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ABSTRACT

While significant research progress has been made in robot learning for control,
unique challenges arise when simultaneously co-optimizing morphology. Existing
work has typically been tailored for particular environments or representations. In
order to more fully understand inherent design and performance tradeoffs and ac-
celerate the development of new breeds of soft robots, a comprehensive virtual
platform — with well-established tasks, environments, and evaluation metrics —
is needed. In this work, we introduce SoftZoo, a soft robot co-design platform
for locomotion in diverse environments. SoftZoo supports an extensive, naturally-
inspired material set, including the ability to simulate environments such as flat
ground, desert, wetland, clay, ice, snow, shallow water, and ocean. Further, it pro-
vides a variety of tasks relevant for soft robotics, including fast locomotion, agile
turning, and path following, as well as differentiable design representations for
morphology and control. Combined, these elements form a feature-rich platform
for analysis and development of soft robot co-design algorithms. We benchmark
prevalent representations and co-design algorithms, and shed light on 1) the inter-
play between environment, morphology, and behavior 2) the importance of design
space representations 3) the ambiguity in muscle formation and controller syn-
thesis and 4) the value of differentiable physics. We envision that SoftZoo will
serve as a standard platform and template an approach toward the development of
novel representations and algorithms for co-designing soft robots’ behavioral and
morphological intelligence. Demos are available on our project page1.

1 INTRODUCTION

The natural world demonstrates morphological and behavioral complexity to a degree unexplored
in soft robotics. A jellyfish’s gently undulating geometry allows it to efficiently travel across large
bodies of water; an ostrich’s spring-like feet allow for fast, agile motion over widely varying topog-
raphy; a chameleon’s feet allows for dexterous climbing up trees and across branches. Beyond their
comparative lack of diversity, soft robots’ designs are rarely computationally optimized in silico
for the environments in which they are to be deployed. The degree of morphological intelligence
observed in the natural world would be similarly advantageous in artificial life.

In this paper, we present SoftZoo, a framework for exploring and benchmarking algorithms for co-
designing soft robots in behavior and morphology, with emphasis on locomotion tasks. Unlike pure
control or physical design optimization, co-design algorithms co-optimize over a robot’s brain and
body simultaneously, finding more efficacious solutions that exploit their rich interplay (Ma et al.,
2021; Spielberg et al., 2021; Bhatia et al., 2021). We have seen examples of integrated morphology
and behavior in soft manipulation (Puhlmann et al., 2022), swimming (Katzschmann et al., 2018),
flying (Ramezani et al., 2016), and dynamic locomotion (Tang et al., 2020). Each of these robots
was designed manually; algorithms that design such robots, and tools for designing the algorithms
that design such robots have the potential to accelerate the invention of diverse and capable robots.

∗This work was done during an internship at the MIT-IBM Watson AI Lab. Support for this work was also
provided in part by the NSF EFRI Program (Grant No. 1830901), DARPA MCS Program, MIT-IBM Watson
AI Lab, and gift funding from MERL, Cisco, and Amazon.

1Project Page: https://sites.google.com/view/softzoo-iclr-2023
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SoftZoo decomposes computational soft robot co-design into four elements: design representations
(of morphology and control), tasks for which robots are to be optimized (mathematically, reward or
objective functions), environments (including the physical models needed to simulate them), and co-
design algorithms. Representationally, SoftZoo provides an unified and flexible interface of robot
geometry, body stiffness, and muscle placement that can take operate on common 3D geometric
primitives such as point clouds, voxel grids, and meshes. For benchmarking, SoftZoo includes a
variety of dynamic tasks important in robotics, such as fast locomotion, agile turning, and path fol-
lowing. To study environmentally-driven robot design and motion, SoftZoo supports an extensive,
naturally-inspired material set that allows it to not only simulate hyperelastic soft robots, but also
emulate ground, desert, wetland, clay, ice, and snow terrains, as well as shallow and deep bodies of
water. SoftZoo provides a differentiable multiphysics engine built atop the material point method
(MPM) for simulating these diverse biomes. Differentiability provides a crucial ingredient for the
development of co-design algorithms, which increasingly commonly exploit model-based gradients
for efficient design search. This focus on differentiable multiphysical environments is in contrast to
to previous work (Bhatia et al., 2021; Graule et al., 2022) which relied on simplified physical models
with limited phenomena and no differentiability; this limited the types of co-design problems and al-
gorithms to which they could be applied. The combination of differentiable multiphysics simulation
with the decomposition of environmentally-driven co-design into its distinct constituent elements
(representation, algorithm, environment physics, task) makes SoftZoo particularly well suited to
systematically understanding the influence of design representations, physical modeling, and task
objectives in the development of soft robot co-design algorithms. In summary, we contribute:

• A soft robot co-design platform for locomotion in diverse environments with the support of an
extensive, naturally-inspired material set, a variety of locomotion tasks, an unified interface for
robot design, and a differentiable physics engine.

• Algorithmic benchmarks for various representations and learning algorithms, laying a foundation
for studying behavioral and morphological intelligence.

• Analysis of 1) the interplay between environment, morphology, and behavior 2) the importance of
design space representations 3) the ambiguity in muscle formation and controller synthesis 4) the
value of differentiable physics, with numerical comparisons of gradient-based and gradient-free
design algorithms and intelligible examples of where gradient-based co-design fails. This analysis
provides insight into the efficacy of different aspects of state-of-the-art methods and steer future
co-design algorithm development.

Ground Wetland Ice Shallow Water

Desert Clay Snow Ocean

Figure 1: An overview of SoftZoo with demonstration of various biologically-inspired designs.

2 SOFTZOO

2.1 OVERVIEW

SoftZoo is a soft robot co-design platform for locomotion in diverse environments. It supports var-
ied, naturally-inspired materials that can construct environments including ground, desert, wetland,
clay, ice, shallow water, and ocean. The task set consists of fast locomotion, agile turning, and path
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following. The suite provides a seamless and flexible interface of robot design that specifies robot
geometry, body stiffness, and muscle placement, and accepts common 3D representations such as
point clouds, voxel grids, or meshes. The robot can then be controlled according to muscle groups.
The underlying physics engine also supports differentiability that provides model-based gradients,
which gains increasing attention in soft robot control and design. In the following, we walk through
high-level components of SoftZoo: simulation engine, environment setup, and locomotion tasks.

2.2 SIMULATION ENGINE

In this section, we briefly introduce the underlying simulation technique to facilitate later-on dis-
cussion. SoftZoo is implemented using the Taichi library (Hu et al., 2019b), which compiles phys-
ical simulation code (and its reverse-mode autodifferentiated gradients) for efficient parallelization
on GPU hardware. Continuum mechanics in SoftZoo follows the discretization of Moving Least
Squares Material Point Method (MLS-MPM) (Hu et al., 2018), a variant of B-spline MPM (Stom-
akhin et al., 2013) with improved efficiency. Multimaterial simulation and signed-distance-function-
based boundary conditions for terrain are implemented to construct diverse environments.

Material Point Method (MPM). The material point method is a hybrid Eulerian-Lagrangian
method, where both Lagrangian particles and Eulerian grid nodes are used to transfer simulation
state information back-and-forth. At a high level, MPM is comprised of three major steps: particle-
to-grid transfer (P2G), grid operation, and grid-to-particle transfer (G2P). Material properties, in-
cluding position xp, velocity vp, mass mp, deformation gradients Fp, and affine velocity field Cp,
are stored in Lagrangian particles that move through space and time. MPM allows large defor-
mation, automatic treatment of self-collision and fracture, and simple realization of multi-material
interaction, and is hence well-suited for soft robots in diverse environments. We show the governing
equations used by MPM and more implementation details in Appendix D.

Contact Model. The terrain in SoftZoo is represented as meshes that interact with either the robot
body or other ground cover materials such as snow or sand. We employ a grid-based contact treat-
ment (Stomakhin et al., 2013) to handle particle terrain-particle collision, using a Coulomb friction
model. We compute the surface normal of the terrain to measure the signed distance function (SDF)
and construct boundary conditions for velocity in grid space.

Multiphysical Materials. We present a set of environments with multiphysical material support.
The materials cover a diverse set of physical phenomena, including hyperelasticity, plasticity, fluid-
ity, and inter-particle friction. These phenomena combine to model common real-world materials
such as sand, snow, rubber, mud, water, and more. We list all environments with their correspond-
ing multiphysical materials in Appendix E. In addition to categorical choices of environments, we
also provide a set of elastic constitutive models (e.g., St. Venant-Kirchhoff, corotated linear, neo-
Hookean, etc.) and expose their parameters so that the practitioners can easily fine-tune the material
behaviors. In our experiments, we use neo-Hookean material since it a) is known to be accurate
for modeling silicone-rubber-like materials common in real-world soft robots, b) skips the costly
calculation of singular value decomposition (SVD) and c) results in an improvement in simulation
speed and numerical stability and reduces gradient instability caused by singular value degeneracy.

Actuation Model. We define our actuation model as an anisotropic muscle installed along specified
particles. Each muscular element generates a directional force along a unit fiber vector f . We realize
this actuation model using the anisotropic elastic energy from Ma et al. (2021) Ψ = s ∥l − a∥2,
where l = ∥Ff∥2, F is the deformation gradient, s is a muscular stiffness parameter, and a is the
actuation signal provided by a controller. This energy is added to the constitutive material energy of
particles along which the muscle fiber is installed.

2.3 ENVIRONMENT SETUP

Initialization. Environment construction requires three steps: terrain generation, robot placement,
and material covering. First, we procedurally generate terrain height-maps using Perlin noise with
user-defined height range and other parameters for roughness. The generated height map is con-
verted to a mesh for ground surface. We then instantiate a robot using specified design parameters.
A user may choose to have the robot placed randomly or at a fixed pre-defined position on the ter-
rain. Then, we compute an occupancy map in the Eulerian grid in MPM based on particles of robot
body and terrain’s SDF. Finally, we use the terrain’s surface normal to layer particles of specified
terrain materials atop it, using the occupancy map to avoid particle placement in non-free space.
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Table 1: Large-scale benchmark of biologically-inspired designs in SoftZoo. Each entry shows
results from differentiable physics (left) and RL (right). The higher the better.

Task Animal Environment
Ground Ice Wetland Clay Desert Snow Ocean

Movement
Speed

Baby Seal 0.122 / 0.154 0.048 / 0.010 0.032 / 0.020 0.012 / 0.005 0.059 / 0.034 0.039 / 0.016 0.033 / 0.029
Caterpillar 0.080 / 0.032 0.023 / 0.006 0.052 / 0.016 0.032 / 0.015 0.053 / 0.032 0.047 / 0.017 0.134 / 0.181

Fish 0.053 / 0.033 0.029 / 0.011 0.026 / 0.013 0.037 / 0.014 0.115 / 0.022 0.087 / 0.042 0.084 / 0.151
Panda 0.046 / 0.019 0.038 / 0.006 0.016 / 0.008 0.019 / 0.005 0.023 / 0.009 0.031 / 0.004 0.024 / 0.007

Turning

Baby Seal 0.067 / 0.077 0.058 / 0.024 0.014 / 0.008 0.021 / 0.011 0.051 / 0.026 0.047 / 0.028 0.059 / 0.020
Caterpillar 0.053 / 0.021 0.021 / 0.009 0.040 / 0.006 0.027 / 0.005 0.034 / 0.015 0.069 / 0.006 0.195 / 0.358

Fish 0.032 / 0.047 0.023 / 0.012 0.023 / 0.010 0.015 / 0.007 0.021 / 0.019 0.028 / 0.029 0.041 / 0.013
Panda 0.064 / 0.014 0.023 / 0.003 0.009 / 0.004 0.008 / 0.001 0.014 / 0.003 0.013 / 0.002 0.035 / 0.031

Velocity
Tracking

Baby Seal 0.343 / 0.410 0.257 / 0.194 0.249 / 0.222 0.231 / 0.205 0.290 / 0.265 0.215 / 0.198 0.379 / 0.068
Caterpillar 0.502 / 0.368 0.101 / 0.156 0.426 / 0.192 0.282 / 0.058 0.441 / 0.376 0.379 / 0.133 0.555 / 0.714

Fish 0.216 / 0.256 0.416 / 0.319 0.221 / 0.236 0.234 / 0.303 0.457 / 0.311 0.638 / 0.307 0.657 / 0.574
Panda 0.575 / 0.424 0.555 / 0.383 0.536 / 0.534 0.153 / 0.195 0.450 / 0.359 0.472 / 0.288 0.395 / 0.220

Waypoint
Following

Baby Seal -0.012 / -0.014 -0.018 / -0.027 -0.018 / -0.027 -0.020 / -0.026 -0.012 / -0.025 -0.014 / -0.026 -0.010 / -0.026
Caterpillar -0.013 / -0.016 -0.019 / -0.028 -0.016 / -0.028 -0.020 / -0.027 -0.013 / -0.027 -0.018 / -0.026 -0.002 / -0.019

Fish -0.004 / -0.016 -0.016 / -0.026 -0.022 / -0.029 -0.024 / -0.027 -0.007 / -0.024 -0.003 / -0.024 -0.005 / -0.023
Panda -0.003 / -0.014 -0.014 / -0.025 -0.021 / -0.027 -0.023 / -0.028 -0.010 / -0.024 -0.008 / -0.025 -0.013 / -0.026

A co-design algorithm consists of 1) a design optimizer that proposes a robot design at the start of
a simulation trial (an “episode” in reinforcement learning terminology) and 2) a control optimizer
that specifies a controller that determines robot actuation based on its observed state. Accordingly,
each task interfaces with the algorithm through the robot design interface, observation, action, and
reward. We introduce each element as follows.

Robot Design Interface. Robot design involves specification of geometry, stiffness, and muscle
placement. We integrate these design specifications into Lagrangian particles in MPM simulation.
Geometry is modeled by mass mp ∈ R (clamping regions of sufficiently low mass to 0); stiffness is
modeled by a the Young’s modulus in elastic material sp ∈ R. We remove non-existing (zero-mass)
particles to eliminate their effect. (Low and zero mass particles cause numerical instabilities during
simulation.) For muscle placement rp ∈ RK on a robot with at most K actuators, we augment each
actuated particle with a K-dimensional unit-vector where the magnitude of component i specifies
the contribution of actuator i to that particle as well as a 3-dimensional unit-vector to specify muscle
direction fp ∈ R3. While a robot is represented as a particle set in the simulator, SoftZoo allows
common 3D representations other than point clouds such as voxel grids or meshes. We instantiate a
set of particles in a bounding base shape (e.g., a box or ellipsoid), which defines the workspace of
a robot design with position {xp}, velocity {vp}, and other attributes required in MPM. For voxel
grids, we utilize a voxelizer to transfer voxel occupancy to particle mass that resides in that voxel.
For meshes, we compute SDF for particles in the bounding base shape and assign non-zero mass to
sub-zero level set (those with negative signed distance).

Observation. Robot state observations, which are fed to controllers, are computed at every step
in an episode, consisting of robot proprioceptive information, environmental information, and task-
related information. For robot proprioceptive information, considering states of all particles in robot
body is unrealistic from both the perspective of sensor placement and computational tractability.
Instead, we compute the position and velocity centroids of the robot body, or of pre-defined body
parts. The environment is summarized as a semantic occupancy map; from the MPM Eulerian
grid, a 3D voxel grid is constructed in with each voxel indicates occupancy of terrain (below the
SDF boundary), terrain material particles, or the robot. Finally, task-related information provides
sufficient specifications in order to solve certain task, e.g., target waypoints to be followed.

Action. At each time step, the simulator queries the robot controller for an action vector u ∈ RK .
(Note that the time step is at the time scale of a robot controller, different from simulation steps often
referred to as substeps.) We use the same action vector for all simulation steps within an environment
time step. The returned action vector is of length as K, the maximal number of actuators. The action
space bound is set to achieve reasonable robot motion without easily causing numerical fracture of
robot body. We use [−0.3, 0.3] as coordinate-wise bound in this paper.

Reward. A robot’s task performance is quantitatively measured by a scalar-valued reward function.
The reward definition is task-specific and computed at every time step to provide feedback signal to
the robot. Please refer to Section 2.4 for detailed descriptions of reward for every tasks.

2.4 LOCOMOTION TASKS

We only mention the high-level goal of each task. Please refer to Section B for more details.
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Fish Forward in Desert Caterpillar Forward in Wetland Panda Turning on Ground Baby Seal Turning on Ice

Figure 2: Unique motions arising from morphology and environment to achieve locomotion.

Movement Speed. In this task, the robot aims to move as fast as possible along a target direction.

Turning. In this task, the robot is encouraged to turn as fast as possible counter-clockwise about the
upward direction of robot’s canonical pose.

Velocity Tracking. In this task, the robot is required to track a series of timestamped velocities.

Waypoint Following. In this task, the robot needs to follow a sequence of waypoints.

3 EXPERIMENTS

3.1 BIOLOGICALLY-INSPIRED MORPHOLOGIES

To study the interplay between environment, morphology, and behavior, we first use a set of ani-
mal meshes (selected from https://www.davidoreilly.com/library) as robot bodies and label muscle
locations. Through optimizing their controllers, we observe that different designs exhibit better-
performing behavior in different environments.

Muscle Annotation. We implement a semi-automatic muscle annotator that first converts a mesh
into a point cloud, secondly performs K-means clustering with user-defined number of body groups,
and finally applies principal component analysis on indepdendent clusters to extract muscle direc-
tion. Users may then fine-tune the resulting muscle placement.

Animals. We test four animals: Baby Seal, Caterpillar, Fish, and Panda. These animals are chosen
since they exhibit distinct strategies in nature. We refer the readers to Section K for visualization of
each animal-inspired design, including their muscle layouts, and detailed description.

Large-scale Benchmarking. Table 1 shows the performance of the four animals when optimized
for each locomotion task, in each environment. We parameterize the controller based on a set of
sine function bases with different frequencies, phases, and biases (see Section H). We perform con-
trol optimization with differentiable physics and RL (Schulman et al., 2017), corresponding to the
left/right values in every entry respectively. We would like to emphasize that this experiment is not
meant to draw a conclusion on superiority of differentiable physics or RL. Rather, we highlight in-
teresting emergent strategies of different morphologies in response to diverse environments. A We
find that the Baby Seal morphology is particularly well-suited for Ground and Ice, the Caterpillar
morphology is well-suited for Wetland and Clay, the Fish morphology is well-suited for Desert and
Snow, and both the Caterpillar and Fish morphologies are well-suited for the Ocean.

Environmentally- and Morphologically-driven Motion. Based on previous quantitative analysis,
in Figure 2, we showcase several interesting emergent motion of different animals. The Fish surpris-
ingly demonstrates efficient movement on granular materials (Desert), by lifting its torso to reduce
friction and pushing itself forward with its tail. The Caterpillar produces a left-to-right undulation
motion to locomote in Wetland; the strategy allows it to disperse mud as it moves forward. The
Panda’s legs act in a spring-like fashion to perform galloping motion on flat terrain. Finally, the
Baby Seal uses its tail muscle to create a flapping motion to move on the low-friction Ice terrain,
where push-off would otherwise be difficult.
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Table 2: Quantitative comparison
of design space representations.

Representation Performance

Particle 0.027
Voxel 0.023

Implicit Function 0.113
Diff-CPPN 0.091

SDF-Lerp 0.152
Wass-Barycenter 0.158

Implicit Function Diff-CPPN

SDF-Lerp Wasserstein Barycenter

Figure 3: Visualization of optimized designs.
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Figure 4: Ambiguity of muscle formation and controller synthesis.

3.2 THE IMPORTANCE OF DESIGN SPACE REPRESENTATION

In this section, we demonstrate the importance of the design space representation for morphology
optimization. We apply gradient-based optimization methods across a wide variety of morphological
design representations fixing the controller. We focus on achieving fast movement speed in the
Ocean environment since aquatic creatures tend to manifest a more canonical muscle distribution,
typically antagonistic muscle pairs along each side of the body. The low failure rate of this task
means that we achieve a wide spread of performances, determined by the design representation,
which allows us to compare the effect of each on performance.

Baselines. We implement a variety of design space representations. We briefly mention the high-
level concept of each method as follows. Please refer to Section I for more in-depth description.

Particle Representation. The geometry, stiffness, and muscle placement is directly specified at the
particle level, with each particle possessing its own distinct parameterization.

Voxel Representation. This is similar to particle representation but specified at the voxel level.

Implicit Function (Mescheder et al., 2019). We use a shared multi-layer perceptron that takes in
particle coordinates and outputs the design specification for the corresponding particle.

Diff-CPPN (Fernando et al., 2016). We adapt the differentiable CPPN, which provides a global
mapping that converts particle coordinates to a design specification.

SDF-Lerp. Given a set of design primitives (with design specification obtained by using the tech-
nique in Section 3.1), we compute SDF based on each design primitives for particles in robot design
workspace. For each particle, we then linearly interpolate the signed distances and set occupancy
for those with negative values to obtain robot geometry. We directly perform linear interpolation on
stiffness and muscle placement of the primitive set. For muscle direction, we use weighted rotation
averaging with special orthogonal Procrustes orthonormalization (Brégier, 2021).

Wass-Barycenter (Ma et al., 2021). We compute Wasserstein barycenter coordinates based on a set
of coefficients to obtain robot geometry. We follow SDF-Lerp for stiffness and muscle placement.

Design Optimization. In Table 2, we show the results of design optimization. We can roughly
categorize these design space representations into (1) no structural prior (Particle and Voxel) (2)
preference for spatial smoothness (Implicit Function and Diff-CPPN) and (3) highly-structured de-
sign basis (SDF-Lerp and Wass-Barycenter). We observe superior performance as increasing in-
ductive prior is injected into the representation. The use of design primitives casts the problem to
composition of existing functional building blocks and greatly reduces the search space, leading to
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Figure 5: Examples of pathological loss landscape for design optimization.

effective optimization. Further, structural priors, lead to designs with fewer thin or sharply changing
features; such extreme designs have unwanted artifacts such as numerical fracture during motion.
Figure 3 presents optimized designs: meshes indicate geometry and colored point clouds indicate
active muscle groups. These results suggest the development of novel representation for robot design
that facilitates improved optimization and learning.

3.3 AMBIGUITY BETWEEN MUSCLE STIFFNESS AND ACTUATION SIGNAL STRENGTH

In this section, we investigate the ambiguity between muscle formation and actuation from the con-
troller. We aim to discover if there exists unidentifiability between design and control optimization.
We adopt trajectory optimization for control in this set of experiments since it has the best flexibility.

Stiffness as “Static” Actuation. Here, we explore whether optimizing active actuation can repro-
duce motion of robots with different static muscle stiffness. With a fixed robot geometry and muscle
placement, we randomly sample 100 sets of controllers and muscle stiffness, and record trajectories
of all particles for 100 frames. We then try to fit a controller for robots with a different set of stiff-
ness and measure how well they can match the last frame of the pre-collected dataset. We use the
Earth Mover’s Distance (EMD) loss (Achlioptas et al., 2018) and differentiable physics for training.
Specifically, we use EMD to compare the difference between the motions of each particle set at the
end of each trajectory. In Figure 4a, we show matching error distribution across different stiffness
multipliers (with respect to the original stiffness of the robot). This experiment indicates we can
roughly replicate the motion of robot with different stiffness by control optimization. This aligns
with the muscle model, where we can interpret stiffness as a static component of actuation.

Approximating Motion of Random Muscle Placement. Here, we investigate if we can reproduce
the motions of robots with different muscle placements by optimizing their controllers. With fixed
robot geometry and stiffness, we randomly sample 6 sets of controllers and muscle placements with
3 actuators. We follow the same training procedure mentioned previously to fit controllers for robots
with a different set of muscle placement. In Figure 4b, we show relative matching error at different
number of actuators with shaded area as confidence interval from the 6 random seeds. Note that
we adopt a fixed muscle direction and soft muscle placement for simplicity. The plot suggests that
with redundant (> 3 in this case) actuators, robot motion can be roughly reproduced with control
optimization even under different muscle placement.

Overall, we demonstrate the ambiguity between muscle construction and actuation that may induce
challenges in co-design optimization. However, these results also unveil the potential of casting
muscle optimization to control optimization in soft robot co-design.

3.4 THE GOOD AND BAD OF DIFFERENTIABLE PHYSICS FOR SOFT ROBOT CO-DESIGN

The Value of Differentiable Physics. Gradient-based control optimization methods powered by dif-
ferentiable simulation, are increasingly popular in computational soft robotics. Such optimizers can
efficiently search for optimal solutions and decrease the number of computationally-intensive sim-
ulation episodes needed to achieve optimal results in various computational soft robotics problems
compared to model-free approaches such as evolutionary strategies or RL. Despite its effectiveness,
the local nature of gradient-based methods poses issues for optimization. While recent research has
rigorously studied differentiable physics in control (Suh et al., 2022), similar investigation is lacking
in the context of design. Here, we take a preliminary step to analyze gradient for design optimiza-
tion. In Figure 5a, we show the loss landscape of a single parameter of actuator placement. We
consider a voxel grid and smoothly (with soft actuator placement) transition the membership of the
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Table 3: The efficacy of co-optimization.

Optimization Target Performance

Controller 0.107
Design 0.152
Design + Control 0.332

Table 4: Co-design with gradient-free/based methods.

Method Performance

Evolution Strategy 0.247
Diff-physics 0.332
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Figure 6: Swimming motion sequences of co-design baselines.

actuator in a voxel. We can observe multiple local optima, which may trap gradient-based optimiza-
tion. In Figure 5b, we show the discontinuity of loss resulted from shape changes. A box with a
missing corner (red) ends up at a very different location from that of a complete box (gray), as it
topples when placed in metastable configurations. These results present unique yet understandable
challenges for differentiable physics in robot design, which suggests more future research to better
leverage gradient information.

3.5 CO-OPTIMIZING SOFT ROBOTIC SWIMMERS

In this section, we demonstrate co-design results for a swimmer in the Ocean environment. First,
in Table 3, we compare between (1) optimizing control only (2) optimizing design only (3) co-
optimizing design and control. We use SDF-Lerp as design space representation and differentiable
physics for optimization. To generate meaningful results, for the control-only case, we use a fish-
like design; and for the design-only case, we use a controller trained for a fish not included in
the design primitive of SDF-Lerp. The outcome verifies the effectiveness of generating superior
soft robotic swimmer with co-design. In Table 4, we compare co-design results from evolution
strategy (ES) and differentiable physics. We follow the above-mentioned setup for differentiable
physics. For evolution strategy, we adopt a common baseline: CPPN representation (Stanley, 2007)
with HyperNEAT (Stanley et al., 2009); to make control optimization consistent with evolution
strategy, we use CMA-ES (Hansen et al., 2003). Furthermore, we show the optimized design and the
corresponding motion sequence of both methods in Figure 6. Interestingly, the better-performing co-
design result much resembles the results of performing design optimization only, shown in Figure 3.

4 RELATED WORK

Co-Design of Soft Bodied Machines. Evolutionary algorithms (EAs) have been used to design
virtual agents since the pioneering work of Sims (1994); as these algorithms improved the prob-
lems they could be applied to grew in complexity. Cheney et al. (2014b) demonstrated EAs for co-
designing soft robots over shape, materials, and actuation for open-loop cyclic controllers; follow-on
work explored soft robots with circuitry (Cheney et al., 2014a) and those grown from virtual cells
(Joachimczak et al., 2016). Evolutionarily designed soft robots were demonstrated to be physically
manufacturable using soft foams (Hiller & Lipson, 2011), and biological cells (Kriegman et al.,
2020). Virtually all such results have been powered by the neuroevolution of augmenting topologies
(NEAT) algorithm (Stanley & Miikkulainen, 2002), and, typically, compositional pattern produc-
ing networks (CPPN) (Stanley, 2007) for morphological design representation. Recent work has
explored other effectual heuristic search algorithms, such as simulated annealing, for optimizing
locomoting soft robots represented by grammars (Van Diepen & Shea, 2019; van Diepen & Shea,
2022). Recently, Bhatia et al. (2021) provided an expansive suite of benchmark tasks for evaluating
algorithms for co-designing soft robots with closed-loop controllers. That work provides a baseline
co-design method that employs CPPN-NEAT for morphological search and reinforcement learning
for control optimization (Schulman et al., 2017). Similar to (Bhatia et al., 2021), our work bench-
marks EAs alongside competing methods. We provide a suite of environmentally-diverse tasks in a
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differentiable simulation environment, which allows the use of efficient gradient-based search algo-
rithms. Further, we focus on a systematic decoupling of design space representation, control, task
and environment, and search algorithms in order to distill the influence of each.

Differentiable Simulation for Soft Robot Optimization. A differentiable simulator is one in which
the gradient of any measurement of the system can be analytically computed with respect to any
variable of the system, which can include behavioral (control) and physical (morphological and en-
vironmental) parameters. Differentiability provides particular value for soft robotics; gradient-based
optimization algorithms can reduce the number of (typically expensive) simulations needed to solve
computational control and design problems. Differentiable material point method simulation (MPM)
has been used in co-optimizing soft robots over closed-loop controllers and spatially varying mate-
rial parameters (Hu et al., 2019c; Spielberg et al., 2021), as well as proprioceptive models Spielberg
et al. (2019). Co-optimization procedures rooted in differentiable simulation have also been ap-
plied to more traditional finite element representations of soft robots. Notably, (Ma et al., 2021)
demonstrated efficient co-optimization of swimming soft robots’ geometry, actuators, and control,
incorporating a learned (differentiable) Wasserstein basis for tractable search over high-dimensional
morphological design spaces. Follow-on work further showed that differentiable simulators can
be combined with learned dynamics for co-design (Nava et al., 2022). Such finite-element-based
representations, however, have struggled with smoothly differentiating through rich contact.

Our work presents a rich comparison of differentiable and non-differentiable approaches for soft-
bodied co-design, as well as a set of baseline methods. We present a differentiable soft-bodied
simulation environment capable of modeling multiphysical materials. Our environment is based in
MPM, because of its ability to naturally and differentiably handle contact and multiphysical cou-
pling. Similar to other recent work, such as Suh et al. (2022) and Huang et al. (2021), we perform
a thorough analysis (in our case, empirical) of the value and limitations of differentiable simulation
environments, with an emphasis on cyberphysical co-design.

Environmentally-Driven Computational Agent Design. Similar to their biological counterparts,
virtual creatures have different optimized forms depending on their environment. Auerbach & Bon-
gard (2014) and Corucci et al. (2017) analyzed real-world biological morphological features from
the perspective of EAs; Cheney et al. (2015) studied the interplay between of virtual terrain and robot
geometry for soft-bodied locomotion locomotion. In rigid robotics where simulation is less com-
putationally expensive, online data-driven neural generative design methods are emerging. These
include methods that reason over parameterized geometries Ha (2019), topological structure Zhao
et al. (2020); Xu et al. (2021); Hu et al. (2022), and shapeshifting behavior Pathak et al. (2019).
These methods currently require too much simulation-based data generation for soft robotics appli-
cations, but are useful as inspiration for future research directions.

5 CONCLUSION

In this work, we introduced SoftZoo, a soft robot co-design platform for locomotion in diverse
environments. By using SoftZoo to investigate the interplay between design representations, en-
vironments, tasks, and co-design algorithms, we have found that 1) emergent motions are driven
by environmental and morphological factors in a way that often mirrors nature 2) injecting design
priors in design space representation can improve optimization effectiveness 3) muscle stiffness and
controllers introduce redudnancy in design spaces, and 4) trapping local minima are common even
in very simple morphological design problems. Impact and Future Direction. SoftZoo provides a
well-established platform that allows for systematic training and evaluation of soft robot co-design
algorithms; we hope it will accelerate algorithmic co-design development. It also lays a cornerstone
for studying morphological and behavioral intelligence under diverse environments. The exten-
sive experiments conducted using SoftZoo not only sheds light on the significance of co-design but
also identifies concrete challenges from various perspectives. Based on our findings, we suggest
several future directions: 1) 3D representation learning to construct more effective and flexible de-
sign space representations 2) morphology-aware policy learning as an alternative formulation that
more elegantly handles the inter-dependency between design and control optimization 3) principled
approaches to combine differentiable physics and gradient-free methods like RL or EAs that mar-
ries priors from physics to optimization techniques less susceptible to pathological loss landscapes.
Overall, we believe SoftZoo paves a road to study morphological and behavioral intelligence, and
bridges soft robot co-design with a variety of related research topics.
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A NOTATIONS

Table A shows a list of notations used in the description of SoftZoo, where the subscript p indicates
association with particles. Note that actuation is defined per particle and action vector is defined as
the output of controllers (which can be very low-dimensional such as R10), i.e., ap = u · fp.

Symbol Type Description
mp scalar mass
sp scalar stiffness
ap scalar actuation
u vector action vector
xp vector position
vp vector velocity
rp vector muscle placement / membership
fp vector muscle direction
Fp matrix deformation gradient
σp matrix Cauchy stress
Cp matrix affine velocity field

B LOCOMOTION TASKS

B.1 MOVEMENT SPEED

In this task, the goal of the robot is to move as fast as possible along a pre-defined direction. We
compute the average velocity of all existing (non-zero-mass) particles on robot body and project it
to the target direction to obtain a scalar estimate. We thus write the metric per timestep as,

rspeed =
∑
p

mp(vp · t)

where mp is mass, vp is velocity, and t is a pre-defined target direction.

B.2 TURNING

In this task, the robot is encouraged to turn as fast as possible counter-clockwise about the upward
direction of robot’s canonical pose. We first compute the relative position of all particles on robot
body with respect to its center of mass. We then compute the cross product of the upward direction
followed by unit-vector normalization to obtain tangential directions for all particle while turning.
Finally, we compute velocity projection of every particle along the tangent and return the average as
the measure of turning performance. We thus write the metric per timestep as,

rturning =
∑
p

mp(vp ·
d× vp

||d× vp||
)

where mp is mass, vp is velocity, and d is the up direction (defined manually based on robot canon-
ical forward direction).

B.3 VELOCITY TRACKING

In this task, the robot is required to track a series of timestamped velocities. We use quintic poly-
nomials formulated as a function of time for path parameterization since it generates smooth tra-
jectories with easy access to different orders of derivative. A path can be fully specified with start
and target position xs,xt, velocity vs, vt, and acceleration as, at. We can then obtain the quintic
polynomial as,

xpath(t) = c0 + c1t+ c2t
2 + c3t

3 + c4t
4 + c5t

5
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where t is time and c0, c1, c2, c3, c4, c5 ∈ R3 are coefficients. After setting a target state, we query
the first-order derivative of the polynomial at each environment time step as the target velocity,

vpath(t) = c1 + 2c2t+ 3c3t
2 + 4c4t

3 + 5c5t
4

We write target velocity at a time instance as vtarget for the following. Furthermore, due to the
deforming nature of soft robot, we need to estimate the heading of the robot in order compare it
with the target velocity. We manually label particles corresponding to a head and a tail of the robot
a priori phead, ptail based on its canonical heading direction.

d =
xphead − xptail

||xphead − xptail ||
During robot motion, we extract rotation from deformation gradient of these particles and inversely
transform them back to material space to compute heading direction.

Fp = UpR
T
p

vproj
p = (RT

p vp · d)d
where Fp is deformation gradient, Up,R

T
p are the results of polar decomposition. Velocities of

all particles on robot body are then projected to the heading direction and averaged in order to
compare to the target velocity. We separate the measurement of magnitude and direction as this
allows different weighting of the two terms. We can then write the metric per timestep as,

rvel-track = αmagrmag,p + αdirrdir,p,

where rmag,p = −(||vtarget|| − ||v̄proj||)2

rdir,p = vtarget ·
v̄proj

||v̄proj||
v̄proj =

∑
p

mpv
proj
p

where αmag, αdir are coefficients of magnitude and direction term respectively and we set αmag = 0.1
and αdir = 0.9. We put more emphasis on the alignment of direction since it better indicates
maneuverability.

B.4 WAYPOINT FOLLOWING

In this task, the robot needs to follow a sequence of waypoints. The waypoints are generated by the
above-mentioned quintic polynomial method xpath(t). We compute root mean squared error between
robot center of mass and the target waypoint for each time step. We denote target position at a time
instance as xtarget. We can then write the metric per timestep as,

rwaypoint = (xtarget −
∑
p

mpxp)
2

Remark that well-performing velocity tracking can induce large waypoint following error but trace
out similar-shaped yet different-scaled trajectories. Both serve a role as distinct aspects of evaluating
path following.

C PLATFORM COMPARISON

A comprehensive comparison to existing soft robot platform is shown in Table 5.

D CONTINUUM MECHANICS SIMULATION

We formulate the continuum mechanics simulation in the framework of the moving least squares
material point method (MLP-MPM) (Hu et al., 2018), whose governing equations are characterized
by:

ρ
Dv

Dt
= ∇ · σ + ρfext (1)

ρ
Dρ

Dt
= −ρ∇ · v, (2)
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Table 5: Comparison to existing soft robot platforms.

Platform Simulation
Method Tasks Design Control Differentiability Multiphysical

Materials

SoMoGym (Graule et al., 2022) Rigid-link System Mostly
Manipulation ✓

DiffAqua (Ma et al., 2021) FEM Swimmer ✓ ✓ ✓

EvoGym (Bhatia et al., 2021) 2D Mass-spring
System

Locomotion
Manipulation ✓ ✓

SoftZoo (Ours) MPM Locomotion ✓ ✓ ✓ ✓

Table 6: The physical phenomenons that each environment covered in our multiphysical simulation.

Environment Elasticity Plasticity Fluid Friction

Ground High

Desert ✓ ✓

Wetland ✓ ✓ Mixed

Clay ✓ ✓

Ice Low

Snow ✓ ✓

Shallow Water Shallow

Ocean Deep

where ρ is the density of the material, v is the velocity, σ is the Cauchy stress of the energy, and
fext is the external forces applied, which is the gravity in our cases. We solve these equations for
an equilibrium between different materials coupled in our environments. We will not dive further
into continuum mechanics and point the interested reader to Gonzalez & Stuart (2008) for more
details. In terms of the implementation of the differentiable physics-based simulation, we massively
use DiffTaichi (Hu et al., 2019a) as the backbone.

E MULTIPHYSICAL MATERIALS

For result validation and visual entertainment, we present a diverse set of environments spanned by
different material setups and tasks. Here we illustrate the materials that each environment covered
in Table 6. Note that even though Desert, Clay, and Snow share the same composition of mate-
rial types, we distinguish their elastoplasticity by imposing different parameters and models (e.g.,
friction cone). We will release the code-level implementation of all materials for reproducibility.

F GRADIENT CHECKPOINTING

Simulating environments like ocean, desert, etc requires a significant amount of particles. This
poses a challenge in differentiation as the computation graph needs to be cached for backward pass,
leading to considerably high memory usage. Accordingly, we implement gradient checkpointing
that allows very large-scale simulation with gradient computation. Instead of caching simulation
state at every single step, we only store data every N steps. When doing backward pass at i × N
steps, we perform recomputation of forward pass from (i − 1) × N to i × N to reconstruct the
computation graph in-between for reverse-mode automatic differentiation.

G OPTIMIZATION

In this section, we describe the implementation details of each optimization method.
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G.1 DIFFERENTIABLE PHYSICS

Model-based gradient provides much accurate searching direction and thus considerably more effi-
cient optimization. However, gradient information is susceptible to local optimum and often leads to
bad convergence without proper initialization. Hence, we adopt a simple yet effective approach that
samples 8 random seeds, performs optimization with differentiable physics for all runs, and picks
the best result. More formally we write as,

θ∗ = F (L; argmin
θ0

F (L, θ0))

where θ are the model parameters, θ0 is the initialization of a model, L is a cost function, F summa-
rizes the optimization that follows the gradient update θk+1 = θk − ηh(∇L), η is the learning rate,
and h is a function that specifies different gradient descent variants. For the large-scale benchmark
with biologically-inspired design (Table 1), we use learning rate 0.1 and training iterations 30. For
all control-only and design-only optimization, we use learning rate 0.01 and training iterations 100.
For co-design, we use learning rate 0.01 for both control and design with training iterations 250. We
use Adam as the optimizer.

G.2 REINFORCEMENT LEARNING

RL is only used in control optimization. We use Proximal Policy Optimization (PPO) (Schulman
et al., 2017) with the following hyperparameters: number of timesteps 105, buffer size 2048, batch
size 32, GAE coefficient 0.95, discounting factor 0.98, number of epochs 20, entropy coefficient
0.001, learning rate 0.0001, clip range 0.2. We use the same controller parameterization as all other
experiments throughout the paper.

G.3 EVOLUTION STRATEGY

We implement a fully-ES-based method as a co-design baseline. The genome fitness function is
set as the episode reward of the environment. We pose a constraint on connected component of
robot body. For CPPN, we use a set of activation functions including sigmoid, tanh, sin, gaussian,
selu, abs, log, exp. The inputs of CPPN include x, y, z coordinates along with distance along
xy, xz, yz planes and radius from the body center. We use HyperNEAT (Stanley et al., 2009) for
design optimization and CMA-ES (Hansen et al., 2003) for control optimization with initial standard
deviation as 0.1. We don’t use an inner-outer-loop scheme for co-design. Instead, HyperNEAT and
CMA-ES share the same set of population with population size as 10. We run ES for 100 generations
for the co-design baseline.

H CONTROLLER PARAMETERIZATION

Locomotion often exhibits cyclic motion and thus control optimization can significantly benefit
from considering periodic functions in controller parameterization. Specifically, we use a set of sine
functions with different frequency and phase (offset) as bases. The controller is hence parameterized
with a set of weights on these bases along with bias terms.

ū(x, t) =
∑
ij

αijϕij(x, t) + βij , ϕij(t) = sin(ωi(x)t+ φj(x))

where ϕij are the bases, αij and βij are learnable weights and biases, x is controller inputs,
ωi(x), φj(x) can be either learnable (as neural network) or pre-defined. The control signal is then
modulated by a tanh function multiplied by a pre-defined constant to ensure satisfication of control
bound. We use 4 different phases with frequency 20 and 80 rad/s throughout the paper. While all
experiments presented are not confined to using this sinewave basis controller, we empirically found
it extremely efficient to generate reasonable results in comparison to other controller parameteriza-
tions like a generic neural network or trajectory optimization.

I DESIGN SPACE REPRESENTATION

In this section, we provide more implementation details of design space representations. We first
recall the notation of robot design interface. mp ∈ R is geometry modeled by mass. sp ∈ R is
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stiffness. rp ∈ RK is muscle placement (muscle group assignment) with K as the maximal number
of actuators/muscles. fp ∈ R3 is muscle direction represented in Euler angle. τm is the cutoff
threshold of excluding low mass regions for numerical stability. Note that the subscript p indicates
attributes associated with a particle. MLPa )b(·; θ) denotes a multi-layer perceptron with a inputs, b
outputs, and θ as parameters (we omit hidden layers for clean notation and the output layer is linear).
m0, s0 ∈ R are pre-defined and constant reference mass and stiffness respectively. Geometry of all
methods are processed by the following formula for numerical stability,

mp = 1m̂p≥τmm̂p

where 1· is an indicator function. x̂p ∈ R3 is a centered and standardized position xp ∈ R3.
We denote the position of a base particle set {x̂p} as a point cloud representation that span the
robot design workspace, which is a natural representation of continuum material in MPM. Next, we
describe each design space representation individually.

I.1 PARTICLE-BASED REPRESENTATION.

Given a base particle set {x̂p}, we instantiate two trainable scalars followed by sigmoid for geometry
and stiffness, and a K-dimensional vector followed by softmax for muscle placement with a fixed
muscle direction along the canonical heading direction.

m̂PBR
p = m0 · Sigmoid(m̃p)

sPBR
p = s0 · Sigmoid(s̃p)

rPBR
p = Softmax(r̃p)

fPBR
p = f (0)p

where {m̃p ∈ R, s̃p ∈ R, r̃p ∈ RK} are learnable parameters associated with x̂p, and f
(0)
p is the

fixed muscle direction along the canonical heading direction.

I.2 VOXEL-BASED REPRESENTATION.

We voxelize the given base particle set to obtain a voxel grid and follows similar modelling technique
to particle-based representation in voxel level.

m̂VBR
p = m0 · Sigmoid(V2P(m̃v))

sVBR
p = s0 · Sigmoid(V2P(s̃v))

rVBR
p = Softmax(V2P(r̃v))

where V2P is a mapping from voxel space to particle space (e.g., suppose we use a 2 × 2 × 2
voxel grid to represent 103 particles, we may associate the voxel coordinate (0, 0, 0) to first 53

particles), {m̃v ∈ R, s̃v ∈ R, r̃v ∈ RK} are learnable parameters, and the muscle direction is of
the same definition as particle-based representation fVBR

p = fPBR
p . In comparison to particle-based

representations, in practice the voxel-based representations have much fewer parameters that need
to be learned.

I.3 IMPLICIT FUNCTION

We extend the idea of OccupancyNet (Mescheder et al., 2019) to predicting robot geometry, stiff-
ness, and muscle placement. It is modeled by a multi-layer perceptron (MLP) with 2 layers and 32
dimensions for each. We use tanh activation. The MLP takes in x, y, z coordinates, distance along
xy, xz, yz planes and radius from the body center. The network outputs occupancy as geometry
using sigmoid, stiffness multiplier using sigmoid, and a K-dimensional vector using softmax for
muscle placement. We describe in formula as,

m̂IF
p = m0 · Sigmoid(MLP3 )1(x̂p; θm))

sIF
p = s0 · Sigmoid(MLP3 )1(x̂p; θs))

rIF
p = Softmax(MLP3 )K(x̂p; θr))

where {θm, θs, θr} are learnable parameters formulated as neural networks, and the muscle direction
is of the same definition as particle-based representation f IF

p = fPBR
p . This representation has inherent

spatial continuity due to the use of smooth functions MLP with spatial coordinate x̂p as inputs.
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I.4 DIFF-CPPN

Diff-CPPN is a differentiable version of Compositional Pattern Producing Networks (CPPN) (Stan-
ley, 2007), following similar concept in (Fernando et al., 2016). CPPN is a graphical model
G = {N , E} composed of a set of activation functions Σ with interesting geometric properties
(e.g., sine, tanh) that takes in particle or voxel coordinates and output occupancy or other proper-
ties. Each node ni ∈ N has a set of input edges ei ∈ E that can be changed by evolution, and an
activation function σi ∈

∑
. The input-output relationship of a layer can be then written as,

nout
i = σi(

∑
ej∈E

wjn
in
j )

It is originally designed to be optimized with varying graph topologies. We use a meta graph to
allow gradient flow and mimic the augmenting topolgies process in NEAT yet in a differentiable
manner, i.e., the varying topology wj ∈ {0, 1} is softened to wj ∈ R. Remark the similarity of
the above construction with a layer in regular MLP except for varying activation function across
neurons. We then can define,

m̂Diff-CPPN
p = m0 · Sigmoid(MLPCPPN

3 )1 (g(x̂p); θm))

sDiff-CPPN
p = s0 · Sigmoid(MLPCPPN

3 )1 (g(x̂p); θs))

rDiff-CPPN
p = Softmax(MLPCPPN

3 )K (g(x̂p); θr))

where each layer of MLPCPPN follows the aforementioned input-output relationship, {θm, θs, θr} are
learnable parameters, and g(·) is a function of expanding position to additional spatial coordinates
such as distance to the center (which is normally used in CPPN). We use a fixed muscle direction.
The model takes in x, y, z coordinates, distance along xy, xz, yz planes and radius from the body

center, and outputs occupancy as geometry using sigmoid, stiffness multiplier using sigmoid, and
a K-dimensional vector using softmax for muscle placement. We use sin and sigmoid activation
functions with 3 hidden layers and 20 graph nodes in each layer.

I.5 SDF-LERP

Given a base particle set {x̂p}, we compute the linear interpolation among a set of pre-defined
design primitives {Ψi}Ni=1, where N is number of design primitives. The shape of the robot design
mp is then determined by a set of coefficients weighting the SDFs from design primitives. In other
words, the trainable parameters for robot geometry only construct a N -dimensional vector. We then
compute weighted sum of the SDF bases and extract robot body with the final SDF smaller or equal
to zero. We use a low-temperature sigmoid in implementation to keep gradient flow. For stiffness
sp, we can directly perform linear interpolation. For muscle group membership rp, we use linear
interpolation upon the one-hot vectors from design primitives and effectively realize a soft muscle
group assignment. For muscle direction fp, we adopt interpolation designed for rotation matrices
(Brégier, 2021). Formally,

m̂SDF-Lerp
p = m0 ·

1

1 + e−T
∑N

i=1 α̂iΨSDF
i (x̂p)

, α̂i =
αi∑
j αj

sSDF-Lerp
p =

N∑
i=1

β̂iΨ
s
i (x̂p), β̂i =

βi∑
j βj

rSDF-Lerp
p =

N∑
i=1

γ̂iΨ
r
i (x̂p), γ̂i =

γi∑
j γj

fSDF-Lerp
p = M2E(argmin

R∈SO(3)

||R−
N∑
i=1

κ̂iE2M(Ψf
i (x̂p))||2F ), κ̂i =

κi∑
j κj

where {α ∈ RN , β ∈ RN , γ ∈ RN , κ ∈ RN} are learnable coefficients of the interpolation,
ΨSDF

i ,Ψs
i ,Ψ

r
i ,Ψ

f
i are the SDF, stiffness, muscle placement, and muscle direction of a design primi-

tive respectively, T is temperature (where we set to −1000 to mimic SDF ≤ 0), E2M is conversion
from an Euler angle to a rotation matrix, M2E is conversion from a rotation matrix to an Euler
angle, || · ||F is Frobenius norm. The computation of muscle direction fSDF-Lerp

p follows rotation
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Table 7: Full RL results of Table 1. Each entry is the mean and standard deviation of 5 random
seeds. The higher the better.

Task Animal Environment
Ground Ice Wetland Clay Desert Snow Ocean

Movement
Speed

Baby Seal 0.154 ± 0.096 0.010 ± 0.010 0.020 ± 0.004 0.005 ± 0.002 0.034 ± 0.010 0.016 ± 0.011 0.029 ± 0.003
Caterpillar 0.032 ± 0.020 0.006 ± 0.005 0.016 ± 0.005 0.015 ± 0.004 0.032 ± 0.004 0.017 ± 0.003 0.181 ± 0.014

Fish 0.033 ± 0.012 0.011 ± 0.009 0.013 ± 0.003 0.014 ± 0.003 0.022 ± 0.005 0.042 ± 0.017 0.151 ± 0.011
Panda 0.019 ± 0.008 0.006 ± 0.005 0.008 ± 0.002 0.005 ± 0.001 0.009 ± 0.002 0.004 ± 0.001 0.007 ± 0.003

Turning

Baby Seal 0.077 ± 0.020 0.024 ± 0.009 0.008 ± 0.003 0.011 ± 0.001 0.026 ± 0.011 0.028 ± 0.009 0.020 ± 0.026
Caterpillar 0.021 ± 0.007 0.009 ± 0.005 0.006 ± 0.002 0.005 ± 0.003 0.015 ± 0.008 0.006 ± 0.005 0.358 ± 0.024

Fish 0.047 ± 0.010 0.012 ± 0.009 0.010 ± 0.006 0.007 ± 0.002 0.019 ± 0.008 0.029 ± 0.019 0.013 ± 0.005
Panda 0.014 ± 0.007 0.003 ± 0.003 0.004 ± 0.000 0.001 ± 0.000 0.002 ± 0.002 0.003 ± 0.002 0.031 ± 0.001

Velocity
Tracking

Baby Seal 0.410 ± 0.236 0.194 ± 0.079 0.222 ± 0.026 0.205 ± 0.024 0.265 ± 0.024 0.198 ± 0.041 0.068 ± 0.051
Caterpillar 0.368 ± 0.081 0.156 ± 0.358 0.192 ± 0.034 0.058 ± 0.028 0.376 ± 0.047 0.133 ± 0.221 0.714 ± 0.072

Fish 0.256 ± 0.113 0.319 ± 0.123 0.236 ± 0.026 0.303 ± 0.070 0.311 ± 0.157 0.307 ± 0.127 0.574 ± 0.141
Panda 0.424 ± 0.049 0.383 ± 0.139 0.534 ± 0.082 0.195 ± 0.063 0.359 ± 0.034 0.288 ± 0.073 0.220 ± 0.268

Waypoint
Following

Baby Seal -0.014 ± 0.008 -0.027 ± 0.002 -0.027 ± 0.001 -0.026 ± 0.001 -0.025 ± 0.002 -0.026 ± 0.001 -0.026 ± 0.001
Caterpillar -0.016 ± 0.004 -0.028 ± 0.003 -0.028 ± 0.000 -0.027 ± 0.000 -0.027 ± 0.001 -0.026 ± 0.001 -0.019 ± 0.007

Fish -0.016 ± 0.005 -0.026 ± 0.002 -0.029 ± 0.003 -0.027 ± 0.003 -0.024 ± 0.001 -0.024 ± 0.001 -0.023 ± 0.000
Panda -0.014 ± 0.004 -0.025 ± 0.004 -0.027 ± 0.001 -0.028 ± 0.000 -0.024 ± 0.001 -0.025 ± 0.001 -0.026 ± 0.000

matrix interpolation using special Procrustes method, detailed in (Brégier, 2021). In comparison to
the above methods, SDF-Lerp leverages prior knowledge of design primitives Ψi that can provide
more structure to the optimization from design space representation.

I.6 WASSERSTEIN BARYCENTER

This method also uses design primitives {Ψi}Ni=1. First, it adopts the same approach for stiffness
and muscle placement as SDF-Lerp , sWass

p = sSDF-Lerp
p , rWass

p = rSDF-Lerp
p . We use a fixed muscle

direction along the canonical heading direction. The major difference is the way to represent robot
geometry. Following (Ma et al., 2021), we define a probability simplex (i.e., a set of coefficients
with length as the number of design primitives) that serves as a weighting in the sense of Wasserstein
distance among different shapes. It can be written as,

m̂Wass
p = m0Pα(x̂p)

where Pα is the Wasserstein barycenter with coefficients α (intuitively, with some abuse of notation,
we can view it as probability density function that determines the particle existence), defined as,

Pα =
∑
P i

αiW2
2 (P,Ψi)

W2(P,Q) =

[
inf

π∈
∏

(P,Q)

∫∫
(xp − xq)

2dπ(xp,xq)

] 1
2

where W2 is 2-Wasserstein distance and Ψi is shape primitive. This representation better preserves
the volume from the shape of design primitives. We refer the reader to the original paper for more
details.

J FULL RL RESULTS

In Table 1, we show large-scale benchmark of biologically-inspired designs in SoftZoo. The com-
parison includes optimization using differentiable physics and RL. We use 5 random seeds for RL
results yet only report average performance due to space limit. In Table 7, we report the full RL
results with both mean and standard deviation among all seeds.

K VISUALIZATION OF BIOLOGICALLY-INSPIRED DESIGN

In this section, we demonstrate the biologically-inspired designs used in this paper. In Figure 7, we
show the four animals used in the main paper, including Baby Seal, Caterpillar, Fish, and Panda. In
Figure 8, we show the set of design primitives used in SDF-Lerp and Wasserstein Barycenter.
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Baby Seal

Fish

Caterpillar

Panda

Figure 7: Visualization of animals for biologically-inspired design.

Fish 4 Orca Shark

Figure 8: Visualization of fish-like design primitives.
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