REINVENT-Transformer: Molecular De Novo Design through Transformer-based Reinforcement Learning

Pengcheng Xu px6@illinois.edu University of Illinois Urbana Champaign Urbana, Illinois, USA

Wenhao Gao whgao@mit.edu Massachusetts Institute of Technology Boston, Massachusetts, USA

Tianfan Fu fut2@rpi.edu Rensselaer Polytechnic Institute Troy, New York, USA

Jimeng Sun jimeng@illinois.edu Univeresity of Illinois Urbana Champaign Urbana, Illinois, USA

Figure 1: The framework of our method.

ABSTRACT

In this work, we introduce a method: REINVENT-Transformer to fine-tune a Transformer-based generative model for molecular de novo design. Leveraging the superior sequence learning capacity of Transformers over Recurrent Neural Networks (RNNs), our model can generate molecular structures with desired properties effectively. In contrast to the traditional RNN-based models, our proposed method exhibits superior performance in generating compounds predicted to be active against various biological targets, capturing long-term dependencies in the molecular structure sequence. The model's efficacy is demonstrated across numerous tasks, including generating analogues to a query structure and producing compounds with particular attributes, outperforming the baseline RNN-based methods. Our approach can be used for scaffold hopping, library expansion starting from a single molecule and generating compounds with high predicted activity against biological targets.

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

https://doi.org/XXXXXXXXXXXXXXX

CCS CONCEPTS

• Computing methodologies → Learning latent representations; • Applied computing \rightarrow Biological networks.

KEYWORDS

Molecular Optimization, Transformer, Reinforcement Learning

ACM Reference Format:

Pengcheng Xu, Tianfan Fu, Wenhao Gao, and Jimeng Sun. 2024. REINVENT-Transformer: Molecular De Novo Design through Transformer-based Reinforcement Learning. In Proceedings of Make sure to enter the correct conference title from your rights confirmation emai (Conference acronym 'XX). ACM,

1 INTRODUCTION

Navigating the vast chemical space, which contains $10^{60} - 10^{100}$ possible molecules, is a critical challenge in drug discovery [34, 45]. Early de novo design algorithms [6, 17] and RNN-based models [14, 32] have partially addressed this complexity. However, the Transformer architecture has proven superior, especially in handling the long-term dependencies necessary for modeling complex molecules, due to its:

- (1) Parallelization: Processes all tokens simultaneously, unlike step-by-step processing in RNNs, enhancing efficiency.
- (2) Long-term Dependency Handling: Employs multi-head selfattention mechanisms to capture long-range interactions.
- Scalability: Better suited for longer sequences, a key advantage (3)in molecular design.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

^{© 2024} Copyright held by the owner/author(s). Publication rights licensed to ACM. ACM ISBN 978-1-4503-XXXX-X/18/06

This work introduces a novel approach by incorporating the Decision Transformer in *de novo* molecular design. Leveraging "oracle feedback reinforcement learning," our model optimizes towards molecules with high predicted activity, providing precision and enhancing success rates in drug discovery [32]. This integration sets a new standard in the field, emphasizing the transformative potential of Transformer-based architectures in molecular design.

2 RELATED WORKS

Early *de novo* design algorithms primarily focused on structurebased methods, aiming to develop ligands that fit the binding pocket of a target, as highlighted in works by [6] and [17]. These methods often resulted in molecules with suboptimal drug metabolism and pharmacokinetic (DMPK) properties, presenting challenges in synthetic tractability. Ligand-based approaches, not relying on the 3D structure of the target, were introduced to address some of these limitations, involving a virtual library of chemical structures evaluated using a scoring function [21, 33]. However, the effectiveness of ligand-based methods compared to structure-based ones is not definitive [4].

Generative models, including RNN-based methods, have been employed in *de novo* design [10, 19, 35, 43]. These models learn the probability distribution over chemical structures and are further fine-tuned using reinforcement learning (RL) [24], achieving significant improvements.

The Transformer architecture, known for its self-attention mechanism, addresses the challenges of long-term dependencies in sequence data [39]. Motivated by its success, we propose using Transformer-based architectures for molecular *de novo* design in place of RNNs.

Molecular assembly strategies include string-based approaches like SMILES and SELFIES [29, 40], and graph-based methods representing molecular structures [26, 46]. Synthesis-based strategies focus on generating synthesizable molecules [7, 9, 10, 15].

Optimization algorithms used in molecular design include Genetic Algorithms (GAs) and Bayesian optimization (BO), which mimic natural evolutionary processes and build surrogates for the objective function, respectively [8, 28, 30, 31]. Variational autoencoders (VAEs) and reinforcement learning (RL) have also been used to map molecules from a latent space and refine models for enhanced molecule generation [19, 26, 32]. Recent advancements like Pasithea and Differentiable scaffolding tree (DST) utilize gradientbased optimization [11, 36].

The evolution from RNN-based methods to Transformer-based models reflects a desire to better handle complex chemical structures and optimize them more effectively. The Transformer architecture, particularly its self-attention mechanism, effectively handles sequence data [39]. Combined with RL for fine-tuning [12, 14, 24, 32, 42, 46], this integration aims to improve molecular design processes, promising more sophisticated automated systems.

3 METHODOLOGY: REINVENT-TRANSFORMER

Our method, named REINVENT-Transformer, first pre-trains the real 2D molecule dataset based on the transformer. Then, based

on the RL paradigm, fine-tuning is performed on the molecular attributes to be optimized.

3.1 Preliminaries

This study focuses on single-objective molecular optimization for designing small organic molecules with significant scalar properties in therapeutic development. The molecular design task is an optimization problem:

$$m^* = \arg \max_{m \in \mathcal{M}} O(m),$$

where *m* is a molecular structure and \mathcal{M} is the vast chemical space of potential candidates, approximately 10^{60} [5]. We assume access to the actual value of a targeted property, $O(m) : \mathcal{M} \to \mathcal{R}$, evaluated by an oracle, O, which is an opaque mechanism providing a scalar value for specific chemical or biological attributes. These oracles, whether experimental or high-fidelity simulations, are costly. Hence, an efficient optimization algorithm within feasible resource constraints is vital, significantly aiding automated molecular design in advanced automated chemical design (ACD) [18] or functiondriven autonomous synthesis [16].

3.2 Transformer-based Molecular Pre-training

The transformer is used for pre-training on real 2D molecules. Specifically, it treats the prediction of a 2D molecule as a sequence prediction and lets the transformer predict the next atom based on the molecular sequence history. The pre-training of the transformer is based on maximum likelihood.

Training data Overview: Segmentation and Binary Coding of SMILES

A Simplified Molecular Input Line Entry System (SMILES) [41] represents a molecule as a character sequence with atoms and symbols for ring closure, opening, and branching. SMILES are typically tokenized by single characters, except for two-character atoms like "Cl" and "Br" and special cases in square brackets (e.g., [nH]) treated as single tokens. This tokenization approach identified 86 tokens in the training data.

A molecule can have multiple SMILES representations. Canonicalization algorithms [40] ensure consistent SMILES for the same molecule, though different implementations may produce varied SMILES.

Transformers Overview Transformers are a neural network architecture designed to process sequential data, while also accounting for the importance of each input in relation to the others, despite their position in the sequence [39]. They manage to do this by the introduction of an attention mechanism that assesses the significance of each input in the sequence (Figure 1). At any given step *t*, the transformer state at *t* is influenced by all previous inputs x_1, \ldots, x_{t-1} and the current input x_t . The transformer's ability to selectively focus on the parts of the input sequence that are most relevant for each step makes them especially well suited for tasks in the field of natural language processing. Sequences of words can be encoded into one-hot vectors with a length equivalent to our vocabulary size *X*. We may add two extra tokens, GO and EOS, to signify the beginning and end of a sequence, respectively.

Learning to model the data Training a Transformer for sequence modeling typically involves using maximum likelihood estimation to predict the next token x_t in the target sequence, given tokens from the previous steps (Figure 1). The model generates a probability distribution at every step, representing the likely next character, and the objective is to maximize the likelihood assigned to the correct token:

$$J(\Theta) = -\sum_{t=1}^{T} \log P(x_t \mid x_{t-1}, \dots, x_1).$$
 (1)

The cost function $J(\Theta)$, often applied to a subset of all training examples known as a batch, is minimized with respect to the network parameters Θ . Given a predicted log likelihood log P of the target at step t, the gradient of the cost function with respect to Θ is used to update Θ . This method of fitting a neural network is called back-propagation. Changing the network parameters affects not only the immediate output at time t, but also influences the information flow into subsequent transformer states.

Generating new samples Once a Transformer has been trained on target sequences, it can be used to generate new sequences that adhere to the conditional probability distributions learned from the training set. The first input is the GO token, and at every timestep following, we sample an output token x_t from the predicted probability distribution $P(X_t)$ over our vocabulary X. The sampled x_t is then used as our next input. The sequence is considered finished once the EOS token is sampled.

3.3 Molecular Attribute Fine-tuning through Reinforcement Learning

In this part, we load the pre-trained transformer network and finetune it based on RL. Here, our task is to generate some specific molecules with good attributes. Therefore, we use the generated molecules to measure the properties of the corresponding molecules through Oracle, and use them as rewards to finetune the neural network.

Agent Decision-Making and Markov Decision Processes Consider an Agent choosing an action $a \in \mathbb{A}(s)$ in state $s \in \mathbb{S}$, where \mathbb{S} is the set of states and $\mathbb{A}(s)$ is the set of actions. The policy $\pi(a \mid s)$ maps states to action probabilities. Reinforcement learning often uses Markov decision processes (MDPs), where the current state is sufficient for decision-making [37]. This can extend to partially observable MDPs with partial environment views. The reward $r(a \mid s)$ measures action effectiveness, and the long-term return $G(a_t, S_t) = \sum_t^T r_t$ is the cumulative reward from time t to T. For molecular desirability, we consider the return of a complete SMILES sequence.

Reinforcement learning aims to improve the policy to maximize expected return $\mathbb{E}[G]$. Tasks ending at step *T* are episodic [37], such as SMILES generation ending with an EOS token.

States and actions for training can be generated by the agent (on-policy) or others (off-policy) [37]. Two RL strategies are valuebased and policy-based [37]. Value-based RL learns a value function to derive a policy, while policy-based RL directly learns the policy. For our problem, policy-based methods are preferred because:

- They can learn an optimal stochastic policy [37], aligning with our goal.
- Fine-tuning a prior sequence model with a scoring function needs minimal changes, reducing gradient estimate variance.

Negative Log-Likelihood (NLL) and Loss Function To assess the likelihood of sequence generation by the agent, we use the Negative Log-Likelihood (NLL). The NLL is calculated as follows:

$$NLL(S) = -\sum_{i=1}^{N} \ln P \left(X_i = T_i \mid X_{i-1} = T_{i-1} \dots X_1 = x_1 \right). \quad (2)$$

This measure is crucial in understanding the generative model's performance [3]. The augmented likelihood and loss function are then computed to adjust the agent's generation process:

$$NLL(S)_{\text{Augmented}} = NLL(S)_{\text{Prior}} - \sigma * MPO(S)_{\text{score}}$$
$$\text{loss} = \left[NLL(S)_{\text{Augmented}} - NLL(S)_{\text{Agent}} \right]^2.$$

Scoring Functions for Molecular Sequences REINVENT-Transformer utilizes scoring functions to evaluate and guide the generation of molecular sequences. These functions are formulated as either a weighted product or a weighted sum:

$$\begin{split} S(x) &= \left[\prod_i p_i(x)^{w_i}\right]^{1/\sum_i w_i} \\ S(x) &= \frac{\sum_i w_i * p_i(x)}{\sum_i w_i}. \end{split}$$

This scoring approach is designed to balance various molecular properties during the generation process, facilitating the production of molecules with desired characteristics [3].

4 EXPERIMENT

4.1 Experimental Setup

Dataset. For methods requiring a database, we use the ZINC 250K dataset [22, 23], consisting of around 250K molecules. This dataset is significant in pharmaceuticals and is used in Screening [1], MolPAL [20], and pretraining generative models like VAEs [27] and LSTMs [44]. Essential fragments for JT-VAE [26], MIMOSA [13], and DST [11] are also derived from it.

Baseline. We compare eight baseline methods for performance evaluation, including REINVENT [32], Graph-GA [25], SELFIES-REINVENT [14], GP BO [38], STONED [31], SMILES-LSTM HC [8], SMILES-GA [8], SynNet [15], DoG-Gen [7], and DST [11]. The implementations come from the PMO benchmark [14]¹.

Metric. In order to evaluate both optimization capability and sample efficiency, following [14], we use the area under the curve (AUC) of the top-*K* average property value in relation to the number of oracle calls.

¹https://github.com/wenhao-gao/mol_opt

4.2 Evaluation Results

Our result is shown in Table. 1. From the table, we can observe that our method is better than the baseline method on multiple Oracles, which proves the effectiveness of the transformer in our problem. Our experiments mainly follow the benchmark paper [14].

Overall Molecular Generation Result

The evaluation results depict a thorough comparison between the REINVENT-Transformer (referred to as REINVENT-Trans) and other prominent models across multiple oracles. Randomly selected SMILES generated by different models can be seen in Table 4. And the corresponding chemical structures are shown in figure 5.

Overall Molecular Generation Result Performance Overview

REINVENT-Transformer consistently excels in molecular generation, achieving top results in properties like 'Albuterol_Similarity', 'Mestranol_Similarity', 'QED', 'Scaffold_Hop', and 'Sitagliptin_MPO'. This indicates the model's strength in capturing intricate molecular patterns and optimizing desired properties.

Comparative Insight

1. Versus REINVENT (SMILES and SELFIES): REINVENT-Transformer often outperforms REINVENT (SMILES), though REIN-VENT scores slightly better on 'Osimertinib_MPO'. SELFIES representation in REINVENT doesn't always enhance performance, highlighting the impact of model architecture and representations.

2. **Graph-based Models:** 'Graph GA' and 'GP BO' show strong performance in 'Amlodipine_MPO' and 'Celecoxib_Rediscovery' oracles, respectively, but aren't consistently top-performing, suggesting their limited generalizability.

3. Genetic Algorithms: STONED (using SELFIES) achieves the highest score in 'Fexofenadine_MPO', demonstrating the potential of genetic algorithms in specific optimization tasks despite their stochastic nature.

4.3 Ablation Study: Long Sequence Molecule Generation Comparison with REINVENT-SMILES

Figure 2: Evaluation score vs molecular length for comparison of REINVENT-Transformer and REINVENT on oracle Mestranol_Similarity

In order to better investigate in the ability of our method in long sequence generation, we did the following ablation study.

The box plot visualizes the distribution of evaluation scores

across different molecular lengths for both the REINVENT-Transformer method and the baseline REINVENT method.

Based on the figure 2, we can derive the following observations:

1. In general, REINVENT-Transformer will generate longer average length of molecules than REINVENT.

2. The REINVENT-Transformer method consistently achieves higher average scores.

3. The spread (interquartile range) of scores for the REINVENT-Transformer method remains relatively consistent across molecular lengths, indicating stable performance.

In conclusion, the REINVENT-Transformer method outperforms the baseline REINVENT method, particularly in the context of longer molecular sequences.

Figure 3: Evaluation score vs short and long sequence for comparison of REINVENT-Transformer and REINVENT on oracle Mestranol_Similarity

We set a threshold=50 for the length of the generated molecular string. If the generated string is longer than the threshold, it will be considered as "long", other it's considered as "short". From Figure 3, we can see the our method REINVENT-Transformer has better average score when generating long sequences.

4.4 Case Study: Convergence rate Comparison between REINVENT-Transformer and REINVENT

We plotted the auc_topk curve and the number of oracle calls is the x-axis. From the figure as follows, we can see that our method REINVENT-Transformer converges faster than REINVENT method.

From Fig. 4, the evolution of the average accuracy for the top 100 predictions is evident. Upon examination, across equivalent number of oracle calls, the mean accuracy of REINVENT-Transformer consistently surpasses that of REINVENT. This indicates a more expedient convergence rate for the REINVENT-Transformer compared to REINVENT.

The avg_top100 curve initially displays a steep incline, eventually plateauing post approximately 6000 oracle calls. Notably, beginning from the 2500th oracle call, the performance differential between REINVENT-Transformer and REINVENT significantly widens.

Method	REINVENT-Trans	REINVENT	Graph GA	REINVENT	GP BO	STONED
Assembly	SMILES	SMILES	Fragments	SELFIES	Fragments	SELFIES
Albuterol_Similarity	0.910 ± 0.008	0.882 ± 0.006	0.838 ± 0.016	0.826 ± 0.030	0.898 ± 0.014	0.745 ± 0.076
Amlodipine_MPO	0.653 ± 0.029	0.635 ± 0.035	0.661 ± 0.020	0.607 ± 0.014	0.583 ± 0.044	0.608 ± 0.046
Celecoxib_Rediscovery	0.457 ± 0.071	0.713 ± 0.067	0.630 ± 0.097	0.573 ± 0.043	$\textbf{0.723} {\pm} \textbf{ 0.053}$	0.382 ± 0.041
DRD2	0.931 ± 0.006	0.945 ± 0.007	0.964 ± 0.012	0.943 ± 0.005	0.923 ± 0.017	0.913 ± 0.020
Deco_Hop	0.645 ± 0.038	0.666 ± 0.044	0.619 ± 0.004	0.631 ± 0.012	0.629 ± 0.018	0.611 ± 0.008
Fexofenadine_MPO	0.796 ± 0.007	0.784 ± 0.006	0.760 ± 0.011	0.741 ± 0.002	0.722 ± 0.005	$\textbf{0.797} {\pm} \textbf{ 0.016}$
Isomers_C9H10N2O2PF2Cl	0.809 ± 0.040	0.642 ± 0.054	0.719 ± 0.047	0.733 ± 0.029	0.469 ± 0.180	0.805 ± 0.031
Median 1	0.354 ± 0.008	0.356 ± 0.009	0.294 ± 0.021	0.355 ± 0.011	0.301 ± 0.014	0.266 ± 0.016
Median 2	0.263 ± 0.006	0.276 ± 0.008	0.273 ± 0.009	0.255 ± 0.005	$\textbf{0.297} {\pm} \textbf{ 0.009}$	0.245 ± 0.032
Mestranol_Similarity	0.685 ± 0.032	0.618 ± 0.048	0.579 ± 0.022	0.620 ± 0.029	0.627 ± 0.089	0.609 ± 0.101
Osimertinib_MPO	0.813 ± 0.010	$\textbf{0.837}{\pm}~\textbf{0.009}$	0.831 ± 0.005	0.820 ± 0.003	0.787 ± 0.006	0.822 ± 0.012
Perindopril_MPO	0.525 ± 0.011	0.537 ± 0.016	0.538 ± 0.009	0.517 ± 0.021	0.493 ± 0.011	0.488 ± 0.011
QED	0.942 ± 0.000	0.941 ± 0.000	0.940 ± 0.000	0.940 ± 0.000	0.937 ± 0.000	0.941 ± 0.000
Ranolazine_MPO	0.761 ± 0.012	0.742 ± 0.009	0.728 ± 0.012	0.748 ± 0.018	0.735 ± 0.013	0.765 ± 0.029
Scaffold_Hop	0.560 ± 0.013	0.536 ± 0.019	0.517 ± 0.007	0.525 ± 0.013	0.548 ± 0.019	0.521 ± 0.034
Sitagliptin_MPO	0.563 ± 0.025	0.451 ± 0.003	0.433 ± 0.075	0.194 ± 0.121	0.186 ± 0.055	0.393 ± 0.083
Thiothixene_Rediscovery	0.556 ± 0.016	0.534 ± 0.013	0.479 ± 0.025	0.495 ± 0.040	$\textbf{0.559}{\pm 0.027}$	0.367 ± 0.027
Troglitazone_Rediscovery	0.451 ± 0.015	0.441 ± 0.032	0.390 ± 0.016	0.348 ± 0.012	0.410 ± 0.015	0.320 ± 0.018
Valsartan_Smarts	0.165 ± 0.278	0.165 ± 0.358	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000
Zaleplon_MPO	$\textbf{0.544} \pm \textbf{0.041}$	0.358 ± 0.062	0.346 ± 0.032	0.333 ± 0.026	0.221 ± 0.072	0.325 ± 0.027
sum	12.197	12.047	11.526	11.092	11.152	10.598
rank	1	2	3	5	4	6
Method	I STM HC	SMILES GA	SynNet	DoG-Gen	DST	
Method Assembly	LSTM HC SMILES	SMILES GA	SynNet Synthesis	DoG-Gen Synthesis	DST Fragments	
Method Assembly	LSTM HC SMILES	SMILES GA SMILES	SynNet Synthesis	DoG-Gen Synthesis	DST Fragments	
Method Assembly Albuterol_similarity Amlodining MPO	LSTM HC SMILES 0.719± 0.018 0.593± 0.016	SMILES GA SMILES 0.661± 0.066 0.549± 0.009	SynNet Synthesis 0.584± 0.039 0.565± 0.007	DoG-Gen Synthesis 0.676± 0.013 0.536± 0.003	DST Fragments 0.619± 0.020 0.516± 0.007	
Method Assembly Albuterol_similarity Amlodipine_MPO Calacoxib, Badiscovery	LSTM HC SMILES 0.719± 0.018 0.593± 0.016 0.539± 0.018	SMILES GA SMILES 0.661± 0.066 0.549± 0.009 0.344± 0.027	SynNet Synthesis 0.584± 0.039 0.565± 0.007 0.441± 0.027	DoG-Gen Synthesis 0.676± 0.013 0.536± 0.003 0.464± 0.009	DST Fragments 0.619± 0.020 0.516± 0.007 0.380± 0.006	
Method Assembly Albuterol_similarity Amlodipine_MPO Celecoxib_Rediscovery DRD2	LSTM HC SMILES 0.719± 0.018 0.593± 0.016 0.539± 0.018 0.919± 0.015	SMILES GA SMILES 0.661±0.066 0.549±0.009 0.344±0.027 0.908±0.019	SynNet Synthesis 0.584± 0.039 0.565± 0.007 0.441± 0.027 0.969± 0.004	DoG-Gen Synthesis 0.676± 0.013 0.536± 0.003 0.464± 0.009 0.948± 0.001	DST Fragments 0.619±0.020 0.516±0.007 0.380±0.006 0.820±0.016	
Method Assembly Albuterol_similarity Amlodipine_MPO Celecoxib_Rediscovery DRD2 Deco_Hop	LSTM HC SMILES 0.719± 0.018 0.593± 0.016 0.539± 0.018 0.919± 0.015 0.826± 0.017	SMILES GA SMILES 0.661± 0.066 0.549± 0.009 0.344± 0.027 0.908± 0.019 0.11± 0.006	SynNet Synthesis 0.584± 0.039 0.565± 0.007 0.441± 0.027 0.969± 0.004 0.613± 0.009	DoG-Gen Synthesis 0.676± 0.013 0.536± 0.003 0.464± 0.009 0.948± 0.001 0.800± 0.007	DST Fragments 0.619± 0.020 0.516± 0.007 0.380± 0.006 0.820± 0.014 0.60± 0.008	
Method Assembly Albuterol_similarity Amlodipine_MPO Celecoxib_Rediscovery DRD2 Deco_Hop Favofanadine_MPO	LSTM HC SMILES 0.719± 0.018 0.593± 0.016 0.539± 0.018 0.919± 0.015 0.826± 0.017 0.725± 0.003	SMILES GA SMILES 0.661± 0.066 0.549± 0.009 0.344± 0.027 0.908± 0.019 0.611± 0.006 0.721± 0.015	SynNet Synthesis 0.584± 0.039 0.565± 0.007 0.441± 0.027 0.969± 0.004 0.613± 0.009 0.761± 0.015	DoG-Gen Synthesis 0.676± 0.013 0.536± 0.003 0.464± 0.009 0.948± 0.001 0.800± 0.007 0.695± 0.003	DST Fragments 0.619± 0.020 0.516± 0.007 0.380± 0.006 0.820± 0.014 0.608± 0.008 0.735± 0.008	
Method Assembly Albuterol_similarity Amlodipine_MPO Celecoxib_Rediscovery DRD2 Deco_Hop Fexofenadine_MPO Leamere_C0H10N2O20E2CL	LSTM HC SMILES 0.719± 0.018 0.593± 0.016 0.539± 0.018 0.919± 0.015 0.826± 0.017 0.725± 0.003 0.342± 0.027	SMILES GA SMILES 0.661± 0.066 0.549± 0.009 0.344± 0.027 0.908± 0.019 0.611± 0.006 0.721± 0.015	SynNet Synthesis 0.584± 0.039 0.565± 0.007 0.441± 0.027 0.969± 0.004 0.613± 0.009 0.761± 0.015 0.241± 0.064	DoG-Gen Synthesis 0.676±0.013 0.536±0.003 0.464±0.009 0.948±0.001 0.800±0.007 0.695±0.003 0.100±0.016	DST Fragments 0.619±0.020 0.516±0.007 0.380±0.006 0.820±0.014 0.608±0.008 0.725±0.005 0.458±0.006	
Method Assembly Albuterol_similarity Amlodipine_MPO Celecoxib_Rediscovery DRD2 Deco_Hop Fexofenadine_MPO Isomers_C9H10N202PF2Cl Median 1	LSTM HC SMILES 0.719± 0.018 0.593± 0.016 0.539± 0.018 0.919± 0.015 0.826± 0.017 0.725± 0.003 0.342± 0.027 0.255± 0.010	SMILES GA SMILES 0.661± 0.066 0.549± 0.009 0.344± 0.027 0.908± 0.019 0.611± 0.006 0.721± 0.015 0.860± 0.065 0.192± 0.012	SynNet Synthesis 0.584± 0.039 0.565± 0.007 0.441± 0.027 0.969± 0.004 0.613± 0.009 0.761± 0.015 0.241± 0.064 0.212± 0.004	DoG-Gen Synthesis 0.676±0.013 0.536±0.003 0.464±0.009 0.948±0.001 0.800±0.007 0.695±0.003 0.199±0.016 0.217±0.001	$\begin{array}{c} \textbf{DST} \\ \hline \textbf{Fragments} \\ 0.619 \pm 0.020 \\ 0.516 \pm 0.007 \\ 0.380 \pm 0.006 \\ 0.820 \pm 0.014 \\ 0.608 \pm 0.008 \\ 0.725 \pm 0.005 \\ 0.458 \pm 0.063 \\ 0.232 \pm 0.000 \end{array}$	
Method Assembly Albuterol_similarity Amlodipine_MPO Celecoxib_Rediscovery DRD2 Deco_Hop Fexofenadine_MPO Isomers_C9H10N2O2PF2Cl Median 1 Median 2	LSTM HC SMILES 0.719 ± 0.018 0.593 ± 0.016 0.539 ± 0.018 0.919 ± 0.015 0.826 \pm 0.017 0.725 ± 0.003 0.342 ± 0.027 0.255 ± 0.010 0.348 ± 0.008	SMILES GA SMILES 0.661± 0.066 0.549± 0.009 0.344± 0.027 0.908± 0.019 0.611± 0.006 0.721± 0.015 0.860± 0.065 0.192± 0.012 0.19± 0.002	SynNet Synthesis 0.584± 0.039 0.565± 0.007 0.441± 0.027 0.969± 0.004 0.613± 0.009 0.761± 0.015 0.241± 0.064 0.218± 0.006	DoG-Gen Synthesis 0.676±0.013 0.536±0.003 0.464±0.009 0.948±0.001 0.800±0.007 0.695±0.003 0.199±0.016 0.217±0.001 0.212±0.0001	$\begin{array}{c} \textbf{DST} \\ \hline \textbf{Fragments} \\ 0.619 \pm 0.020 \\ 0.516 \pm 0.007 \\ 0.380 \pm 0.006 \\ 0.820 \pm 0.014 \\ 0.608 \pm 0.008 \\ 0.725 \pm 0.005 \\ 0.458 \pm 0.063 \\ 0.232 \pm 0.009 \\ 0.185 \pm 0.020 \end{array}$	
Method Assembly Albuterol_similarity Amlodipine_MPO Celecoxib_Rediscovery DRD2 Deco_Hop Fexofenadine_MPO Isomers_C9H10N2O2PF2Cl Median 1 Median 2 Mastronal_Similarity	LSTM HC SMILES 0.719 ± 0.018 0.593 ± 0.016 0.539 ± 0.018 0.919 ± 0.015 0.826 \pm 0.017 0.725 ± 0.003 0.342 ± 0.027 0.255 ± 0.010 0.248 ± 0.008 0.526 ± 0.022	SMILES GA SMILES 0.661± 0.066 0.549± 0.009 0.344± 0.027 0.908± 0.019 0.611± 0.006 0.721± 0.015 0.860± 0.065 0.192± 0.012 0.198± 0.005 0.460± 0.020	SynNet Synthesis 0.584± 0.039 0.565± 0.007 0.441± 0.027 0.969± 0.004 0.613± 0.009 0.761± 0.015 0.241± 0.064 0.218± 0.008 0.235± 0.006 0.200± 0.021	DoG-Gen Synthesis 0.676±0.013 0.536±0.003 0.464±0.009 0.948±0.001 0.800±0.007 0.695±0.003 0.199±0.016 0.217±0.001 0.212±0.000 0.427±0.007	$\begin{array}{c} \textbf{DST} \\ \hline \textbf{Fragments} \\ \hline 0.619 \pm 0.020 \\ 0.516 \pm 0.007 \\ 0.380 \pm 0.006 \\ 0.820 \pm 0.014 \\ 0.608 \pm 0.008 \\ 0.725 \pm 0.005 \\ 0.458 \pm 0.063 \\ 0.232 \pm 0.009 \\ 0.185 \pm 0.027 \\ \end{array}$	
Method Assembly Albuterol_similarity Amlodipine_MPO Celecoxib_Rediscovery DRD2 Deco_Hop Fexofenadine_MPO Isomers_C9H10N2O2PF2Cl Median 1 Median 2 Mestranol_Similarity	LSTM HC SMILES 0.719 ± 0.018 0.593 ± 0.016 0.539 ± 0.018 0.919 ± 0.015 0.826 \pm 0.017 0.725 ± 0.003 0.342 ± 0.027 0.255 ± 0.010 0.248 ± 0.008 0.526 ± 0.032 0.725 ± 0.003	SMILES GA SMILES 0.661± 0.066 0.549± 0.009 0.344± 0.027 0.908± 0.019 0.611± 0.006 0.721± 0.015 0.860± 0.065 0.192± 0.012 0.198± 0.005 0.469± 0.029	SynNet Synthesis 0.584± 0.039 0.565± 0.007 0.441± 0.027 0.969± 0.004 0.613± 0.009 0.761± 0.015 0.241± 0.064 0.218± 0.008 0.235± 0.006 0.399± 0.021	$\begin{array}{c} \textbf{DoG-Gen} \\ \textbf{Synthesis} \\ \hline 0.676 \pm 0.013 \\ 0.536 \pm 0.003 \\ 0.464 \pm 0.009 \\ 0.948 \pm 0.001 \\ 0.800 \pm 0.007 \\ 0.695 \pm 0.003 \\ 0.199 \pm 0.016 \\ 0.217 \pm 0.001 \\ 0.212 \pm 0.000 \\ 0.437 \pm 0.007 \\ 0.774 + 0.002 \end{array}$	DST Fragments 0.619±0.020 0.516±0.007 0.380±0.006 0.820±0.014 0.608±0.008 0.725±0.005 0.458±0.063 0.232±0.009 0.185±0.020 0.450±0.027	
Method Assembly Albuterol_similarity Amlodipine_MPO Celecoxib_Rediscovery DRD2 Deco_Hop Fexofenadine_MPO Isomers_C9H10N2O2PF2Cl Median 1 Median 2 Mestranol_Similarity Osimertinib_MPO Barindopril MPO	LSTM HC SMILES 0.719 ± 0.018 0.593 ± 0.016 0.539 ± 0.018 0.919 ± 0.015 0.826 \pm 0.017 0.725 ± 0.003 0.342 ± 0.027 0.255 ± 0.010 0.248 ± 0.008 0.526 ± 0.032 0.796 ± 0.007	SMILES GA SMILES 0.661± 0.066 0.549± 0.009 0.344± 0.027 0.908± 0.019 0.611± 0.006 0.721± 0.015 0.860± 0.065 0.192± 0.012 0.198± 0.005 0.469± 0.029 0.817± 0.011	SynNet Synthesis 0.584± 0.039 0.565± 0.007 0.441± 0.027 0.969± 0.004 0.613± 0.009 0.761± 0.015 0.241± 0.064 0.218± 0.008 0.339± 0.021 0.796± 0.003	$\begin{array}{c} \textbf{DoG-Gen} \\ \textbf{Synthesis} \\ \hline 0.676 \pm 0.013 \\ 0.536 \pm 0.003 \\ 0.464 \pm 0.009 \\ 0.948 \pm 0.001 \\ 0.800 \pm 0.007 \\ 0.695 \pm 0.003 \\ 0.199 \pm 0.016 \\ 0.217 \pm 0.001 \\ 0.212 \pm 0.000 \\ 0.437 \pm 0.007 \\ 0.774 \pm 0.002 \\ 0.474 \pm 0$	DST Fragments 0.619± 0.020 0.516± 0.007 0.380± 0.006 0.820± 0.014 0.608± 0.008 0.725± 0.005 0.458± 0.063 0.232± 0.009 0.185± 0.020 0.450± 0.027 0.785± 0.004 0.462± 0.004	
Method Assembly Albuterol_similarity Amlodipine_MPO Celecoxib_Rediscovery DRD2 Deco_Hop Fexofenadine_MPO Isomers_C9H10N2O2PF2Cl Median 1 Median 2 Mestranol_Similarity Osimertinib_MPO Perindopril_MPO	LSTM HC SMILES 0.719 ± 0.018 0.593 ± 0.016 0.539 ± 0.018 0.919 ± 0.015 0.826 \pm 0.017 0.725 ± 0.003 0.342 ± 0.027 0.255 ± 0.010 0.248 ± 0.008 0.526 ± 0.032 0.796 ± 0.002 0.489 ± 0.007	SMILES GA SMILES 0.661± 0.066 0.549± 0.009 0.344± 0.027 0.908± 0.019 0.611± 0.006 0.721± 0.015 0.860± 0.065 0.192± 0.012 0.198± 0.005 0.469± 0.029 0.817± 0.011 0.447± 0.013	$\begin{array}{r} {\color{black}{SynNet}}\\ {\color{black}{Synthesis}}\\ \hline 0.584\pm 0.039\\ 0.565\pm 0.007\\ 0.441\pm 0.027\\ {\color{black}{0.969\pm}}\\ 0.0613\pm 0.009\\ 0.761\pm 0.015\\ 0.241\pm 0.064\\ 0.218\pm 0.008\\ 0.235\pm 0.006\\ 0.399\pm 0.021\\ 0.796\pm 0.003\\ {\color{black}{0.957\pm}}\\ 0.011\\ 0.9011\\ 0.001\\$	$\begin{array}{c} \textbf{DoG-Gen} \\ \textbf{Synthesis} \\ \hline 0.676 \pm 0.013 \\ 0.536 \pm 0.003 \\ 0.464 \pm 0.009 \\ 0.948 \pm 0.001 \\ 0.800 \pm 0.007 \\ 0.695 \pm 0.003 \\ 0.199 \pm 0.016 \\ 0.217 \pm 0.001 \\ 0.212 \pm 0.000 \\ 0.437 \pm 0.007 \\ 0.774 \pm 0.002 \\ 0.474 \pm 0.002 \\ 0.474 \pm 0.002 \\ 0.024 \\ 0.024 \\ 0.024 \\ 0.002 \\ 0.024 \\ 0.002 \\ 0.024 \\ 0.002 \\ 0.024 \\ 0.002 \\ 0.024 \\ 0.002 \\ 0.024 \\ 0.002 \\ 0.024 \\ 0.002 \\ 0.024 \\ 0.002 \\ 0.024 \\ 0.002 \\ 0.024 \\ 0.002 \\ 0.024 \\ 0.002 \\ 0.024 \\ 0.002 \\ 0.024 \\ 0.002 \\ 0$	$\begin{array}{r} \textbf{DST} \\ \hline \textbf{Fragments} \\ \hline 0.619 \pm 0.020 \\ 0.516 \pm 0.007 \\ 0.380 \pm 0.006 \\ 0.820 \pm 0.014 \\ 0.608 \pm 0.008 \\ 0.725 \pm 0.005 \\ 0.458 \pm 0.063 \\ 0.232 \pm 0.009 \\ 0.185 \pm 0.020 \\ 0.450 \pm 0.027 \\ 0.785 \pm 0.004 \\ 0.462 \pm 0.008 \\ 0.232 \pm 0.008 \\ 0.232 \pm 0.000 \\ 0.232 \pm 0.0$	
Method Assembly Albuterol_similarity Amlodipine_MPO Celecoxib_Rediscovery DRD2 Deco_Hop Fexofenadine_MPO Isomers_C9H10N2O2PF2Cl Median 1 Median 2 Mestranol_Similarity Osimertinib_MPO Perindopril_MPO QED	LSTM HC SMILES 0.719 ± 0.018 0.593 ± 0.016 0.539 ± 0.018 0.919 ± 0.015 0.826 \pm 0.017 0.725 ± 0.003 0.342 ± 0.027 0.255 ± 0.010 0.248 ± 0.008 0.526 ± 0.032 0.796 ± 0.002 0.489 ± 0.007 0.939 ± 0.000	SMILES GA 0.661 ± 0.066 0.549 ± 0.009 0.344 ± 0.027 0.908 ± 0.019 0.611 ± 0.006 0.721 ± 0.015 0.860 ± 0.065 0.192 ± 0.012 0.198 ± 0.005 0.469 ± 0.029 0.817 ± 0.011 0.447 ± 0.013 0.940 ± 0.020	$\begin{array}{r} {\color{black}{SynNet}}\\ {\color{black}{Synthesis}}\\ \hline 0.584\pm 0.039\\ 0.565\pm 0.007\\ 0.441\pm 0.027\\ {\color{black}{0.969\pm}}\\ 0.0613\pm 0.009\\ 0.761\pm 0.015\\ 0.241\pm 0.064\\ 0.218\pm 0.008\\ 0.235\pm 0.006\\ 0.399\pm 0.021\\ 0.796\pm 0.003\\ {\color{black}{0.957\pm}}\\ 0.0796\pm 0.003\\ {\color{black}{0.957\pm}}\\ 0.941\pm 0.000\\ 0.741\pm 0.000\\ 0.751\pm 0.000\\ $	$\begin{array}{c} \textbf{DoG-Gen} \\ \textbf{Synthesis} \\ \hline 0.676 \pm 0.013 \\ 0.536 \pm 0.003 \\ 0.464 \pm 0.009 \\ 0.948 \pm 0.001 \\ 0.800 \pm 0.007 \\ 0.695 \pm 0.003 \\ 0.199 \pm 0.016 \\ 0.217 \pm 0.001 \\ 0.212 \pm 0.000 \\ 0.437 \pm 0.007 \\ 0.774 \pm 0.002 \\ 0.474 \pm 0.002 \\ 0.934 \pm 0.000 \\ 0.714 \pm 0.000 \\ 0.714 \pm 0.002 \\ 0.934 \pm 0.000 \\ 0.714 \pm 0.000 \\ 0.714 \pm 0.002 \\ 0.934 \pm 0.000 \\ 0.714 \pm 0$	$\begin{array}{c} \textbf{DST} \\ \hline \textbf{Fragments} \\ \hline 0.619 \pm 0.020 \\ 0.516 \pm 0.007 \\ 0.380 \pm 0.006 \\ 0.820 \pm 0.014 \\ 0.608 \pm 0.008 \\ 0.725 \pm 0.005 \\ 0.458 \pm 0.063 \\ 0.232 \pm 0.009 \\ 0.185 \pm 0.020 \\ 0.450 \pm 0.027 \\ 0.785 \pm 0.004 \\ 0.462 \pm 0.008 \\ 0.938 \pm 0.000 \\ 0.638 \pm 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.0$	
Method Assembly Albuterol_similarity Amlodipine_MPO Celecoxib_Rediscovery DRD2 Deco_Hop Fexofenadine_MPO Isomers_C9H10N2O2PF2Cl Median 1 Median 2 Mestranol_Similarity Osimertinib_MPO Perindopril_MPO QED Ranolazine_MPO	LSTM HC SMILES 0.719 ± 0.018 0.593 ± 0.016 0.539 ± 0.018 0.919 ± 0.015 0.826 \pm 0.017 0.725 ± 0.003 0.342 ± 0.027 0.255 ± 0.010 0.248 ± 0.008 0.526 ± 0.032 0.796 ± 0.002 0.489 ± 0.007 0.939 ± 0.000 0.714 ± 0.008 0.523 ± 0.012	$\begin{array}{c} \textbf{SMILES GA} \\ \textbf{SMILES} \\ \hline 0.661 \pm 0.066 \\ 0.549 \pm 0.009 \\ 0.344 \pm 0.027 \\ 0.908 \pm 0.019 \\ 0.611 \pm 0.006 \\ 0.721 \pm 0.015 \\ \textbf{0.860 \pm 0.065} \\ 0.192 \pm 0.012 \\ 0.198 \pm 0.005 \\ 0.469 \pm 0.029 \\ 0.817 \pm 0.011 \\ 0.447 \pm 0.013 \\ 0.940 \pm 0.000 \\ 0.699 \pm 0.026 \\ 0.4094 \\ 0.016 \\ 0.4004 \\ 0.016 \\ 0.000$	$\begin{array}{r} {\color{black}{SynNet}}\\ {\color{black}{Synthesis}}\\ \hline 0.584\pm 0.039\\ 0.565\pm 0.007\\ 0.441\pm 0.027\\ {\color{black}{0.969\pm}}, 0.004\\ 0.613\pm 0.009\\ 0.761\pm 0.015\\ 0.241\pm 0.064\\ 0.218\pm 0.008\\ 0.235\pm 0.006\\ 0.399\pm 0.021\\ 0.796\pm 0.003\\ {\color{black}{0.039\pm}}, 0.021\\ 0.796\pm 0.003\\ {\color{black}{0.057\pm}}, 0.011\\ 0.941\pm 0.000\\ 0.741\pm 0.010\\ 0.502\pm 0.012\\ 0.002\\ 0.$	$\begin{array}{c} \textbf{DoG-Gen} \\ \textbf{Synthesis} \\ \hline 0.676 \pm 0.013 \\ 0.536 \pm 0.003 \\ 0.464 \pm 0.009 \\ 0.948 \pm 0.001 \\ 0.800 \pm 0.007 \\ 0.695 \pm 0.003 \\ 0.199 \pm 0.016 \\ 0.217 \pm 0.001 \\ 0.212 \pm 0.000 \\ 0.437 \pm 0.007 \\ 0.774 \pm 0.002 \\ 0.934 \pm 0.000 \\ 0.711 \pm 0.006 \\ 0.515 \pm 0.001 \\ 0.515 \pm 0$	$\begin{array}{c} \textbf{DST} \\ \hline \textbf{Fragments} \\ \hline 0.619 \pm 0.020 \\ 0.516 \pm 0.007 \\ 0.380 \pm 0.006 \\ 0.820 \pm 0.014 \\ 0.608 \pm 0.008 \\ 0.725 \pm 0.005 \\ 0.458 \pm 0.063 \\ 0.232 \pm 0.009 \\ 0.185 \pm 0.020 \\ 0.450 \pm 0.027 \\ 0.785 \pm 0.004 \\ 0.462 \pm 0.008 \\ 0.938 \pm 0.000 \\ 0.632 \pm 0.054 \\ 0.463 \pm 0.024 \\ 0.463 \pm 0.004 \\ 0.632 \pm 0.054 \\ 0.463 \pm 0.004 \\ 0.632 \pm 0.054 \\ 0.463 \pm 0.004 \\ 0.632 \pm 0.054 \\ 0.463 \pm 0.004 \\ 0.653 \pm 0.0054 \\ 0.653 \pm 0.004 \\ 0.653 \pm 0.004 \\ 0.653 \pm 0.004 \\ 0.653 \pm 0.005 \\ 0.053 \pm 0.005 \\ 0.055 \pm 0.$	
Method Assembly Albuterol_similarity Amlodipine_MPO Celecoxib_Rediscovery DRD2 Deco_Hop Fexofenadine_MPO Isomers_C9H10N2O2PF2Cl Median 1 Median 2 Mestranol_Similarity Osimertinib_MPO Perindopril_MPO QED Ranolazine_MPO Scaffold_Hop	LSTM HC SMILES 0.719 ± 0.018 0.593 ± 0.016 0.539 ± 0.018 0.919 ± 0.015 0.826 \pm 0.017 0.725 ± 0.003 0.342 ± 0.027 0.255 ± 0.010 0.248 ± 0.008 0.526 ± 0.032 0.796 ± 0.002 0.489 ± 0.007 0.939 ± 0.000 0.714 ± 0.008 0.533 ± 0.012	SMILES GA SMILES 0.661 ± 0.066 0.549 ± 0.009 0.344 ± 0.027 0.908 ± 0.019 0.611 ± 0.006 0.721 ± 0.015 0.860 ± 0.065 0.192 ± 0.012 0.198 ± 0.005 0.469 ± 0.029 0.817 ± 0.011 0.447 ± 0.013 0.940 ± 0.000 0.699 ± 0.026 0.494 ± 0.017	SynNetSynthesis 0.584 ± 0.039 0.565 ± 0.007 0.441 ± 0.027 0.969 ± 0.004 0.613 ± 0.009 0.761 ± 0.015 0.241 ± 0.064 0.218 ± 0.008 0.235 ± 0.006 0.399 ± 0.021 0.796 ± 0.003 0.557 ± 0.011 0.941 ± 0.000 0.741 ± 0.012	$\begin{array}{r} \textbf{DoG-Gen} \\ \textbf{Synthesis} \\ \hline 0.676 \pm 0.013 \\ 0.536 \pm 0.003 \\ 0.464 \pm 0.009 \\ 0.948 \pm 0.001 \\ 0.800 \pm 0.007 \\ 0.695 \pm 0.003 \\ 0.199 \pm 0.016 \\ 0.217 \pm 0.001 \\ 0.212 \pm 0.000 \\ 0.437 \pm 0.007 \\ 0.774 \pm 0.002 \\ 0.474 \pm 0.002 \\ 0.934 \pm 0.000 \\ 0.711 \pm 0.006 \\ 0.515 \pm 0.005 \\ 0.044 \pm 0.202 \end{array}$	$\begin{array}{r} \textbf{DST} \\ \hline \textbf{Fragments} \\ \hline 0.619 \pm 0.020 \\ 0.516 \pm 0.007 \\ 0.380 \pm 0.006 \\ 0.820 \pm 0.014 \\ 0.608 \pm 0.008 \\ 0.725 \pm 0.005 \\ 0.458 \pm 0.063 \\ 0.232 \pm 0.009 \\ 0.185 \pm 0.020 \\ 0.450 \pm 0.027 \\ 0.785 \pm 0.004 \\ 0.462 \pm 0.008 \\ 0.938 \pm 0.000 \\ 0.632 \pm 0.054 \\ 0.497 \pm 0.024 \\ 0.497 \pm 0.0$	
Method Assembly Albuterol_similarity Amlodipine_MPO Celecoxib_Rediscovery DRD2 Deco_Hop Fexofenadine_MPO Isomers_C9H10N2O2PF2Cl Median 1 Median 2 Mestranol_Similarity Osimertinib_MPO Perindopril_MPO QED Ranolazine_MPO Scaffold_Hop Sitagliptin_MPO	LSTM HC SMILES 0.719 ± 0.018 0.593 ± 0.016 0.539 ± 0.018 0.919 ± 0.015 0.826 ± 0.017 0.725 ± 0.003 0.342 ± 0.027 0.255 ± 0.010 0.248 ± 0.008 0.526 ± 0.032 0.796 ± 0.002 0.489 ± 0.007 0.939 ± 0.000 0.714 ± 0.008 0.533 ± 0.012 0.066 ± 0.019	SMILES GA $SMILES$ 0.661 ± 0.066 0.549 ± 0.009 0.344 ± 0.027 0.908 ± 0.019 0.611 ± 0.006 0.721 ± 0.015 0.860 ± 0.065 0.192 ± 0.012 0.198 ± 0.005 0.469 ± 0.029 0.817 ± 0.011 0.447 ± 0.013 0.940 ± 0.000 0.699 ± 0.026 0.494 ± 0.011 0.363 ± 0.057	$\begin{array}{r} {\color{black}{SynNet}}\\ {\color{black}{Synthesis}}\\ \hline 0.584\pm 0.039\\ 0.565\pm 0.007\\ 0.441\pm 0.027\\ {\color{black}{0.969\pm}}, 0.004\\ 0.613\pm 0.009\\ 0.761\pm 0.015\\ 0.241\pm 0.064\\ 0.218\pm 0.008\\ 0.235\pm 0.006\\ 0.399\pm 0.021\\ 0.796\pm 0.003\\ {\color{black}{0.039\pm}}, 0.021\\ 0.796\pm 0.003\\ {\color{black}{0.0357\pm}}, 0.011\\ 0.941\pm 0.000\\ 0.741\pm 0.010\\ 0.502\pm 0.012\\ 0.025\pm 0.014\\ 0.4014\\ 0.4014\\ 0.002\\ 0.025\pm 0.014\\ 0.002\\$	$\begin{array}{c} \textbf{DoG-Gen} \\ \textbf{Synthesis} \\ \hline 0.676 \pm 0.013 \\ 0.536 \pm 0.003 \\ 0.464 \pm 0.009 \\ 0.948 \pm 0.001 \\ 0.800 \pm 0.007 \\ 0.695 \pm 0.003 \\ 0.199 \pm 0.016 \\ 0.217 \pm 0.001 \\ 0.212 \pm 0.000 \\ 0.437 \pm 0.007 \\ 0.774 \pm 0.002 \\ 0.474 \pm 0.002 \\ 0.934 \pm 0.000 \\ 0.711 \pm 0.006 \\ 0.515 \pm 0.005 \\ 0.048 \pm 0.008 \\ 0.274 \pm 0.004 \\ 0.215 \pm 0.005 \\ 0.048 \pm 0.008 \\ 0.274 \pm 0.004 \\ 0.215 \pm 0.005 \\ 0.048 \pm 0.008 \\ 0.274 \pm 0.004 \\ 0$	$\begin{array}{r} \textbf{DST} \\ \hline \textbf{Fragments} \\ \hline 0.619 \pm 0.020 \\ 0.516 \pm 0.007 \\ 0.380 \pm 0.006 \\ 0.820 \pm 0.014 \\ 0.608 \pm 0.008 \\ 0.725 \pm 0.005 \\ 0.458 \pm 0.063 \\ 0.232 \pm 0.009 \\ 0.185 \pm 0.020 \\ 0.450 \pm 0.027 \\ 0.785 \pm 0.004 \\ 0.462 \pm 0.008 \\ 0.938 \pm 0.000 \\ 0.632 \pm 0.054 \\ 0.497 \pm 0.004 \\ 0.075 \pm 0.032 \end{array}$	
Method Assembly Albuterol_similarity Amlodipine_MPO Celecoxib_Rediscovery DRD2 Deco_Hop Fexofenadine_MPO Isomers_C9H10N2O2PF2Cl Median 1 Median 2 Mestranol_Similarity Osimertinib_MPO Perindopril_MPO QED Ranolazine_MPO Scaffold_Hop Sitagliptin_MPO Thiothixene_Rediscovery	LSTM HC SMILES 0.719 ± 0.018 0.593 ± 0.016 0.539 ± 0.018 0.919 ± 0.015 0.826 ± 0.017 0.725 ± 0.003 0.342 ± 0.027 0.255 ± 0.010 0.248 ± 0.008 0.526 ± 0.032 0.796 ± 0.002 0.489 ± 0.007 0.939 ± 0.000 0.714 ± 0.008 0.533 ± 0.012 0.066 ± 0.019 0.438 ± 0.008	SMILES GA SMILES 0.661 ± 0.066 0.549 ± 0.009 0.344 ± 0.027 0.908 ± 0.019 0.611 ± 0.006 0.721 ± 0.015 0.860 ± 0.065 0.192 ± 0.012 0.198 ± 0.005 0.469 ± 0.029 0.817 ± 0.011 0.447 ± 0.013 0.940 ± 0.000 0.699 ± 0.026 0.494 ± 0.011 0.363 ± 0.057 0.315 ± 0.017	SynNetSynthesis 0.584 ± 0.039 0.565 ± 0.007 0.441 ± 0.027 0.969 ± 0.004 0.613 ± 0.009 0.761 ± 0.015 0.241 ± 0.064 0.218 ± 0.008 0.235 ± 0.006 0.399 ± 0.021 0.796 ± 0.003 0.557 ± 0.011 0.941 ± 0.000 0.741 ± 0.010 0.502 ± 0.012 0.025 ± 0.014 0.401 ± 0.019	$\begin{array}{c} \textbf{DoG-Gen} \\ \textbf{Synthesis} \\ 0.676 \pm 0.013 \\ 0.536 \pm 0.003 \\ 0.464 \pm 0.009 \\ 0.948 \pm 0.001 \\ 0.800 \pm 0.007 \\ 0.695 \pm 0.003 \\ 0.199 \pm 0.016 \\ 0.217 \pm 0.001 \\ 0.212 \pm 0.000 \\ 0.437 \pm 0.007 \\ 0.774 \pm 0.002 \\ 0.474 \pm 0.002 \\ 0.934 \pm 0.000 \\ 0.711 \pm 0.006 \\ 0.515 \pm 0.005 \\ 0.048 \pm 0.008 \\ 0.375 \pm 0.004 \\ 0.410 \pm 0.012 \\ 0.410 \pm 0.012 \\ 0.410 \pm 0.012 \\ 0.410 \pm 0.012 \\ 0.410 \pm 0.004 \\ 0.410 \pm 0.012 \\ 0.410 \pm 0.0$	$\begin{array}{c} \textbf{DST} \\ \hline \textbf{Fragments} \\ \hline 0.619 \pm 0.020 \\ 0.516 \pm 0.007 \\ 0.380 \pm 0.006 \\ 0.820 \pm 0.014 \\ 0.608 \pm 0.008 \\ 0.725 \pm 0.005 \\ 0.458 \pm 0.003 \\ 0.232 \pm 0.009 \\ 0.185 \pm 0.020 \\ 0.450 \pm 0.027 \\ 0.785 \pm 0.004 \\ 0.462 \pm 0.008 \\ 0.938 \pm 0.000 \\ 0.632 \pm 0.054 \\ 0.497 \pm 0.004 \\ 0.075 \pm 0.032 \\ 0.366 \pm 0.006 \\ 0.2006 \pm 0.006 \\ \end{array}$	
Method Assembly Albuterol_similarity Amlodipine_MPO Celecoxib_Rediscovery DRD2 Deco_Hop Fexofenadine_MPO Isomers_C9H10N2O2PF2Cl Median 1 Median 2 Mestranol_Similarity Osimertinib_MPO Perindopril_MPO QED Ranolazine_MPO Scaffold_Hop Sitagliptin_MPO Thiothixene_Rediscovery Troglitazone_Rediscovery	LSTM HC SMILES 0.719 ± 0.018 0.593 ± 0.016 0.539 ± 0.018 0.919 ± 0.015 0.826 ± 0.017 0.725 ± 0.003 0.342 ± 0.027 0.255 ± 0.010 0.248 ± 0.008 0.526 ± 0.032 0.796 ± 0.002 0.489 ± 0.007 0.939 ± 0.000 0.714 ± 0.008 0.533 ± 0.012 0.066 ± 0.019 0.438 ± 0.008 0.354 ± 0.016 0.920 ± 0.002	SMILES GA SMILES 0.661 ± 0.066 0.549 ± 0.009 0.344 ± 0.027 0.908 ± 0.019 0.611 ± 0.006 0.721 ± 0.015 0.860 ± 0.065 0.192 ± 0.012 0.198 ± 0.005 0.469 ± 0.029 0.817 ± 0.011 0.447 ± 0.013 0.940 ± 0.000 0.699 ± 0.026 0.494 ± 0.011 0.363 ± 0.057 0.315 ± 0.017 0.263 ± 0.024	SynNetSynthesis 0.584 ± 0.039 0.565 ± 0.007 0.441 ± 0.027 0.969 ± 0.004 0.613 ± 0.009 0.761 ± 0.015 0.241 ± 0.064 0.218 ± 0.008 0.235 ± 0.006 0.399 ± 0.021 0.796 ± 0.003 0.557 ± 0.011 0.941 ± 0.000 0.741 ± 0.010 0.502 ± 0.012 0.025 ± 0.014 0.401 ± 0.019 0.283 ± 0.008	$\begin{array}{c} \textbf{DoG-Gen} \\ \textbf{Synthesis} \\ 0.676 \pm 0.013 \\ 0.536 \pm 0.003 \\ 0.464 \pm 0.009 \\ 0.948 \pm 0.001 \\ 0.800 \pm 0.007 \\ 0.695 \pm 0.003 \\ 0.199 \pm 0.016 \\ 0.217 \pm 0.001 \\ 0.212 \pm 0.000 \\ 0.437 \pm 0.007 \\ 0.774 \pm 0.002 \\ 0.474 \pm 0.002 \\ 0.934 \pm 0.000 \\ 0.711 \pm 0.006 \\ 0.515 \pm 0.005 \\ 0.048 \pm 0.008 \\ 0.375 \pm 0.004 \\ 0.416 \pm 0.019 \\ 0.200 \\ 0.2$	$\begin{array}{c} \textbf{DST}\\ \hline \textbf{Fragments}\\ 0.619\pm 0.020\\ 0.516\pm 0.007\\ 0.380\pm 0.006\\ 0.820\pm 0.014\\ 0.608\pm 0.008\\ 0.725\pm 0.005\\ 0.458\pm 0.063\\ 0.232\pm 0.009\\ 0.185\pm 0.020\\ 0.450\pm 0.027\\ 0.785\pm 0.004\\ 0.462\pm 0.008\\ 0.938\pm 0.000\\ 0.632\pm 0.054\\ 0.497\pm 0.004\\ 0.075\pm 0.032\\ 0.366\pm 0.006\\ 0.279\pm 0.019\\ 0.0019\\ 0.0019\\ 0.0019\\ 0.0019\\ 0.0019\\ 0.0019\\ 0.0019\\ 0.0019\\ 0.0019\\ 0.0019\\ 0.0019\\ 0.0019\\ 0.0019\\ 0.0001\\ 0.0019\\ 0.0001\\ 0.0019\\ 0.0001\\ 0.0019\\ 0.0001\\ 0.00001\\ 0.0001\\ 0.0001\\ 0.00001\\ 0.0001\\ 0.0001\\ 0.0001\\ 0.0001\\ 0$	
Method Assembly Albuterol_similarity Amlodipine_MPO Celecoxib_Rediscovery DRD2 Deco_Hop Fexofenadine_MPO Isomers_C9H10N2O2PF2Cl Median 1 Median 2 Mestranol_Similarity Osimertinib_MPO Perindopril_MPO QED Ranolazine_MPO Scaffold_Hop Sitagliptin_MPO Thiothixene_Rediscovery Valsartan_Smarts	LSTM HC SMILES 0.719 ± 0.018 0.593 ± 0.016 0.539 ± 0.018 0.919 ± 0.015 0.826 ± 0.017 0.725 ± 0.003 0.342 ± 0.027 0.255 ± 0.010 0.248 ± 0.008 0.526 ± 0.032 0.796 ± 0.002 0.489 ± 0.007 0.939 ± 0.000 0.714 ± 0.008 0.533 ± 0.012 0.066 ± 0.019 0.438 ± 0.008 0.354 ± 0.016 0.000 ± 0.000	SMILES GA 0.661 ± 0.066 0.549 ± 0.009 0.344 ± 0.027 0.908 ± 0.019 0.611 ± 0.006 0.721 ± 0.015 0.860 ± 0.065 0.192 ± 0.012 0.198 ± 0.005 0.469 ± 0.029 0.817 ± 0.011 0.447 ± 0.013 0.940 ± 0.000 0.699 ± 0.026 0.494 ± 0.011 0.363 ± 0.057 0.315 ± 0.017 0.263 ± 0.024 0.000 ± 0.000	SynNetSynthesis 0.584 ± 0.039 0.565 ± 0.007 0.441 ± 0.027 0.969 ± 0.004 0.613 ± 0.009 0.761 ± 0.015 0.241 ± 0.064 0.218 ± 0.008 0.235 ± 0.006 0.399 ± 0.021 0.796 ± 0.003 0.557 ± 0.011 0.941 ± 0.000 0.741 ± 0.010 0.502 ± 0.012 0.025 ± 0.014 0.401 ± 0.019 0.283 ± 0.008 0.000 ± 0.000	$\begin{array}{c} \textbf{DoG-Gen} \\ \textbf{Synthesis} \\ \hline 0.676 \pm 0.013 \\ 0.536 \pm 0.003 \\ 0.464 \pm 0.009 \\ 0.948 \pm 0.001 \\ 0.800 \pm 0.007 \\ 0.695 \pm 0.003 \\ 0.199 \pm 0.016 \\ 0.217 \pm 0.001 \\ 0.212 \pm 0.000 \\ 0.437 \pm 0.007 \\ 0.774 \pm 0.002 \\ 0.474 \pm 0.002 \\ 0.934 \pm 0.000 \\ 0.711 \pm 0.006 \\ 0.515 \pm 0.005 \\ 0.048 \pm 0.008 \\ 0.375 \pm 0.004 \\ 0.416 \pm 0.019 \\ 0.000 \pm 0.000 \\ 0.1004 & 0.011 \\ \end{array}$	$\begin{array}{r} \textbf{DST} \\ \hline \textbf{Fragments} \\ \hline 0.619 \pm 0.020 \\ 0.516 \pm 0.007 \\ 0.380 \pm 0.006 \\ 0.820 \pm 0.014 \\ 0.608 \pm 0.008 \\ 0.725 \pm 0.005 \\ 0.458 \pm 0.063 \\ 0.232 \pm 0.009 \\ 0.185 \pm 0.020 \\ 0.450 \pm 0.027 \\ 0.785 \pm 0.004 \\ 0.462 \pm 0.008 \\ 0.938 \pm 0.000 \\ 0.632 \pm 0.054 \\ 0.497 \pm 0.004 \\ 0.075 \pm 0.032 \\ 0.366 \pm 0.006 \\ 0.279 \pm 0.019 \\ 0.000 \pm 0.000 \\ 0.1000 \pm 0.000 \\ 0.1000 \pm 0.000 \\ 0.1000 \pm 0.000 \\ 0.000 \pm $	
Method Assembly Albuterol_similarity Amlodipine_MPO Celecoxib_Rediscovery DRD2 Deco_Hop Fexofenadine_MPO Isomers_C9H10N2O2PF2Cl Median 1 Median 2 Mestranol_Similarity Osimertinib_MPO Perindopril_MPO QED Ranolazine_MPO Scaffold_Hop Sitagliptin_MPO Thiothixene_Rediscovery Valsartan_Smarts Zaleplon_MPO	LSTM HC SMILES 0.719 ± 0.018 0.593 ± 0.016 0.539 ± 0.018 0.919 ± 0.015 0.826 ± 0.017 0.725 ± 0.003 0.342 ± 0.027 0.255 ± 0.010 0.248 ± 0.008 0.526 ± 0.032 0.796 ± 0.002 0.489 ± 0.007 0.939 ± 0.000 0.714 ± 0.008 0.533 ± 0.012 0.066 ± 0.019 0.438 ± 0.008 0.354 ± 0.016 0.000 ± 0.000 0.206 ± 0.006	SMILES GA 0.661 ± 0.066 0.549 ± 0.009 0.344 ± 0.027 0.908 ± 0.019 0.611 ± 0.006 0.721 ± 0.015 0.860 ± 0.065 0.192 ± 0.012 0.198 ± 0.005 0.469 ± 0.029 0.817 ± 0.011 0.447 ± 0.013 0.940 ± 0.000 0.699 ± 0.026 0.494 ± 0.011 0.363 ± 0.057 0.315 ± 0.017 0.263 ± 0.024 0.000 ± 0.000 0.34 ± 0.041	SynNet Synthesis 0.584 ± 0.039 0.565 ± 0.007 0.441 ± 0.027 0.969 ± 0.004 0.613 ± 0.009 0.761 ± 0.015 0.241 ± 0.064 0.218 ± 0.008 0.235 ± 0.006 0.399 ± 0.021 0.796 ± 0.003 0.557 ± 0.011 0.941 ± 0.000 0.741 ± 0.010 0.52 ± 0.012 0.025 ± 0.014 0.401 ± 0.019 0.283 ± 0.008 0.000 ± 0.000 0.341 ± 0.011	$\begin{array}{r} \textbf{DoG-Gen} \\ \textbf{Synthesis} \\ \hline 0.676 \pm 0.013 \\ 0.536 \pm 0.003 \\ 0.464 \pm 0.009 \\ 0.948 \pm 0.001 \\ 0.800 \pm 0.007 \\ 0.695 \pm 0.003 \\ 0.199 \pm 0.016 \\ 0.217 \pm 0.001 \\ 0.212 \pm 0.000 \\ 0.437 \pm 0.007 \\ 0.774 \pm 0.002 \\ 0.437 \pm 0.007 \\ 0.774 \pm 0.002 \\ 0.934 \pm 0.000 \\ 0.711 \pm 0.006 \\ 0.515 \pm 0.005 \\ 0.048 \pm 0.008 \\ 0.375 \pm 0.004 \\ 0.416 \pm 0.019 \\ 0.000 \pm 0.000 \\ 0.123 \pm 0.016 \\ 0.554 \\ 0.013 \\ 0.016 \\ 0.554 \\ 0.003 \\ 0.013 \\ 0.016 \\ 0.554 \\ 0.003 \\ 0.003 \\ 0.013 \\ 0.016 \\ 0.554 \\ 0.003 \\ 0.003 \\ 0.016 \\ 0.554 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.001 \\ 0$	$\begin{array}{c} \textbf{DST} \\ \hline \textbf{Fragments} \\ \hline 0.619 \pm 0.020 \\ 0.516 \pm 0.007 \\ 0.380 \pm 0.006 \\ 0.820 \pm 0.014 \\ 0.608 \pm 0.008 \\ 0.725 \pm 0.005 \\ 0.458 \pm 0.063 \\ 0.232 \pm 0.009 \\ 0.185 \pm 0.020 \\ 0.450 \pm 0.027 \\ 0.785 \pm 0.004 \\ 0.462 \pm 0.008 \\ 0.938 \pm 0.000 \\ 0.632 \pm 0.054 \\ 0.497 \pm 0.004 \\ 0.075 \pm 0.032 \\ 0.366 \pm 0.006 \\ 0.279 \pm 0.019 \\ 0.000 \pm 0.000 \\ 0.176 \pm 0.045 \\ 0.023 \end{array}$	
Method Assembly Albuterol_similarity Amlodipine_MPO Celecoxib_Rediscovery DRD2 Deco_Hop Fexofenadine_MPO Isomers_C9H10N2O2PF2Cl Median 1 Median 2 Mestranol_Similarity Osimertinib_MPO Perindopril_MPO QED Ranolazine_MPO Scaffold_Hop Sitagliptin_MPO Thiothixene_Rediscovery Valsartan_Smarts Zaleplon_MPO sum	LSTM HC SMILES 0.719 ± 0.018 0.593 ± 0.016 0.539 ± 0.018 0.919 ± 0.015 0.826 ± 0.017 0.725 ± 0.003 0.342 ± 0.027 0.255 ± 0.010 0.248 ± 0.008 0.526 ± 0.032 0.796 ± 0.002 0.489 ± 0.007 0.939 ± 0.000 0.714 ± 0.008 0.533 ± 0.012 0.066 ± 0.019 0.438 ± 0.008 0.354 ± 0.016 0.000 ± 0.000 0.206 ± 0.006 10.227	SMILES GA 0.661 ± 0.066 0.549 ± 0.009 0.344 ± 0.027 0.908 ± 0.019 0.611 ± 0.006 0.721 ± 0.015 0.860 ± 0.065 0.192 ± 0.012 0.198 ± 0.005 0.469 ± 0.029 0.817 ± 0.011 0.447 ± 0.013 0.940 ± 0.000 0.699 ± 0.026 0.494 ± 0.011 0.363 ± 0.057 0.315 ± 0.017 0.263 ± 0.024 0.000 ± 0.000 0.34 ± 0.041 10.185	SynNet Synthesis 0.584 ± 0.039 0.565 ± 0.007 0.441 ± 0.027 0.969 ± 0.004 0.613 ± 0.009 0.761 ± 0.015 0.241 ± 0.064 0.218 ± 0.008 0.235 ± 0.006 0.399 ± 0.021 0.796 ± 0.003 0.557 ± 0.011 0.941 ± 0.000 0.741 ± 0.010 0.52 ± 0.012 0.025 ± 0.014 0.401 ± 0.019 0.283 ± 0.008 0.000 ± 0.000 0.341 ± 0.011 9.613	$\begin{array}{r} \textbf{DoG-Gen} \\ \textbf{Synthesis} \\ \hline 0.676 \pm 0.013 \\ 0.536 \pm 0.003 \\ 0.464 \pm 0.009 \\ 0.948 \pm 0.001 \\ 0.800 \pm 0.007 \\ 0.695 \pm 0.003 \\ 0.199 \pm 0.016 \\ 0.217 \pm 0.001 \\ 0.212 \pm 0.000 \\ 0.437 \pm 0.007 \\ 0.774 \pm 0.002 \\ 0.437 \pm 0.007 \\ 0.774 \pm 0.002 \\ 0.934 \pm 0.000 \\ 0.711 \pm 0.006 \\ 0.515 \pm 0.005 \\ 0.048 \pm 0.008 \\ 0.375 \pm 0.004 \\ 0.416 \pm 0.019 \\ 0.000 \pm 0.000 \\ 0.123 \pm 0.016 \\ 9.554 \\ 100 \\ \end{array}$	$\begin{array}{c} \textbf{DST} \\ \hline \textbf{Fragments} \\ \hline 0.619 \pm 0.020 \\ 0.516 \pm 0.007 \\ 0.380 \pm 0.006 \\ 0.820 \pm 0.014 \\ 0.608 \pm 0.008 \\ 0.725 \pm 0.005 \\ 0.458 \pm 0.063 \\ 0.232 \pm 0.009 \\ 0.185 \pm 0.020 \\ 0.450 \pm 0.027 \\ 0.785 \pm 0.004 \\ 0.462 \pm 0.008 \\ 0.938 \pm 0.000 \\ 0.632 \pm 0.054 \\ 0.497 \pm 0.004 \\ 0.075 \pm 0.032 \\ 0.366 \pm 0.006 \\ 0.279 \pm 0.019 \\ 0.000 \pm 0.000 \\ 0.176 \pm 0.045 \\ 9.203 \\ 11 \end{array}$	

Table 1: Performance comparison between REINVENT-Transformer, REINVENT, and other methods over all oracles for AU	١C
Top-10	

It is also observed that the REINVENT-Transformer possesses a higher standard deviation relative to REINVENT, suggesting potential variability in its performance. Despite this, the difference between the average top100 accuracy and the standard deviation for REINVENT-Transformer remains superior to the mean accuracy of REINVENT, reaffirming the enhanced efficacy of the REINVENT-Transformer method.

5 CONCLUSION

Navigating the vast chemical space in molecular design remains challenging, but the introduction of the REINVENT-Transformer marks a significant advancement by harnessing strengths such as parallelization and long-term dependency handling in the Transformer architecture. Our experimental findings demonstrate its superior performance across multiple oracles, particularly in tasks Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Figure 4: Mean and Standard Deviation of avg_top100 over oracle calls for REINVENT and REINVENT-Transformer on oracle Mestranol_Similarity

requiring longer sequence data, and integrating oracle feedback reinforcement learning enhances precision, favorably impacting drug discovery efforts. Ultimately, the REINVENT-Transformer sets a new benchmark in molecular de novo design and highlights the transformative potential of Transformer-based architectures in drug discovery.

REFERENCES

- Laeeq Ahmed, Valentin Georgiev, Marco Capuccini, Salman Toor, Wesley Schaal, Erwin Laure, and Ola Spjuth. 2018. Efficient iterative virtual screening with Apache Spark and conformal prediction. *Journal of cheminformatics* 10, 1 (2018), 1–8.
- [2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normalization. arXiv preprint arXiv:1607.06450 (2016).
- [3] Thomas Blaschke, Josep Arús-Pous, Hongming Chen, Christian Margreitter, Christian Tyrchan, Ola Engkvist, Kostas Papadopoulos, and Atanas Patronov. 2020. REINVENT 2.0: an AI tool for de novo drug design. *Journal of chemical information and modeling* 60, 12 (2020), 5918–5922.
- [4] Tom L Blundell. 1996. Structure-based drug design. Nature 384, 6604 (1996), 23.
- [5] Regine S Bohacek, Colin McMartin, and Wayne C Guida. 1996. The art and practice of structure-based drug design: a molecular modeling perspective. *Medicinal research reviews* 16, 1 (1996), 3–50.
- [6] Hans-Joachim Böhm. 1992. The computer program LUDI: a new method for the de novo design of enzyme inhibitors. *Journal of computer-aided molecular design* 6 (1992), 61–78.
- [7] John Bradshaw, Brooks Paige, Matt J Kusner, Marwin Segler, and José Miguel Hernández-Lobato. 2020. Barking up the right tree: an approach to search over molecule synthesis dags. Advances in Neural Information Processing Systems 33 (2020), 6852–6866.
- [8] Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. 2019. GuacaMol: benchmarking models for de novo molecular design. *Journal of chemical information and modeling* 59, 3 (2019), 1096–1108.
- [9] Tianyi Chen, Nan Hao, and Capucine Van Rechem. 2024. Uncertainty Quantification on Clinical Trial Outcome Prediction. arXiv preprint arXiv:2401.03482 (2024).
- [10] Tianfan Fu, Wenhao Gao, Connor Coley, and Jimeng Sun. 2022. Reinforced genetic algorithm for structure-based drug design. Advances in Neural Information Processing Systems 35 (2022), 12325–12338.
- [11] Tianfan Fu, Wenhao Gao, Cao Xiao, Jacob Yasonik, Connor W Coley, and Jimeng Sun. 2022. Differentiable Scaffolding Tree for Molecular Optimization. International Conference on Learning Representations (2022).
- [12] Tianfan Fu, Cao Xiao, Lucas M Glass, and Jimeng Sun. 2021. MOLER: incorporate molecule-level reward to enhance deep generative model for molecule optimization. *IEEE transactions on knowledge and data engineering* 34, 11 (2021), 5459–5471.
- [13] Tianfan Fu, Cao Xiao, Xinhao Li, Lucas M Glass, and Jimeng Sun. 2021. MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization. AAAI (2021).
- [14] Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor Coley. 2022. Sample efficiency matters: a benchmark for practical molecular optimization. Advances in Neural Information Processing Systems 35 (2022), 21342–21357.
- [15] Wenhao Gao, Rocío Mercado, and Connor W Coley. 2022. Amortized Tree Generation for Bottom-up Synthesis Planning and Synthesizable Molecular Design. International Conference on Learning Representations (2022).
- [16] Wenhao Gao, Priyanka Raghavan, and Connor W Coley. 2022. Autonomous platforms for data-driven organic synthesis. *Nature Communications* 13, 1 (2022), 1–4.
- [17] Valerie J Gillet, William Newell, Paulina Mata, Glenn Myatt, Sandor Sike, Zsolt Zsoldos, and A Peter Johnson. 1994. SPROUT: recent developments in the de novo design of molecules. *Journal of chemical information and computer sciences* 34, 1 (1994), 207–217.
- [18] Brian Goldman, Steven Kearnes, Trevor Kramer, Patrick Riley, and W Patrick Walters. 2022. Defining Levels of Automated Chemical Design. *Journal of Medicinal Chemistry* (2022).
- [19] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams, and Alán Aspuru-Guzik. 2018. Automatic chemical design using a data-driven continuous representation of molecules. ACS central science 4, 2 (2018), 268–276.
- [20] David E Graff, Eugene I Shakhnovich, and Connor W Coley. 2021. Accelerating high-throughput virtual screening through molecular pool-based active learning. *Chemical science* 12, 22 (2021), 7866–7881.
- [21] Markus Hartenfeller, Heiko Zettl, Miriam Walter, Matthias Rupp, Felix Reisen, Ewgenij Proschak, Sascha Weggen, Holger Stark, and Gisbert Schneider. 2012. DOGS: reaction-driven de novo design of bioactive compounds. *PLoS computational biology* 8, 2 (2012), e1002380.
- [22] Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W Coley, Cao Xiao, Jimeng Sun, and Marinka Zitnik. 2021. Therapeutics data Commons: Machine learning datasets and tasks for therapeutics. *NeurIPS Track Datasets and Benchmarks* (2021).
- [23] John J Irwin and Brian K Shoichet. 2005. ZINC- a free database of commercially available compounds for virtual screening. *Journal of chemical information and modeling* 45, 1 (2005), 177–182.
- [24] Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, Jose Miguel Hernandez Lobato, Richard E Turner, and Doug Eck. 2017. Tuning recurrent neural networks with

reinforcement learning. (2017).

- [25] Jan H Jensen. 2019. A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space. *Chemical science* 10, 12 (2019), 3567–3572.
- [26] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. 2018. Junction tree variational autoencoder for molecular graph generation. *ICML* (2018).
- [27] Diederik P Kingma and Max Welling. 2014. Auto-encoding variational Bayes. International Conference on Learning Representations (ICLR) (2014).
- [28] Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabas Poczos, Jeff Schneider, and Eric Xing. 2020. ChemBO: Bayesian optimization of small organic molecules with synthesizable recommendations. In *International Conference on Artificial Intelligence and Statistics*. PMLR, 3393–3403.
- [29] Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik. 2020. Self-referencing embedded strings (SELFIES): A 100% robust molecular string representation. *Machine Learning: Science and Technology* 1, 4 (2020), 045024.
- [30] Henry Moss, David Leslie, Daniel Beck, Javier Gonzalez, and Paul Rayson. 2020. BOSS: Bayesian optimization over string spaces. Advances in neural information processing systems 33 (2020), 15476–15486.
- [31] AkshatKumar Nigam, Robert Pollice, Mario Krenn, Gabriel dos Passos Gomes, and Alan Aspuru-Guzik. 2021. Beyond generative models: superfast traversal, optimization, novelty, exploration and discovery (STONED) algorithm for molecules using SELFIES. *Chemical science* 12, 20 (2021), 7079–7090.
- [32] Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. 2017. Molecular de-novo design through deep reinforcement learning. *Journal of cheminformatics* 9, 1 (2017), 1–14.
- [33] Lars Ruddigkeit, Lorenz C Blum, and Jean-Louis Reymond. 2013. Visualization and virtual screening of the chemical universe database GDB-17. Journal of chemical information and modeling 53, 1 (2013), 56–65.
- [34] Gisbert Schneider and Uli Fechner. 2005. Computer-based de novo design of drug-like molecules. Nature Reviews Drug Discovery 4, 8 (2005), 649–663.
- [35] Marwin H. S. Segler, Thierry Kogej, Christian Tyrchan, and Mark P. Waller. 2017. Generating Focussed Molecule Libraries for Drug Discovery with Recurrent Neural Networks. arXiv:1701.01329 [cs.NE]
- [36] Cynthia Shen, Mario Krenn, Sagi Eppel, and Alan Aspuru-Guzik. 2021. Deep Molecular Dreaming: Inverse machine learning for de-novo molecular design and interpretability with surjective representations. *Machine Learning: Science* and Technology (2021).
- [37] Richard S Sutton and Andrew G Barto. 1999. Reinforcement learning: An introduction. *Robotica* 17, 2 (1999), 229–235.
- [38] Austin Tripp, Gregor NC Simm, and José Miguel Hernández-Lobato. 2021. A Fresh Look at De Novo Molecular Design Benchmarks. In *NeurIPS 2021 AI for Science Workshop.*
- [39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2023. Attention Is All You Need. arXiv:1706.03762 [cs.CL]
- [40] David Weininger. 1988. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. *Journal of chemical information and computer sciences* 28, 1 (1988), 31–36.
- [41] David Weininger. 2017. SMILES. Accessed 7 April 2017. http://www.daylight. com/dayhtml/doc/theory/theory.smiles.html.
- [42] Chiung-Ting Wu, Sarah J Parker, Zuolin Cheng, Georgia Saylor, Jennifer E Van Eyk, Guoqiang Yu, Robert Clarke, David M Herrington, and Yue Wang. 2022. COT: an efficient and accurate method for detecting marker genes among many subtypes. *Bioinformatics Advances* 2, 1 (2022), vbac037.
- [43] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. 2017. Seqgan: Sequence generative adversarial nets with policy gradient. In *Proceedings of the AAAI* conference on artificial intelligence, Vol. 31.
- [44] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. 2019. A review of recurrent neural networks: LSTM cells and network architectures. *Neural computation* 31, 7 (2019), 1235–1270.
- [45] Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao Lin, Zhao Xu, Keqiang Yan, et al. 2023. Artificial intelligence for science in quantum, atomistic, and continuum systems. arXiv preprint arXiv:2307.08423 (2023).
- [46] Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N Zare, and Patrick Riley. 2019. Optimization of molecules via deep reinforcement learning. *Scientific reports* 9, 1 (2019), 1–10.

A DETAILED INTRODUCTION

The vast expanse of chemical space, encompassing an order of magnitude from $10^{60} - 10^{100}$ possible synthetically feasible molecules [34, 45], presents formidable obstacles to drug discovery endeavors. In this colossal landscape, the task of pinpointing a molecule that simultaneously meets the prerequisites for bioactivity, drug metabolism and pharmacokinetic (DMPK) profile, and synthetic accessibility becomes an undertaking similar to the proverbial search for a needle in a haystack. Pioneering *de novo* design algorithms [6, 17] have attempted to address this by employing virtual strategies to design and evaluate molecules, thereby condensing the vast chemical space into a more navigable realm for exploration.

Traditional *de novo* molecule design models, based on Recurrent Neural Networks (RNNs), have proven effective in molecule generation tasks. However, RNNs possess inherent architectural limitations, notably in their capability to capture long-term dependencies in sequential data, which can be particularly detrimental when modeling complex molecular structures. Recently, the Transformer architecture has emerged as a powerful alternative to RNNs in sequence modeling tasks across various domains. Some of the key advantages of Transformers over RNNs include:

- Parallelization: Unlike RNNs which process sequences step-by-step, Transformers process all tokens in the sequence simultaneously, allowing for better computational efficiency.
- (2) Long-term Dependency Handling: Transformers utilize multi-head self-attention mechanisms, which can capture long-range interactions in the data, making them particularly well-suited for modeling intricate molecular structures.
- (3) **Scalability:** Transformers are inherently more scalable, allowing for the processing of longer sequences, which is a considerable advantage in molecular design.

In light of these advantages, our work introduces a novel approach by integrating the Transformer architecture, specifically the Decision Transformer, for *de novo* molecular design. By leveraging the inherent strengths of Transformers, our model exhibits enhanced performance in generating molecular structures with desired attributes.

Furthermore, we emphasize the incorporation of the "oracle feedback reinforcement learning" method. Pretraining models on large datasets is beneficial, but downstream tasks often require fine-tuning on specific objectives. By integrating feedback from an oracle during the reinforcement learning phase, our approach can efficiently navigate the solution space, optimizing towards molecules with high predicted activity. Such oracle-guided optimization provides an added layer of precision, facilitating the generation of molecules that not only conform to structural constraints but also exhibit high bioactivity, thereby increasing the potential success rate in drug discovery endeavors.

Drawing inspiration from previous work that employed RNNs and reinforcement learning for molecular optimization [32], our approach distinguishes itself by the adoption and fine-tuning of the Transformer architecture, ensuring superior handling of long-sequence data and paving the way for innovative breakthroughs in the realm of molecular design.

In summary, this work presents a fresh perspective on molecular *de novo* design, underscoring the potential of Transformer-based architectures, complemented by oracle feedback reinforcement learning, to revolutionize drug discovery methodologies. We envision that our approach will not only set a new benchmark in molecular generation tasks but will also inspire future research in leveraging advanced machine learning architectures for complex scientific challenges.

B DETAILED RELATED WORKS

Early *de novo* design algorithms primarily focused on structure-based methods, aiming to develop ligands that precisely fit the binding pocket of a target [6, 17]. While effective in certain aspects, these methods often resulted in molecules with suboptimal drug metabolism and pharmacokinetic (DMPK) properties and posed challenges in synthetic tractability. Ligand-based approaches were introduced to overcome some of these limitations, involving the creation of comprehensive virtual libraries of chemical structures evaluated using scoring functions [21, 33]. However, as noted by [4], the effectiveness of ligand-based methods compared to structure-based ones is not definitive, with both approaches having unique advantages and limitations depending on the specific requirements of the drug design process.

Recently, generative models such as RNN-based methods have been successfully applied to *de novo* design of molecules [10, 19, 35, 43]. These models have shown promise in learning the underlying probability distribution over large sets of chemical structures, effectively reducing the search space to reasonable molecules. Further improvements were achieved through fine-tuning using reinforcement learning (RL) techniques [24], demonstrating considerable enhancements over initial models.

Despite these advancements, challenges such as capturing long-term dependencies in sequence data persist. The Transformer architecture [39], known for its self-attention mechanism and ability to handle long sequences, has been highly successful in various sequence prediction tasks across domains. Motivated by these successes, we propose the use of Transformer-based architectures in place of RNNs for molecular *de novo* design.

Molecular assembly strategies play a crucial role in representing and manipulating chemical structures. String-based approaches like SMILES and SELFIES [29, 40] provide efficient representations of molecules. Graph-based methods offer intuitive two-dimensional representations of molecular structures, with nodes and edges representing atoms and bonds, respectively [26, 46]. Synthesis-based strategies aim to generate only synthesizable molecules, ensuring that the design aligns with real-world applications [7, 9, 10, 15].

Various optimization algorithms have been utilized for molecular design. Genetic Algorithms (GAs) mimic natural evolutionary processes and have been applied in molecule generation using both SMILES and SELFIES representations [8, 31]. Bayesian optimization (BO) builds a surrogate for the objective function, with applications such as BOSS and ChemBO in the molecular domain [28, 30]. Variational autoencoders

(VAEs) offer a generative approach, mapping molecules to and from a latent space, with notable methods including SMILES-VAE and JT-VAE [19, 26]. Reinforcement Learning (RL) techniques, like REINVENT, have also been applied to tune models for molecule generation [32]. Recent advancements in gradient ascent methods, such as Pasithea and Differentiable scaffolding tree (DST), have leveraged gradient-based optimization for molecular design [11, 36].

The evolution of molecular design methodologies has progressively addressed various challenges and limitations. The transition from RNN-based methods to more advanced generative models underscores a quest for improved handling of complex chemical structure representations and optimization. While RNNs brought significant progress, their inherent difficulty in capturing long-term dependencies in sequential data has been a notable shortcoming. The Transformer architecture addresses this gap through its self-attention mechanism, allowing for more nuanced and effective handling of sequence data, which is critical in molecular design where long-range interactions within molecules play a pivotal role.

The integration of reinforcement learning (RL) for fine-tuning generative models has further enhanced the field [24]. RL's ability to iteratively improve models based on a feedback loop aligns well with the demands of molecular design, where continuous refinement based on molecular properties is essential. The combination of RL with generative models has been shown to enhance the ability to navigate the vast chemical space more effectively, achieving better results in molecule generation [12, 14, 32, 42, 46].

In light of these advancements and existing limitations, our work proposes an approach that integrates the Transformer architecture with advanced RL techniques. This proposal is underpinned by the Transformer's superior handling of sequential data and the iterative refinement capability of RL. By merging these two powerful technologies, we aim to address the existing challenges in molecular *de novo* design, such as the need for better sequence representation and optimization. This integration promises to enhance the effectiveness and efficiency of molecular generation processes, moving closer to achieving more sophisticated and automated molecular design systems.

C TRANSFORMER OVERVIEW FORMULA

A transformer block is a parameterized function class $f_{\theta} : \mathbb{R}^{n \times d} \to \mathbb{R}^{n \times d}$. If $\mathbf{x} \in \mathbb{R}^{n \times d}$ then $f_{\theta}(\mathbf{x}) = \mathbf{z}$ where

$$Q^{(h)}(\mathbf{x}_t) = W_{h,q}^T \mathbf{x}_t, \quad K^{(h)}(\mathbf{x}_t) = W_{h,k}^T \mathbf{x}_t,$$

$$V^{(h)}(\mathbf{x}_t) = W_{h,v}^T \mathbf{x}_t, \quad W_{h,q}, W_{h,k}, W_{h,v} \in \mathbb{R}^{d \times k}$$
(3)

$$\alpha_{t,j}^{(h)} = \operatorname{softmax}_{j} \left(\frac{\left\langle Q^{(h)}\left(\mathbf{x}_{t}\right), K^{(h)}\left(\mathbf{x}_{j}\right) \right\rangle}{\sqrt{k}} \right),$$
for $j = 1, \dots, t$

$$(4)$$

$$\mathbf{u}_{t}^{\prime} = \sum_{h=1}^{H} W_{c,h}^{T} \sum_{j=1}^{t} \alpha_{t,j}^{(h)} V^{(h)} \left(\mathbf{x}_{j} \right), \qquad W_{c,h} \in \mathbb{R}^{k \times d}$$

$$\tag{5}$$

$$\mathbf{u}_{t} = \text{LayerNorm}\left(\mathbf{x}_{t} + \mathbf{u}_{t}'; \gamma_{1}, \beta_{1}\right), \qquad \gamma_{1}, \beta_{1} \in \mathbb{R}^{d}$$
(6)

$$\mathbf{z}_{t}' = W_{2}^{T} \operatorname{ReLU}\left(W_{1}^{T} \mathbf{u}_{t}\right), \quad W_{1} \in \mathbb{R}^{d \times m}, W_{2} \in \mathbb{R}^{m \times d}$$

$$\tag{7}$$

$$\mathbf{z}_{t} = \text{LayerNorm}\left(\mathbf{u}_{t} + \mathbf{z}_{t}'; \gamma_{2}, \beta_{2}\right), \qquad \gamma_{2}, \beta_{2} \in \mathbb{R}^{d}$$

$$\tag{8}$$

$$\hat{\mathbf{y}} = \operatorname{softmax}\left(W_z^T \mathbf{z}\right) = \frac{\exp\left(W_z^T \mathbf{z}\right)}{\sum_{k=1}^{m} \exp\left(W_z^T \mathbf{z}\right)_k}, \quad W_z \in \mathbb{R}^{d \times o}.$$
(9)

The notation softmax_j indicates we take the softmax (defined in Equation 9) over the *d*-dimensional vector indexed by *j*. The LayerNorm function [2] is defined for $\mathbf{z} \in \mathbb{R}^k$ by

LayerNorm
$$(\mathbf{z}; \gamma, \beta) = \gamma \frac{(\mathbf{z} - \mu_{\mathbf{z}})}{\sigma_{\mathbf{z}}} + \beta, \quad \gamma, \beta \in \mathbb{R}^k$$
 (10)

$$\mu_{\mathbf{z}} = \frac{1}{k} \sum_{i=1}^{k} \mathbf{z}_{i}, \quad \sigma_{\mathbf{z}} = \sqrt{\frac{1}{k} \sum_{i=1}^{k} (\mathbf{z}_{i} - \mu_{\mathbf{z}})^{2}}.$$
(11)

The set of parameters, denoted by θ , comprises the elements of the weight matrices *W* and the LayerNorm parameters γ and β , as specified on the right-hand side. The input $\mathbf{x} \in \mathbb{R}^{n \times d}$ represents a set of *n* entities, each characterized by *d* attributes (typically, though not exclusively, sequences of *d*-dimensional vectors of length *n*). It is important to note that the output $\mathbf{z} \in \mathbb{R}^{n \times d}$ retains the same format as the input $\mathbf{x} \in \mathbb{R}^{n \times d}$. A transformer is an amalgamation of *L* distinct transformer blocks, each equipped with unique parameters: $f_{\theta_L} \circ \cdots \circ f_{\theta_1}(\mathbf{x}) \in \mathbb{R}^{n \times d}$. Key hyperparameters in a transformer include d, k, m, H, and L, with typical configurations being d = 512, k = 64, m = 2048, H = 8. While the initial research suggested L = 6, more recent studies tend to employ a greater number of these blocks.

D DETAILED METHOD

Agent Decision-Making and Markov Decision Processes

We frame the problem of generating a SMILES representation of a molecule with specified desirable properties via a Transformer as a partially observable Markov decision process. In this framework, an Agent must decide on an action $a \in \mathbb{A}(s)$ to take given a particular state $s \in \mathbb{S}$, where \mathbb{S} denotes the set of possible states and $\mathbb{A}(s)$ represents the set of potential actions for that state. The policy $\pi(a \mid s)$ of an Agent associates a state to the likelihood of each action executed within.

Many reinforcement learning problems are modeled as Markov decision processes, indicating that the current state provides all essential information to inform our action choice, with no additional benefit from knowing past states' history. While this is more of an approximation than a fact for most real-life challenges, we extend this concept to a partially observable Markov decision process where the Agent interacts with a partial environment representation.

Let r(a | s) be the reward serving as an indicator of the effectiveness of an action taken at a certain state, and the long-term return $G(a_t, S_t) = \sum_{t=1}^{T} r_t$ represents the cumulative rewards collected from time *t* to time *T* [37]. As molecular desirability is only meaningful for a completed SMILES, we will only consider a complete sequence's return.

The main objective of reinforcement learning is to enhance the Agent's policy to increase the expected return $\mathbb{E}[G]$ based on a set of actions taken from some states and the obtained rewards. A task with a definitive endpoint at step *T* is known as an episodic task [37], where *T* corresponds to the episode's length. SMILES generation is an example of an episodic task, which concludes once the EOS token is sampled.

The states and actions used for Agent training can be produced by the agent itself or through other means. If the agent generates them, the learning is called on-policy, and if generated by other means, it is off-policy learning [37].

Reinforcement learning commonly employs two different strategies to determine a policy: value-based RL and policy-based RL [37]. In value-based RL, the aim is to learn a value function that describes a given state's expected return. Once this function is learned, a policy can be established to maximize a certain action's expected state value. In contrast, policy-based RL aims to learn a policy directly.

For the problem we are addressing, we believe policy-based methods are the most suitable for the following reasons:

- Policy-based methods can explicitly learn an optimal stochastic policy [37], which aligns with our objective.
- Our method starts with a prior sequence model. The goal is to fine-tune this model based on a specific scoring function. Since the prior model already embodies a policy, fine-tuning might require only minimal changes to the prior model.
- The episodes in our case are short and fast to sample, reducing the impact of the variance in the estimate of the gradients.

In our approach, we use the probability distributions learned by a pre-trained Transformer model as our initial prior policy. We refer to the network using the prior policy simply as the Prior, and the network whose policy has been modified as the Agent. The task is episodic, starting with the first step of the Transformer and ending when the EOS token is sampled. The sequence of actions $A = a_1, a_2, \ldots, a_T$ during this episode represents the SMILES generated, and the product of the action probabilities $P(A) = \prod_{t=1}^{T} \pi (a_t | s_t)$ represents the model likelihood of the sequence formed.

We introduce a scoring function $S(A) \in [-1, 1]$ that rates the desirability of the sequences formed. The goal is to update the agent policy π from the prior policy π_{Prior} to increase the expected score for the generated sequences while remaining anchored to the prior policy. We define an augmented likelihood log $P(A)_{U}$ as a prior likelihood modulated by the desirability of a sequence:

$\log P(A)_{\mathbb{U}} = \log P(A)_{\text{Prior}} + \sigma S(A)$

where σ is a scalar coefficient. The return G(A) of a sequence A can be seen as the agreement between the Agent likelihood $\log P(A)_{\mathbb{A}}$ and the augmented likelihood:

$G(A) = -\left[\log P(A)_{\mathbb{U}} - \log P(A)_{\mathbb{A}}\right]^2$

The goal of the Agent is to learn a policy which maximizes the expected return, achieved by minimizing the cost function $L(\Theta) = -G$. This approach can be described as a REINFORCE algorithm with a final step reward, allowing for effective optimization of the Agent's policy towards generating desirable molecular structures.

E ALGORITHMS

F EXPERIMENT SETTINGS

This metric, which we refer to as AUC top-K, is defined as:

Given a sequence of molecules $\{M_1, M_2, ..., M_N\}$ generated by a method, and an oracle function O(M) that returns the property value of a molecule, the top-*K* average property value at any point in the sequence is given by:

Top-K Average
$$(M_1, M_2, \dots, M_i) = \frac{1}{K} \sum_{j=1}^K O(M_{(j)}),$$
 (12)

Algorithm 1 REINVENT Transformer Pretraining Process
Require:
1: function Pretrain(restore_from=None)
2: Initialize Vocabulary from file
3: Load and preprocess data from 'ZINC' and 'ChEMBL'
4: Filter and prepare the dataset
5: Create a DataLoader for batch processing
6: Initialize the Transformer model
7: if restore_from is not None then
8: Load saved model state
9: end if
10: Initialize optimizer with learning rate
11: for each epoch do
12: for each batch in DataLoader do
13: Sample sequences (seqs) from DataLoader
14: Compute log probability (log_p) with Transformer model
15: Calculate loss: $loss = -mean(log_p)$
16: Zero gradients
17: Perform backpropagation
18: Update model parameters
19: if step%adjustment_interval == 0 then
20: Decrease learning rate by a specified factor
21: Sample a set of sequences for validation
22: Decode sampled sequences to SMILES
23: Validate the chemical structure of each SMILES
24: Calculate the percentage of valid SMILES
25: Display current epoch, step, loss, and % valid SMILES
26: end if
27: end for
28: Save the current state of the Transformer model
29: end for
30: end function
31: Call Pretrain function

where $M_{(j)}$ is the *j*-th highest property value molecule among the first *i* molecules.

The *AUC top-K* is then the area under the curve when plotting the top-*K* average property value against the number of oracle calls up to molecule M_i , for i = 1 to N. This is calculated as:

AUC top-K =
$$\int_{1}^{N}$$
 Top-K Average $(M_1, M_2, \dots, M_i) di$ (13)

We set *K* at 1, 10, and 100, capping the number of oracle calls at 10,000. All AUC values reported are min-max scaled to the range [0, 1]. **Recall (Sensitivity):** Traditionally, recall is the proportion of actual positives correctly identified. In our context, it is the proportion of molecules with desirable properties (as judged by the oracle) that the method successfully identifies from the total 'N' molecules deemed desirable by the oracle.

Precision (Positive Predictive Value): Precision is the proportion of predicted positives that are true positives. Here, it is the proportion of molecules identified by the method as having desirable properties that are indeed validated by the oracle, out of the 'M' molecules selected by the method.

G EXPERIMENT RESULTS

H ABALATION STUDY

In Fig. 6, the AUC top10 curve for Mestranol Similarity is presented. Contrasted with the average accuracy curve, this AUC curve demonstrates a milder inclination initially, followed by a pronounced rise. Specifically, for the REINVENT-Transformer, the mean AUC top10 consistently surpasses that of REINVENT. Although the disparity is subtle during the initial oracle calls, it becomes more pronounced post the 5000th oracle call and remains so thereafter.

Algorithm 2 REINVENT Transformer Optimization Process

Require: Initialization

- 1: Prior, Agent ← Transformer(Vocabulary)
- 2: Optimizer ← Adam(Agent.parameters, lr=config['learning_rate'])
- 3: Experience ← ExperienceReplay(Vocabulary)

Training Loop

- 4: while True do
- 5: **if** len(oracle) > 100 **then**
- 6: Sort oracle buffer
- 7: old_scores ← first 100 scores from oracle buffer
- 8: else
- 9: $old_scores \leftarrow 0$
- 10: **end if**

Sampling and Evaluating Sequences

- 11: Seqs, AgentLikelihood, Entropy ← Agent.sample(config['batch_size'])
- 12: UniqueIdxs \leftarrow Unique(Seqs)
- 13: Seqs, AgentLikelihood, Entropy \leftarrow Seqs[UniqueIdxs], AgentLikelihood[UniqueIdxs], Entropy[UniqueIdxs]
- 14: PriorLikelihood, ← Prior.likelihood(Seqs)
- 15: SMILES \leftarrow seq_to_smiles(Seqs, Vocabulary)
- 16: Score \leftarrow Oracle(SMILES)
- 17: **if** finish condition met **then**
- 18: Break loop
- 19: end if
- 20: **if** len(oracle) > 1000 **then**
- 21: Check for convergence based on new scores and old scores
- 22: **if** convergence criteria met **then**
- 23: Break loop
- 24: end if
- 25: end if

Loss Calculation

- $26: AugmentedLikelihood \leftarrow PriorLikelihood.float() + config['sigma'] \times Score.float()$
- 27: Loss \leftarrow mean((AugmentedLikelihood AgentLikelihood) $\hat{2}$)

Experience Replay (if enabled)

- 28: if config['experience_replay'] and len(Experience) > config['experience_replay'] then
- 29: Experience replay steps
- 30: end if

Optimization

- 31: Update experience with new experience
- 32: LossRegularizer \leftarrow -mean(1 / AgentLikelihood)
- 33: TotalLoss \leftarrow Loss + 5 × 10 $\hat{3}$ × LossRegularizer
- 34: Optimizer.zero_grad()
- 35: TotalLoss.backward()
- 36: Optimizer.step()
- 37: Increment step counter
- 38: end while

The AUC top100 curve for Albuterol Similarity is illustrated in Fig. 7. In this context, the differential in performance between REINVENT-Transformer and REINVENT is more nuanced. It isn't until the 8000th oracle call that a discernible gap emerges. Ultimately, the REINVENT-Transformer exhibits marginally superior performance relative to REINVENT in this scenario.

			r	1
Method	Overview	Technical Details	Advantage	Disadvantage
REINVENT [32]	A method employing a policy-	Formulates molecular design as a Markov	Adaptable to generate other	Heavily reliant on the design
	based reinforcement learning	decision process with states represent-	string representations like	of rewards.
	approach to instruct RNNs to	ing partially generated molecules and ac-	SELFIES.	
	produce SMILES strings.	tions as string manipulations. Rewards		
		based on properties of interest.		
Graph-GA [25]	A genetic algorithm that	Introduces crossover operations based	Offers a richer set of oper-	Increased complexity due to
	manipulates molecular rep-	on graph representations, unlike string-	ations for exploring diverse	graph-based operations.
	resentations using graphs,	based genetic algorithms.	chemical spaces.	
	with graph matching and			
	atom/fragment mutations.			
SELFIES-REINVENT [14]	An extension of REIN-	Uses a policy-based RL approach for	Produces molecules with	Still dependent on reward sys-
	VENT for generating SELF-	SELFIES representation, ensuring syntac-	fewer syntactical errors.	tem definition.
	referencing Embedded Strings	tical validity.		
	(SELFIES).			
GP BO [38]	Combines Gaussian process	Leverages GP acquisition function inte-	Balances exploration and ex-	Higher computational costs
	Bayesian optimization with	grated with Graph-GA techniques for	ploitation effectively.	due to GP and GA interplay.
	Graph-GA methods.	sampling.		
STONED [31]	A modified genetic algorithm	Interacts directly with tokens in SELFIES	Direct approach potentially re-	Limited to SELFIES, may not
	that manipulates tokens	strings, differing from traditional string-	duces invalid chemical repre-	generalize to other representa-
	within SELFIES strings.	based GAs.	sentations.	tions.
SMILES-LSTM HC [8]	Iterative learning method	Employs a variant of the cross-entropy	Iteratively refines the genera-	Slow convergence if initial
	using LSTM to understand	method, fine-tuning the model with high-	tive process.	model is suboptimal.
	the molecular distribution in	scoring molecules.		
	SMILES strings.			
SMILES-GA [8]	Genetic algorithm based on	Implements genetic mutations and	Exploits SMILES structure for	Confined to SMILES grammar
	SMILES context-free grammar.	crossovers based on SMILES grammar.	effective exploration.	nuances, potentially missing
				novel structures.
SynNet [15]	Synthesis-based genetic algo-	Focuses on the synthesizability of gener-	Prioritizes synthesizability, en-	Limited diversity in molecular
	rithm operating on binary fin-	ated molecules.	suring lab producibility of	space exploration due to syn-
	gerprints and decoding to syn-		molecules.	thesis emphasis.
	thetic pathways.			
DoG-Gen [7]	Tailored to learn the distribu-	Represents synthetic pathways as DAGs,	Structured approach to learn-	Issues in capturing very long
	tion of synthetic pathways.	using an RNN generator for modeling.	ing synthetic pathways.	sequences with RNNs if not de-
		Emphasizes synthesizability.		signed effectively.
DST [11]	Differentiable Scaffolding Tree	Abstracts molecular graphs into scaffold-	Direct optimization of molecu-	Possible loss of information
	method for molecular opti-	ing trees, using a graph neural network	lar structures through gradient	due to abstraction to scaffold-
	mization using gradient as-	for gradient estimation.	computation.	ing trees.
	cent.			

Table 2: Summary of Methods in Molecular Design

Figure 5: Randomly selected SMILES chemical structures generated by the different models

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Pengcheng et al.

Oracle	Model	Avg SA↓	Diversity Top100 ↑
Albuterol Similarity	REINVENT	3.177	0.394
	REINVENT-Trans	3.173	0.408
Amlodipine MPO	REINVENT	3.478	0.391
L	REINVENT-Trans	3.888	0.311
Celecoxib Rediscovery	REINVENT	3.458	0.551
	REINVENT-Trans	3.245	0.357
DRD2	REINVENT	2.788	0.868
	REINVENT-Trans	2.914	0.464
Deco Hop	REINVENT	3.458	0.551
-	REINVENT-Trans	3.240	0.457
Fexofenadine MPO	REINVENT	4.163	0.325
	REINVENT-Trans	4.113	0.411
GSK3B	REINVENT	3.146	0.884
	REINVENT-Trans	3.146	0.884
Isomers C7H8N2O2	REINVENT	4.273	0.712
	REINVENT-Trans	2.589	0.796
Isomers C9H10N2O2PF2Cl	REINVENT	3.261	0.585
	REINVENT-Trans	3.245	0.686
Median 1	REINVENT	4.571	0.408
	REINVENT-Trans	3.532	0.371
Median 2	REINVENT	2.772	0.411
	REINVENT-Trans	2.877	0.389
Mestranol Similarity	REINVENT	3.799	0.267
	REINVENT-Trans	4.394	0.434
Osimertinib MPO	REINVENT	3.174	0.504
	REINVENT-Trans	3.799	0.447
Perindopril MPO	REINVENT	3.819	0.479
	REINVENT-Trans	3.766	0.357
QED	REINVENT	1.883	0.573
	REINVENT-Trans	3.422	0.540
Ranolazine MPO	REINVENT	3.468	0.421
	REINVENT-Trans	2.727	0.434
Scaffold Hop	REINVENT	2.857	0.555
	REINVENT-Trans	4.355	0.382
Sitagliptin MPO	REINVENT	2.639	0.692
	REINVENT-Trans	5.279	0.391
Thiothixene Rediscovery	REINVENT	2.899	0.373
	REINVENT-Trans	3.275	0.441
Troglitazone Rediscovery	REINVENT	3.275	0.441
	REINVENT-Trans	4.435	0.204
Valsartan Smarts	REINVENT	3.421	0.874
	REINVENT-Trans	3.421	0.874
Zaleplon MPO	REINVENT	1.991	0.614
	REINVENT-Trans	2.465	0.486

Table 3: Avg SA and Diversity Top100

REINVENT-Transformer: Molecular De Novo Design through Transformer-based Reinforcement Learnigpinference acronym 'XX, June 03-05, 2018, Woodstock, NY

Model	SMILES	Score	Number
REINVENT-	$C_{2} = \frac{1}{2} C_{2} = \frac{1}$	0.0470	1(5)
Transformer	Cc1csc(NC(=0)c2ccc(N3CCCC3=0)cc2)n1		1000
REINVENT-			1075
Transformer	COclec(NC(=O)c2cnn(C)c2)cc(Cl)clCl	0.9477	1875
REINVENT-			1050
Transformer	CcIncscICNC(=O)cIcc(C(F)(F)F)cnIC	0.9475	1873
REINVENT-	Cc1cc(C(F)(F)F)nn1CC(=O)Nc1ccc(C#N)cc1		466
Transformer			
REINVENT	CS(=O)(=S)c1ccc(C(=O)Nc2ccc(F)cc2)cc1	0.9481	6853
REINVENT	Cc1ccc(C(=O)Nc2c(F)cc(F)cc2C(=O)N(C)C)o1	0.9481	5825
REINVENT	Cc1ccc(C(=O)Nc2ccc(S(C)(=O)=O)c(F)c2)cc1	0.9481	4525
REINVENT	Cc1ccc(S(C)(=O)=O)cc1C(=O)Nc1ccc(F)cc1	0.9481	4605
			-

Table 4: Randomly selected SMILES generated by the REINVENT and REINVENT-Transformer Models

Figure 6: Mean and Standard Deviation of auc_top10 over oracle calls for REINVENT and REINVENT-Transformer on oracle Mestranol_Similarity

Figure 7: Mean and Standard Deviation of auc_top100 over oracle calls for REINVENT and REINVENT-Transformer on oracle Albuterol_Similarity