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Abstract
Personalizing large language models (LLMs) to
accommodate diverse user preferences is essen-
tial for enhancing alignment and user satisfaction.
Traditional reinforcement learning from human
feedback (RLHF) approaches often rely on mono-
lithic value representations, limiting their ability
to adapt to individual preferences. We introduce
a novel framework that leverages low-rank pref-
erence modeling to efficiently learn and gener-
alize user-specific reward functions. By repre-
senting reward functions in a low-dimensional
subspace and modeling individual preferences
as weighted combinations of shared basis func-
tions, our approach avoids rigid user categoriza-
tion while enabling scalability and few-shot adap-
tation. We validate our method on multiple pref-
erence datasets, demonstrating superior general-
ization to unseen users and improved accuracy
in preference prediction tasks. The codebase for
this paper can be found at: https://github.
com/facebookresearch/LoRe.

1. Introduction
Aligning Large Language Models (LLMs) with human val-
ues is paramount for enhancing their relatability and effec-
tiveness. Reinforcement Learning from Human Feedback
(RLHF) (Christiano et al., 2017) is the standard approach to
achieve this alignment. However, conventional approaches
often rely on monolithic value representations, which inad-
equately address the diverse needs of various populations
(Bakker et al., 2022; Durmus et al., 2023).

In recent years, there has been a growing advocacy for plural-
istic alignment in AI systems. Researchers (Sorensen et al.,
2024; Kirk et al., 2024a; Jang et al., 2023) emphasize the
importance of designing AI systems that cater to the unique
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requirements of individuals and groups. This paradigm
shift has spurred the development of novel methods, bench-
marks, and training datasets. Nevertheless, many existing
approaches depend on pre-selected diversity-defining di-
mensions—such as demographics (Moon et al., 2024; Kwok
et al., 2024), personality traits (Castricato et al., 2024; Jiang
et al., 2023; Serapio-Garcı́a et al., 2023; Zhu et al., 2024),
and writing styles (Han et al., 2024; Jang et al., 2023; Bai
et al., 2022)—which categorize individuals into predefined
groups, potentially overlooking intra-group variability. The
scarcity of large-scale preference datasets has previously
hindered personalized LLM development. However, pio-
neering efforts by (Kirk et al., 2024b; Zollo et al., 2024)
have facilitated the exploration of personalization methods
beyond predefined user types.

Early attempts to personalize LLMs involved integrating
additional inputs—typically learnable models that generate
latent representations of user preferences based on past in-
teractions—into the design of LLMs (Li et al., 2024; Chen
et al., 2024b; Woźniak et al., 2024) or reward models (Pod-
dar et al., 2024; Chen et al., 2024a). These strategies, how-
ever, often need substantial individual user data or rely on
categorizing users based on factors such as demographics,
personalities, etc. To address these limitations, we introduce
LoRe, a novel Low-Rank Reward Modeling framework for
few-shot personalization.

LoRe leverages a structured low-rank decomposition of
reward functions. This approach allows us to model indi-
vidual preferences as weighted combinations of the basis
reward functions, enabling scalable and statistically efficient
adaptation with minimal user-specific data. In contrast to
prior approaches, LoRe demonstrates superior generaliza-
tion capabilities to diverse unseen users while maintaining
computational efficiency suitable for real-world deployment.
By integrating seamlessly with multi-objective alignment
frameworks, LoRe supports personalized response genera-
tion without the need for extensive retraining.

2. Preliminaries
A crucial step in aligning LLMs through Reinforcement
Learning from Human Feedback (RLHF) (Christiano et al.,
2017; Ouyang et al., 2022) is learning a reward function
that captures human preferences. Unlike traditional super-
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vised fine-tuning, which relies on explicitly labeled data,
RLHF enables models to learn from human comparative
judgments. This is particularly valuable in settings where
direct supervision is impractical, such as optimizing AI sys-
tems for subjective qualities like helpfulness or coherence.
In practice, human annotators provide feedback by rank-
ing responses to the same prompt, and this data is used to
train a reward model that assigns a numerical score to each
response.

A common framework for modeling such preferences is
the Bradley and Terry (1952) (BT) model. The BT model
represents preferences by assigning scalar scores/rewards
to items—where an “item” could be any decision, option,
or response. Given two items i and j with scores ri and rj ,
the probability that item i is preferred over item j follows:

P(i ≻ j) =
1

1 + exp(−(ri − rj))
. (1)

In the context of LLMs, the reward function maps prompt-
response pairs to a scalar score, indicating response quality.
This function, typically represented as rϕ : X × Y → R, is
trained using human-labeled preference data. Here, ϕ is the
reward parameterization in the function class Φ. Specifically,
for a given prompt x ∈ X , if human annotators prefer
response yc ∈ Y over yr ∈ Y , the BT model expresses the
probability of this preference as:

P(yc ≻ yr|x) =
1

1 + exp (−(rϕ(x, yc)− rϕ(x, yr)))
.

(2)

Given a dataset D of pairwise preference feedback con-
sisting of independent samples, where each sample is a
triplet (x, yc, yr), and yc ∈ Y is the response preferred over
yr ∈ Y for the prompt x ∈ X drawn uniformly at random.
The joint likelihood of the dataset is:∏

(x,yc,yr)∈D

P(yc ≻ yr|x). (3)

Assuming preferences follow the Bradley Terry Model
Eq. (1), the parameters of the reward model can be learned
by minimizing the negative log-likelihood defined as:

min
ϕ∈Φ

∑
(x,yc,yr)∈D

log (1 + exp (rϕ(x, yr)− rϕ(x, yc)))

= min
ϕ∈Φ

∑
(x,yc,yr)∈D

ℓ(rϕ(x, yc)− rϕ(x, yr)), (4)

where ℓ(z) = log(1+exp(−z)) is the logistic loss function.

3. Preference Personalization using LoRe
While the BT model assumes a single underlying reward
function shared across users, real-world preferences often

exhibit significant variation due to individual experiences,
biases, and cultural contexts. Next we present an overview
of classical work on collaborative ranking, which provides
a way to model diverse user preferences.

3.1. Collaborative Ranking from Pairwise Comparisons

Collaborative ranking (Koren et al., 2009) leverages prefer-
ence data from multiple users to infer individual preferences
across a large item set. Each user provides feedback on only
a few item pairs, and the goal is to reconstruct their full pref-
erence profile by utilizing shared information across users.
This approach accounts for diverse preferences, by avoiding
the need to aggregate conflicting opinions into a single re-
ward function. Instead, it models personalized rewards by
learning structured representations of user preferences.

Consider N users and M items, where preferences are cap-
tured in a matrix P ∈ RN×M . The ith row of P, denoted p⊤

i ,
represents user i’s rewards across all items. The probability
of user i preferring item c over item r is given by the BT
model Eq. (1) based on the reward difference (pi,c − pi,r).
Since users provide comparisons for only a small subset of
items, recovering the full matrix P is challenging. A com-
mon solution (Lu and Negahban, 2015; Park et al., 2015)—
taking into account the similarity among users and items—
assumes P is low-rank (has rank B ≪ min{M,N}) and
can be factorized as:

P = WR, (5)

where the rows of R ∈ RB×M represent a reward basis. and
W ∈ RN×B contains user-specific weights. Each user’s
preference vector is then given by:

pi = w⊤
i R. (6)

Here, w⊤
i determines how user i’s preferences combine the

basis vectors in R. The objective is to learn this low-rank
matrix from a small fraction of observed pairwise compar-
isons, enabling personalized and scalable reward learning.

3.2. Low-Rank Reward Modeling for LLM Alignment

Collaborative ranking, by exploiting the low-rank structure
in user preferences, enables few-shot learning on a new
user even when only a handful of comparisons are avail-
able. The idea is to fix the reward basis R and learn only
a low dimensional weight vector for this user. While this
approach has found use in domains multi-task RL with low-
rank MDPs (Agarwal et al., 2020; Bose et al., 2024b), the
main challenge in adapting collaborative ranking to RLHF
is the high dimensionality of the item space, which con-
sists of user prompts x ∈ X and LLM-generated responses
y ∈ Y , forming items (x, y) ∈ X × Y . User preferences
are captured through a limited number of pairwise compar-
isons (x, yc) ≻ (x, yr), indicating a preference for yc over
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LoRe: Low-Rank Reward Modelling
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Figure 1: Typically preference data from diverse users is pooled together to train a single reward model for everyone. LoRe
introduces a more flexible approach by collaboratively learning a shared reward basis from user data. Instead of producing a
single reward, this basis generates B latent rewards, which can be combined using a B-dimensional weight vector unique to
each user to produce personalized rewards. This allows for seamless personalization with minimal effort. For new users,
only the user weights need to be learned from few-shot examples, while keeping the reward basis fixed, enabling an efficient
and lightweight personalized reward model.

yr given x. However, modern LLMs typically use vocabu-
lary sizes between 32000-128000 (V ) tokens and support
context windows ranging from 2048 to 2 million (K) to-
kens (Touvron et al., 2023; Achiam et al., 2023), the item
space scales as M = V K—rendering direct reward basis
learning R ∈ RB×M infeasible.

To address this challenge, we propose a framework that
models diverse user preferences through a set of B basis
reward functions represented by the Reward Basis Rϕ :
X × Y 7→ RB . The individual preference function for user
i, pi : X × Y → R, is defined as:

pi := w⊤
i Rϕ, (7)

where w⊤
i ∈ ∆B−1 is a normalized weight vector inherent

to the user. By leveraging a straightforward low-rank matrix
factorization, we efficiently capture diverse user preferences.

This approach, overlooked in favor of more complex meth-
ods in prior work, highlights the strength of collaborative
ranking across diverse applications. The simplicity of our
method is a major advantage, enabling significant perfor-
mance gains (see Sec. 5) while being easy to integrate with
various downstream tasks (see Sec. 3.4). The space Φ of the
learnable parameters depends on the use case and the sam-
ple size available for training. We provide a few examples
below.

• Example 1. Fine-tuning only the final layer of a pre-
trained reward model (Ziegler et al., 2019): Standard
transformer-based models output a single scalar reward.
To modify the reward model to output a B-dimensional
representation, we learn a simple linear transformation
on top of the embeddings generated by the pre-final layer,
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denoted as e : X × Y 7→ RD, while keeping other layers
frozen. The reward basis is then defined as:

Rϕ(x, y) = Ae(x, y), (8)

where A ∈ RB×D is a learnable matrix that projects
e(x, y) into a B-dimensional space.

• Example 2. Similar to Example 1, we modify the pre-
trained reward model to output a B-dimensional repre-
sentation by applying a learnable transformation to the
embeddings from the pre-final layer. Instead of using
a linear transformation, we train a shallow multi-layer
perceptron (MLP) fϕ on top of these frozen embeddings
(Wang et al., 2024):

Rϕ(x, y) = fϕ(e(x, y)), (9)

where ϕ are the parameters of the MLP. This allows for
more expressive transformations while keeping the earlier
layers of the reward model frozen.

• Example 3. Fine-tuning earlier layers with LoRA (Low-
Rank Adaptation) (Hu et al., 2021): Instead of keeping
the earlier layers frozen, we can allow them to be fine-
tuned in a parameter-efficient way using LoRA. As in
the previous examples, we first modify the pre-trained
reward model to output a B-dimensional representation
by applying a learnable transformation to the embeddings
from the pre-final layer. However, in addition to learning
a transformation on top of these embeddings, we also
fine-tune the transformer’s earlier layers by introducing
low-rank adaptation matrices.

3.3. The LoRe Workflow

In this section, we outline the LoRe workflow in full gen-
erality. The specific choices made for our experiments are
discussed in Section 5.

Collecting User Preference Data: We assume access to
preference feedback data from seen users, denoted by the
set Useen. Each user provides a set of labeled pairs of re-
sponses, denoted as Di = {(x, yc, yr)}, where x is the input,
and yc and yr are the chosen and rejected options, respec-
tively. The training dataset Dtrain is the collection of Di of
all users in Useen.

Jointly Learning Basis Reward and User Preference
Weights: Assuming that the preference for each user fol-
lows the BT Model with their personalized reward function
pi, the learning problem boils down to the following maxi-
mum likelihood estimation problem:

min
ϕ:Φ,{wi∈∆B−1}i∈Useen∑
i∈Useen

1

|Di|
∑

(x,yc,yr)∈Di

ℓ(w⊤
i (Rϕ(x, yc)−Rϕ(x, yr))),

(10)

where ℓ(·) is the logistic loss function as described in
Eq. (4).

Once the learner has learned these parameters, they are
interested in generalizing to new prompt queries by the
users in Useen, as well as being able to adapt to preferences
of new users denoted by the set Uunseen.

Few Shot Learning for New Users (Unseen User Gener-
alization): This type of generalization involves predicting
well for users whose preference data was not part of the
training data at all, i.e., completely new users with unseen
preferences. These users are termed as unseen users de-
noted by the set Uunseen. These users have few interaction
data points, that is termed as Dfewshot, and this is used to
few-shot learn these users’ preferences {wi}i∈Uunseen

by
optimizing Eq. (11).

For any user i ∈ Uunseen with few feedback samples denoted
by Di ∈ Dfewshot, we estimate their preference wnew ∈
∆B−1, keeping the reward basis Rϕ fixed from Eq. (10) as
follows:

wnew = argmin
w∈∆B−1

∑
(x,yc,yr)∈Di

ℓ(w⊤(Rϕ(x, yc)−Rϕ(x, yr))).

(11)

3.4. Personalized Response Generation via Steerable
Multi-Objective Alignment

Recently, there has been a growing interest in Multi-
Objective Alignment (MOA) in LLMs. Formally, let
Rϕ : X × Y → RB represent B reward functions for
different (often conflicting) objectives. For instance, one
objective may favor detailed explanations, while another pri-
oritizes conciseness. The goal is to generate responses with
varying emphasis, dictated by a weight vector w ∈ RB ,
yielding the reward function w⊤Rϕ. A naive approach
would be to train a language model for every possible w,
but this becomes infeasible as the space of w is infinite.

Prior work (Wu et al., 2023; Zhou et al., 2023; Rame et al.,
2024; Jang et al., 2023; Shi et al., 2024) demonstrates that it
is possible to learn only B language models corresponding
to these B reward functions and still generate responses for
any arbitrary weight w at inference time. However, these
works assume known reward models (using off-the-shelf
reward models for observable objectives like harmlessness,
conciseness, etc.) and provided preference weights.

In personalization, objectives are often latent and subjective,
requiring learning rather than explicit specification. Further-
more, preferences are inherently subjective and can be diffi-
cult to articulate, making it challenging for users to specify
precisely what weights they want. Modeling personalized
rewards as linear combinations of basis functions enables
adaptation to users’ implicit preferences. Our research is
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orthogonal yet complementary to this line of work, enabling
seamless integration into advances in multi-objective align-
ment.

4. Related Work and Contributions
Personalized Reward Learning from Human Feedback:
This line of research typically captures diversity in user
preferences in one of the following ways: 1.Explicitly cate-
gorize users based on observable traits (e.g., demographics,
personality traits) and train separate reward models for each
category (Jiang et al., 2023; Zhu et al., 2024; Bose et al.,
2024a). This approach is inherently limited in granularity
and struggles with cases where user preferences do not align
neatly with predefined categories. 2. Learn per-user re-
ward models by conditioning on latent representations of
user preferences (Poddar et al., 2024; Chen et al., 2024a;
Lee et al., 2024). These methods require significant data
for each user and do not generalize well to new users with
limited feedback. We elaborate on two of these methods
next.

Personalized reward modeling for pluralistic alignment
(PAL) : (Chen et al., 2024a) assume that the latent prefer-
ence of each user is modeled by an unknown ideal point
zi ∈ RD. They propose two methods to represent these
ideal points:

PAL-A: In this approach, the ideal points factorize as
zi = Qwi, where Q ∈ RD×B represents B prototype
ideal points and wi ∈ ∆B−1 represents weights over these
prototypes for user i. Given a pre-trained embedding func-
tion e : X × Y 7→ RD, the reward for user i for a prompt
response pair (x, y) ∈ X × Y is given by the Euclidean
distance square between e(x, y) and Qwi in a learnable
representation space defined by function fθ : RD 7→ Rd (a
shallow MLP with parameters θ):

pi(x, y) := ∥fθ(e(x, y))− fθ(Qwi)∥22. (12)

The learnable parameters are θ,Q, {wi}i∈Useen
. This

method aims to generalize to unseen users by covering the
user space with the prototype matrix.

PAL-B: Here, the user ideal point is a function of the
prompt, expressed as zi(x) = Gϕ(e(x))wi. The personal-
ized reward function is defined as:

pi(x, y) := zi(x)
⊤fθ(e(y)) = w⊤

i G
⊤
ϕ (e(x))fθ(e(y)),

(13)

where Gϕ : RD 7→ Rd × RK and fθ : RD 7→ Rd.
Mathematically, PAL-B is a special case of Eq. (7) where
Rϕ(x, y) := G⊤

ψ (e(x))fθ(e(y)). This decomposition of
Rϕ is not novel to PAL-B and has already appeared in a
prior work (Wang et al., 2024).

Variational Preference Learning (VPL) (Poddar et al.,
2024): The latent preference of each user is denoted by zi ∈
RD, which is the output of an encoder function Qθ : Di 7→
RD, that maps the user preference data Di to a latent code.
Given a pre-trained embedding function e : X × Y 7→ RD,
the reward for user i for a prompt response pair (x, y) ∈
X × Y is given by a learnable function Rϕ : R2D 7→ R, as:

pi(x, y) := Rϕ(e(x, y);Qθ(Di)). (14)

The noise in the latent space encourages the reward model
to learn over the entire latent space, which encourages the
production of meaningful rewards for unseen users, with the
learnable parameters being those of Rϕ and Qθ.

Personalized Response Generation: Following the idea
of Direct Preference Optimization (DPO) (Rafailov et al.,
2024), which learns a response generation policy (a lan-
guage model) without explicitly learning a reward function,
recent approaches directly model personalized responses.
Li et al. (2024) use an encoder to generate latent user em-
beddings, conditioning a language model on them via DPO.
Chen et al. (2024b) personalizes responses through user-
specified prompts, while Woźniak et al. (2024) incorporates
user information as input features. Other works explore
limited personalization settings, such as multiple-choice
questions (Zhao et al., 2023), explicit human corrections
(Shaikh et al., 2024), and few-shot adaptation with synthetic
users (Singh et al., 2025). In Appendix A, we show that the
core idea of LoRe naturally extends to response generation
without explicit reward learning too.

Evaluating personalized response generation is particularly
challenging. Unlike reward learning, where user data can
be held out for validation, there is no access to users in of-
fline datasets to label their preferences on newly-generated
responses. Instead, evaluations rely on heuristic LLM-based
evaluators, which are typically trained using monolithic
Bradley-Terry reward models assuming a single global rank-
ing of responses, failing to capture diverse user preferences.
Hence, as discussed in Panickssery et al. (2024); Dong et al.
(2024), these models reinforce bias; favoring dominant pref-
erence patterns while undervaluing minority preferences
and struggle with ambiguous or tied preferences, leading to
systematic misalignment with real user satisfaction. Contri-
butions We state our contributions and how we overcome
limitations in prior work:

1. Latent Basis Reward Functions for Personalized
Alignment LoRe introduces a structured approach to
personalization by learning a set of primitive reward
functions (basis functions) that span the space of individ-
ual reward models. Each user’s preference is represented
as a weighted combination of these basis functions, en-
abling smooth adaptation without requiring predefined
user categories or extensive per-user data.
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2. Decoupled Learning for Efficient and Generalizable
Adaptation LoRe separates the learning of basis re-
ward functions from user-specific weights, enabling rapid
few-shot personalization. Once the basis functions are
learned, a new user’s preferences can be captured with
only a small number of interactions, making it practical
for real-world deployment. By capturing the underlying
structure of user preferences, LoRe generalizes effec-
tively to unseen users with minimal data. Unlike latent-
code-based methods like VPL or PAL that require sep-
arate modules for inferring user representations, LoRe
directly learns a compact basis, reducing the number of
learnable parameters and improving both efficiency and
generalization.

3. Scalability to Large and Diverse User Populations Un-
like approaches that either assume homogeneous reward
models (BT) or struggle with scalability (PAL, VPL),
LoRe maintains strong performance on large-scale per-
sonalization tasks. The low-rank decomposition reduces
computational overhead while preserving expressiveness
(cf. Sec. 5).

4. Integration with Multi-Objective Alignment for Re-
sponse Generation LoRe naturally extends to per-
sonalized response generation by leveraging its basis
reward functions. Unlike PAL and VPL, which re-
quire additional policy networks to generate responses,
our method integrates seamlessly with steerable multi-
objective alignment frameworks.

5. Bridging the Gap Between Explicit Categorization
and Per-User Models Many personalization methods
either cluster users into predefined categories (demo-
graphics, personality types) or train separate models for
each user. LoRe avoids these extremes by learning a
flexible, data-efficient representation of user preferences
that adapts without requiring extensive individual data.

By combining structured reward decomposition, scalable
adaptation, and efficient integration with response genera-
tion, LoRe offers a principled and practical approach to per-
sonalized RLHF, addressing key limitations of prior meth-
ods while enabling new capabilities.

5. Experiments
Evaluation Metrics: We evaluate the reward model’s ac-
curacy on unseen response pairs for both seen and unseen
users:

1

|D̃i|

∑
(x,yc,yr)∈D̃i

I[w⊤
i (Rϕ(x, yc)−Rϕ(x, yr)) > 0],

(15)

where I[·] is the indicator function, equal to 1 if the condition
holds and 0 otherwise.

We define four dataset splits: Dtrain contains labeled pref-
erence data from seen users Useen used to train the reward
basis, Dseen

test evaluates generalization to new response pairs
for seen users, Dfewshot provides a small set of labeled data
for unseen users Uunseen, and Dunseen

test assesses generaliza-
tion to new users. We evaluate:

1. Seen Accuracy: Generalization to new response pairs
for seen users using Dseen

test .

2. Unseen Accuracy: Generalization to new response pairs
for unseen users on Dunseen

test , where user preferences are
learned from few-shot examples in Dfewshot.

3. Few-shot Ability: Accuracy on Dunseen
test upon varying

the number of examples in Dfewshot.

Baselines: We use a pre-trained reward model (Liu et al.,
2024) to generate fixed embeddings e(x, y) ∈ RD, where
D = 4096. We compare against 1) Reference Model (Liu
et al., 2024), 2) BT (monolithic reward model, applying
a learnable linear mapping from fixed embeddings e(x, y)
to a scalar reward), 3) VPL (Poddar et al., 2024), 4) PAL
(Chen et al., 2024a) (both using their respective architec-
tures over the same fixed embeddings e(x, y)), and 5) LoRe
(applying a learnable linear transformation on e(x, y) to
map embeddings to RB (corresponding to Example 1 in Sec.
3.2). A detailed description of all baselines is presented in
Appendix B.1.

Semi-synthetic Preference Dataset: The PersonalLLM
dataset (Zollo et al., 2024) contains 10,402 prompts, each
with responses from eight top LLMs (e.g., GPT-4o, Claude
3 Opus, Mixtral8x22B). Each response is scored by 10
reward models from Reward Bench, built on popular base
models such as Llama3, Mistral, and Gemma, with diverse
preferences. Given a prompt x and response y, the reward
vector is R(x, y) ∈ R10. The dataset is split into 9,402
training and 1,000 test prompts.

Synthetic users are generated by sampling a preference vec-
tor w ∼ Dirichlet(α) and computing response scores as
w⊤R(x, y). We vary α in the range {0.1, 0.01, 0.001},
where a larger α results in more uniform preferences and
a smaller α leads to more discrete user types. We then cat-
egorize users as follows: 1. Very Diverse (α = 0.001):
Aligning closely with one of the 10 reward models. 2. Mod-
erately diverse (α = 0.01): A balance between specific
and broad preferences. 3. Near Uniform (α = 0.1): The
most uniform preferences.

For each user, we store the highest/lowest scored responses
and simulate 1000 seen and 1000 unseen users. Each seen
user gets 45 prompts from the training set Dtrain, while each
unseen user gets 9 prompts to form Dfewshot. All 1000 test
prompts form Dseen

test ,Dunseen
test to test the performance of the

learnt models.
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PersonalLLM
Setting Very Diverse (α = 0.001) Moderately Diverse (α = 0.01) Near Uniform (α = 0.1)
Method Seen Unseen Overall Seen Unseen Overall Seen Unseen Overall

ref 78.4 ± 1.2 76.1 ± 1.5 77.3 ± 1.3 78.1 ± 1.4 77.8 ± 1.6 77.9 ± 1.5 82.7 ± 1.0 83.7 ± 1.1 83.2 ± 1.0
BT 86.3 ± 1.0 86.4 ± 1.3 86.4 ± 1.1 87.8 ± 1.2 87.2 ± 1.4 87.5 ± 1.3 93.2 ± 0.9 93.1 ± 1.0 93.2 ± 0.9

VPL 86.4 ± 1.3 86.5 ± 1.2 86.5 ± 1.3 93.9 ± 1.1 84.1 ± 1.5 89.0 ± 1.3 92.0 ± 1.0 92.8 ± 0.8 92.4 ± 0.9
PAL 85.0 ± 1.3 86.5 ± 1.2 85.7 ± 1.3 86.1 ± 1.1 87.1 ± 1.5 86.6 ± 1.3 91.7 ± 1.0 91.8 ± 0.8 91.7 ± 0.9
LoRe 94.3 ± 0.9 93.3 ± 1.0 93.8 ± 0.9 94.6 ± 0.8 93.6 ± 1.1 94.1 ± 0.9 96.0 ± 0.7 96.1 ± 0.8 96.0 ± 0.7

Table 1: Using PersonalLLM we generate 1000 seen users and 1000 unseen users. In particular, we use 45 examples per
seen user and 9 few-shot examples per unseen user.
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Figure 2: We vary the number of few-shot samples and repeat each experiment 20 times, randomly subsampling different
examples in each run. The plot reports the average performance (unseen accuracy) along with standard deviations. Notably,
VPL, which infers the latent code from few-shot examples without the ability to relearn it, shows limited improvement as
the number of examples increases. While PAL exhibits some gains, our algorithm’s performance improves significantly
faster in comparison.

Summarization Task on Real Users: We use the TLDR
dataset, where each comparison consists of a Reddit post,
two summaries, and the worker ID who annotated it (Stien-
non et al., 2020). After filtering out workers with fewer than
50 annotations, we retain 40 workers. They are split into
two equal groups of 20, corresponding to Useen and Uunseen.

Each worker has an average of 4,000 labeled pairs, which
are evenly divided into a training set and a test set. To con-
struct Dtrain, we randomly sample {100, 150} pairs from
each seen user’s training data. For unseen users, we ran-
domly select 50 examples from their training data to form
Dfewshot. Evaluation is conducted on the full set of labeled
test samples, corresponding to Dseen

test and Dunseen
test .

Real-World Preference Dataset with a Large and Di-
verse User Base The PRISM dataset (Kirk et al., 2024b)
is a comprehensive resource for LLM feedback analysis,
featuring 1,500 participants from 75 countries. It provides
fine-grained feedback on both contextual and stated pref-
erences, collected from 8,011 live conversations across 21
different LLMs.

After filtering out users with fewer than six dialogues, we
randomly split the remaining participants into two equal

groups, resulting in |Useen| = |Uunseen| = 643 users, with
each user averaging seven dialogues. For each user, half
of their interactions are used for training (Dtrain,Dfewshot),
which informs reward model learning and the preferences
of unseen users. The remaining interactions are reserved for
evaluation (Dseen

test ,Dunseen
test ).

We repeat each experiment 20 times with different random
splits, reporting the mean and standard deviation in Tables 1,
2, and 3. To further analyze the scalability of the few-shot
adaptation phase, we vary the number of few-shot samples
and plot the average performance across 20 runs in Figure 2.

Analysis In the PersonalLLM dataset, as diversity decreases,
all methods improve, but LoRe consistently achieves the
best performance across all settings. VPL and PAL, which
are personalization baselines, struggle to remain compet-
itive when the number of users is large, as seen in both
PersonalLLM and PRISM. Their performance is often close
to BT, which does not personalize at all, indicating a lack of
scalability. However, when the number of users is smaller,
as in the Reddit TLDR dataset, both VPL and PAL per-
form well, further reinforcing their limitations in scaling
to larger personalization tasks. Additionally, VPL exhibits
signs of overfitting, performing well on seen users but sig-
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Reddit TLDR
Setting 100 examples per seen user 150 examples per seen user
Method Seen Unseen Overall Seen Unseen Overall

ref 56.3 ± 1.3 57.3 ± 1.4 56.8 ± 1.2 56.3 ± 1.2 57.3 ± 1.5 56.8 ± 1.3
BT 60.0 ± 1.4 60.0 ± 1.2 60.0 ± 1.3 63.2 ± 1.1 64.3± 1.3 63.7 ± 1.2

VPL 63.6 ± 1.3 62.1 ± 1.4 62.9 ± 1.2 63.4 ± 1.3 62.7 ± 1.2 63.1 ± 1.3
PAL 64.1 ± 1.1 64.9 ± 1.5 64.5 ± 1.2 64.4 ± 1.3 63.8 ± 1.2 64.1 ± 1.3
LoRe 65.0 ± 1.1 66.2 ± 1.2 65.6 ± 1.1 66.2 ± 1.0 66.7 ± 1.1 66.5 ± 1.0

Table 2: We split Reddit TLDR into 20 seen and 20 unseen users, with 50 few-shot examples per unseen user. We vary the
number of examples per seen user to learn the reward basis.

PRISM
Method Seen Unseen Overall

ref 58.8 ± 1.1 57.3 ± 1.2 58.0 ± 1.0
BT 64.0 ± 1.0 61.0 ± 1.2 62.5 ± 1.1

VPL 64.6 ± 1.0 58.2 ± 1.2 61.4 ± 1.1
PAL 70.8 ± 1.0 59.0 ± 1.2 64.92 ± 1.1
LoRe 71.0 ± 0.9 71.0 ± 1.0 71.0 ± 0.8

Table 3: We split PRISM into 643 seen and 643 unseen
users. On average there are only 3.84 examples per seen
and 3.87 examples per unseen user, making generalization
to unseen users challenging for baselines.

nificantly worse on unseen users, highlighting its inability
to generalize effectively. In contrast, LoRe consistently
outperforms all other methods, demonstrating strong scala-
bility, generalization, and adaptability across varying levels
of personalization diversity.

We also analyze the dependence of few-shot examples on
unseen accuracy in Figure 2. The BT and ref models are not
capable of personalization to new users and hence demon-
strate the same performance throughout. We observe that
VPL and PAL do not change their performance much either
as number of few shot examples increase. We found that the
high-dimensional latent codes do not change significantly
for both VPL and PAL as the number of few-shot examples
increased. For LoRe, the unseen accuracy steadily increases
across all datasets, as the number of examples increases.

6. Conclusion and Future Work
We introduced LoRe, a novel framework for personalizing
LLMs via Low-Rank Reward Modeling. Our approach im-
proves RLHF personalization by leveraging a structured
decomposition of reward functions, enabling efficient adap-
tation to diverse user preferences with minimal data. Exten-
sive evaluations demonstrated LoRe’s superior generaliza-
tion to seen and unseen users while maintaining scalability
and efficiency. Compared to baseline methods, LoRe consis-
tently achieved better unseen user adaptation and preference
prediction accuracy. It remains effective even as the number
of users increases, breaking a key limitation in prior work.

Future directions include extending LoRe to online RLHF
with explorative data collection.
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dra Faust, and Maja Matarić. Personality traits in large
language models. 2023.

Omar Shaikh, Michelle Lam, Joey Hejna, Yijia Shao,
Michael Bernstein, and Diyi Yang. Show, don’t tell:
Aligning language models with demonstrated feedback.
arXiv preprint arXiv:2406.00888, 2024.

Ruizhe Shi, Yifang Chen, Yushi Hu, ALisa Liu, Noah Smith,
Hannaneh Hajishirzi, and Simon Du. Decoding-time
language model alignment with multiple objectives. arXiv
preprint arXiv:2406.18853, 2024.

Anikait Singh, Sheryl Hsu, Kyle Hsu, Eric Mitchell, Ste-
fano Ermon, Tatsunori Hashimoto, Archit Sharma, and
Chelsea Finn. Fspo: Few-shot preference optimization of
synthetic preference data in llms elicits effective person-
alization to real users. arXiv preprint arXiv:2502.19312,
2025.

Taylor Sorensen, Jared Moore, Jillian Fisher, Mitchell Gor-
don, Niloofar Mireshghallah, Christopher Michael Ryt-
ting, Andre Ye, Liwei Jiang, Ximing Lu, Nouha Dziri,
et al. A roadmap to pluralistic alignment. arXiv preprint
arXiv:2402.05070, 2024.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler,
Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei,
and Paul F Christiano. Learning to summarize with hu-
man feedback. Advances in Neural Information Process-
ing Systems, 33:3008–3021, 2020.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Mar-
tinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971, 2023.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and
Tong Zhang. Interpretable preferences via multi-objective
reward modeling and mixture-of-experts. arXiv preprint
arXiv:2406.12845, 2024.
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A. LoRe directly for language generation
A language model is a policy network that assigns the likelihood of a response y ∈ Y , given prompt x ∈ X denoted by
πθ : X 7→ ∆|Y|−1. Given a reward function rϕ : X × Y 7→ R and a reference policy πref (typically obtained by supervised
finetuning a pre-trained model), the objective is to learn a policy πθ that maximizes the KL-regularized reward maximization
problem:

θ∗ = argmax
θ∈Θ

Ex∼D,y∼πθ(·|x)[rϕ(x, y)− βDKL(πθ(y|x)||πref(y|x)]. (16)

Rafailov et al. (2024) shows that the optimal policy for the KL-regularized reward maximization problem satisfies

πθ∗(y|x) =
πref(y|x)
Zϕ(x)

exp

(
rϕ(x, y)

β

)
=⇒ rϕ(x, y) = β log

πθ∗(y|x)
πref(y|x)

+ βZϕ(x), (17)

where Zϕ(x) is a normalization factor. Since there is a direct correspondence between the reward function rϕ and the
optimal policy that maximizes the KL-regularized reward, Rafailov et al. (2024) proposes Direct Preference Optimization
(DPO), which directly learns the policy πθ∗ without first learning reward model rϕ on offline preference data. Then, by
using this closed-form expression for rϕ(x, y) and applying minimizing negative log-likelihood to the Bradley-Terry model,
we can obtain

min
ϕ∈Φ

∑
(x,yc,yr)∈D

ℓ(rϕ(x, yc)− rϕ(x, yr))

= min
θ∈Θ

∑
(x,yc,yr)∈D

ℓ

(
β log

πθ(yc|x)
πref(yc|x)

− β log
πθ(yr|x)
πref(yr|x)

)
(by Eq. (17).)

Learning a Policy Basis: Instead of first learning a reward basis function Rϕ : X × Y 7→ RB , it is equivalent to learning
(fine-tuning) B basis policies {πθi : X 7→ ∆|Y|−1}i∈[B], which produces B likelihoods, each corresponding to the optimal
policy for each of the latent reward dimensions.

Conditioned on a prompt x, and a pair of responses (y, ỹ), the probability of a user with preference weights w ∈ ∆B−1 of
choosing y over ỹ under the Bradley-Terry model can be written as:

P[y ≻ ỹ|x] = 1

1 + exp (−w⊤ (Rϕ(x, y)−Rϕ(x, ỹ)))

=
1

1 + exp
(
−β

∑
j∈[B] w

(j)
(
log

πθj
(y|x)

πref (y|x) − log
πθj

(ỹ|x)
πref (ỹ|x)

)) , (by Eq. (17).)

where w(j) is the jth entry of the vector w. Analogous to Eq. (10), given a dataset of offline preferences, the parameters θ
and {wi}i∈Useen

can be learnt by plugging in the negative log-likelihood loss as

min
{θj :Θ}j∈[B],{wi∈∆B−1}i∈Useen

∑
i∈Useen

1

|Di|
∑

(x,yc,yr)∈Di

ℓ

 ∑
j∈[B]

w
(j)
i

(
β log

πθj
(yc|x)

πref(yc|x)
− β log

πθj
(yr|x)

πref(yr|x)

) . (18)

For a new user, θ is frozen, and only the user weight wnew is estimated using few-shot examples:

wnew = argmin
w∈∆B−1

∑
(x,yc,yr)∈Di

ℓ

∑
j∈[B]

w(j)

(
β log

πθj (yc|x)
πref(yc|x)

− β log
πθj (yr|x)
πref(yr|x)

) . (19)

B. Additional Details on Experiments
Evaluation Metrics For any user i ∈ Useen ∪ Uunseen (seen or unseen) we evaluate the performance of the learned reward
basis Rϕ and preferences wi, on their unseen pairs of responses D̃i (ie. data not present in Dtrain or Dfewshot) as the fraction
of responses the learnt reward model classified correctly, defined formally as:

1

|D̃i|

∑
(x,yc,yr)∈D̃i

I[w⊤
i (Rϕ(x, yc)−Rϕ(x, yr)) > 0]. (20)

To test how well the learnt parameters generalize, we consider the following:
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1. Generalizing to Unseen Pairs of Responses for Seen Users (Seen Accuracy): This type of generalization involves
predicting well for new pairs of responses for users whose preferences have already been learned from the training data.
We do so by evaluating the learnt model’s (ϕ, {wi}i∈Useen

from Eq. (10)) classification accuracy (via Eq. (20)) on Dseen
test

which contains the seen users’ labels on prompts and response pairs that are not present in the training dataset Dtrain.

2. Generalizing to New Users (Unseen Accuracy): This type of generalization involves predicting well for users whose
data was not part of the training data Dtrain, i.e., completely new users with unseen preferences. These users are termed
as unseen users Uunseen. These users come with few labelled data points, that is termed as Dfewshot, and this is used to
few-shot learn these users’ preferences {wi}i∈Uunseen

by optimizing Eq. (11), keeping ϕ fixed. We evaluate the learnt
preference weights’ accuracy (via Eq. (20)) on Dunseen

test which contains the unseen users’ labels on prompts and response
pairs that are not present in the training dataset Dfewshot.

3. Performance as the number of dialogs increases for few-shot estimation: It is natural that a new user gradually
builds up feedback data on a LLM server. So far we were working in the setup where the LLM has already collected
some feedback for the user based on some conversations, and see how the estimated preferences generalizes to future
conversations. We consider how the performance varies as the LLM provider builds up multiple conversations with users.
We do so by increasing the dataset size for Di ∈ Dfewshot while learning wi via Eq. (11) for all i ∈ Uunseen.

B.1. Architecture of Baselines and Training Hyperparameters

Functional Form of Reward Basis Function (LoRe): For all our experiments, we use a pre-trained reward model (Liu
et al., 2024) to output embeddings of dimension D = 4096, which we denote as e : X ×Y 7→ RD. We keep this embedding
function frozen and learn a linear transformation on top of these fixed embeddings. The reward basis function is thus defined
as:

Rϕ(x, y) = Ae(x, y), (21)

where A ∈ RB×D is a learnable matrix, representing the linear transformation applied to the pre-trained embeddings. By
keeping the embedding function fixed and only learning the linear transformation, we can effectively adapt the pre-trained
reward model to user preferences from specific datasets while leveraging its rich feature representations.

Hyperparameters: A is learned by using Adam (Kingma, 2014) on Eq. (10) with learning rate 0.5. For few-shot adaptation,
we use Adam with learning rate 0.1 on Eq. (11).

The number of basis B is selected from {2, 5, . . . , 50} through cross validation on a held out validation set.

Experimental Setup for baselines: We follow the exact training code, model architecture, and hyperparameters as described
in the original implementations of PAL (Chen et al., 2024a) and VPL (Poddar et al., 2024), and run them on our benchmark
datasets without modification. Detailed hyperparameter settings for PAL and VPL are listed in Table 4 and Table 5,
respectively.

Table 4: The training hyperparameter setting of PAL (Chen et al., 2024a).

Hyperparameters Values
B (Number of prototypes) selected through cross validation from {2, 5, 10, . . . , 50}
Batch size 4
Projectors mlp-2layer-geul-dropout0
Learning rate of projectors 1e-4
Learning rate of user weights 5e-3
Weight decay of projectors 0.01
Weight decay of user weights 0.0
Dimension of preference embedding 512

Parameter Efficiency of LoRe As shown in Table 6 and Figure 3, LoRe is significantly more lightweight in terms of total
trainable parameters compared to PAL and VPL. While PAL and VPL rely on large MLP architectures and per-user latent
representations, LoRe uses only a simple linear projection on frozen embeddings, combined with a small set of basis-user
interactions. This design leads to a much more compact model, especially as the number of users increases, enabling scalable
personalization without compromising effectiveness.
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Table 5: Hyperparameters for VPL (Poddar et al., 2024).

Hyperparameter Value
Pair Encoder Architecture 2 layer MLP with LeakyReLU
Hidden Dimension 512
Latent Dimension 512
Learning rate 1.0000 × 10−4

Learning rate scheduler Cosine with 3% warmup steps
Batch size 32
Optimizer AdamW (with weight decay = 0.001)

Table 6: Scaling of Total Trainable Parameters for VPL, PAL, and LoRe. Here, N is the number of seen users and B refers
to the number of prototypes in PAL, and number of basis (rank) in LoRe.

Method Architecture Details Parameter Count
VPL 2 layer MLP on frozen embeddings 4096× 512 + 512× 512 + 512
PAL 2 layer MLP on frozen embeddings 4096× 512 + 512× 512 + 4096×B +B ×N

(B prototypes)
LoRe Linear Transformation on frozen embeddings B × 4096 +B ×N

(B basis)

Figure 3: Trainable parameter count vs. number of seen users (log scale). LoRe scales significantly more efficiently than
PAL and VPL as the number of users increases. Unlike VPL and PAL, which rely on large MLPs and high-dimensional
prototype representations, LoRe uses a lightweight linear projection with shared basis vectors, resulting in dramatically
fewer parameters while retaining personalization capabilities.
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