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Abstract

Real-world applications of vision-based robot learning face two major chal-1

lenges: extreme partial observability and effective simulation-to-reality (sim-2

to-real) transfer. This paper introduces a robust robot learning framework3

that enhances uncertainty awareness to address these challenges. We reinter-4

pret variational-autoencoder–based visual reinforcement learning (RL) from an5

uncertainty-quantification perspective, enabling resilience to high sensory noise and6

severe visual occlusions—common in industrial robotic tasks. To further improve7

sim-to-real transfer, we propose an uncertainty-aware ensemble RL algorithm.8

We validate our methods on a laboratory task designed as a proxy for real-world9

industrial applications characterized by harsh environments with low visibility and10

physical occlusions. Both simulation and real-world results demonstrate significant11

improvements in task accuracy and efficiency over various baselines, highlighting12

the benefits of uncertainty-aware robot learning for complex operational contexts.13

1 Introduction14

In vision-based robot learning, using partial and noisy observations for policy learning presents a15

substantial challenge, as a single observational frame often violates the Markov assumption—i.e., that16

the current observable state contains all necessary information for future decision-making. To address17

this, three main solutions have emerged: The first involves using recurrent neural networks (RNNs)18

to encode entire past trajectories [10, 9]. While RNNs theoretically capture comprehensive historical19

data, they suffer from slow training times and high computational costs due to the sparse nature of20

reinforcement learning (RL) losses, making them less viable for industrial applications. The second21

approach constructs a belief state as a statistical summary of past trajectories [14, 8]. However, this22

method also incurs high computational costs due to the complexity of continuously updating and23

tracking these dynamic states, compounded by the demand for intensive sequence modeling. The24

third approach extracts denoised, compressed latent representations from noisy observations using an25

autoencoder, effectively revalidating the Markov assumption [11, 35]. This allows for the application26

of efficient, memoryless RL methods, reducing computational overhead and better suiting real-world27

robotic applications. These autoencoder-based approaches provide a promising compromise between28

computational efficiency and the ability to handle complex, noisy data streams.29

While end-to-end RL allows agents to learn directly from physical interactions with the environment,30

industrial robotic tasks often preclude large-scale data collection due to high costs and safety risks.31

To mitigate this, RL is frequently integrated into a simulation-to-reality (sim-to-real) framework,32

where policies are first developed in simulation before being transferred to real-world settings.33

Sim-to-real policy transfer is well-established in deep reinforcement learning (DRL), but existing34

methods often overlook the challenges of observational uncertainty. Many approaches assume near-35

complete observability, rely on precise environmental modeling through domain randomization or36
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physics-based methods [26, 4], or require continuous adaptation with cheap access to the target37

domain [21, 30]. While effective in controlled environments, these methods may struggle in the38

presence of extreme noise and partial observability, where occlusions obscure true state changes.39

To address this, platform-agnostic transfer methods [19] mitigate task-specific noise by decoupling40

perception from control, while Kalman filtering integrated with DRL [17, 16] improves robustness in41

dynamic, noisy tasks. However, both approaches still depend on accurate environmental modeling,42

which is often impractical in industrial settings due to the complexity of real-world dynamics and43

constraints on large-scale data acquisition.44

To address these challenges, we revisit visual DRL methods based on variational autoencoders (VAE),45

from an uncertainty-quantification perspective. We explore their connection to performance gaps in46

sim-to-real transfer, and we introduce a novel uncertainty-aware ensemble DRL framework. Our47

approach enhances decision-making under extreme noise and partial observability while fostering an48

uncertainty-based collaborative ensemble mechanism. This mechanism aids in transitioning from49

potentially inaccurate models during training to effective real-world applications. We achieve this50

through a unique ensemble learning framework that minimizes deviations among individual policies,51

encouraging emergent behavior aligned with collective wisdom: an uncertainty-weighted sum of all52

policies within the ensemble, prioritizing the policy with the least sim-to-real gap.53

Our contributions are threefold: (1) We propose uncertainty-aware DRL algorithms based on a54

reinterpretation of VAE-based visual DRL, leading to improved sampling efficiency (Section 4.1) and55

enhanced sim-to-real transfer performance (Section 4.2). (2) To validate our approach, we design a56

laboratory task representative of a wide range of real-world applications, including shotcreting [20],57

sandblasting [33], and paint spraying [34] (Section 5). (3) We provide a comprehensive survey58

and reinterpretation of state-of-the-art VAE-based visual DRL from an uncertainty-quantification59

perspective, addressing the challenges of extreme partial observability and harsh industrial environ-60

ments (Section 4.1). Our results demonstrate that policies learned in simulation not only generalize61

effectively to real-world conditions in a zero-shot manner but also outperform traditional model-based62

planners [2] and DRL baselines [32, 35, 7, 36].63

2 Related Work64

Uncertainty quantification in DRL is critical for providing agents with deeper insights into the65

learning process. Uncertainty can be categorized into two types: aleatoric and epistemic. Aleatoric66

uncertainty is inherent to stochastic data and irreducible, whereas epistemic uncertainty arises from67

the agent’s incomplete understanding of the environment. Most uncertainty quantification methods68

focus on techniques such as bootstrapping and Monte Carlo (MC) dropout.69

Bootstrapped Deep Q-Networks (DQN) [25] introduced epistemic uncertainty quantification through70

a shared network with multiple heads, where variance in head predictions reflects uncertainty.71

Extensions penalize highly uncertain states via bootstrapped prior Q-networks [37, 1], reweight72

Bellman backups for exploration in ensemble frameworks like SUNRISE [18], or estimate epistemic73

uncertainty using cross-entropy between synthetic and true samples, as in SUMO [27]. While SUMO74

provides robust estimates, its search-based design incurs high computational costs, limiting real-time75

applicability.76

MC Dropout [6] approximates Bayesian inference through multiple stochastic forward passes. Though77

effective in supervised learning, its uncertainty quality underperforms variational inference meth-78

ods [24]. In continuous control tasks, combining MC Dropout with bootstrapped Q-values improves79

uncertainty estimates [13], but repeated inference introduces scalability challenges for real-time80

robotics. Hybrid approaches [3] integrating MC Dropout and bootstrapped ensembles disentangle81

aleatoric and epistemic uncertainties, leading to improved decision-making.82

Despite these advancements, the role of uncertainty quantification in sim-to-real transfer remains83

underexplored. Existing methods emphasize theoretical benchmarks while overlooking partial84

observability and domain shifts common in real-world robotics. This work bridges that gap by85

leveraging variational uncertainty quantification and ensemble learning to enhance sim-to-real transfer,86

addressing epistemic uncertainty in dynamic, noisy environments without the inefficiencies of MC87

Dropout or search-based methods.88
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(a) Uncertainty-Quantifying VAE

(b) Uncertainty-Guided RL Exploration (c) Uncertainty-Aware Ensemble Learning

Figure 1: Our algorithm (AREPO) revisits VAE-based RL from an uncertainty quantification perspec-
tive. It improves training stability and sampling efficiency with uncertainty-guided exploration and
ensemble learning mechanism.

3 Preliminaries89

In RL, the problem setting is often formulated as an MDP described by the tuple (S,A, P,R, γ).90

Here, S denotes the state space, A is the action space, P : S × A → P(S) is the state transition91

probability function, R : S ×A → R is the reward function, and γ is the discount factor.92

The policy πθ is optimized to maximize the cumulative reward J(θ) of the trajectory τ =93

(st, at, rt, ..., sT , aT , rT ). The cumulative reward is written as94

J(θ) = Eτ∼πθ(τ)[R(τ)], (1)

where R(τ) =
∑T

t′=t γ
t′−tr(st′ , at′). The policy is generally optimized via a gradient-based method,95

with ∇θJ(θ) = Eτ∼πθ(τ)[∇θ log πθ(at|st) · Aπθ (st, at)]. The advantage function Aπθ (st, at) is96

defined as Aπθ (st, at) = Qπθ (st, at)− V πθ (st) = Eτ∼πθ(τ)[R(τ)|st, at]− Eτ∼πθ(τ)[R(τ)|st].97

Generalized advantage estimation (GAE) is widely used to balance bias and variance, stabiliz-98

ing training [31]. GAE approximates Aπθ (st, at) as Âπθ

GAE(st, at) =
∑T

t′=t(γλ)
t′−t[r(st′ , at′) +99

γVϕ(st′+1)−Vϕ(st′)], where λ ∈ [0, 1] is the GAE coefficient, and Vϕ is the value function estimator100

learned by minimizing:101

LV(ϕ) = Eτ∼πθ
[Vϕ(st′)−R(τ)]. (2)

In this paper, we use proximal policy optimization (PPO) [32], a model-free, on-policy algorithm that102

constrains policy updates via a clipped surrogate loss:103

LPPO(θ) = Eτ∼πθ
[min(wθ(st, at) · Âπθ

GAE(st, at), clip(wθ(st, at), 1− ϵ, 1+ ϵ) · Âπθ

GAE(st, at))],
(3)

where wθ(st, at) =
πθ(at|st)
πθold (at|st) , and ϵ is the clipping factor.104

In real-world robotic applications, agents rely on sensors to obtain observations ot of the state st.105

This complicates RL, as observations are often high-dimensional, noisy, and partially occluded.106

These challenges have inspired methods that utilize VAEs [11] to learn a denoised, compact latent107

representation for state inference [12, 5, 23]. A VAE consists of a convolutional encoder pϕ(zt|ot)108

that processes noisy, partially occluded observations ot and generates a latent representation zt, which109

serves as input to the policy and value functions instead of st. The decoder pφ(ŝt|zt), structurally110

mirroring the encoder, reconstructs an estimate of the corresponding state ŝt from zt using transposed111

convolutional layers that incrementally upscale zt. The VAE is trained by optimizing the following112

variational lower bound:113

LVAE = −Ez∼qϕ(zt|ot)[log pφ(ŝt|zt)] + β · DKL[qϕ(zt|ot) || p(zt)] = Lrec + β · LKL, (4)
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where qϕ(zt|ot) is the variational distribution, and p(zt) is the Gaussian prior.114

Inspired by these works and empirical evidence from [35], we propose a novel VAE-based DRL115

network architecture, where a denoised latent representation dt is learned and passed to the policy116

and value networks instead of zt. In the next section, we motivate our design choice.117

4 Method118

In this section, we introduce AREPO (Uncertainty Aware Robot Ensemble Learning under Extreme119

Partial Observability). Our approach integrates a denoising VAE for uncertainty-aware state recon-120

struction, an uncertainty-guided RL strategy that prioritizes exploration based on uncertainty, and an121

ensemble method that leverages uncertainty awareness for more effective sim-to-real transfer.122

4.1 Reframing VAE-based Visual RL with Uncertainty Quantification123

Given a sequence of past observations ot−N :t, our goal is to learn p(dt|ot−N :t), from which we can124

extract a statistically equivalent denoised embedding dt. This embedding is theoretically sufficient125

for optimal decision-making because p(dt|ot−N :t) implicitly contains signals of transition dynamics,126

agent policy, and value functions:127

p(dt|ot−N :t) ∝ p(ot|dt) · p(dt|ot−N :t−1) · p(ot−N :t−1) = p(dt)p(ot−N :t−1|dt) · p(ot|ot−N :t−1, dt)

∝ p(dt−N |ot−N )︸ ︷︷ ︸
encoder

t′=t∏
t′=t−N+1

p(ot′ |dt′)︸ ︷︷ ︸
decoder

· p(dt′ |dt′−1, at′−1)︸ ︷︷ ︸
dynamics

· π(at′−1|dt′−1)︸ ︷︷ ︸
policy

· q(vt′−1|dt′−1)︸ ︷︷ ︸
value

.

(5)

The observation above is corroborated by positive results from VAE-based DRL [12, 5, 23]: grounding128

RL in an autoencoder’s latent representation, which implicitly encodes the policy, value, and dynamics,129

has been shown to improve sampling efficiency and training stability.130

However, despite these benefits, previous works based on this method often suffer from suboptimal131

performance in certain scenarios. Multiple empirical workarounds have been proposed in the literature132

to mitigate this issue. These include alternating the training of the VAE and RL components [5, 23],133

using smaller β values in LVAE, or preventing the policy’s gradient from updating other networks134

except itself [35]. In this section, we revisit VAE-based DRL from an uncertainty quantification135

perspective, hypothesize key sources of suboptimality in previous work, and propose an efficient and136

robust uncertainty-guided RL method to address them in a principled manner.137

Our objective is to guide RL exploration based on the epistemic uncertainty p(dt|ot−N :t) of the138

neural network that computes dt from ot−N :t. We measure this uncertainty using the variance of139

p(ŝt|ot−N :t), as it integrates the uncertainty of p(dt|ot−N :t) when reconstructing the state ŝt:140

p(ŝt|ot−N :t) =

∫
p(ŝt|zt) · p(zt|ot−N :t)dzt =

∫∫
p(ŝt|zt)p(dt|ot−N :t)N (µt(dt), σt(dt))ddtdzt.

(6)

To compute uncertainty tractably, we follow [24] and use Monte Carlo integration to approximate141

the expectation and variance of the output ŝt by drawing M samples of {zt,ℓ}Mℓ=1 and obtaining M142

corresponding outputs {ŝt,ℓ}Mℓ=1. We use the empirical variance σ2
t as the uncertainty measure:143

σ2
t =

∫
(ŝt − E[ŝt])(ŝt − E[ŝt])T p(ŝt|ot−N :t)dŝt ≈

1

M

M∑
ℓ=1

(ŝt,ℓ − E[ŝt])2, (7)

where E[ŝt] =
∫
ŝt · p(ŝt|ot−N :t)dŝt ≈ 1

M

∑M
ℓ=1 ŝt,ℓ.144

As shown in Fig. 1a, our method differs from previous works in several key aspects:145

1) We ground the value and policy networks in dt instead of zt. The reason behind this design146

choice is that we model dt as the denoised latent state that is statistically equivalent to ot−N :t,147

whereas zt is intended solely for epistemic uncertainty quantification of p(dt|ot−N :t). Therefore,148

zt contains undesirable stochasticity and noise for the RL components compared to dt, leading to149
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subpar performance. This reasoning aligns with the empirical findings in [35], where a diminishing β150

improves performance and stabilizes training.151

2) We integrate training schemes from [5, 23] and [35] by combining alternating and joint optimization152

strategies. [5, 23] stabilize learning by decoupling VAE and RL optimization, while [35] jointly153

leverages critic gradients and VAE losses to regulate zt. To merge these approaches, we introduce a154

value head p(v̂t|zt) parallel to the VAE decoder, mimicking the critic’s role in guiding representation155

learning. This design retains the stability of alternating training while benefiting from critic-driven156

regularization.157

3) Our method uses σ2
t to dynamically adjust the maximum entropy objective first proposed in [38] to158

effectively enhance sampling efficiency. Equation (1) is replaced with an altered maximum entropy159

RL objective:160

π∗
θ = argmax

πθ

Eτ∼πθ(τ)[

T∑
t′=t

γt′−tr(st′ , at′) + α1(1 − σ2
t )H(π(·|dt))], 0 < σ2

t < 1. (8)

The entropy coefficient in Equation (8) serves two key purposes. First, it draws inspiration from161

uncertainty-driven exploration methods such as MOPO [37] and SUMO [27], which penalize rewards162

in high-uncertainty regions of learned transition dynamics. Although our approach is model-free and163

does not explicitly learn dynamics, its uncertainty estimator implicitly captures all RL components,164

as shown in Equations (5-7). This ensures that the performance guarantees from [37] remain valid in165

our setting, maintaining the benefits of uncertainty-aware exploration. Second, we extend the original166

maximum entropy objective [38] by introducing a dynamic adjustment mechanism. Instead of a fixed167

entropy weight, our approach applies a soft penalty that discourages policy distributions failing to168

reduce the agent’s epistemic uncertainty about the environment. This ensures a principled balance169

between exploration and exploitation. In Section 5.2, we empirically demonstrate that this adaptive170

entropy regulation significantly improves sample efficiency compared to methods without uncertainty171

guidance.172

4.2 Approaching Zero-Shot Policy Transfer with Uncertainty Aware Ensemble Learning173

Assuming that we can sample N MDPs during training and denote the ith MDP as Mi, our goal is174

to train a policy π that achieves the best expected test-time reward. Rather than learning a globally175

optimal policy as a generic POMDP solver might, recent advances in DRL often reduce the global176

policy learning problem into a set of local policy learning problems to scalably solve MDPs. One such177

example is LEEP [7], which addresses RL generalization by enabling independent learning for each178

agent and facilitating cross-agent knowledge sharing through a linker function. In LEEP, the optimal179

global policy π∗ is obtained by combining local policies π∗
i optimal in their respective MDPs using a180

linker function π∗ = f({π∗
i }i∈[N ]), where {π∗

i }i∈[N ] = argmaxπ1,...,πN

1
N

∑N
i=1 JMi

(πi)− α2181

·
∑N

i=1 Ep
πi
Mi

[
DKL[πi||f({πi}i∈[N ])]

]
.182

However, LEEP proposes a probability-based linker function that combines policies by selecting183

the most probable action. This can limit the capacity of ensemble learning, as each agent is likely184

to prioritize its own policy during training, and the sim-to-real gap is not explicitly optimized. To185

address this issue, we derive an uncertainty-based generalization gap and use it to assign weights to186

each agent’s policy contribution in the linker function. This ensures that the combined policy directly187

optimizes the generalization gap, leading to improved sim-to-real transfer performance.188

The generalization gap from [15, 29] can be written as Eτ,s∼pπ
Mtrain

[R(τ)|s] − Eτ,s∼pπ
Mtest

[R(τ)|s].189

Recent work has shown that this gap can be measured by the latent representation deviation ∆dt190

between training and testing environments, i.e., ||dt,test − dt,train|| [22]. However, this metric is191

impractical in real-world robotic policy transfer because it requires dtrain
t and dtest

t to share the same192

underlying state st, which is often infeasible to obtain due to noisy and partial observations.193

To tractably quantify the generalization gap, we relate ∆dt to the deviation in the reconstructed state194

∆ŝt, i.e., ||ŝt,test − ŝt,train||. Following [22], we assume Lipschitz continuity in a set of functions that195

map ŝt to dt with a constant L > 0, yielding ∆dt ≤ L∆ŝt. Similar to [37], we assume an admissible196

error estimator with upper bounds σ2
t,train, and σ2

t,test on the reconstruction errors for both training197

and testing. Applying the triangle inequality, we obtain: ∆dt ≤ L(σ2
t,test + σ2

t,train). We define the198
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generalization gap as a vector δ = (δi)
N
i=1, where δi denotes the generalization gap of agent i. By199

normalizing ∆dt,i by the continuity constant and the estimator error bound, we define:200

δi = 1 +
σ2
t,i,test

σ2
t,i,train

. (9)

To leverage the derived uncertainty-based generalization gap for ensemble learning, we propose a201

linker function based on the generalization gap to combine policies as a weighted sum of individual202

policies, with weights inversely proportional to the generalization gap. This ensures that agents with203

smaller sim-to-real gaps have a greater influence on the combined policy, while still incorporating204

knowledge from other agents:205

πen =

N∑
i=1

softmax(−δ)i · πi(·|dt,i). (10)

We further compute the KL-divergence between each agent’s policy and the combined policy, serving206

as an additional loss term during training. This loss encourages coherence across the ensemble,207

ensuring that individual policies do not diverge significantly from the ensemble consensus:208

Len = DKL[πen||πi(·|dt,i)]. (11)

We propose AREPO, a novel ensemble learning architecture that manages individual agent-209

environment interactions via shared uncertainty quantification in Fig. 1c. Each agent in the ensemble210

is instantiated with the uncertainty-quantifying VAE and uncertainty-guided RL modules, described211

(see Fig. 1a and Fig. 1b respectively). We summarize AREPO in Alg. 1 and Alg. 2.212

Algorithm 1 AREPO (training)

1: Initialize N training environments with customized parameterizations, initialize policy θi, value
ηi, and VAE network ϕi for each indexed environment Ei, i ∈ N .

2: for each iteration do
3: for i ∈ N do
4: Collect data {s, o, a, s′, o′}D using πi in Ei.
5: for each mini-batch B in D do
6: Similar to [5] [23], we train the VAE and RL parts in an alternating fashion to stablize

training. Activate VAE network ϕi.
7: for j ∈ N, j ̸= i do
8: Freeze all networks of agent j, i.e., πj , ηj , ϕj , so agent j is not updated.
9: end for

10: Compute and update VAE network ϕi with LVAE computed with Equation (4) and the
regularization loss Lreg = L1(vt, v̂t) in Fig. 1a.

11: Freeze VAE network ϕi. Activate policy and value networks θi and ηi.
12: Use Equation (3) to compute LPPO with altered entropy term in Equation (8) and compute

LV with Equation (2). LRL in Fig. 1b is computed using LPPO + LV .
13: Compute σ2

t,i,train = Eσ2
t,i∼Si,train

[σ2
t,i], where Si,train is the set of all computed σ2

t,i during
training. Compute uncertainty measure σ2

t,i with Equation (7) as σ2
t,i,test. Compute δi

with Equation (9). Compute combined ensemble policy πen with Equation (10). Compute
ensemble loss Len with Equation (11).

14: Update θi, ηi using L = LRL + Len. Freeze policy and value networks θi and ηi.
15: end for
16: end for
17: end for

5 Experiments213

This section presents the experimental evaluation of AREPO, addressing two primary questions:214

1) Can AREPO achieve improved sampling efficiency and stability compared to uncertainty-unaware215

DRL baselines under extreme partial observability?216
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Algorithm 2 AREPO (inference)

1: Load N trained agents, initialize policy θi, value ηi, VAE network ϕi, and epistemic training
uncertainty σ2

t,i,train for each agent i, i ∈ N .
2: while the task is not done do
3: Receive observation ot−N :t.
4: for each agent i ∈ N do
5: Compute denoised latent state dti using VAE network ϕi and ot−N :t.
6: Compute the corresponding epistemic uncertainty σ2

t,i with Equation (7) as σ2
t,i,test.

7: Compute δi with Equation (9). Compute policy πi(·|dt,i) using policy network θi and dt,i.
8: end for
9: Compute combined policy πen with Equation (10). Return action a ∼ πen.

10: end while

Figure 2: ARPO achieves the best sam-
pling efficiency and training stability under
extreme partial observability compared to
DRL methods without uncertainty aware-
ness.

Table 1: In the experiment on sampling effi-
ciency and training stability, ARPO obtains
the best surface quality and most efficient
material usage compared to uncertainty-
unaware baselines.
Metrics Rrms (mm) Rt (mm) rwv (%) tavg (ms)
ARPO 0.6 ± 0.2 3.9 ± 1.4 23.8 ± 0.01 17.2± 1.4
CRL+VAE 1.7± 0.9 8.3± 4.9 32.5± 0.02 16.6± 2.3
MaxEntRL 1.3± 0.6 5.5± 2.5 33.8± 0.01 7.7 ± 0.5
MPC 2.8± 0.4 13.5± 1.6 31.3± 0.05 59.2± 2.5
Vanilla 10.2± 0.4 40.6± 1.5 53.8± 0.02 50.1± 1.2

Figure 3: For each method, the first row displays the
observed heightmaps used as input to the models, where
the white areas are unobservable to agents. The second
row shows corresponding states. The color shift in the
heightmaps indicates task progress.

2) Can AREPO generalize to novel scenarios characterized by temporally-correlated dynamics and217

varying levels of spatially-correlated partial observability?218

To investigate these questions, we evaluate AREPO on a task that involves guiding a tool to sprinkle219

material onto a target surface to a specified thickness (See Fig. 4, displayed on page 8 to conve-220

niently appear next to its sibling Fig. 5). This task serves as a proxy for industrial applications221

like shotcreting [20], sandblasting [33], and paint spraying [34], where robots must operate under222

severe visual occlusions and sensory noise. By contrast, standard RL benchmarks used in previous223

works (e.g., Control Suite [9, 35], Mujoco [36, 30], or Atari [18, 14]) fail to capture temporally224

and spatially correlated occlusions and noise common in real-world industrial settings. To further225

Table 2: In the experiment on zero-shot sim-to-sim transfer, AREPO remains robust under varying
levels of extreme partial observability, achieving better surface quality and robustness than LEEP
due to the uncertainty weighted ensemble policy. DR generally achieves the worst performance,
indicating a failed sim-to-sim transfer to tasks under extreme partial observability.
Scenarios Scenario 1: 65% Random Occlusion + 15% Plume Scenario 2: 80% Random Occlusion + 50% Plume Scenario 3: 95% Random Occlusion + 85% Plume
Metrics Rrms (mm) Rt (mm) rwv (%) tavg (ms) Rrms (mm) Rt (mm) rwv (%) tavg (ms) Rrms (mm) Rt (mm) rwv (%) tavg (ms)
AREPO 1.6 ± 0.3 8.1 ± 1.3 30.0 ± 0.01 32.3 ± 2.2 1.7 ± 0.5 8.6 ± 1.9 30.0 ± 0.01 32.1 ± 3.2 1.7 ± 0.3 8.8 ± 1.4 31.3 ± 0.01 30.7 ± 2.7
LEEP 3.6 ± 0.6 16.6 ± 2.8 42.5 ± 0.03 28.1 ± 3.6 3.9 ± 0.6 17.9 ± 2.5 40.2 ± 0.03 28.9 ± 3.1 4.6 ± 0.5 20.7 ± 2.0 47.5 ± 0.02 27.2 ± 2.5
DR 4.3 ± 2.6 18.4 ± 4.0 58.8 ± 0.07 17.5 ± 1.2 4.5 ± 3.4 18.5 ± 14.0 62.5 ± 0.06 17.4 ± 1.3 6.0 ± 3.4 25.7 ± 10.1 71.3 ± 0.01 17.3 ± 1.5
MPC 2.8 ± 0.4 13.5 ± 1.6 31.3 ± 0.05 59.2 ± 2.5 3.1 ± 0.5 13.6 ± 1.9 32.5 ± 0.04 59.3 ± 3.2 3.9 ± 0.5 17.1 ± 1.7 37.5 ± 0.03 59.8 ± 2.4
Vanilla 8.9 ± 0.6 35.7 ± 2.36 48.8 ± 0.04 50.2 ± 1.2 10.1 ± 0.7 40.3 ± 2.5 52.5 ± 0.03 50.1 ± 1.2 10.2 ± 0.4 40.6 ± 1.5 53.8 ± 0.02 50.1 ± 1.2
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(a) Side view (b) Top view

Figure 4: Our sand sprinkling testbed serves as a
proxy for a variety of industrial applications char-
acterized by significant visual occlusions and noise.
Fig. 4a: Sand stored in an overhead container is trans-
mitted through a hose to a sprinkler positioned over
a target (a rectangular bin). Sprinkling generates
plumes that create visual occlusions. Fig. 4b: The
sprinkler is held by a robotic arm which is guided
using heightmaps of the target, derived from images
captured by an overhead stereo camera.

Figure 5: For each method, the first row dis-
plays the grayscale images of the scenario.
The second row shows their corresponding
heightmaps of the target surface. In the sim-
to-real experiment, AREPO is most robust to
partial observability caused by dust and sen-
sory noise (unobservable white parts of the
heightmaps) and achieves best surface quality
compared to other methods.

Table 3: In zero-shot sim-to-real transfer to the laboratory testbed, AREPO achieves the best surface
quality compared to baselines without uncertainty awareness.
Metrics R

rms
(mm) R

t
(mm) r

wv
(%) t

avg
(ms)

AREPO 1.1 ± 0.5 7.6 ± 1.5 24.2 ± 2.1 30.2 ± 3.2
LEEP 3.3 ± 0.6 17.1 ± 2.8 30.2 ± 2.5 29.2 ± 2.1
DR 4.3 ± 1.8 21.2 ± 4.3 45.7 ± 4.3 16.7 ± 1.5
MPC 3.7 ± 0.3 18.7 ± 2.2 32.4 ± 3.1 61.1 ± 3.7

illustrate the task’s difficulty and relevance, we evaluate a Model Predictive Control (MPC) [2]226

planner, and a vanilla planner that operates by always guiding the tool to the position with the least227

material deposition alongside DRL methods. As is shown in Sections 5.3 and 5.4, the performance228

deteriorates significantly for all methods except AREPO in scenarios with increasing noise and229

occlusion, highlighting the difficulty of the task and its suitability for evaluating policies in noisy,230

partially observable environments.231

To address Question 1, we evaluate ARPO (the non-ensemble version of AREPO) in simulation232

against several baselines: DrQ-v2 (encoder-only DRL) [36], MaxEntRL (PPO + maximum entropy233

objective [38]+VAE), CRL+VAE (MaxEntRL + critic-guided representation learning [35]), ARPO-234

NVH (CRL+VAE + uncertainty-guided exploration), and ARPO (ARPO-NVH + value head). In235

the synthetic experiment addressing Question 1, we simulate spatially correlated noise, with severe236

occlusions concentrated near the contact point where the material meets the surface. Portions of the237

target surface are also obscured, simulating real-world conditions where dust, debris, and airborne238

particles reduce visibility and complicate task execution. The material flow rate is modeled as239

temporally correlated and episodic, with adjustable episode durations to reflect fluctuating pressures240

or discharge rates typical in real-world operations. Fig. 3 shows a visual representation of the241

data generated by our simulator. To address Question 2, We evaluate MPC, DR (vanilla domain242

randomization) [26], and LEEP (ensemble-based transfer learning method) [7] against AREPO (LEEP243

+ uncertainty-weighted linker function in Equation 9). All DRL methods use ARPO as their agents for244

a fair comparison. Experiments addressing Question 2 consist of two training scenarios, both carried245

out in simulation: one with a constant material flow rate and another with a extremely varied flow246

rate ranging from 10% to 1000% of the first rate. Both scenarios feature the same spatially correlated247

partial observability as in the previous experiment. After training, the evaluation of Question 2 is248

conducted in two phases. In the first phase, zero-shot tests are performed in simulation under varying249

degrees of extreme occlusion. This phase evaluates how AREPO and the baseline models adapt to250

severe partial observability in a controlled simulation. In the second phase, the learned policies are251
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transferred zero-shot to the laboratory testbed. For a detailed layout of the laboratory setup, see252

Fig. 4a and Fig. 4b.253

5.1 Technical Details254

All models in the experiment receive input in the form of 2D heightmaps, representing the material255

deposition status on the target surface. The output of each model is a 2D velocity vector that controls256

the nozzle’s position in a plane parallel to the target, determining where material is applied. To257

account for variability during evaluation, the performance metrics are averaged over 20 independent258

validation trials. All DRL models are implemented using Stable-Baselines3 [28], and trained for 1.6259

million timesteps before evaluation. Full details of model architectures and hyperparameters can260

be found in our publicly available source code at https://gitlab.kuleuven.be/detry-lab/261

public/arepo. The performance of the agents are compared with 4 metrics: i) root-mean-square262

roughness Rrms: the square root of the mean of the squares of the deviations of the surface height263

values from the mean surface height, ii) peak-to-valley roughness Rt: the difference in height between264

the highest point and the lowest point on a surface, iii) waste volume ratio rwv: the ratio between the265

wasted volume and the desired volume to be fulfilled. The wasted volume is defined as the material266

volume that has been sprayed outside the target surface or that exceeds the target thickness. iv)267

average inference time tavg: the average time the agent takes to compute at given ot−N :t.268

5.2 Simulated Experiment on Sampling Efficiency and Training Stability269

Fig. 2 reveals several key insights. First, VAE-based DRL enables more robust representation learning270

as compared to DrQ-v2 that relies on an encoder-only DRL. Second, CRL+VAE, which augments271

learning with critic loss, is more stable than MaxEntRL but is more prone to local optimality. Finally,272

while ARPO-NVH outperforms CRL+VAE by avoiding local optimality using uncertainty-guided273

exploration, its stability is lower. The inclusion of a value head in ARPO stabilizes training further,274

highlighting the importance of the value head in balancing exploration and stability. Additionally, Fig.275

3 demonstrates ARPO’s superior surface quality and minimal material waste, as supported by Tab. 1.276

5.3 Simulated Experiment on Zero-Shot Sim-to-Sim Transfer277

Tab. 2 shows that AREPO outperforms LEEP across varying levels of partial observability. This278

success is attributed to the uncertainty-weighted ensemble policies, which enable AREPO to adapt279

effectively to occlusion and noise in the environment. In contrast, DR and MPC agents exhibit280

significant performance deterioration as occlusion increases, indicating failure in sim-to-sim transfer281

under extreme partial observability. While the vanilla planner shows robust performance due to its282

simple rules, this simplicity also limits its effectiveness in handling more complex tasks.283

5.4 Real-World Experiment on Zero-Shot Sim-to-Real Transfer284

As illustrated in Fig. 5, AREPO demonstrates superior surface quality, achieving a more homogeneous285

material application across the target surface compared to other methods. Tab. 3 further quantifies this286

performance, showing that DR and MPC struggle to generalize effectively, with DR producing the287

poorest surface quality. Both LEEP and AREPO outperform DR and MPC, highlighting the value of288

ensemble DRL approaches. AREPO’s superiority over LEEP is attributed to its uncertainty-weighted289

combined policy, which dynamically adjusts based on real-time uncertainty estimations, resulting in290

more robust material application.291

6 Conclusions292

This paper introduces AREPO, an ensemble DRL framework that enhances robustness under extreme293

partial observability by incorporating uncertainty quantification through a VAE-based approach,294

thereby improving sampling efficiency during exploration and training stability via an additional295

value prediction head. This uncertainty estimation bridges the sim-to-real generalization gap, en-296

abling a more adaptive ensemble mechanism that leverages real-time uncertainty. Empirical results297

demonstrate AREPO’s superior learning efficiency and policy robustness compared to traditional298

methods.299
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