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Abstract
We present the first learning-augmented data struc-
ture for implementing dictionaries with optimal
consistency and robustness. Our data structure,
named RobustSL, is a skip list augmented by
predictions of access frequencies of elements
in a data sequence. With proper predictions,
RobustSL has optimal consistency (achieves
static optimality). At the same time, it main-
tains a logarithmic running time for each oper-
ation, ensuring optimal robustness, even if pre-
dictions are generated adversarially. Therefore,
RobustSL has all the advantages of the recent
learning-augmented data structures of Lin, Luo,
and Woodruff (ICML 2022) and Cao et al. (arXiv
2023), while providing robustness guarantees that
are absent in the previous work. Numerical ex-
periments show that RobustSL outperforms al-
ternative data structures using both synthetic and
real datasets.

1. Introduction
Dictionaries are one of the most studied abstract data types
with a wide range of applications, from database index-
ing (Bayer & McCreight, 1972) to scheduling in operating
systems (Rubini & Corbet, 2001). In the dictionary problem,
the goal is to maintain a set of n items, each represented
with a key, so as to minimize the total cost of processing an
online data sequence of operations, each involving access,
insertion, deletion, or other operations such as successor and
range queries. Here, the cost refers to the number of com-
parisons made for all operations, and amortized cost is the
average cost of a single operation over the input sequence.

There are several data structures to implement dictionaries.
Hash tables are efficient and practical data structures that are
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useful in many applications. However, hash tables do not
efficiently support operations like successor and rank/select
queries (Lin et al., 2022). In comparison, binary search
trees (BST) and skip lists keep items sorted and thus support
queries that involve ordering items with minimal augmen-
tation. Classic BSTs such as red-black trees, AVL trees,
treaps, and classic skip lists support dictionary operations
in O(log n) time, which is optimal for a single operation.
For a sequence of m operations in a data stream, however,
these structures are sub-optimal as they do not react to the
access patterns in the input. For example, an input may
be formed by m requests to a leaf i of a balanced BST,
giving it a total cost of Θ(m log n), while a solution that
first moves i to the root has a cost of Θ(m + log n). The
same argument can be made by making requests to a key
replicated once at the deepest level of a skip list. Splay
trees (Sleator & Tarjan, 1985) are self-adjusting BSTs that
move each accessed item to the tree’s root via a splay opera-
tion. Splay trees are statically optimal, meaning their cost
is proportional to an optimal data structure that does not
self-adjust. Nevertheless, as pointed out by Lin et al. (2022)
and Cao et al. (2023), the constant multiplicative overhead
involved in pointer updates in the splay operations makes
them impractical in many applications.

In recent years, there has been an increasing interest in aug-
menting algorithms that work on data streams with machine-
learned predictions. The objective is to design solutions
that provide guarantees with respect to consistency, the
performance measure when predictions are accurate, and
robustness, the performance measure when predictions are
adversarial. For dictionaries, Lin et al. (2022) presented
an augmented treap data structure that uses frequency pre-
dictions. In a classic treap, each item is assigned a random
priority that defines its location in the tree. In the work
of Lin et al. (2022), these random priorities are replaced
with machine-learned frequency predictions. Under the
“random-order rank” assumption, which implies all keys
have the same chance of being the i’th frequently asked key
(for any i ≤ n), the resulting data structure offers static
optimality with accurate predictions (is optimally consis-
tent) and is robust in the sense that the expected cost of
all operations in O(m log n). When the ranks are not ran-
dom, however, the resulting data structure is not consistent
nor robust (§2.3, Proposition 2.2). Cao et al. (2023) have
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recently proposed an alternative priority assignment that re-
sults in a learning-augmented treap (or learning-augmented
B-Tree with priorities) that is statically optimal with accu-
rate predictions without the random-order rank assumption.
Nevertheless, we show that their structure is also vulnerable
when predictions are adversarial and thus is not robust (§2.3,
Proposition 2.3).

Contributions. This work introduces RobustSL, a
learning-augmented data structure that utilizes frequency
predictions and achieves optimal consistency and robustness.
Our primary contributions are delineated as follows:

• In § 3.1, we presented RobustSL, a skip list that repli-
cates each item, given its predicted frequency, based
on two factors. The first factor is deterministic and
is calculated based on the predicted frequency of the
item using a classification approach that ensures items
with similar predicted frequencies receive a compara-
ble number of replicas ( number of times a particular
element appears at different levels) within the skip
list. In particular, including this factor guarantees that
items with higher predicted frequencies obtain more
expected number of replicas, thereby optimizing the
structure’s performance. The second factor is a ran-
domized factor added to the deterministic one. The
intuition behind this factor is similar to classic skip
lists: adding a random “noise” to the number of repli-
cas to ensure efficient list navigation when searching
for an item. The deterministic replication process en-
sures consistency, whereas the stochastic mechanism
fortifies the robustness of RobustSL.

• We then analyze the consistency and robustness of
RobustSL. Theorem 3.3 establishes consistency of
the RobustSL by revealing that under perfect fre-
quency predictions, the anticipated access cost for
an item i within RobustSL is proportional to the
logarithm of its predicted frequency, which is a con-
sequence of the deterministic replication mechanism.
This relationship confirms that the access cost for an
input sequence is a constant factor away from the
entropy of the input, thus proving the optimal con-
sistency of RobustSL. Additionally, our analysis
demonstrates that the maximum cost of access to any
item in RobustSL remains within O(log n), substan-
tiated by the stochastic replication mechanism), so-
lidifying the structure’s assured optimal robustness
(Theorem 3.4). We further show the number of com-
parisons made by RobustSL increases smoothly as
a function of error, measured by the cross entropy
between predicted and actual frequency distributions
(Theorem 3.5).

• In §4, we conduct comprehensive experimental com-

parisons between RobustSL and other dictionary
data structures using synthetic and real datasets. Our
experimental findings align closely with theoretical
analysis, demonstrating that data structures such as
learned treaps exhibit satisfactory performance for in-
puts with highly accurate predictability. However, their
performance is significantly worse when predictions
are erroneous. In comparison, RobustSL achieves
comparable performance with accurate predictions and
remains robust even for highly erroneous predictions.

2. Preliminaries
We use [n] to denote the set {1, 2, . . . , n} and assume keys
in the dictionary come from universe [n]. We use m to
denote the number of operations in the input stream. We
also let fi denote the frequency of operations involving
key i ∈ [n] in the input, and f̂i denote the predicted fre-
quency for queries to i (

∑
i fi =

∑
i f̂i = 1). We let f ,

and f̂ denote the vectors of actual and predicted frequen-
cies. Let ei ∈ [n] be the item with rank i; that is, the i’th
most frequently-accessed item in the input. Finally, we use
OperationD(i) to denote the number of comparisons for
applying an operation (the “Operation”) involving key
i ∈ [n] in a data structure D. For example, SearchD(i) is
the number of comparisons for accessing i in D.

2.1. Dictionaries and Optimality

Consider an online stream of operations concerning a set of
n items, forming a dictionary. The operations mainly require
accessing, inserting, and deleting items, while secondary op-
erations such as rank, select, range-query, successor, and pre-
decessor may need to be supported. Comparison-based data
structures, such as BSTs and skip lists, keep data in order
and thus support all operations without relying on restrictive
assumptions on the input distribution. The cost of these data
structures for a given input stream can be measured by the
number of comparisons they make for all operations in the
input; other costs, such as pointer updates, are proportional
to the number of comparisons. Most comparison-based data
structures, such as balanced BSTs and skip lists, do not
change structure after access operations. Self-adjusting data
structures such as splay trees (Sleator & Tarjan, 1985), on
the other hand, require extra comparisons for self-adjusting
and thus have a constant-factor overhead, which is not desir-
able in many applications (Lin et al., 2022).

Mehlhorn (1975) showed that the number of comparisons
made by any comparison-based data structure that does not
self-adjust, for the input of m operations and frequency dis-
tribution f , is at least mH(f)/

√
3, where H(f) is the en-

tropy of f defined as H(f) = −
∑

i∈[n] fi log(fi). There-
fore, one can use entropy as a reference point for measuring
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the consistency of learning-augmented structures. In partic-
ular, we say that a structure is statically optimal if its cost
for any instance I is O(H(f)). In particular, the weight-
balanced BST of Knuth (1971) and its approximation by
Mehlhorn (1975) are statically optimal.

To measure robustness, i.e., performance under adversarial
error, we note that, regardless of the structure of comparison-
based data structure, there are access requests that require at
least ⌈log n⌉ per access due to the inherent nature of binary
comparisons. Therefore, when predictions are adversarial,
there are worst-case input sequences in which every access
request takes at least ⌈log n⌉ comparisons (Ω(m log n) cost
for a sequence of m operations). From the above discus-
sions, we define our measures of optimality as follows.

Definition 2.1 (Optimal consistency and robustness). An
instance I = (σ,f , f̂) of the dictionary problem with pre-
diction includes a sequence σ of m operations on n keys,
an unknown vector f specifying frequency (probability) of
keys in σ, and a known vector f̂ of predicted frequencies.
A learning-augmented data structure has consistency c iff
its total number of comparison is c · H(f) for any input
instance with f = f̂ . In particular, it is optimally consistent,
or statically optimal, if its consistency is O(1). Similarly,
a learning-augmented data structure is r-robust iff its total
cost is at most r.m for any instance. In particular, it is opti-
mally robust iff it has robustness O(log n) for a dictionary
with n items.

Consistency and robustness are not always inherently con-
flicting attributes, yet achieving one often necessitates com-
promising the other, as observed in prior research (An-
gelopoulos et al., 2020; 2022; Zeynali et al., 2021; Li et al.,
2022; Sun et al., 2021). Attempts to attain optimal consis-
tency have often resulted in a trade-off that undermines ro-
bustness and vice versa. Within the literature (Knuth, 1971;
Cao et al., 2023; Lin et al., 2022), several data structures
have been proposed with an emphasis on optimizing con-
sistency, showcasing exceptional performance under ideal
predictive conditions. However, this pursuit of high con-
sistency tends to render these structures less robust when
faced with adversarial predictions. Conversely, other data
structures, such as balanced BSTs and AVL tree, prioritize
bolstering their robustness, particularly under worst-case
scenarios, thereby offering enhanced resilience. In light of
these results, one might ask whether it is possible to get the
best of the two worlds: optimal consistency and robustness
at the same time. We answer this question in the affirmative
in this paper.

2.2. Treaps and Skip Lists

A treap is a binary search tree where items have an addi-
tional field which is its priority. In addition to the binary
search tree property, a treap follows the heap property. In a

classic random treap (Seidel & Aragon, 1996), priorities are
assigned randomly, allowing them to support dictionary op-
erations in expected O(log n) time, i.e., they are optimally
robust. On the other hand, random treaps are not optimally
consistent due to a lack of information about access fre-
quencies. When frequency predictions are available, it is
natural to define priorities based on frequencies rather than
randomly. These ideas were explored in (Lin et al., 2022;
Cao et al., 2023) to define learning-augmented treaps (see
§2.3).

Skip lists, introduced by Pugh (1990), are randomized data
structures that provide all functionalities of balanced BSTs
on expectation. A skip list is a collection of sorted linked
lists that appear in levels, where all dictionary items are
present in the lowest level, and a subset of items at each level
are selected randomly and independently to be replicated in
the above layer. The random decisions follow a geometric
distribution, ensuring an expected O(1) replicas per key.
Each replica has a “right pointer” to the next item in its
linked-list, and a “bottom pointer” to the replica of the same
item in the level below. The top list is said to have level 1,
and the level of any other list is the level of its top list plus 1.
The “height” of skip lists, is defined as the number of levels
in it, and “depth” of a specific item, is the least level number
at which the item appears.

Previous work has established a tight relationship between
skip lists and trees. For example, a skip list can simulate
various forms of multiway balanced search trees (MWB-
STs) such as B-trees, and (a,b)-trees (Munro et al., 1992;
Mehlhorn & Näher, 1992; Bagchi et al., 2005). On the other
hand, Skip trees (Messeguer, 1997) are MWBSTs that cer-
tify one-to-one mapping between MWBSTs and skiplists. It
is also possible to represent any skip list with a BST (Dean
& Jones, 2007; Bose et al., 2008).

2.3. Learning-augmented Treaps

In the learning-augmented treaps proposed by Lin et al.
(2022), priorities are not random but instead predicted fre-
quencies. Under a random-order rank assumption, which
requires that items’ ranks to be a random permutation of [n],
these treaps are optimally-consistent and have bounded ro-
bustness. However, these treaps are not optimally consistent
nor robust when the random-order rank assumption does
not hold. In particular, when the predicted frequency distri-
bution is highly skewed, the resulting treap may resemble a
linear list, which is clearly neither robust nor consistent, as
shown in the following proposition.

Proposition 2.2 (Appendix §A.1). Without random-order
rank assumption, the consistency of learning-augmented
treap of Lin et al. (2022) for dictionaries of size n is at least
Ω(n/ log n), and its robustness is n.
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Lin et al. (2022) present a method for relaxing the random-
rank assumption by bijecting each key in the dictionary to
a random key in a secondary dictionary maintained by a
treap based on predicted frequencies. This simple solution,
however, shuffles the keys, and the resulting tree is not
ordered. Therefore, one cannot efficiently answer secondary
dictionary operations such as predecessor and successor
operations using these shuffled treaps.

Recently, Cao et al. (2023) introduced a different learning-
augmented treap (or learning-augmented B-Trees with pri-
orities), in which a random element is introduced in priority
assignment. Precisely, the priority of the node with key i
is defined as prii = δi − ⌊log2 log2 1/f̂i⌋, δi ∼ U(0, 1),
where U(0, 1) is the uniform distribution over interval
[0, 1]. The total number of comparisons is proved to be
O(m·Ent(f , f̂)), where Ent(f , f̂) is the cross entropy be-
tween f and f̂ defined as Ent(f , f̂) = −

∑
i∈[n] fi log f̂i.

When fi = f̂i, it holds that Ent(f , f̂) = H(f), and the
total number of comparisons will be O(mH(f)), ensuring
optimal consistency for these treaps. However, when predic-
tions are adversarial, these treaps are not robust, as shown
in the proposition below.

Proposition 2.3 (Appendix §A.2). The learning-augmented
treaps of (Cao et al., 2023) have optimal consistency (are
statically optimal), but their robustness is O(n).

Intuitively, regardless of the amount of randomness (noise)
added to the priorities, an adversary can skew the pre-
dicted frequency distribution to negate the added random
noise. For that, it suffices to define f̂i’s in a way to ensure
f̂i ≥ f̂i−1 + u, where u is the upper bound for the random
variable added to the priority.

3. Consistent and Robust Dictionaries
This section presents our main results on learning-
augmented dictionary data structures: a skip list that
achieves optimal consistency (statically optimal) when pre-
dictions are correct and offers robustness of O(log n) when
predictions are adversarial.

If one wants to maintain a static dictionary, without the sup-
port of insertions and deletions, it is rather easy to achieve
a consistent and robust data structure as follows. Provided
with predicted frequencies f̂ , first, build the static optimal
tree of Knuth (1971) in O(n2); call the resulting tree op-
timistic tree To. Also, form a balanced BST Tp, referred
to as pessimistic tree. To access an item with key i, we
simultaneously search for i in To and Tp. When one tree
finds the item, we immediately stop the searching process
of another tree. The number of comparisons would be
2min(SearchTo(i),SearchTp(i)), ensuring both static op-
timality and optimal robustness of O(log n).

However, this simple data structure does not support in-
sertion and deletion queries, as Knuth’s static optimal tree
lacks support for these operations. In practice, the predicted
frequencies get updated frequently, and such updates are im-
plemented by deletion and insertion, necessitating a dynamic
dictionary that supports insertions and deletions. Moreover,
the time complexity of constructing the optimistic tree is
expensive, rendering it impractical for widespread use.

In what follows, we first present RobustSL in Section 3.1.
In Section 3.2, we show that RobustSL achieves optimal
consistency and robustness. Last, in Section 3.3, we discuss
extensions, such as how RobustSL can be augmented to
efficiently support secondary operations like the predecessor,
successor, rank, select, and range queries.

3.1. RobustSL, Consistent and Robust Skip list

RobustSL is a skip list, and many of its functionalities
are similar to a regular skip list. In particular, upon inser-
tion of an item with key i, it replicates the item in a certain
number of levels (each associated with a linked list), start-
ing at the lowest level. Unlike a regular skip list, where
the replication strategy is purely randomized, RobustSL
involves predicted frequencies in its replication strategy. As
we will show, the number of replicas for an item with key i
in RobustSL is a function of its predicted frequency and a
geometric random variable. The key to achieving optimal
consistency and robustness in RobustSL lies in the precise
classification of items based on their predicted frequencies.
The goal is to assign more replicas (lower “depths”) to items
with higher predicted frequencies, while items with sim-
ilar predicted frequencies share the same expected depth,
ultimately reinforcing the consistency of RobustSL. Im-
portantly, RobustSL ensures that the maximum number
of comparisons made while searching any item is at most
O(log n), ensuring optimal robustness.

Before presenting RobustSL formally, we present some in-
tuitions behind it via a simpler data structure that illustrates
the main ideas behind RobustSL.

High-level intuitions and ideas. Let’s assume the number
of items in the dictionary, n, is fixed (this assumption will
be relaxed later in Section 3.3). We classify items such
that items with predicted frequency larger than 1/2 belong
to the first class (index 0), those with predicted frequency
in (1/4, 1/2] belong to class index 1, and more generally,
items with predicted frequency in (1/22

c

, 1/22
c−1

] belong
to class c. We further limit the number of classes into
K = ⌈log log n⌉; that is, items with frequency smaller than
1/n belong to class K. Maintain a separate skip list for
items of each class, and, to search for any item with key i,
first examine the skip list maintained for the first class, and
in case of not finding i, we examine the skip list for classes
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2, 3, . . . ,K in the same order.

We show that searching for an item in class c < K takes no
more than α · 2c+1 comparisons on expectation for some
constant α. To see that, let Nc denote the number of items
in class c. Observe that at most 2(2

c+1) items belong to class
c (i.e., Nc ≤ 2(2

c+1)); otherwise, the total predicted frequen-
cies for items in class c exceeds 1. Therefore, searching for
an item in the skip list of class c takes the expected time of
α logNc ≤ α2c+1. Now, if i is assigned to class index c, the
total expected number of comparisons for finding i would be∑

c′≤c α2
c′+1 < α2c+2. The robustness of the data struc-

ture is direct from the fact that c < K = ⌈log logn⌉, and
thus searching any item takes at most 4α2K = O(log n).
For consistency, when predictions are accurate, we note that
if an item with key i is assigned to class c, then it holds
that fi = f̂i ≤ 2−2c , which is direct from the way classes
are defined. Thus, the expected number of comparisons
for finding i would be α · 2c+2 ≤ −4α · log f̂i. We can
conclude that searching for i takes O(− log fi), proving our
algorithm’s consistency.

RobustSL improves the above data structure in a few ways.
First, it maintains a single skip list for all classes, which is
necessary for efficient handling of frequency updates: when
an item’s frequency is updated, it is desirable to update the
number of replicas in a single skip list rather than removing
them from one skip list and adding to another. To maintain a
single skip list, we ensure that items of class c form a “layer”
above those of class c + 1; this is achieved via defining a
“class-base” for each class, ensuring a minimum number of
replicas for class c. Second, instead of using powers of 1/2
in the classification, RobustSL uses a parameter θ, which
is set to optimize the constant for static optimality.

Algorithmic details of RobustSL. Similarly to the data
structure described above, RobustSL classifies items
based on their predicted frequencies and employs a two-
step process to select the number of replicas for each item.
Firstly, it replicates any item in class c a minimum of
D(K) − D(c) times , where D(c) is an increasing func-
tion of c, indicating the maximum possible depth of items
in class c. Given this definition, D(K) − D(c), called
class-base(c), determines the minimum number of
replicas for items in that class. Intuitively, items in class 0,
which are predicted to appear more in the input, have a
higher class-base, meaning that they are replicated more
than other classes; as the indices of classes increase, their
class-base decreases, implying less replication. See Figure 1
for an illustration.

In addition to replicas specified by the class-base, more repli-
cations are introduced for each item, guided by a geometric
distribution with a parameter of 1− p, where p < 1 is a con-
stant value. In the next section, we present the consistency

Figure 1. Structure of RobustSL having four classes. Items in
lower-indexed classes replicate more. The replication of items
within a class is achieved through a stochastic process.

and robustness of RobustSL as a function of p, and show
how this parameter impacts those metrics. This stochastic
process for adjusting the number of replicas ensures that
the expected search cost within a class is logarithmic to
the number of items in that class. The following sections
explore the classification and replication processes within
RobustSL in detail.

Classification approach. The classification of items relies
on their predicted frequencies. An item i with a predicted
frequency f̂i is assigned to class ci(≥ 0) as follows. First,
items with predicted frequency ≥ θ belong to class 0. Other
items belong to class ci ≥ 1, if their predicted frequency
satisfies the condition:

θ2
ci ≤ max(f̂i, n

log(p)/2) < θ2
ci−1

, (1)

which gives

ci = ⌈log
(
−1
log θ

min

(
− log f̂i,

− log p log n

2

))
⌉,

where θ ∈ (0, 1) is an algorithm parameter. In particular, the
largest value of ci is realized for items with small predicted
frequency, where− log f̂i ≤ − log p log(n)/2. These items
(if exist) belong to the class index denoted by K, where

K = 1 + ⌈log log n− log(2 log θ/ log p)⌉.

Intuitively speaking, parameter θ determines the predicted
frequency range for items in the same class. A smaller value
of θ widens the range, which implies fewer classes, while
higher θ narrows it, resulting in more classes. Regardless,
the number of classes is bounded by K + 1 = Θ(log log n).

Number of replicas. To determine the number of replicas
for an item upon its insertion, RobustSL first calculates
the class-base of the item, which is deterministically defined
based on the class of item, c, and is calculated as D(K)−
D(c). We recursively define D(c) as follows. First, for
c = 0, we let D(0) = ⌈log θ/ log p⌉, and for any c > 0, we
define:

D(c) = D(c− 1) + ⌈ log θ
log p

2c⌉. (2)

Intuitively, D(c) represents the maximum depth of items
belonging to class c, and the above definition ensures that
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items in classes larger than c appear at least 2c log θ/log p
levels deeper than items of class c, on expectation. The
number of replicas for an item i in class ci is calculated as:

hi = D(K)−D(c) + X (p), (3)

where X (p) is a random variable following a geometric dis-
tribution with parameter 1− p. For example, items of class
K (if there is any), which are the ones with the smallest
predicted frequencies, are replicated only based on stochas-
tic replications, X (p), ensuring that they are at the deepest
levels of the skip list. As another observation, for any c < c′,
items of class c are replicated in D(c′)−D(c) more levels,
on expectation, than items of class c′. This is consistent
with the higher predicted frequencies for items of class c.
Finally, note that items that belong to the same class all have
the same expected number of replicas, ensuring that the data
structure resembles a regular skip list for items within the
same class.

3.2. Theoretical Analysis of RobustSL

In what follows, we analyze RobustSL, providing upper
bounds on the number of comparisons made when accessing
any item. In particular, we establish the optimal consistency
and robustness of RobustSL. Let c ∈ [0,K] be any class
defined by RobustSL; we use Nc to denote the number
of items belonging to class c. If c ≤ K − 1, then for any
item i in class c, it holds that f̂i ≥ θ2

c

. Consequently, it
follows that Nc · θ2

c ≤ 1, as violating this condition would
contradict the requirement that predicted frequencies form a
probability distribution (

∑
i f̂i = 1). Thus, we deduce that

Nc ≤ θ−2c , leading to the inequality logNc ≤ −2c log θ.

The following lemma presents an analysis of the classifi-
cation and replication mechanisms within RobustSL, il-
luminating that beyond the inherent relationship between
higher predicted frequencies and greater heights, items be-
longing to distinct classes are anticipated to possess varying
numbers of replications.

Lemma 3.1 (Appendix §A.3). For any class index c > 0,
the expected number of items of class c that are replicated
at least class-base(c-1) times is less than 1.

This lemma indicates that, while searching for a key i cat-
egorized within a specific class, ci, the expected number
of comparisons conducted with items in higher-indexed
classes, cj > ci, is significantly lower than the expected
comparisons with items in class c ≤ ci. This property helps
RobustSL to access more frequent items with a lesser
number of comparisons. Using this lemma, we can pro-
vide an upper bound from the number of comparisons made
while searching for an item i.

Lemma 3.2 (Appendix §A.4). The expected number of
comparisons made while searching an item i in class

ci < K is at most 4
p log p log(f̂i). For an item i in class

ci = K, the expected number of comparisons is at most
4 log θ−1
p log p (log n) +O(1).

In the following, we establish the consistency of
RobustSL, which follows from Lemma 3.2, noting the
number of comparisons for an item i of frequency fi = f̂i
is proportional to log(fi) for all classes, including class K.
Theorem 3.3 (Appendix §A.5). The consistency of
RobustSL can be established as −4

p log(p) = O(1), ensur-
ing the static optimality for RobustSL.

The following lemma is direct from Lemma 3.2, by not-
ing that the maximum number of comparisons made while
searching for items belong to class K.
Theorem 3.4 (Appendix §A.6). The maximum cost of
searching for items within RobustSL is O(log n), which
makes RobustSL optimally-robust.

The above two theorems establish that RobustSL is op-
timally consistent and robust. We can further leverage
Lemma 3.2 to bound the expected number of comparisons
of RobustSL as a function of prediction error, where the
error is quantified by the cross entropy between the pre-
dicted and actual frequencies.
Theorem 3.5 (Appendix §A.7). The expected number of
comparisons made within RobustSL while searching for
items with actual frequency of f and predicted frequency of
f̂ is O(Ent(f , f̂)).

3.3. Discussion and Extensions

Dynamics of RobustSL. The results in the previous sec-
tion assume a fixed value of n. The actual number of items
after tth query, denoted by nt, however, is clearly impacted
by the insertions and deletions. We explain how to maintain
the described consistency and robustness, using a value of
n, which approximates nt and represents the parameter uti-
lized by RobustSL for classification (as depicted in Equa-
tion (1)). We maintain a value of n that is always larger than
nt. Initially, we set n = 4. After any insertion operation,
if nt becomes equal to n, we update n← n2. After a dele-
tion operation, if nt = n1/4, we adjust n ← max(4,

√
n).

Whenever n is updated, we reconstruct RobustSL.

This approach does not compromise the consistency of
RobustSL, as nt ≤ n, preserving the analysis outlined in
Theorem 3.3. Additionally, n remains bounded by n < n4

t

for any nt > 1, ensuring log n = O(log nt) consistently.
Consequently, the robustness of RobustSL maintains at
log n = O(log nt).

By employing this technique, the amortized cost of in-
sertion or deletion operations remains O(log n) (finding
the index of a key in the sorted ordering of all key val-
ues requires Ω(log n) number of operations), as updates to

6



Robust Learning-Augmented Dictionaries

Figure 2. Average number of comparisons per query of RobustSL and baseline data structures for dynamic evaluations under (left)
random frequency ordering with perfect predictions, (center) adversary frequency ordering with noisy predictions, and (right) adversary
frequency ordering with different value of Zipfian parameter. The performance of learned treap is highly impacted by the prediction error,
while RobustSL shows its robustness against noisy predictions. To improve visibility, the y-axis range in the right figure is limited to 25,
with actual values displayed next to bars exceeding this threshold for clarity.

RobustSL occur only after at least n2 consecutive inser-
tions or deletions. Note that the maximum cost for entirely
reconstructing RobustSL, as well as its memory require-
ment, is capped at O(n log n), given its maximum depth as
O(log n), is capped at O(n log n).

Secondary queries. The order structure of the skip list
allows efficient answering of secondary queries with lit-
tle augmentation. First, we augment the deepest level
of RobustSL to make it doubly linked. We also add a
pointer from any node x, deep(x), to the node with the
same key as x at the deepest level. This allows implement-
ing predecessor(i)/successor(i) (keys before/after
i in the sorted order) by searching for i, finding it at some
node x, following deep(x), and probing a left/right pointer;
the time complexity will be similar to the search. Similarly,
range(i, j) (reporting all keys k s.t. i ≤ k ≤ j) can be
done by searching for i and following pointers in the deep-
est level. For other secondary queries, let pred(x) be the
node before x at the same level. We let x have an extra
integer field s(x) that specifies the number of keys that are
“skipped” by following the right pointer from pred(x) to x,
that is, the number of keys in the dictionary between the
key of pred(x) and i. These augmentations allow efficient
answering of rank(i) (the index of i in a sorted ordering
of keys) by searching for i and summing the values of s(x)
over nodes on the search path. Similarly, select(t) (the
t’th smallest key) can be done in O(log n), summing over
values s(x) by following the right pointers to reach t.

Proposition 3.6. It is possible to augment RobustSL to
answer predecessor(i), successor(i), rank(i), all
in time proportional to Search(i), range(i, j) in time
proportional to Search(i) + z, where z is the output size,
and select(t) in O(log n).

4. Experiments
In this section, we evaluate the performance of RobustSL
in both static and dynamic settings and compare the per-
formance with alternatives. Our goal is to investigate the
robustness and consistency of RobustSL under perfect
and adversarial predictions.

4.1. Experimental Setup and Overview

We compare RobustSL with several alternative data struc-
tures, namely AVL trees, red-black trees, splay trees, bal-
anced BST (pessimistic BST), learning-augmented treaps
of Lin et al. (2022), and learning-augmented treaps/B-trees
of Cao et al. (2023). We thoroughly evaluate the robust-
ness and consistency of RobustSL in static and dynamic
settings by considering both perfect predictions and adver-
sarial instances. Specifically, we conduct our experiments
in two categories: (1) dynamic random orders with perfect
predictions, and (2) dynamic adversarial orders with noisy
predictions. In addition, we provide further experiments
concerning static dictionaries in Appendix B. In the random
order experiments, the frequency ranking of items are ran-
domly selected concerning the key value ranking of items.
In addition, we consider a perfect prediction in random or-
der experiments to compare the consistency of RobustSL
and baseline algorithms. On the other hand, the adversarial
ranking is used to evaluate the robustness of RobustSL
as compared to alternatives and includes perfect and noisy
predictions. For each category, we conduct a series of 100
trials and report the average number of comparisons for a
search query of RobustSL and baseline data structures.
More details on the prediction and error model are given in
Appendix§ B. We select θ = 0.05 in RobustSL for our
experiments since it leads to slightly better performance,
even though RobustSL is robust to the selection of this pa-
rameter (as shown in Figure 5 in AppendixB.2). In addition,
we select p = 0.368 that minimizes the consistency value
presented in Theorem 3.3. Last, we use the following two
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Figure 3. Average number of comparisons per query of RobustSL and the baseline data structures. The evaluation is conducted by
varying three factors: (left) sizes of the adversarial dataset, (center) sizes of the training dataset, and (right) value of p in RobustSL.
Notably, the performance of learning-augmented treaps and learning-augmented B-Trees demonstrates a significant increase when
predicted frequencies are adversarial.

categories of synthetic and real datasets.

Synthetic dataset. We conducted experiments to evaluate
the performance of RobustSL and baseline data structures
using synthetic datasets of varying sizes. Specifically, we
selected the number of unique keys, n, from the set of values
[100, 500, 1000, 2000]. For each value of n, we generated
m = 100, 000 search queries with each item appearing ac-
cording to the Zipfian distribution with a parameter of 2. In
addition, we test the performance of RobustSL and other
data structures against Zipfian distribution with different
parameters. For random order experiments and experiments
on testing different values of Zipfian distribution, we fix the
number of items to 2000. Our results demonstrate that the
performance of learning-augmented treaps is much worse
against the adversary frequency ordering using low-accuracy
predicted frequencies. For a fair comparison between the
performance of RobustSL and the baselines data struc-
tures, in experiments with adversarial frequency predictions,
we select the number of trials with high-accuracy predic-
tions up to 9 times of low-accuracy prediction trials. This
means that in the experiments with “adversarial” frequency
predictions, 90 trials used high-accuracy predictions, and a
10 trial was designed using low-accuracy predictions (see
Appendix §B for details).

BBC news article dataset. We also use the BBC news
article dataset (Kushwaha, 2023) to evaluate the perfor-
mance of RobustSL and other baseline data structures
in responding to news article queries (Chen et al., 2022;
Kostakos, 2020). In these experiments, we select a fraction
of the entire dataset to predict item frequencies (training
dataset) in the remaining portion (test dataset). To evalu-
ate data structure performance under noisy conditions, we
artificially generated additional articles using an adversar-
ial approach. These adversarially-generated articles were
designed to align the ranking of frequencies with keys. In
addition, we test the impact of parameters p and θ on the
performance of RobustSL against this dataset. We ran-

domly select 40% of the entire data as the training dataset,
25% (of the training dataset) as the size of the adversary
dataset, θ = 0.05, and p = 0.368 (as used in synthetic
experiments) and conducted experiments by varying one
factor during each experiment while other factors remained
fixed. Our analysis considers the top 5500 items with the
highest frequencies for dictionary generation, and search
queries were exclusively conducted on these items.

4.2. Experimental Results

Synthetic results. Figure 2 presents the results of our
experiments on dynamic structures using synthetic data,
showcasing the average number of comparisons per query
for both RobustSL and baseline data structures under ran-
dom and adversary settings. While the performance of
learning-augmented treaps is notably impacted by error
rates, RobustSL demonstrates consistent and robust per-
formance, validating its theoretical resilience. Specifically,
when searching a dictionary of size 2000, under random
frequency ordering, the average number of comparisons
of RobustSL is 9.5% more than of learning-augmented
treaps under random frequency ordering while RobustSL
achieves 40.0× lower comparison per query when the pre-
dicted frequencies were adversarial. Notably, we repeated
the adversarial experiments with a higher number of items
(e.g., n = 10000); the average number of comparisons
per query slightly increased for all dictionaries, while for
learned treaps, it increased to 788, which confirms the vul-
nerability of these data structures to errors in prediction. Fi-
nally, we replicated the same experiment in a static setting,
and since the results were very similar to those obtained
in the dynamic setting, we have included the results and
additional analysis on static experiments in Appendix §B.

Dataset results. Figure 3 illustrates the average num-
ber of comparisons per query for the compared data struc-
tures, varying size of adversarial and training datasets, and
p in RobustSL. Results align with theoretical analyses
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and synthetic dataset evaluations. Learned treaps perform
well when the prediction error is low (zero-size adversarial
dataset), but their performance significantly deteriorates un-
der fully adversarial conditions (i.e., when the size of the
adversarial dataset is comparable to the training dataset). In
contrast, RobustSL demonstrates consistent performance
and robustness throughout these experiments. When testing
the impact of the training sample size, RobustSL shows
significant improvement in its performance (smaller num-
ber of comparisons) with a larger training dataset, while
this improvement for learned treaps was much lesser. Fi-
nally, testing the impact of p shows that the performance of
RobustSL is optimized when p is around 0.3, supporting
theoretical results. It is worth mentioning that our analysis
reveals the impact of θ on the performance of RobustSL
is negligible. The result of this experiment is given in Ap-
pendix §B.

5. Conclusion
In this paper, we presented RobustSL, a skip-list-based
data structure that achieves optimality with quality pre-
dictions and stays robust with adversarial prediction. As
a prospect for future exploration, adjusting RobustSL’s
structure to support the availability of partial information,
particularly when frequency predictions are available only
for a subset of items, presents an interesting avenue for fu-
ture work. Whether the guarantees provided by RobustSL
concerning consistency and robustness can be achieved with
any learning-augmented BST is another open question for
future study.
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A. Proofs of Theoretical Result
A.1. Proof of Proposition 2.2

Proof. Consider defining the predictions f̂ in a way that all items are predicted to have a frequency that is almost 1/n with
a small additive factor that ensures item i has rank i. More precisely, frequency of access to item i is f̂i = 1/n + ϵi (ϵi
could be negative), where ϵi < ϵj for any i < j, and

∑
i ϵi = 0 and |ϵi| ≪ 1/n. Given that the key of each item equals its

predicted rank, the learning augmented treap resembles a single path, and its height and robustness are linear to n. Even
when predictions are accurate, treap’s total cost for accesses to item n, which is mf̂n, is at least m/n, and the total cost for

item i is mf̂i = m · i(1/n+ ϵi). The amortized cost for a single request is thus lower bounded by
n∑

i=1

i (1/n+ ϵi) = Ω(n).

The cost of the treap for m access operations is thus Ω(mn), while the entropy of f̂ is O(log n). We can conclude that the
consistency of the learned treap is Ω(n/ log n).

A.2. Proof of Proposition 2.3

Proof. Optimal consistency is proven in [Theorem 4.8] (Cao et al., 2023). To provide a lower bound for robustness, consider
a highly skewed distribution for the predicted frequency predictions such that log log f̂i ≥ log log f̂i−1 + 1 for any i ∈ [n].
As a result, the random component of the priority, which is in (0,1), does not make any difference in the rank of items in the
resulting tree. That is, the item with key i will have rank i, and the learned treap will be highly unbalanced, resembling a
linear list and therefore, its robustness is n.

A.3. Proof of Lemma 3.1

Proof. Any arbitrary item from class c can replicate at least class-base(c-1) times only if the number of additional
replications of item i, due to stochastic replications, exceeds a certain lower bound:

D(c)−D(c− 1) =
log θ

log p
2c ≤ X (p).

The probability of this event is less than p
log(θ)
log(p)

2c . Moreover, the maximum number of items in class c is θ−2c , given that
the predicted frequency of items in class c is at least θ2

c

. Consequently, the expected number of items in class c that may
potentially replicate at least class-base(c-1) times, denoted as E[Vioc], is bounded by:

E[Vioc] ≤ plog(θ)2
c/log(p) · θ−2c ≤ 1.

A.4. Proof of Lemma 3.2

Proof. We partition the linked lists in RobustSL into K layers, one layer for each class c as follows. The layer of class 0
is formed by the lists with depth at most D(0), and for any c ∈ [1,K], the layer of class c is formed by lists at depth in the
range (D(c− 1),D(c)]. Since every item of class c is replicated in at least D(K)−D(c) lists, it appears in layers of all
classes ≥ c+ 1.

To bound the number of comparisons for accessing an item i, we devise an upper bound for the number of comparisons
at any layer c ≤ ci. Comparisons at layer c involve items that are replicated at D(c) but not at D(c− 1). This is because
items replicated at D(c− 1) have been already examined in previous layers, and upon reaching layer c, the search domain
is restricted to 2 consecutive items among them. Therefore, all comparisons at layer c involve items in class c as well as
items from classes ≥ c + 1 that are replicated at D(c). By Lemma 3.1, the number of these latter items is at most 1, on
expectation. To conclude, at layer c, we have at most Nc + 1 items with a replica at level D(c), each having further replicas
following a geometric distribution with parameter p. In other words, they resemble a skip list, and searching among them
takes at most log(Nc+1)

p log (1/p) < 2 log(Nc)
p log (1/p) , as in a regular skip list (Pugh, 1990).
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Therefore, for the total search cost, we can write

E[SearchRobustSL(i)] =
2

p log (1/p)

∑
c∈[0,ci]

log(Nc) (5)

=
2

p log (1/p)

∑
[0,ci]

(−2c log θ) (6)

<
2 log θ

p log p
2ci+1. (7)

When c ≤ K − 1, the right-hand side of the above inequality is at most 4
p log p log(f̂i), which follows directly from item

classification.

When c = K, the total number of comparisons is the sum of comparisons in the layers above K and the number of
comparisons at layer K. The first term is at most

2 log θ

p log p
· 2K ≤ 2 log θ

p log p
· 2(log n+ log θ/ log p);

the first inequality follow from Equation (5), applying ci = K − 1, and the second inequality follows from the definition of
K. Given that there are at most n items in class K, the number of comparisons at layer K is at most logn

−p log p (as in a regular
skip list). Therefore, the total number of comparisons is at most

≤2 log θ

p log p
2(log n+ log θ/ log p) +

log n

−p log p

=
4 log θ − 1

p log p
(log n) +O(1).

A.5. Proof of Theorem 3.3

Proof. Suppose f = f̂ . According to Lemma 3.2, number of comparison made while searching an item i in class K is at
most

4 log θ − 1

p log p
(log n) +O(1) ≤ 4 log fi

p log p
;

the second inequality from Equation (1). In addition, again by Lemma 3.2, the number of comparisons made while searching
an item i of class ci ≤ K − 1 is bounded by 4 log fi

p log p . Therefore, the total number of comparisons for the input sequence is at

most
∑

i fi ·
4 log fi
p log p , which ensures a consistency of at most −4

p log(p) .

A.6. Proof of Theorem 3.4

Proof. According to Lemma 3.2 the maximum number of comparisons made while searching for any item is

max
i

SearchRobustSL(i) = max

(
4

p log p
log(f̂i),

4 log θ − 1

p log p
(log n)

)
= O(log n).

This shows that RobustSL provides robustness of O(log n), optimal robustness.

A.7. Proof of Theorem 3.5

Proof. The expected number of comparisons made by RobustSL while searching for items with actual frequencies of f
and predicted frequencies of f̂ is:∑

i

fi · SearchRobustSL(i) =
∑

{i|ci<K}

fi · SearchRobustSL(i) +
∑

{i|ci=K}

fi · SearchRobustSL(i).
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According to Lemma 3.2 we get:∑
i

fi · SearchRobustSL(i) =
∑

{i|ci<K}

fi · SearchRobustSL(i) +
∑

{i|ci=K}

fi · SearchRobustSL(i)

≤
∑

{i|ci<K}

fi ·
4

p log p
log(f̂i) +

∑
{i|ci=K}

fi · (
4 log θ − 1

p log p
log n) +O(1)

≤−2min(2 log θ, log p)

p log p
· Ent(f , f̂) +O(1) = O(Ent(f , f̂)).

B. Additional Details of the Experiments
In this section, we provide additional details of the experimental setup.

Error models play a critical role in the performance of predicted-based data structures such as RobustSL or learning-
augmented treaps. In (Lin et al., 2022), the authors define an error as the uncertainty in the frequency of item i. Specifically,
the noisy predicted frequency of item i, f̂i, lies in the range 1/∆fi ≤ f̂i ≤ ∆fi, where ∆ is a constant and representative
of the error value. However, this error model suffers from the non-linear impact on the performance of predicted-based
data structures. Precisely, for the mid-range error values, if fi ≤ fj denotes the frequency of item i and item j, then the
expected rank of item i in the predicted ranks is also less than the expected rank of item j. As a result, even predictions with
mid-range error values slightly lower the performance of data structures like learning-augmented treaps that consider the
frequency rankings instead of individual frequency values of items.

To address this challenge, we consider an error model that swaps the ranks of high and low-ranked items for predictions
with very high error values. Let δe be a metric that measures the accuracy of frequency predictions, where δe = 0 indicates
perfectly predicted frequencies and δe = 1 denotes fully adversarial predicted frequencies. Using this error model, the
predicted rank of item i is given by r̂i = ri × (1− δe) + δe × (n− ri + 1). In other words, the fully adversarial prediction
model mirrors the rankings with respect to the median item. During our experiments, we use δe = 0.01 as the high-accuracy
prediction and δe = 0.9 as the low-accuracy prediction.

Existing data structures often exhibit sensitivity to the order of queries, impacting the efficiency of search operations and
other related tasks. For instance, splay trees demonstrate varying performance based on the order in which search queries
are executed, while the structure of learned treaps is highly influenced by the frequency ordering of elements. It is our
expectation that learned treaps will perform well in instances with perfect predictions due to their static optimality, while
balanced BSTs will showcase robustness against fully adversarial inputs.

Consequently, we propose an error model that generates fully adversarial input sequences for prediction-based data structures
like learned treaps and optimistic optimal binary search trees. These fully adversarial input sequences arise when high-
frequency items are swapped with low-frequency items in the prediction result. By incorporating such challenging inputs
into our experiments, we aim to assess the optimal robustness and consistency of RobustSL under diverse conditions.

Dynamic operations during experiments. Experiments on the synthetic dataset involve insert and delete queries. 80% of
the items are randomly selected to be included in the initial data structure, and the ratio of insert/delete queries to search
queries is 20%. Furthermore, insert and delete queries are randomly interleaved with search queries. The experiments
are conducted using two methods: random order with perfect predictions (δe = 0) and adversarial ranking with noisy
predictions.

B.1. Result of experiments under static setting

In the static setting of Figure 4, the frequency ordering of elements is a crucial factor that can significantly impact the
performance of data structures, such as learning-augmented treaps, which take it into account. When the items are ordered
according to the adversarial frequencies, the performance of learning-augmented treap is severely affected, especially for a
large number of unique keys, even though only 10% of tests included low-accuracy predictions. Results show that testing the
dictionary of size n = 2000, the average number of comparisons of RobustSL is 7.1% more than of learning-augmented
treaps under random frequency ordering while RobustSL achieves 45.1× lower comparison per query when the predicted
frequencies were adversarial. Finally, the result of testing the impact of the Zipfian parameter on the performance of data
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Figure 4. Average number of comparisons per query for RobustSL and baseline data structures for static evaluations under (left)
random frequency ordering with perfect predictions, (center) adversarial frequency ordering with noisy predictions, and (right)
adversarial frequency ordering with different value of Zipfian parameter. The frequency ordering of items impacts the performance of
learning-augmented treaps while RobustSL shows its robustness against different conditions. To improve visibility, the y-axis range in
the right figure is limited to 25, with actual values displayed next to bars exceeding this threshold for clarity.

structures in the static setting is consistent with the result of the same analysis under dynamic conditions.

B.2. Testing the impact of θ on performance of RobustSL

Figure 5 shows the impact of θ on the performance of RobustSL against the real-world dataset (BBC news article dataset).
Similar to experiments conducted in Section 4.1, 0.368 was selected for parameter p, 40% of the dataset used as a training
dataset, and the size of the adversarial dataset was 25% of the size of the training dataset. The results show that the value of
parameter θ cannot significantly affect the performance of RobustSL.

Figure 5. Average number of comparisons per query applied by RobustSL as a function of θ against the real-world dataset. θ shows
negligible impact on the performance of RobustSL.
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