
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HIERARCHICAL WORLD MODELS AS
VISUAL WHOLE-BODY HUMANOID CONTROLLERS

Anonymous authors
Paper under double-blind review

Figure 1. Visual whole-body control for humanoids. We present Puppeteer, a hierarchical
world model for humanoid control with visual observations. Our method produces natural and
human-like motions without any reward design or skill primitives, and traverses challenging terrain.

ABSTRACT

Whole-body control for humanoids is challenging due to the high-dimensional na-
ture of the problem, coupled with the inherent instability of a bipedal morphology.
Learning from visual observations further exacerbates this difficulty. In this work,
we explore highly data-driven approaches to visual whole-body humanoid control
based on reinforcement learning, without any simplifying assumptions, reward
design, or skill primitives. Specifically, we propose a hierarchical world model in
which a high-level agent generates commands based on visual observations for a
low-level agent to execute, both of which are trained with rewards. Our approach
produces highly performant control policies in 8 tasks with a simulated 56-DoF
humanoid, while synthesizing motions that are broadly preferred by humans.

Code and videos: https://rlpuppeteer.github.io

1 INTRODUCTION

Learning a generalist agent in the physical world is a long-term goal of many researchers in AI.
Among variant agent designs, humanoids stand out as versatile platforms capable of performing
a wide range of tasks, by integrating whole-body control and perception. However, this is a very
challenging problem due to the high-dimensional nature of the observation and action spaces, as
well as the complex dynamics of a bipedal embodiment, and it makes learning successful yet natural
whole-body controllers with reinforcement learning (RL) extremely difficult. For example, consider
the task shown in Figure 1, where a humanoid is rewarded for forward progress while jumping
over gaps. To succeed in this task, a humanoid needs to accurately perceive the position and length
of oncoming floor gaps, while carefully coordinating full body motions such that it has sufficient
momentum and range to reach across each gap.

Due to the sheer complexity of such problems, prior work choose to make simplifying assumptions,
such as using low-dimensional (privileged) observations and actions (Heess et al., 2017; Peng et al.,
2018; Wagener et al., 2022; Jiang et al., 2023; Peng et al., 2021), or (learned) skill primitives (Merel
et al., 2017; 2018b; Hasenclever et al., 2020; Peng et al., 2022; Cheng et al., 2024). Most related
to our work, MoCapAct (Wagener et al., 2022) first learn ∼2600 individual tracking policies via
RL, then distill them into a multi-clip tracking policy via imitation learning, and subsequently train
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a high-level RL policy to output goal embeddings for the multi-clip policy to track. While such
approaches have been shown to transfer to simple reaching and velocity control tasks from propri-
oceptive inputs, we expect to find a solution that can perform complex, visual whole-body control
tasks while remaining entirely data-driven and relying on as few assumptions as possible. In this pa-
per, we propose to directly learn a visual controller for high-dimensional humanoid robot joints via
model-based RL and an existing large-scale motion capture (MoCap) dataset (CMU, 2003), while
requiring several orders of magnitude less interactions to learn new tasks compared to prior work.

We propose a data-driven RL method for visual whole-body control that produces natural, human-
like motions and can perform diverse tasks. Our approach, dubbed Puppeteer, is a hierarchical
JEPA-style (LeCun, 2022) world model that consists of two distinct agents: a proprioceptive tracking
agent that tracks a reference motion via joint-level control, and a visual puppeteer agent that learns
to perform downstream tasks by synthesizing lower-dimensional reference motions for the tracking
agent to track based on visual observations.

Concretely, the two agents are trained independently in two separate stages using the model-based
RL algorithm TD-MPC2 (Hansen et al., 2024) as a learning backbone. First, a single tracking world
model is (pre)trained to track reference motions from pre-existing human MoCap data (CMU, 2003)
re-targeted to a humanoid embodiment (Wagener et al., 2022). It learns a single model to convert
any reference kinematic motion to physically executable actions. This is a departure from previous
work that learns multiple low-level models (Merel et al., 2017; Hasenclever et al., 2020; Wagener
et al., 2022). Importantly, this tracking agent can be saved and reused across all downstream tasks.
In the second stage, we train a puppeteering world model that takes visual observation as inputs and
outputs the reference motion for the tracking agent based on the specified downstream task. The
puppeteer agent is trained with online environment interaction using the fixed tracking agent. A key
feature of our framework is its striking simplicity: both world models are algorithmically identical
(but differ in inputs/outputs) and can be trained using RL without any bells and whistles. Different
from a traditional hierarchical RL setting, our puppeteer agent (high-level policy) outputs geometric
locations for a small number of end-effector joints instead of a goal embedding. The tracking agent
(low-level policy) is thus only required to learn joint-level physics. This makes the tracking agent
easily sharable and generalizable across tasks, leading to an overall small computational footprint.

To evaluate the efficacy of our approach, we propose a new task suite for visual whole-body hu-
manoid control with a simulated 56-DoF humanoid, which contains a total of 8 challenging tasks.
We show that our method produces highly performant control policies across all tasks compared
to a set of strong model-free and model-based baselines: SAC (Haarnoja et al., 2018), DreamerV3
(Hafner et al., 2023), and TD-MPC2 (Hansen et al., 2024). Furthermore, we find that motions gen-
erated by our method are broadly preferred by humans in a user study with 51 participants. We
conclude the paper by carefully dissecting how each of our design choices influence results. Code
for method and environments is available at https://rlpuppeteer.github.io. Our main
contributions can be summarized as follows:

• Task suite. We propose a new, challenging task suite for visual whole-body humanoid control
with a simulated 56-DoF humanoid. The task suite has 8 tasks in total, and poses a significant
challenge for existing state-of-the-art RL algorithms. At present, no such benchmark exists.

• Hierarchical world model. We propose a simple yet highly effective method for high-
dimensional continuous control that uses a learned hierarchical world model for planning.

• Evaluating “naturalness” of controllers. We develop several metrics for quantifying how
natural and human-like generated motions are across tasks in our suite, including human pref-
erences from a user study. To the best of our knowledge, no prior work has explicitly evaluated
naturalness of learned policies for humanoid control.

• Analysis & ablations. We carefully ablate each of our design choices, analyze the relative
importance of each component, and provide actionable advice for future work in this area.

2 PRELIMINARIES

Problem formulation. We model visual whole-body humanoid control as a reinforcement learn-
ing problem governed by an episodic Markov Decision Process (MDP) characterized by the tuple
(S,A, T , R, γ,∆) where s ∈ S are states, a ∈ A are actions, S : S × A 7→ S is the environment
transition (dynamics) function, R : S ×A 7→ R is a scalar reward function, γ is the discount factor,
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Figure 2. Approach. We pretrain a tracking agent (world model) on human MoCap data using RL;
this agent takes proprioceptive information qt and an abstract reference motion (command) ct as
input, and synthesizes H low-level actions that tracks the reference motion. We then train a high-
level puppeteering agent on downstream tasks via online interaction; this agent takes both state qt

and visual information vt as input, and outputs commands for the tracking agent to execute.

and ∆: S 7→ {0, 1} is an episode termination condition. We implicitly consider both proprioceptive
information q and visual information v as part of states s and will only make the distinction clear
when necessary. We aim to learn a policy π : S 7→ A that maximizes discounted sum of rewards
in expectation: Eπ

[∑T
t=0 γ

trt

]
, rt = R(st, π(st)) for an episode of length T , while synthesiz-

ing motions that look “natural”. We informally define natural motions as policy rollouts that are
human-like, but develop several metrics for measuring the “naturalness” of policies in Section 4.

TD-MPC2. We build upon the model-based reinforcement learning (MBRL) algorithm TD-MPC2
(Hansen et al., 2024), which represents the state-of-the-art in continuous control and has been shown
to outperform alternatives in tasks with high-dimensional action spaces (Hansen et al., 2022; 2024;
Sferrazza et al., 2024). Specifically, TD-MPC2 learns a latent decoder-free world model from en-
vironment interactions and selects actions by planning with the learned model. All components of
the world model are learned end-to-end using a combination of joint-embedding prediction (Grill
et al., 2020), reward prediction, and temporal difference (Sutton, 1998) losses, without decoding raw
observations. During inference, TD-MPC2 follows the Model Predictive Control (MPC) framework
for local trajectory optimization using Model Predictive Path Integral (MPPI) (Williams et al., 2015)
as a derivative-free (sampling-based) optimizer. To accelerate planning, TD-MPC2 additionally
learns a model-free policy prior which is used to warm-start the sampling procedure.

3 A HIERARCHICAL WORLD MODEL FOR HIGH-DIMENSIONAL CONTROL

We aim to learn highly performant and “natural” policies for visual whole-body humanoid control
in a data-driven manner using hierarchical world models. A key strength of our approach is that
it can synthesize human-like motions without any explicit domain knowledge, reward design, nor
skill primitives. While we focus on humanoid control due to their complexity, our approach can
in principle be applied to any embodiment. Our method, dubbed Puppeteer, consists of two
distinct agents, both of which are implemented as TD-MPC2 world models (Hansen et al., 2024)
and trained independently. Figure 2 provides an overview of our method. The two agents are
designed as follows:

1. A low-level tracking agent that takes a robot proprioceptive state qt and an abstract command
ct as input at time t, and uses planning with a learned world model to synthesize a sequence of
H control actions {at,at+1, . . . ,at+H} that (approximately) obeys the abstract command.

2. A high-level puppeteering agent that takes the same robot proprioceptive state qt as input,
as well as (optionally) auxiliary information and modalities such as RGB images vt or task-
relevant information, and uses planning with a learned world model to synthesize a sequence
of H high-level abstract commands {ct, ct+1, . . . , ct+H} for the low-level agent to execute.

A unique benefit of our approach is that a single tracking world model can be (pre)trained and
reused across all downstream tasks. This is in contrast to much of prior work that either learn a
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large number (up to ∼2600) of low-level policies (Merel et al., 2017; 2018b; Hasenclever et al.,
2020; Wagener et al., 2022), or train policies from scratch on each downstream task (Peng et al.,
2018; 2021). The tracking and puppeteering world models are algorithmically identical (but differ
in inputs/outputs), and consist of the following 6 components:

Encoder z = h(s) ▷ Encodes state into a latent embedding
Latent dynamics z′ = d(z,a) ▷ Predicts next latent state
Reward r̂ = R(z,a) ▷ Predicts reward r of a state transition
Termination δ̂ = D(z,a) ▷ Predicts probability of termination
Terminal value q̂ = Q(z,a) ▷ Predicts discounted sum of rewards
Policy prior â = p(z) ▷ Predicts an action a∗ that maximizes Q

(1)

where z is a latent state. Because we consider episodic MDPs with termination conditions, we addi-
tionally add a termination prediction head D (highlighted in Equation 1) that predicts the probability
of termination conditioned on a latent state and action. Use of termination signals in the context of
planning with a world model requires special care and has, to the best of our knowledge, not been
explored in prior work; we introduce a novel method for this in Section 3.3. In the following, we
describe the two agents and their interplay in the context of visual whole-body humanoid control.

3.1 LOW-LEVEL TRACKING WORLD MODEL

Figure 3. MoCap tracking.
The low-level tracking agent
is trained to track relative end-
effector (head, hands, feet)
positions of sampled refer-
ence motions in 3D space.

We first train the low-level tracking world model independently
from the high-level agent and any potential downstream tasks.
We leverage pre-existing human MoCap data (CMU, 2003) re-
targeted to the 56-DoF “CMU Humanoid” embodiment (Tassa
et al., 2018) during training of the tracking model, which (as we
will later show empirically) implicitly encodes human motion pri-
ors. Specifically, we train our tracking world model by sam-
pling (st,at, rt, st+1, . . . , rH) sequences from MoCapAct (Wa-
gener et al., 2022), an offline dataset that consists of noisy, sub-
optimal rollouts from existing policies trained to track reference
motions (836 MoCap clips). This is in contrast to prior literature
that learn per-clip policies or skill primitives (Heess et al., 2017;
Merel et al., 2017; Hasenclever et al., 2020).

Observations include humanoid proprioceptive information qt at
time t, as well as a reference motion (command) ct to track. During
training of the tracking policy, we let ct

.
= (qref

t+1...t+H) where each qref corresponds to relative end-
effector (head, hands, feet) positions of the sampled reference motion at a future timestep; during
downstream tasks, we train the high-level agent to output (via planning) commands c for the low-
level agent to track. Figure 3 illustrates our low-dimensional reference; the controllable humanoid
tracks end-effector positions of a reference motion. We label all transitions using the reward func-
tion from Hasenclever et al. (2020). To improve state-action coverage of the tracking world model,
we train with a combination of offline data and online interactions, maintaining a separate replay
buffer for online interaction data and sampling offline/online data with a 50%/50% ratio in each
gradient update as in Feng et al. (2023). We find this to be crucial for tracking performance when
training a single world model on a large number of MoCap clips.

3.2 HIGH-LEVEL PUPPETEERING WORLD MODEL

We now consider training a high-level puppeteering world model via online interaction in down-
stream tasks. As illustrated in Figure 2, the puppeteering model is trained (using downstream task
rewards) to control the tracking model via commands c, i.e., we redefine commands to now be
the action space of the puppeteering agent. The tracking world model remains frozen (no weight
updates) throughout this process, which allows us to reuse the same tracking model across all down-
stream tasks. Because the high-level agent uses planning for action selection, it natively supports
temporal abstraction by outputting multiple commands (ct, ct+1, . . . , ct+H) for the low-level agent
to execute; we treat the number of low-level steps per high-level step as a hyperparameter k that al-
lows us to trade strong motion prior (large k) for control granularity (small k). The high-level policy
outputs commands at a fixed frequency regardless of whether the previous command was achieved.
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stand walk run

corridor hurdles walls gaps stairs

Figure 4. Tasks. We develop 5 visual whole-body humanoid control tasks with a 56-DoF simulated
humanoid (bottom), as well as 3 non-visual tasks (top). See Appendix E for more details.

3.3 PLANNING WITH TERMINATION CONDITIONS

We consider episodic MDPs with termination conditions. In the context of humanoid control, a
common such termination condition is non-foot contact with the floor. Use of termination conditions
requires special care in the context of world model learning and planning, as both components
are used to simulate (latent) multi-step rollouts. We extend the world model of TD-MPC2 with a
termination prediction head D, which predicts the probability of termination at each time step. This
termination head is trained end-to-end together with all other components of the world model using

LPuppeteer(θ)
.
= LTD-MPC2(θ) + αCE(δ̂, δ) (2)

where δ̂, δ are predicted and ground-truth termination signals, respectively, CE is the (binary) cross-
entropy loss, and α is a constant coefficient balancing the losses. We additionally truncate TD-targets
at terminal states during training. It is similarly necessary to truncate model rollouts and value
estimates during planning (at test-time). However, we only have access to predicted termination
signals at test-time, which can be noisy and consequently lead to high-variance value estimates
for latent rollouts. To mitigate this, we maintain a cumulative weighting (discount) of termination
probabilities when rolling out the model (capped at 0), such that only a soft truncation is applied.

4 EXPERIMENTS

Our proposed method holds the promise of strong downstream task performance while still syn-
thesizing natural and human-like motions. To evaluate the efficacy of our method, we propose a
new task suite for whole-body humanoid control with multi-modal observations (vision and propri-
oceptive information) based on the “CMU Humanoid” model from DMControl (Tassa et al., 2018).
Our simulated humanoid has 56 fully controllable joints (A ∈ R56), and includes both head, hands,
and feet. We aim to learn highly performant policies in a data-driven manner without the need for
embodiment- or task-specific engineering (e.g., reward design, constraints, or auxiliary objectives),
while synthesizing natural and human-like motions. Code for method and environments is available
at https://rlpuppeteer.github.io.

4.1 EXPERIMENTAL DETAILS

Tasks. Our proposed task suite consists of 5 vision-conditioned whole-body locomotion tasks, and
an additional 3 tasks without visual input. We provide an overview of tasks in Figure 4; they are
designed with a high degree of randomization and include running along a corridor, jumping over
hurdles and gaps, walking up the stairs, and circumnavigating obstacles (walls). All 5 visual control
tasks use a reward function that is proportional to the linear forward velocity, while non-visual tasks
reward displacement in any direction. Episodes are terminated at timeout (500 steps) or when a
non-foot joint makes contact with the floor. We empirically observe that the TD-MPC2 baseline
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SAC w/ LL. TD-MPC2

DreamerV3
DreamerV3 w/ LL. TD-MPC2

TD-MPC2
Puppeteer (ours)

Figure 5. Learning curves. Episode return vs. environment steps on all 8 tasks from our proposed
task suite. Our method generally matches the return of TD-MPC2 on these tasks while producing
more natural motions. We only evaluate SAC and DreamerV3 on proprioceptive tasks as they do
not achieve any meaningful performance. Average of 10 random seeds; shaded area is 95% CIs.

degenerates to highly unrealistic behavior without a contact-based termination condition, and thus
modify TD-MPC2 to support termination as described in Section 3.3. See Appendix E for details.

0.4% 1.8%

97.8%
Human preference

TD-MPC2
Equal
Ours

Figure 6. Human pref-
erence in humanoid mo-
tions. Aggregate results
from a user study (n = 51)
where humans are presented
with pairs of motions gener-
ated by TD-MPC2 and our
method, and are asked to
provide their preference.

Implementation. We pretrain a single 5M parameter TD-MPC2
world model to track all 836 CMU MoCap (CMU, 2003) reference
motions retargeted to the CMU Humanoid model. This in contrast to,
e.g., MoCapAct (Wagener et al., 2022) that trains ∼2600 individual
tracking policies. Our tracking agent is trained for 10M steps using
both offline data (noisy rollouts) from MoCapAct (Wagener et al.,
2022) and online interaction with a new reference motion sampled in
each episode. We sample 50% of each batch from the offline dataset,
and 50% from the online replay buffer for each gradient update; we
did not experiment with other ratios. The puppeteering agent is simi-
larly implemented as a 5M parameter TD-MPC2 world model, which
we train from scratch via online interaction on each downstream task.
Observations include a 212-d proprioceptive state vector and 64×64
RGB images from a third-person camera. Both agents act at the same
frequency, i.e., we set k = 1. Training the tracking world model takes
approximately 12 days, and training the puppeteering world model
takes approximately 4 days, both on a single NVIDIA GeForce RTX
3090 GPU. CPU and RAM usage is negligible.

Baselines. We benchmark our method against state-of-the-art RL
algorithms for continuous control, including (1) widely used model-
free RL method Soft Actor-Critic (SAC) (Haarnoja et al., 2018) which learns a stochastic policy and
value function using a maximum entropy RL objective, (2) model-based RL method DreamerV3
(Hafner et al., 2020; 2021; 2023) which simultaneously learns a world model using a generative ob-
jective, and a model-free policy in the latent space of the learned world model, (3) model-based RL
method TD-MPC2 (Hansen et al., 2022; 2024) which learns a self-predictive (decoder-free) world
model and selects actions by planning with the learned world model, (4) a hierarchical baseline that
uses the same low-level TD-MPC2 agent as our method but trains a SAC policy as the high-level
agent, and (5) the same hierarchical baseline but with DreamerV3 as the high-level agent. We re-
frain from making a direct comparison to MoCapAct (Wagener et al., 2022) and DeepMimic (Peng
et al., 2018) as they do not support visual observations and require several orders of magnitude more
environment interactions to learn downstream tasks. Both our method and baselines use the same
hyperparameters across all tasks, as TD-MPC2 and DreamerV3 have been shown to be robust to
hyperparameters across task suites (Hansen et al., 2024; Hafner et al., 2023; Sferrazza et al., 2024).
For a fair comparison, we experiment with various design choices and hyperparameter configura-
tions for SAC and report the best results that we obtained. We provide further implementation details
in Appendix D.
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Figure 7. Qualitative results. Our hierarchical approach, Puppeteer, produces natural human
motions, whereas TD-MPC2 trained end-to-end often learns high-performing but unnatural gaits.

4.2 MAIN RESULTS

We first present our main benchmark results, and then analyze and ablate each design choice.

Benchmark results. We evaluate our method, Puppeteer, and baselines on all 8 whole-body
humanoid control tasks. Episode return as a function of environment steps is shown in Figure 5.
We observe that the performance of our method is comparable to that of TD-MPC2 across all tasks
(except stairs), whereas SAC and DreamerV3 does not achieve any meaningful performance within
our computational budget of 3M environment steps; hierarchical DreamerV3 achieves non-trivial yet
still poor performance with TD-MPC2 as the low-level agent. As we will soon reveal, TD-MPC2
produces better policies in terms of episode return on the stairs task, but far less natural behavior
(walking vs. rolling up stairs). We conjecture that this is a symptom of reward hacking (Clark &
Amodei, 2016; Skalse et al., 2022). Sample videos are available at https://rlpuppeteer.
github.io.

Table 1. Proxies for “naturalness”.
Evaluated on the gaps task. eplen de-
notes the average episode length (sur-
vival time) at 1M steps and at con-
vergence; height is the average torso
height (gait) at convergence. Mean and
std. across 10 seeds.

eplen@1M ↑ eplen ↑ height (cm) ↑
TD-MPC2 66.9± 9.8 181.6± 28.1 85.9± 4.7

Ours 115.9± 5.2 159.3± 5.9 96.0± 0.2

“Naturalness” of humanoid controllers. We conduct a
user study (n = 51) in which humans are shown pairs
of short (∼10s) clips of policy rollouts from TD-MPC2
and our method, and are asked to provide their prefer-
ence. Participants are undergraduate and graduate students
across multiple universities and disciplines. Results from
this study are shown in Figure 6, and Figure 7 shows two
sample clips from the study. While both methods perform
comparably in terms of downstream task reward, a super-
majority of participants rate rollouts from our method as
more natural than that of TD-MPC2, with only 4% of re-
sponses rating them as “equally natural” and 0% rating TD-MPC2 as more natural. This preference
is especially pronounced in the stairs task, where TD-MPC2 achieves a higher asymptotic return
(higher forward velocity) but learns to “roll” up stairs as opposed to our method that walks. We
also report several quantitative measures of naturalness in Table 1, which strongly support our user
study results. These findings underline the importance of a more holistic evaluation of RL policies
as opposed to solely relying on rewards. See Appendix A for more results.

4.3 ABLATIONS & ANALYSIS

We ablate each design choice of our method, including both the pretraining (tracking) and down-
stream task learning stages. Our experimental results are summarized in Figure 8.
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No planning
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Scratch (default)
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Figure 8. Ablations. Normalized score for various ablations of Puppeteer during pretraining
(left) and downstream tasks (right). Pretraining benefits from diverse data, as well as both pre-
existing (offline) data and online interactions. We also observe that planning is critical to whole-
body humanoid control. Mean across 3 seeds; downstream ablations are averaged across 5 tasks.

0.1m 0.4m 0.8m 1.2m

Visualization of gap lengths

0.0 0.5 1.0
Gap length

0%

50%

100%

Training
(0.1, 0.4)
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Figure 9. Zero-shot generalization to larger gap lengths. (Left) Visualization of gap lengths.
Agent is trained on gaps [0.1, 0.4]m and evaluated on gaps up to 1.2m. (Right) Normalized perfor-
mance as a function of gap length in the visual gaps task. Mean of 3 seeds. Our method achieves
non-trivial performance on gaps up to 3× the training data. CIs omitted for visual clarity.

Pretraining (tracking). Our method leverages both offline and online data during pretraining of the
tracking world model. We ablate this training mixture in two distinct ways: (i) using only offline or
online data, and (ii) reducing the number of unique MoCap clips seen during training. Interestingly,
we find that leveraging both data sources leads to better tracking policies overall. We hypothesize
that this is because offline data may help in learning to track especially difficult motions such as
jumping and balancing on one leg, while online data improves state-action coverage and thus leads
to a more robust world model overall. Similarly, training on more diverse MoCap clips also leads
to better tracking performance. Training on all 836 MoCap clips results in the best tracking world
model, and we expect tracking to further improve with availability of more MoCap data.

Downstream tasks. We conduct three ablations that help us better understand the impact of a
hierarchical approach to downstream tasks: (i) using a learned model-free policy in lieu of planning
in either level of the hierarchy, (ii) pretraining of the high-level agent in addition to the low-level
agent, and (iii) evaluating zero-shot generalization to unseen environment variations (gap length in
the gaps task). The first two ablations are shown in Figure 8, and the latter is shown in Figure 9.
We find that planning at both levels is critical to effective whole-body humanoid control, which we
conjecture is due to the high dimensionality of the problem; this is supported by concurrent studies
on high-dimensional continuous control with TD-MPC2 (Hansen et al., 2024; Sferrazza et al., 2024).
Next, we pretrain agents on the corridor task and independently finetune on each visual control task.
While the specific environments and motions differ between tasks, we find that our method benefits
substantially from finetuning. We conjecture that this is because the need to control a low-level
tracking agent is shared between all high-level agents, irrespective of the downstream task. Finally,
we explore the zero-shot generalization ability of our method to harder, unseen variations of the gap
task. Interestingly, we observe that our method generalizes to gap lengths up to 3× the training
data without additional training. In light of these results, we believe that further investigation of the
generalization ability of hierarchical world models will be a promising direction for future research.
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5 RELATED WORK

Learning whole-body controllers for humanoids is a long-standing problem at the intersection of
the machine learning and robotics communities. Humanoids are of particular interest to the learning
community because of the high-dimensional nature of the problem (Heess et al., 2017; Merel et al.,
2017; Peng et al., 2018; Merel et al., 2018b; Hasenclever et al., 2020; Won et al., 2022; Wagener
et al., 2022; Shi et al., 2022; Caggiano et al., 2022; Sferrazza et al., 2024; He et al., 2024; Cheng
et al., 2024), and to the robotics community because it is a promising morphology for general-
purpose robotic agents (Grizzle et al., 2009; Li et al., 2023; BostonDynamics, 2024; Unitree, 2024;
Cheng et al., 2024). Prior work predominantly focus on learning control policies for individual tasks
using model-free reinforcement learning algorithms, with human MoCap data (CMU, 2003) incor-
porated via either adversarial reward terms (Peng et al., 2018; 2021; 2022) or learned skill encoders
(Heess et al., 2017; Merel et al., 2018b; Hasenclever et al., 2020; Shi et al., 2022; Wagener et al.,
2022). While adversarial reward terms can produce natural behavior, this class of methods suffer
from poor sample-efficiency as they learn a control policy from scratch for each downstream task.
Our work is most similar to the latter class of methods, which enables reuse of the low-level pol-
icy and/or skill encoder across tasks. Most related to ours, MoCapAct (Wagener et al., 2022) first
learn ∼2600 individual tracking policies via RL, then distill them into a multi-clip tracking policy
via imitation learning, and subsequently train a high-level RL policy to output goal embeddings for
the multi-clip policy to track. Their resulting representation is used to perform simple reaching and
velocity control tasks from privileged state information in approx. 150M environment steps. Our
method trains a single world model to track the entire MoCap dataset, and is reused to learn a variety
of visual whole-body control tasks in≤ 3M environment steps. Concurrent to our work, Humanoid-
Bench (Sferrazza et al., 2024) similarly introduce a whole-body control benchmark using the less
expressive Unitree H1 (Unitree, 2024) embodiment. Our contributions differ in two important ways:
(1) we develop a method for synthesizing natural human motions with a highly expressive humanoid
model while Sferrazza et al. (2024) benchmark existing methods for online RL without regard for
naturalness, and (2) HumanoidBench solely considers tasks with privileged state information in their
experiments (i.e., no visual observations).

World models (and model-based RL more broadly) are of increasing interest to researchers due
to their strong empirical performance in an online RL setting (Ha & Schmidhuber, 2018; Hafner
et al., 2023; Hansen et al., 2024), as well as their promise of generalization to structurally similar
problem instances (Zhang et al., 2018; Zheng et al., 2022; Lee et al., 2022; Xu et al., 2023; LeCun,
2022; Sobal et al., 2022; Brohan et al., 2023). Existing model-based RL algorithms can broadly be
categorized into algorithms that select actions by planning with a learned world model (Ebert et al.,
2018; Schrittwieser et al., 2020; Ye et al., 2021; SV et al., 2023; Hansen et al., 2024), and algorithms
that instead learn a model-free policy using imagined rollouts from the world model (Kaiser et al.,
2020; Hafner et al., 2023). We build upon the TD-MPC2 (Hansen et al., 2024) world model, which
uses planning and has been shown to outperform existing algorithms for continuous control (Hansen
et al., 2023; Lancaster et al., 2023; Feng et al., 2023; Sferrazza et al., 2024). We demonstrate that
planning is key to success in the high-dimensional continuous control problems that we consider.

Hierarchical RL offers a framework for subdividing a complex learning problem into more ap-
proachable subproblems, often by, e.g., leveraging (learned or manually designed) skill primitives
(Pastor et al., 2009; Merel et al., 2017; 2018a; Shi et al., 2022) or facilitating learning over long
time horizons via temporal abstractions (Nachum et al., 2019; LeCun, 2022; Hafner et al., 2022;
Gumbsch et al., 2023; Chen et al., 2024). Our method, Puppeteer, is also hierarchical in nature,
but does not rely on skill primitives nor temporal abstraction for task learning. Instead, we learn a
single low-level world model that can be reused across a variety of downstream tasks, and instead
introduce a hierarchy in terms of data sources and input modalities.

6 CONCLUSION

We demonstrate that Puppeteer consistently produces motions that are considered natural and
human-like by human evaluators compared to existing methods for visual RL, in an entirely data-
driven manner and without any bells and whistles. These results are, to the best of our knowledge,
unprecedented in the area of whole-body humanoid control. However, we acknowledge that our
contributions have several limitations that may not be obvious: (i) while our proposed task suite
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consists of challenging visual whole-body control tasks with a detailed humanoid model, tasks pri-
marily evaluate the visio-locomotive capabilities of current methods. We expect development of
new tasks will be increasingly important as algorithms continue to improve, and we hope that the
release of our benchmark will help facilitate that. (ii) Our hierarchical approach currently consists
of two levels, only one of which is pretrained in the majority of our experiments. Our experiment on
high-level pretraining suggests that it can be beneficial to pretrain both levels, but further research
on how to pretrain and transfer the full hierarchical world model is warranted.

Ethics statement. All 51 participants in our user study are sourced from undergraduate and graduate
student populations across multiple universities and disciplines on a volunteer basis. We do not
collect personal or otherwise identifiable information about participants, and all participants have
provided written consent to use of their responses for the purposes of this study. See Appendix F for
more information.

Reproducibility statement. Code for method and environments, as well as model checkpoints, is
made available at https://rlpuppeteer.github.io. We rely on DMControl and MuJoCo
for simulation which are publicly available and licensed under the Apache 2.0 license. We leverage
the MoCapAct dataset for pretraining which is also publicly available and licensed under the MIT
license. Implementation details and a full list of hyperparameters are provided in Appendix D.
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B ADDITIONAL QUANTITATIVE RESULTS

This section supplements our quantitative evaluations included in the main paper. In particular,
Table 2 provides additional performance metrics for our low-level tracking agent, which we define
as follows:

Success rate is defined as the percentage of clips that the tracking policy is able to track without
ever exceeding a tracking error threshold of 0.5 at any given time step. Because clips vary greatly in
duration, we only evaluate success rate across at most 100 steps per clip by truncating longer clips.

Tracking error is defined as the mean distance between all joints and bodies in the humanoid wrt.
the corresponding joints and bodies in the reference clip, evaluated on a per-time-step basis. Our
definition of tracking error is consistent with that of Hasenclever et al. (2020) and Tassa et al. (2018).

CoMic score is the mean episode return achieved by the tracking policy as defined by the reward
function proposed in CoMic (Hasenclever et al., 2020). We compute the CoMic score over all clips
in the dataset, truncating clips to a maximum of 100 steps to prevent long clips from skewing results.

C SYSTEM REQUIREMENTS

Detailed system requirements for our method and baselines are included in Table 3.
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Table 2. Low-level tracking quality. We report three additional metrics of tracking quality for the
low-level tracking agent: success rate as defined by Luo et al. (2023), average tracking error across
all 836 clips, and CoMic (Hasenclever et al., 2020) reward across all clips.

Success rate (%) ↑ Tracking error ↓ CoMic score ↑
Offline only 6.2 0.503 42.6
5% data 74.4 0.260 45.4
25% data 79.6 0.225 46.3
75% data 87.9 0.202 47.4
Ours 88.3 0.187 48.7

Table 3. System requirements. Training wall-time, inference time, and GPU memory requirements
for Puppeteer, TD-MPC2, and SAC on a single NVIDIA GeForce RTX 3090 GPU. Overall, wall-
time and system requirements of Puppeteer are mostly comparable to that of TD-MPC2 across both
state-based and visual RL. SAC runs approx. 3.6x faster than Puppeteer, but does not achieve any
meaningful performance. We exclude replay buffer memory requirements for clarity, but note that
1M transitions require 14.1 GB memory for visual RL and 1.0 GB memory for state-based RL. We
store the replay buffer in GPU memory such that CPU and RAM usage is negligible.

Wall-time Inference time GPU memory
(h / 1M steps) (ms / step) (GB)

Puppeteer 21.8 (vision: 29.0) 88.2 0.6
TD-MPC2 18.6 (vision: 25.2) 50.8 0.5
SAC 5.9 2.2 0.4
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D IMPLEMENTATION DETAILS

MoCap dataset. We use the “small” offline dataset provided by MoCapAct (Wagener et al., 2022),
which is available at https://microsoft.github.io/MoCapAct. This dataset contains
20 noisy expert rollouts from each of 836 expert policies trained to track individual MoCap clips,
totalling (suboptimal) 16,720 trajectories. Trajectories are variable length and are labelled with the
CoMiC (Hasenclever et al., 2020) tracking reward which we use throughout this work. We solely use
this dataset during (pre)training of the low-level tracking agent; the high-level puppeteering agent is
trained independently of the tracking agent using only online interaction data and task rewards.

Puppeteer. We base our implementation off of TD-MPC2 and use default design choices and hy-
perparameters whenever possible. We experimented with alternative hyperparameters but did not
observe any benefit in doing so. All hyperparameters are listed in Table 5. Our approach introduces
only two new hyperparameters compared to prior work: loss coefficient for termination prediction
(because our task suite has termination conditions; we add this to the TD-MPC2 baseline as well),
and the number of low-level steps to take per high-level step (temporal abstraction).

TD-MPC2. We use the official implementation available at https://github.com/
nicklashansen/tdmpc2, but modify the implementation to support multi-modal observations
and termination conditions as discussed in Section 3. We empirically observe that TD-MPC2 de-
generates to highly unrealistic behavior without a contact-based termination condition.

SAC. We benchmark against the implementation from https://github.com/
denisyarats/pytorch_sac (Yarats & Kostrikov, 2020) due to its strong performance
on lower-dimensional DMControl tasks as well as its popularity among the community. We modify
the implementation to support early termination. We experiment with a variety of design choices
and hyperparameters as we find vanilla SAC to suffer from numerical instabilities on our task suite
(presumably due to high-dimensional observation and action spaces), but are unable to achieve
non-trivial performance. The ablation in Figure 8 (hierarchical planning) strongly suggests that
planning is a key driver of performance in Puppeteer and TD-MPC2, while SAC is a model-free
method incapable of planning. Design choices and hyperparameters that we experimented with are
as follows:

Table 4. List of SAC design choices and hyperparameters. We experiment with a variety of
design choices and hyperparameters, but find that they all fail to achieve non-trivial performance.

Design choice Values
Number of Q-functions 2, 5
TD-target Default, REDQ (Chen et al., 2021)
Activation ReLU, Mish, LayerNorm + Mish
MLP dim 256, 512, 1024
Batch size 256, 512
Learning rate 3× 10−4, 1× 10−3

DreamerV3. We use the official implementation available at https://github.com/
danijar/dreamerv3, and use the default hyperparameters recommended for proprioceptive
DMControl tasks. A key selling point of DreamerV3 is its robustness to hyperparameters across
tasks (relative to SAC), but we find that DreamerV3 does not achieve any non-trivial performance
on our task suite. While DreamerV3 is a model-based algorithm, it does not use planning, which the
ablation in Figure 8 (hierarchical planning) finds to be a key driver of performance in Puppeteer and
TD-MPC2.
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Table 5. List of hyperparameters. We use the same hyperparameters across all tasks, levels (high-
level and low-level), and across both Puppeteer and TD-MPC2 when applicable. Hyperparameters
unique to Puppeteer are highlighted .

Hyperparameter Value
Planning
Horizon (H) 3
Iterations 8
Population size 512
Policy prior samples 24
Number of elites 64
Temperature 0.5
Low-level steps per high-level step 1

Policy prior
Log std. min. −10
Log std. max. 2

Replay buffer
Capacity 1, 000, 000
Sampling Uniform

Architecture
Encoder dim 256
MLP dim 512
Latent state dim 512
Activation LayerNorm + Mish
Number of Q-functions 5

Optimization
Update-to-data ratio 1
Batch size 256
Joint-embedding coef. 20
Reward prediction coef. 0.1
Value prediction coef. 0.1
Termination prediction coef. 0.1
Temporal coef. (λ) 0.5
Q-fn. momentum coef. 0.99
Policy prior entropy coef. 1× 10−4

Policy prior loss norm. Moving (5%, 95%) percentiles
Optimizer Adam
Learning rate 3× 10−4

Encoder learning rate 1× 10−4

Gradient clip norm 20
Discount factor 0.97
Seed steps 2,500
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E TASK SUITE

We propose a benchmark for visual whole-body humanoid control based on the “CMU Humanoid”
model from DMControl (Tassa et al., 2018). Our simulated humanoid has 56 fully controllable joints
(A ∈ R56), and includes both head, hands, and feet. Actions are normalized to be in [−1, 1]. Our
task suite consists of 5 vision-conditioned whole-body locomotion tasks (corridor, hurdles, walls,
gaps, stairs), as well as 3 tasks that use proprioceptive information only (stand, walk, run). All 8
tasks are illustrated in Figure 4.

Observations always include proprioceptive information, as well as either visual inputs (high-level
agent) or a command (low-level agent). The proprioceptive state vector is 212-dimensional and
consists of relative joint positions and velocities, body velocimeter and accelerometer, gyro, joint
torques, binary touch (contact) sensors, and orientation relative to world z-axis. Visual inputs are
raw 64 × 64 RGB images captured by a third-person camera (as seen in Figure 4) without any
preprocessing steps, and tracking commands are 15-dimensional vectors (corresponding to 5 points
in 3D space) with values in [−1, 1].
Downstream task reward functions are based on the humanoid reward functions in DMControl with
minimal modification to fit our higher DoF embodiment. All 5 visual tasks use the same reward
function, which is proportional to forward velocity of the humanoid and is bounded to always be
non-negative:

R(s)
.
= clip(linvelx, [0, vtarget]) (3)

where linvelx is linear velocity along the x-axis, and the clip operator bounds the reward value to
always be non-negative and at most that of a target velocity vtarget which we set to 6 in all tasks. The
3 proprioceptive tasks use a similar reward function, except that the agent is rewarded for velocity
in any XY -direction, and has an additional term that encourages an upright pose:

R(s)
.
= min(|linvelxy|, vtarget) + α · headposz (4)

where α is a constant coefficient balancing the two reward terms, and headposz is the height of
the humanoid head in the world frame. The additional height reward term is adopted from the
stand, walk, and run run tasks that DMControl implement with a simplified humanoid model
(A ∈ R24). We find that the TD-MPC2 baseline produces very unrealistic behaviors without the
additional reward term, so we choose to keep the term to make comparison more fair.

F USER STUDY

To compare the “naturalness” of policies learned by our method vs. TD-MPC2, we design a user
study in which humans are asked to watch short (∼10s) pairs of clips of simulated humanoid mo-
tions generated for each of our 5 visual whole-body humanoid control tasks. Each user is presented
with 2 such pairs per task, totalling 10 pairs per user. Sample clips used in the user study are avail-
able at https://rlpuppeteer.github.io, as well as in Appendix A. Pairs are generated
by converged Puppeteer and TD-MPC2 agents. We generate 5 rollouts per task for each of two sep-
arately trained agents (random seed 1 and 2) using the same method (i.e., Puppeteer or TD-MPC2),
and select the clips with median episode return for each of the two random seeds. We use clips
generated by two unique random seeds to ensure that diversity in behavior due to inter-seed variabil-
ity is captured in the user study, and we select the median clip to ensure that we neither favor nor
disadvantage a method due to outliers. The concrete instructions provided to users in the study are
as follows:

Instructions
In this study, you will watch pairs of short (∼10 seconds) clips of simulated humanoid motions. For
each pair, you are asked to determine which of the two clips appear more "natural" and "human-like"
to you, i.e., which clip looks more like the behavior of a real human.

Users are then provided with each of the 10 pairs of clips, and prompted to answer questions of the
form:
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Figure 10. Screenshot of a question from the user study. Users are shown two clips side-by-side
and are asked to provide their preference.

Q1: Which of the following two motions appear more "natural" and "human-like"?

1. ← LEFT is more natural
2. → RIGHT is more natural
3. LEFT and RIGHT are equally natural

The order of clips is selected at random for each pair. Aggregate results from the user study are
provided in Table 6, and Figure 10 shows a sample question from the user study. Participants
are sourced from undergraduate and graduate student populations across multiple universities and
disciplines on a volunteer basis. We do not collect personal or otherwise identifiable information
about participants, and all participants have provided written consent to use of their responses for
the purposes of this study.
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Table 6. Results from the user study. We summarize results from our user study (n = 51) be-
low by reporting per-pair aggregate numbers. Higher is better ↑. Clips generated by our method,
Puppeteer, are considered more natural by a super-majority of participants.

Pair TD-MPC2 Equal Ours
Corridor
Pair 1 0 0 51
Pair 2 0 2 49

Hurdles
Pair 1 0 0 51
Pair 2 0 0 51

Walls
Pair 1 1 2 48
Pair 2 0 0 51

Gaps
Pair 1 0 0 51
Pair 2 0 0 51

Stairs
Pair 1 0 2 49
Pair 2 1 3 47

Aggregate 0.4% 1.8% 97.8%
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