 = ησ2.

6 Optimal solution

Rioux et al. proved that the optimization problem stated in (6) has the following Fenchel dual (see Theorem
2 of (Rioux et al., 2020)):
Theorem 1. The dual of (6) is given by

max
λ∈Rd

{
〈λ,µ+ z〉 − 1

2α ‖λ‖
2 − logM(λ)

}
, (13)

where

M(λ) =
∫
Rd

u(a) exp〈a,λ〉 da. (14)

Given a maximizer λ∗ of (13), one can recover the minimizer p̃ of (6) via

p̃(a) = u(a) exp〈a,λ∗〉∫
Rd u(a′) exp〈a′,λ∗〉 da′

. (15)

By Theorem 1, the estimated h defined in (7) can be re-written as

ĥ =
∫
Rd

ap̃(a) da =
∫
Rd

a u(a) exp〈a,λ∗〉∫
Rd u(a′) exp〈a′,λ∗〉 da′

da, (16)

where λ∗ is a maximizer of (13).

In general, λ∗ does not have a closed-form expression in terms of α, u and z, and a standard paradigm is
to search for it using gradient ascent-based methods. In this paper, we will not search for λ∗ in this way;
instead, we will derive a closed-form expression to approximate it. Remarkably, this takes the form of the
generalized attention presented in Fig 1.

Note thatM(λ) in (14) equals Eu[exp〈W,λ〉], the expectation of the random variable exp〈W,λ〉 whereW has
the probability distribution u. The expectation is just the moment generating function (MGF) ofW , and the
value logM(λ) is called the cumulant of W (McCullagh, 1987, p.26), which has an expansion (McCullagh,
1987, (2.4))

logM(λ) = 〈µ,λ〉+ 1
2 〈λ,Σλ〉+ o(‖λ‖2), (17)

with µ=
∫

au(a) da and Σ=
∫

(a − µ) (a − µ)T u(a)da respectively denote the expectation and the variance-
covariance matrix of W . Note that the expansion implicitly assumes that random variable W following
distribution u has bounded moments. (Derivation of (17) is given in A.)
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Figure 3: The approximation of ĥ for different choices of α. The dots in orange compose the support of
discrete u with the preference weights labelled above. The dark blue arrow starting from the mean µ of u
denotes the evidence z. The red square marks the ĥ constructed by (16) with the λ∗ maximizing (13), while
the purple one marks the ĥ approximated by (22). As we can observe, (22) gives a precise approximation of
ĥ when α is sufficiently small.

Now we assume that α is small and we argue that this assumption is justified in practice. For instance, in
the translation task, all words in the dictionary can serve as candidate templates, which could be more than
10,000, but u reduces this size to the length of the source sentence (usually less than tens of words). The
inference of p should strongly anchor around this prior information; consequently the information provided
by z should weigh less. On the other hand, z can hardly provide an accurate estimate of the mean shift, since
the generation of z is often ignorant of the templates selected by u (for example, in the example translation
and image captioning models) or generated by a low-capacity module (as in the example filling-in-the-blank
model). For these reasons, one should de-emphasize the constraint imposed by z and thus choose a small α.

When α is picked to be small enough (see (13)), the optimization of λ gets a large penalty on its L2 norm
and thus, ‖λ∗‖ is close to zero. Then, by (17), we have

logM(λ∗) ≈ 〈µ,λ∗〉+ 1
2 〈λ

∗,Σλ∗〉. (18)

Note that the approximation becomes exact for any α > 0 if u is Gaussian, which is the case of the motivating
example in Section 3. Substituting equation 18 into equation 13 followed by setting the derivative with respect
to λ to zero yields

λ∗ = α(Id + αΣ)−1z, (19)

where Id denotes the d× d identity matrix.4 As α is assumed close to zero, (19) is further reduced to

λ∗ = αz. (20)

Plugging the expression into (16) gives the result stated as follows:
Theorem 2. Given u with bounded moments, for a small enough α > 0, the estimated h defined in (7) can
be approximated by

ĥ =
∫
Rd

a u(a) exp(α〈a, z〉)∫
Rd u(a′) exp(α〈a′, z〉) da′

da. (21)

For the case that u is a discrete distribution with support {t1, t2, . . . , tn} and the preference probability
{u1, u2, . . . , un}, (21) becomes simply

ĥ =
n∑
i=1

ti
ui exp (α〈ti, z〉)∑n
j=1 uj exp (α〈tj , z〉)

. (22)

In Fig 3, we set d = 2 and visualize the approximation of h for various selections of α. We observe that, as α
decreases, (22) outputs a better approximation of ĥ. Besides, as a decreasing α implies a less reliable µ+z, h

4When Σ = Id, equation 19 becomes λ∗ = α(Id+αId)−1z = α
1+αz. By equation 5, b = h+ε = z+µ. Thus, λ∗ = α

1+α (b−µ)
recovers the expression of λ∗ in the motivating example.
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is less affected by µ+z and gets close to µ. Note that our results do not suggest that α should be arbitrarily
close to zero for a perfect approximation (which leaves z useless). Fig 3 shows a good approximation is
achieved when α = 0.5, 1. And for these two choices, ĥ still significantly deviates from µ (corresponding to
the case when α = 0 and z is useless). Thus, z still largely affects the final estimation results.

In Section 8, we will show that a good approximation can be made in practice by comparing the accurate
solution with its approximated counterpart used in the pretrained BERT model (Devlin et al., 2019)

7 Discussion

In Section 6, we derived an alternative expression of ĥ defined in (7) by solving the Fenchel dual of the
optimization problem (6). Although the expression is not in closed form, as we are only interested in the
case when α is small, a closed-form approximation of ĥ is derived in Theorem 2 and reduced to the form
stated in (22) when considering a discrete distribution u.

As we pointed out, the block g in Fig 2a, Fig 2b and Fig 2c is expected to find the inferred p̃ minimizing (6)
followed by plugging it into (7) to construct ĥ. Thus, one can complete the architecture designs of the three
running examples by replacing g with a network layer implementing (22), namely, the structure in Fig 1c.

The relationship between the optimal solution and attention models. Remarkably, the expression
stated in (22) gives a generalized attention block. In particular, based on our framework, researchers can
customize the implementations of f (k)

evd and f (k)
pref to generate z and u and feed them into equation 22 to get

an attention-like network architecture.5

For instance, by setting ui = 1
n for all i, the expression is equivalent to the well known dot-product attention

(Luong et al., 2015), which is also applied in the transformer network (Vaswani et al., 2017). The equivalence
of the expression of ĥ and the dot-product attention layer tells us: (a) by applying a dot-product attention
layer in a model, we essentially ask the model to perform an optimization task defined in (6) and construct the
output according to (7). (b) the derivation of h depends on two relatively independent pieces of information:
a preference distribution given the global information and an estimate of the output’s deviation from the
preference distribution’s mean according to some local information. This suggests that the design of attention-
based model can be decomposed into two parts that respectively estimate these two values.

The model consisting of a stack of attention layers. Although our discussion focuses on the case that
contains a single attention layer, any attention layer L in an attention stack fits our framework (see Fig 1).
In particular, all the attention layers closer to the input X than L can be grouped into the functions fpref
or fevd. For those layers that take the current layer’s output as input, we can group them into fout, where
c may contain the outputs of other attention layers working in parallel.

T5 transformer implicitly adopts the generalized attention structure. Recent studies in NLP have
shown that T5 transformer (Raffel et al., 2020) can achieve state-of-the-art performance for many NLP
benchmarks, including text summarization, classification, question answering, etc. While their transformer
implementations are quite similar to the original transformer architecture (Vaswani et al., 2017; Devlin
et al., 2019), they adopt trainable relative position embeddings to replace the sinusoidal position signals.6
The modification provides the model with extra flexibility to encode the positional information with little
computational cost.

We will see that in comparison to the original transformer implementation, T5 transformer can be seen as a
natural realization of the generalized attention in (22), where the preference weights u unifies the concepts of
word masks and T5’s positional encoding functions. Then the usefulness and the validity of our framework
are well-supported by the state-of-the-art performance of T5 in many NLP tasks (Raffel et al., 2020).

5Potential selectionss of f (k)
evd and f (k)

pref includes constant functions, fixed formulas and neural networks that can be adapted
to the training data.

6They also simplified the layer normalization (Lei Ba et al., 2016) for faster training and inference speed.
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Consider the running example: filing in the blanks, with the preference distribution

u(ti) =
{

0 if the ith word is masked
exp(bj−i)/Z otherwise,

(23)

where Z is a normalizing constant and bj−i is a trainable scalar that only depends on the relative position
of word i and word j (which is the kth masked word that we are inferring). Substituting such u into (22)
with α = 1 yields

ĥ =
n∑
i=1

ti
exp (〈ti, z〉+ bj−i + 1masked(i))∑n
l=1 exp (〈tl, z〉+ bj−l + 1masked(l))

, (24)

where 1masked(i) is an indicator function that equals −∞ if word i is masked and zero otherwise. The
expression in (24) has the same structure as that adopted in T5 transformer, where the indicator function
serves as the mask function to prevent the model from assigning weights to the masked words. In this way,
the concepts of word masks and the positional encoding functions are unified by u in (23). Conversely, T5
transformer is a realization of the generalized attention with the preference weights u specified in (23).

Generalized attention structures suggested by the optimal solution. While T5 transformer has
implicitly adopted the generalized attention, (22) hints further generalizations could be made. For instance,
in T5 transformer, the function outputting template’s preference weights only considers the word masks and
the word’s relative positions. This function could be generalized to also consider the input sentence contexts,
and the output weights encode the importance of each word before giving the local information stored in z.
The same idea could be applied to the image captioning example to replace the uniform preference weights.
By adding a neural network taking the input image to generate non-uniform preference weights, we devise a
mechanism to estimate the importance of each part of the image before the caption generation. In this way,
the newly added network collects global information from the image to propose a preference distribution,
which could be updated locally based on current generation stage encoded in z.

Besides, although we mainly focus on the case when u is discrete, we want to emphasize that the analysis
performed in Section 6 also covers continuous u. This hints that a continuous attention mechanism could
also be implemented, which might prove to be useful in some applications.

Moreover, our theoretical work enables the design of more general attention structures; for instance, KL-
divergence in the optimization problem equation 6 requires estimated distribution to share support with
preference distribution, which may not be desired in many tasks. (e.g. translation, where the target should
be unaffected if we replace some words in the source sentence with synonyms.) Using our theory, we see this
can be achieved by replacing KL divergence with an optimal-transport based measure that handles word
similarities in their embedding space.

8 Empirical evidence

To show the proposed optimization problem (6) indeed provides a principle justifying the design of attention
modules, we show that the maximizer λ∗ of its dual problem (13) nearly coincides with its approximated
counterpart used in the pretrained BERT model (Devlin et al., 2019). Verification on other popular attention-
based models yielded similar results.

Let xi ∈ Rd for i ∈ 1, 2 . . . , n and K,Q, V ∈ Rd′×d. The kth output of BERT attention is

n∑
i=1

V xi
exp

(
〈Kxi, Qxk〉/

√
d′
)

∑n
j=1 exp

(
〈Kxj , Qxk〉/

√
d′
) . (25)

Setting α = 1, ti = xi√
d′
, z = K>Qxk, V ′ = V

√
d′ and ui ∝ 1 yields

V ′
n∑
i=1

ti
ui exp〈ti, z〉∑n
j=1 uj exp〈tj , z〉

,

11
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Figure 4: The distribution of relative deviations ‖λ
∗−αz‖
‖λ∗‖ for the attention in BERT. The red vertical lines

mark the average of the errors.

where the summation part is the one derived in (22).7

We find λ∗ by plugging α, ui’s, ti’s and z into (13) followed by performing gradient ascent. We then
calculate the relative deviation ‖λ

∗−αz‖
‖λ∗‖ of its approximated counterpart αz adopted by BERT and report

its distribution in Fig 4 for each attention layer by taking the average over the attention heads. We report the
distributions for each head in B. As Fig 4 indicates, λ∗ almost coincide with its approximated counterpart αz
inferred by BERT, which corroborates that problem (6) gives a principle justifying the design of attention.

9 Conclusion

This paper presented a new perspective to understand the attention mechanism by showing that it can be
viewed as a solver of a family of inference tasks. These tasks involve improving the noisy estimate of a
distribution p’s mean by a preference distribution that encodes some beliefs of p’s value. We have used
three running examples with the typical model architectures to show that such tasks naturally exist in
neural network design. We then abstracted a convex optimization problem from these tasks and derived a
closed-form approximation of the optimal solution by solving the problem’s Fenchel dual. We find that the
closed-form approximation can be seen as a generalized attention layer and show that one of its special cases
is equivalent to the dot-product attention adopted in transformers. We further performed an analysis on
the general form and showed that T5 transformer implicitly adopts the generalized attention structure with
attention weights unifying the concepts of the word masks and the positional encoding functions.

In a follow-up paper we replace the KL divergence with an optimal transport-based measure, where words
“similar” to the ones in the source sentence will also be attended. This replacement frees the designer from
the p(k) support constraints alluded to in the examples.

This paper is the first work that presents a principled justification for the design of attention modules in
neural networks. The generalized attention structure presented in this paper potentially opens a door to a
wide design space. For example, the preference weights need not be derived from the positional encoding
functions; they could integrate a variety of information provided by other components of the network.
Additionally, this research successfully demonstrates a novel approach to analyze the functioning of a neural
network component, namely, via isolating the component from the complex network structure and asking:
is there a “local problem” that is solved by the design of this component?

7Templates ti’s absorb the scaling factor d′−
1
2 so that their norms remain bounded as d′ increases. Thus, u has bounded

moments, and Theorem 2 applies. Note that it is a common practice to scale outputs before performing theoretical analysis.
(e.g. see the work of Arora et al. (2019).)
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A Derivation of (17) for preference distributions of bounded moments

Assume a preference distribution u has bounded moments. Then its moment generating function

M(λ) =
∫
Rd

〈a,λ〉u(a)da = 1 + 〈M ′(0),λ〉+ 1
2 〈λ,M

′′(0)λ〉+ o(‖λ‖2), (26)

where

M ′(0) =
∫

au(a)da = µ, (27)

M ′′(0) =
∫

aa>u(a)da. (28)

Notice that

log(1 + x) = t− t2

2 + t3

3 −
t4

4 + · · · = t− t2

2 + o(t2). (29)

Thus,

log(M(λ)) =
(
〈M ′(0),λ〉+ 1

2 〈λ,M
′′(0)λ〉+ o(‖λ‖2)

)
− 1

2

(
〈M ′(0),λ〉+ 1

2 〈λ,M
′′(0)λ〉+ o(‖λ‖2)

)2

+ o

((
〈M ′(0),λ〉+ 1

2 〈λ,M
′′(0)λ〉+ o(‖λ‖2)

)2
)

=〈M ′(0),λ〉+ 1
2

(
〈λ,M ′′(0)λ〉 − 〈M ′(0),λ〉2

)
+ o
(
‖λ‖2 )

=〈µ,λ〉+ 1
2λ
>Σλ+ o

(
‖λ‖2 )

,

where

Σ = M ′′(0)−M ′(0)M ′(0)> =
∫

(a − µ) (a − µ)T u(a)da.
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Figure 5: The distribution of relative errors ‖λ
∗−αz‖
‖λ∗‖ for the attention in BERT. The red vertical lines mark

the average of the errors.
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