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ABSTRACT

Modern neural networks exhibit a striking property: solutions at the bottom of the
loss landscape are often connected by low-loss paths, yet optimization dynamics
remain confined to one solution and rarely explore intermediate points. We resolve
this paradox by identifying entropic barriers arising from the interplay between
curvature variations along these paths and noise in optimization dynamics. Em-
pirically, we find that curvature systematically rises away from minima, producing
effective forces that bias noisy dynamics back toward the endpoints — even when
the loss remains nearly flat. These barriers persist longer than energetic barriers,
shaping the late-time localization of solutions in parameter space. Moreover, en-
tropic confinement biases optimization away from poorly generalizing minima,
helping to explain why such basins remain inaccessible despite their low train-
ing loss. Our results highlight the role of curvature-induced entropic forces in
governing both connectivity and confinement in deep learning landscapes.

1 INTRODUCTION

Deep neural networks trained in the overparametrized regime exhibit a number of surprising and
counterintuitive properties. One of the most striking is the observation that distinct solutions at
the bottom of the training loss landscape are often connected by low-loss paths in parameter space
(Garipov et al., 2018; Draxler et al., 2018; Frankle et al., 2020). Such mode connectivity results im-
ply that the landscape is far less rugged than once assumed: minima that appear isolated are, in fact,
linked by paths of nearly constant loss. At the same time, however, optimization dynamics display a
seemingly contradictory behavior. Standard training with stochastic gradient descent (SGD), with or
without momentum, converges to a well defined minimum and rarely explores regions of parameter
space corresponding to these paths (Baity-Jesi et al., 2019).

We argue that this paradox can be resolved by recognizing the role of entropic forces generated by
curvature variations along connecting paths. Although the loss may be nearly flat along these paths,
the curvature of the landscape typically increases away from found minima, producing effective
barriers that bias stochastic dynamics back toward the endpoints. These barriers emerge from the
interaction between fluctuations induced by SGD noise and the Hessian spectrum along low-energy
paths. In this way, regions of parameter space that are energetically connected become dynamically
disconnected.

1.1 RELATED WORK

Our work aims to unify insights from two areas: First, we draw on insights from a body of work
that shows SGD has an implicit bias towards flatter minima the strength of which increases with
smaller minibatch size. This behavior is attributed to the higher noise levels in gradient estimates,
which act as a form of implicit regularization preventing convergence to sharp minima and instead
favoring wider, flatter basins that generalize better (Keskar et al., 2017). Several works have for-
malized this intuition: Jastrzebski et al. (2018) and Smith & Le (2018) interpret the minibatch noise
as an effective temperature that enables exploration and escape from sharp valleys; Wei & Schwab
(2019) and Xie et al. (2021) further show that the resulting dynamics can be modeled as a stochastic
process biased toward flat regions. Collectively, these studies demonstrate that curvature and gen-
eralization are deeply intertwined with the stochastic geometry of the optimization trajectory. We
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leverage these insights to conduct a deeper analysis of mode connectivity in neural network training.
Garipov et al. (2018) and Draxler et al. (2018) showed the existence of nonlinear paths of low-loss
between different minima found by training with different random seeds. Subsequently,Frankle et al.
(2020) showed that when the training dynamics of two networks are tied together early in training,
the resulting minima found after training is complete are linearly connected by paths of low-loss.
Follow-up work has analyzed in more depth how linear mode connectivity emerges (Singh et al.,
2024; Zhou et al., 2023), and such work has important implications for model merging (Ainsworth
et al., 2023; Singh & Jaggi, 2020) and weight-space ensembling (Izmailov et al., 2018; Wortsman
et al., 2021; Gagnon-Audet et al., 2023; Wortsman et al., 2022).

1.2 CONTRIBUTIONS

Our main contributions are as follows:

• We show empirically that the curvature along minimum-loss paths between minima gener-
ically increases away from the endpoints.

• We argue that such a “bump” in the curvature leads to an entropic barrier, and that such
entropic barriers lead to confinement of solutions even when the loss is near zero.

• We show that despite the existence of low-loss connecting paths between solutions, entropic
forces dynamically confine models to specific regions of parameter space.

• We show that entropic barriers between minima persist longer than energetic barriers, when
considering models that shared the first k epochs of training, suggesting that both energetic
and entropic forces are responsible for the the final region of parameter space that a model
ends up in.

2 BACKGROUND: ENTROPIC FORCES AND CURVATURE

It is well established in statistical physics that the dynamics of a system are governed not only by
energetic forces—derived from gradients of an energy or potential—but also by entropic forces,
arising from thermal fluctuations. In the context of neural networks, the energy landscape is defined
by the training loss, and its gradient directs the deterministic component of learning. However, the
stochasticity introduced by finite learning rates and minibatch sampling induces an effective tem-
perature, making entropic contributions to the dynamics non-negligible. As a result, optimization
can be biased toward broader, flatter regions of the landscape—not because they are lower in loss,
but because they occupy a larger volume in parameter space. We illustrate this idea in a simple toy
model. Consider a Brownian particle evolving in a two-dimensional potential

ẋ = −∇V (x) + ξ(t), V (x, y) =
1

2
g(y)x2, (1)

where ξ is white delta correlated Gaussian noise with variance 2T . In the analogy to deep learning,
V plays the role of the task loss function, while the noise ξ arises from SGD noise due to minibatch-
ing and finite learning rate. To leading order one can identify T ∝ η/B (Mandt et al., 2017; Smith
et al., 2020; Liu et al., 2021), though the precise relationship depends on local curvature and other
details of the loss landscape (Ziyin et al., 2021). In this simple motivating example we assume ξ
is white and Gaussian, even though in deep networks the SGD noise is neither perfectly white nor
perfectly Gaussian. In this analogy y corresponds to soft modes (directions with nearly flat curvature
where the loss hardly changes), and x represents the stiff modes (directions associated with large
eigenvalues of the Hessian).

For fixed y, the distribution of x is Gaussian with variance E
[
x2

]
= g(y)−1. If x relaxes on a faster

timescale than y, which is the case if the curvature along the x direction is much higher than the
curvature along the y direction, averaging yields effective dynamics for y:

ẏ = −gy(y)⟨x2⟩+ ξ = −T gy(y)

g(y)
+ ξ, g(y) > 0 (2)

where g(y) is an arbitrary positive function of the coordinate y. Equivalently, the marginalized
distribution is

P (y) ∝ exp
[
− Veff(y)/T

]
, Veff(y) = −T ln g(y). (3)

2
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(A) (B)

Figure 1: Curvature produces an entropic force. (A) Illustration of a potential V (r, θ) with a
circular minimum at r = 1, where the curvature varies with angle. At zero temperature (T = 0),
the angular distribution is uniform, P (θ) = 1/(2π). At finite temperature, thermal fluctuations bias
the system toward flatter regions (yellow) rather than sharper ones (red). (B) Example of a Brow-
nian particle diffusing along the ridge of a loss landscape, lighter colors correspond to larger times
. Entropic forces generated by fluctuations push the particle toward flatter directions, effectively
favoring broader regions of the landscape.

In Figure 1 we show two example of potentials with a gradient in the curvature which leads to an
effective entorpic force pushing the system towards flatter regions. This reveals the key mechanism:
regions with smaller curvature g(y) (flatter directions in x) contribute larger entropy and are sta-
tistically favored, even if the original energy V (x, y) is minimized elsewhere. In effect, curvature
generates an entropic force that biases dynamics toward flatter regions of the landscape. We call
these forces entropic because they are proportional to the effective temperature T , i.e., they vanish
in the absence of noise. In the case of deep neural networks, we therefore expect these forces to
grow stronger as the minibatch size decreases, since smaller minibatches correspond to higher ef-
fective temperature. We note also that depending on the interplay between entropy and energy, it
is possible for entropic forces to be the stronger than energetic forces, leading to a scenario where
entropy causes optimization to climb the loss. We see an example of this phenomenon in a deep
network in Section 4.1.

This minimal example is far from capturing the true dynamics at the bottom of the loss landscape
of real deep neural networks. However, it illustrates how stochasticity couples with curvature to
favor flatter minima. Even at near-zero training loss, such entropic barriers can confine solutions to
specific regions of parameter space. In Section 4.1, we show empirically that entropic forces arising
from loss landscape curvature of real networks trained on natural images lead to qualitatively similar
behavior.

3 METHODS

We are interested in understanding whether models remain confined to well-defined regions of pa-
rameter space, even when low-loss paths connect distinct solutions, and if so what mechanisms
create such confinement. To investigate this, we train image classification models on CIFAR-10
using Wide ResNet and ResNet architectures. We chose this setup as emblematic of mode connec-
tivity. We obtain a set of distinct minima by training from different random seeds for parameter
initialization and data ordering. In addition, we deliberately construct minima that overfit while
still being global minima of the loss. We then proceed to find the constant loss non-linear path
connecting these minima and evaluate the curvature of the loss landscape along such paths.

3.1 TRAINING DETAILS

Unless otherwise specified, all experiments are conducted on Wide ResNet-16-4 (Zagoruyko &
Komodakis, 2016) trained on the CIFAR-10 dataset (Krizhevsky, 2009). Following standard practice
(Zagoruyko & Komodakis, 2016), we use stochastic gradient descent (SGD) with momentum β =

3
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0.9, weight decay w = 5 × 10−4, and an initial learning rate of η = 0.1. Models are trained for
200 epochs with a batch size of 256, and the learning rate is reduced by a factor of 5 at 30%, 60%,
80%, and 90% of the total training epochs. We apply mild data augmentation consisting of random
horizontal flips and random crops with 4-pixel padding followed by resizing to the original 32× 32
resolution.

3.2 MINIMUM ENERGY PATHS

To explore the structure of the loss landscape between different solutions, we identify low-loss
connecting paths using the Automatic Nudged Elastic Band (AutoNEB) algorithm introduced by
Draxler et al. (2018). In brief, the algorithm initializes k intermediate pivots along the straight-line
path between two minima and optimizes their positions such that they evolve as if connected by
elastic springs, while minimizing the loss orthogonal to the path.

Since the loss along the straight segments between pivots may still be high, AutoNEB dynamically
adds new pivots whenever the loss along a segment exceeds a predefined threshold. This adaptive
refinement ensures a smooth, low-loss path is found. Following Draxler et al. (2018), we refer to
such paths as minimum energy paths (MEPs), by analogy with physical systems. In the following,
the relative position along the MEP is reported in terms of pivot index, normalized by the total
number of pivots. Note that this parametrization does not reflect the actual metric distance along the
path, as the pivot density is non-uniform: AutoNEB adaptively inserts additional pivots in regions
where the loss landscape is sharper, requiring finer segmentation to accurately follow the MEP.

Unless otherwise specified, all MEPs shown in the paper are computed using a sequence of refine-
ment cycles with decreasing learning rates. Specifically, we run four cycles each with the following
parameters: (0.1, 10), (5×10−2, 5), (10−2, 5), and (10−3, 5), where each tuple denotes (learning
rate, number of epochs).

3.3 CURVATURE MEASURES

A natural measure of the curvature of the loss landscape is the Hessian of the loss function, defined
as H ≡ ∇2

θL(θ). More precisely, it is the spectrum of the Hessian that captures the local geometry
of the landscape. However, if the model has N parameters, then H ∈ RN×N , making it intractable
to compute or store explicitly for modern networks. Instead, we use three independent summary
statistics of the Hessian spectrum, each providing a tractable yet informative proxy for curvature.

We estimate the maximum eigenvalue of the Hessian, λmax(H), using the power iteration method
(see, e.g., Yao et al. (2020)). Crucially, this method requires only Hessian–vector products, which
can be computed efficiently via automatic differentiation in O(N) time. The update rule for the
power method is:

v(n+1) =
Hv(n)
∥Hv(n)∥ , where Hv =

∑
β

∂2L(θ)
∂θα∂θβ

vβ . (4)

After a few iterations, v(n) converges to the dominant eigenvector, and λmax ≈ ∥Hv(n)∥.
We estimate the trace of the Hessian and part of its spectrum using its connection to the Fisher
Information Matrix near a minimum. Specifically, when θ⋆ is a local minimum and the model is
well-calibrated, the Hessian can be approximated by the Fisher Information Matrix:

F(θ⋆) ≡ E(x,y)∼D

[
sθ(x, y)s

⊤
θ (x, y)

]∣∣∣∣
θ⋆

sθ(x, y) ≡ ∇θ log pθ(y | x) (5)

where sθ(x, y) is the score (?). This equivalence is discussed further in the Appendix A.2. From
this expression, we can compute the trace of the Fisher—and hence approximate the trace of the
Hessian—by summing the diagonal elements of the outer product sθs⊤θ .

As a third measure, we compute the Fisher matrix on a small random subset of the training dataset
of size E, and perform singular value decomposition (SVD) on the resulting score matrix, which has
shape N×(CE), where N is the number of parameters and C the number of classes. This procedure
yields an estimate of the leading components of the curvature spectrum, allowing us to capture the
dominant eigenmodes efficiently without requiring full-batch computation or explicit construction
of the full Fisher or Hessian matrices.
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Figure 2: Entropy induces barriers between minima. (A) Cross entropy loss as in equation?? along
MEPs connecting different pairs of regular minima. (B, C) Curvature along minimum energy paths
(MEPs) connecting different minima, measured via the maximum eigenvalue of the Hessian (B) and
the trace of the Hessian (C). Markers indicate pivot points; different colors correspond to different
pairs of minima, and marker shapes denote different AutoNEB realizations. (D) Spectrum of the
Hessian along MEP 1–2, estimated via singular value decomposition (SVD) of the score matrix
computed on E = 1024 training examples. As we move into the interior of the MEP, the entire
spectrum shifts upward, reflecting a global increase in curvature along the path.

3.3.1 A NOTE ON REPARAMETERIZATION

Dinh et al. (2017) showed that symmetries in the architecture of networks allow deep networks to be
re-parameterized without changing the function computed by the network. While this observation
casts some doubt on the causal relationship between flatness and generalization (and in fact there
are empirical measurements that show this relationship is not absolute (Kaur et al., 2023)), we note
that when considering SGD optimization dynamics it is still the Hessian that governs the dynamics
of the system. Particularly, for any symmetry Tα that leaves the function computed by the network
the same, we have that ∇αL(Tαθ) = 0, and so symmetries do not have any affect on optimization
dynamics.

4 RESULTS

4.1 ENTROPIC CONFINEMENT

In Figure 2, we show the loss (A) and the curvature—quantified by the maximum eigenvalue
λmax(H) (B) and the trace Tr(H) (C) of the Hessian—along MEPs connecting different pairs of
minima of Wide ResNet-16-4. Interestingly, the loss along the MEP is often lower than at the end-
points. This behavior likely arises because each pivot is pulled downward both by the loss gradient
(locally minimizing energy) and by the elastic coupling to neighboring pivots. Despite the absence
of loss barriers along the MEPs, we observe a sharp rise in curvature along the MEP1, measured
either via λmax or the Hessian trace. The curvature decreases only near the endpoint minima. As
argued in Section 2, such variations in curvature generate entropic forces that bias optimization to-
ward flatter regions, even in the absence of explicit loss barriers. One might argue that the increase in
sharpness along the MEP is simply a consequence of the decreasing loss or an effective reduction in

1A small dip is visible near the endpoints in Figure 2(B), where the estimated maximum eigenvalue of the
Hessian briefly decreases. We believe this artifact is due to the estimation procedure: computing the Hessian
away from an exact minimum introduces a correction proportional to the norm of the gradient. This effect is
stronger at the ends of the MEP, where the loss is slightly higher. Interestingly, this dip is not present in the
estimates based on the Fisher Information Matrix (panel (C) and (D) ).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

learning rate, especially given prior work suggesting a relationship between sharpness and learning
rate (Cohen et al., 2021). We argue that this is not the case: while the loss drops between the first
and second pivots, it then remains approximately constant along the rest of the MEP. In contrast,
both sharpness metrics—maximum eigenvalue and trace of the Hessian—continue to rise. This in-
dicates that the observed increase in curvature is not merely a byproduct of lower loss or implicit
regularization, but rather reflects a genuine change in the geometry of the optimization landscape.

To directly observe these entropic effects, we initialize models at specific points along a given MEP
and study how stochastic gradient descent pushes them along the path. We use a variant of SGD that
projects updates back onto the nearest linear segment of the MEP, ensuring that dynamics remain
constrained to the path (see Section A.1 for details). As shown in Figure 3(A), when a model is
initialized at relative position 0.7 along the linear path between the first and second pivots of MEP
1–2, it is pushed backward toward the flatter endpoint of the path. As expected, the strength of this
entropic drift increases for smaller batch sizes, where the stochastic fluctuations are stronger. We
note that entropic forces drive the optimization back towards the first pivot despite the fact that the
loss actually increases along the optimization trajectory, illustrating a scenario where entropic force
is stronger than energetic force.

In Figure 3(B), we quantify this behavior by measuring the relaxation time trelax—the time it takes
for the model to return to the first pivot. We find that trelax decreases with increasing batch size,
consistent with the intuition that entropic forces scale with the effective temperature of the dynamics.
Assuming that the effective temperature is inversely proportional to the relaxation time and fitting
the relation T ∼ B−ρ, we estimate ρ = 1.4 ± 0.1, which is significantly larger than the naive
prediction ρ = 1. This deviation may be attributed to the non-Gaussian nature of minibatch noise
and to nonlinear effects in the dynamics.

The same mechanism applies to models initialized deeper along the MEP. In Figure 3(C), we initial-
ize the model at the fourth pivot and observe relaxation back toward the first pivot under the same
projected dynamics. The system follows the MEP segment by segment, switching to the next closest
segment as it progresses. Discontinuities in the trajectory correspond to these segment transitions,
reflecting the piecewise-linear nature of the projected updates.

The increase of the curvature along the MEP adds nuance to the idea that the loss landscape consists
of one large “valley” containing all the parameter configurations with low-loss: Although minima in
such a valley may be connected energetically, our experiments suggest that such a valley is broken
up into disconnected regions by entropic barriers.

4.2 LINEAR MODE CONNECTIVITY

Although we have shown evidence that entropic forces separate the zero-loss region of parameter
space into dynamically confined regions, we have not yet addressed how and when these confined
regions are chosen along the course of training. In this section we will take some steps towards
answering that question through the lens of linear mode connectivity. Following the methods of
Frankle et al. (2020), we train M networks with a shared data order up until epoch k, which we will
call the splitting epoch. After epoch k, each of the M networks sees an independent ordering of the
data and can then potentially move away from its “siblings,” the other M − 1 networks. The sibling
networks are then trained until convergence. All networks trained in this section use the ResNet-20
architecture (He et al., 2015).

The crucial observation in Frankle et al. (2020) is that once k becomes sufficiently large, the sibling
networks become connected by linear paths of low-loss, implying that they converge to the same
region of parameter space. Interestingly, k does not have to be very large compared to the number
of epochs required for convergence before linear mode connectivity is observed. In Figure 4, we
reproduce these experiments, and measure the curvature along the linear, low-loss paths between
converged siblings. Similarly to the nonlinear case (Section 4.1), we see a bump in the curvature
along these paths, peaking around α = 0.5. However, we also notice that these entropic barriers
persist for larger values of k than their energetic counterparts, implying that entropic forces are
responsible for the final stages of the model’s localization to a region of parameter space.

Although we have shown evidence that entropic forces separate the zero-loss region of parameter
space into dynamically confined regions, we have not yet addressed how and when these confined

6
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Figure 3: Relaxation dynamics induced by entropic forces. (A) A model is initialized at relative
position 0.7 along the MEP between two minima (between the first and second pivots). Using
projected SGD constrained to the path (see Section A.1), the model drifts toward the endpoint at
relative position 0.0 due to entropic pressure. (B) The relaxation time trelax, defined as the time
required to return to the first pivot, decreases with batch size. This scaling supports the interpretation
of entropic forces as temperature-dependent, with an effective temperature that grows as batch size
decreases. (C) A model is initialized at the fourth pivot P3 and relaxes along the MEP toward the
endpoint at P0. Different colors indicate which segment of the piecewise-linear MEP the model is
currently on, and sharp transitions in the trajectory correspond to changes in the nearest segment
under projection.

regions are chosen along the course of training. In this section we will take some steps towards
answering that question through the lens of linear mode connectivity. Following the methods of
Frankle et al. (2020), we train M networks with a shared data order up until epoch k, which we will
call the splitting epoch. After epoch k, each of the M networks sees an independent ordering of the
data and can then potentially move away from its “siblings,” the other M − 1 networks. The sibling
networks are then trained until convergence.

The crucial observation in Frankle et al. (2020) is that once k becomes sufficiently large, the sibling
networks become connected by linear paths of low-loss, implying that they converge to the same
region of parameter space. Interestingly, k does not have to be very large compared to the number
of epochs required for convergence before linear mode connectivity is observed. In Figure 4, we
reproduce these experiments, and measure the curvature along the linear, low-loss paths between
converged siblings. Similarly to the nonlinear case (Section 4.1), we see a bump in the curvature
along these paths. However, we also notice that these entropic barriers persist for larger values of k
than their energetic counterparts, implying that entropic forces contribute to the final stages of the
model’s localization to a region of parameter space. To see this, we plot the instability as a function
of k (Figure 4D). The instability measures the fractional change in the metric (loss or curvature)
along the linear path. For small values of k, the loss has the larger instability, while for larger values
of k the curvature exhibits greater instability.

5 DISCUSSION

Entropic Confinement. Our results provide new insight into the global geometry of the loss land-
scape. While prior work has emphasized that minima are often connected by low-loss paths, forming
a single broad “valley” of solutions (Garipov et al., 2018; Frankle et al., 2020), our findings reveal
that these paths are not dynamically flat (Figure 2). Instead, they exhibit systematic increases in
curvature away from their endpoints, producing localized “bumps” in sharpness. This observation
refines the valley picture: the basin of low-loss solutions is structured by curvature variations that
give rise to entropic barriers.
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Figure 4: Entropic barriers are relevant later in training. (A) Linear mode connectivity schematic
(Frankle et al., 2020). We train a network to epoch k, then produce two new networks via different
data ordering, and measure the loss along a linear path. (B) The average loss along such a path
goes down as k increases, decreasing rapidly with k. (C) Top: The loss profile along linear paths
for various k. Bottom: The curvature profile, measured by the maximum Hessian eigenvalue, for
various k. (D) We plot the instability (The fractional change along the path) of the loss and the
curvature. For small k, the loss exhibits larger instability, while for larger k, the curvature exhibits
larger instability.

We show that the forces produced by curvature variations along connecting paths consistently drive
optimization dynamics back toward flatter regions near the minima (Figure 3). In particular, models
initialized away from a minimum but constrained to remain on the path show persistent drift back
toward the endpoint, even though the loss profile is nearly flat. We also observe that smaller batches
accelerate relaxation, showing that the strength of the entropic force depends on the noise level of
the dynamics. Entropic forces are not necessarily negligible – we show empirically that they can
drive models up a loss gradient.

Entropic Linear Mode Connectivity. Our analysis of linear mode connectivity further shows that
entropic forces play an important role late in training. As the splitting epoch increases, energetic
barriers along linear paths decrease, but curvature barriers persist for longer into training. This
suggests a two-phase picture of training: early dynamics are dominated by energetic forces that
drive the model into a low-loss basin, while later dynamics are governed by entropic confinement
that selects a specific region within that basin. Our experiments have important implications for
late-time dynamics of deep network training and parameter-space ensembling techniques.

Confinement and Generalization. Our findings may also provide insight into generalization
properties of overparameterized models. Empirically, models trained with SGD tend to find a gener-
alizing solutions and not overfit the data, even after many epochs of training. This occurs despite the
fact that the loss landscape is energetically flat, raising the question of why optimization dynamics
do not diffuse into regions of parameter space that overfit the training data.

We posit that generalizing minima may be dynamically disconnected from overfit minima. Entropic
barriers could make paths to such regions dynamically inaccessible: even when overfitting solutions
are connected to flatter ones by low-loss paths, entropic forces could shield the generalizing solutions
by repelling SGD away from regions of parameter space that do not generalize. Our results suggest
that this is a promising avenue for future work.

Weight-space averaging. Our work also provides a new lens through which to view weight-space
ensembling techniques. The study of global loss landscape features, such as mode connectivity
(Draxler et al., 2018; Frankle et al., 2020), has been crucial in developing methods like Stochastic
Weight Averaging (SWA) (Izmailov et al., 2018; Wortsman et al., 2021). Our findings suggest a
more nuanced picture of the global landscape: techniques like SWA may be averaging minima that,
while energetically connected within a single low-loss valley, may be dynamically disconnected by
the entropic barriers we observe. This would imply that the SWA solution cannot be easily found by
diffusive optimization dynamics at the bottom of a valley in the loss landscape. A valuable avenue
for future work would be to analyze the connectivity properties of these averaged minima to better
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understand how weight-space averaging is able to construct solutions with favorable generalization
properties.

6 CONCLUSION

We identify a key geometric feature of neural network loss landscapes and its impact on optimization
dynamics. Our central finding is that low-loss paths connecting distinct minima consistently exhibit
a rise in curvature away from their endpoints. We show that this variation, when coupled with
the inherent noise of stochastic gradient descent, gives rise to entropic barriers. We demonstrate
empirically that these barriers generate effective forces that dynamically confine the optimizer to
flatter regions near the minima, even when the path is energetically favorable.

Our experiments exploring the curvature along linearly mode-connected networks reveal that the
mechanism of entropic confinement is particularly relevant during the later stages of training, shap-
ing the final localization and stability of the learned solution. Our results establish these curvature-
induced forces as a crucial element in understanding the behavior of stochastic optimizers. This
geometric perspective offers new insights into how the landscape itself guides the discovery of sta-
ble and well-generalizing models, providing a promising direction for future research.

Ethics Statement. We do not foresee any direct ethical concerns arising from this work. Our
study focuses on better understanding optimization in machine learning, without direct deployment
in sensitive application domains. We note that we have used language models to polish the text of
this manuscript in places.

Reproducibility Statement. We have provided descriptions of all algorithms, models, and experi-
mental setups in the main text and appendix. Training procedures and dataset details are documented
to facilitate replication. When the author list is unblinded, we will release our codebase to enable
full reproducibility of our results.
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A APPENDIX

A.1 k-STEP PROJECTED SGD

In order to directly measure the effect of entropic forces in a controlled setting, we use a modified
version of SGD. Our algorithm deals with two conflicting considerations: First, we would like to
limit the scope of our observation to models that lie on a linear path, or more generally models that
lie on a MEP. However, we would also like to run optimization in such a way that entropic forces
arising from curvature are still relevant to the optimization dynamics. The key observation is that if
we were to run SGD on a line in parameter space, projecting back to the line after each optimization
step, we would remove the effect of entropic forces, which arise from noisy multi-step optimization
dynamics Wei & Schwab (2019). Motivated by this, we propose a natural algorithm that trades
off between these two considerations by taking multiple SGD steps between before projecting the
parameters back to the liner path (or MEP).

Algorithm 1 k-step projected SGD

Input: A model fθ(x), a loss function L(θ, x, y), an integer k, path pivots θ0, θ1, . . . θN SGD
learning rate η, SGD batch size B.
while not converged do

for i = 1 to k do
Draw a batch b← {xj , yj}Bj=1 ∼ Dtrain

θ ← θ − η∇θL(θ, b)
end for
Project θ on to the closest segment θn– θn+1.

end while
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In this way, k trades off the effect of entropic forces (large k) vs how close to the linear, low-loss
path optimization stays (small k). In Figure 2, we use k = 4, α = 1.6×10−4, and run the algorithm
on along the MEP 1-2.

A.2 THE FISHER TRICK FOR ESTIMATING THE HESSIAN

Computing the full Hessian of the training loss is intractable for modern neural networks due to
both memory and runtime constraints. The Hessian matrix hasO

(
N2

p

)
parameters, where Np is the

number of parameters of the network, hence even just computing and storing the Hessian matrix is
prohibitive. A common workaround is to exploit the equivalence between the Hessian of the loss
and the Fisher Information Matrix (FIM) at a minimum.

If, as in the case of image classification, the loss is the negative log-likelihood,

L(θ) = −
∑

(x,y)∈D

log pθ(y | x).

At any parameter vector θ that minimizes the loss function L(θ), we have that
Epθ(y|x) [log(pθ(y|x))] = 0, taking the derivative of this equation with respect to θ and using the
log-derivative trick we have:

Epθ(y|x) [∇θ log(pθ(y|x))] = Epθ(y|x)
[
∇2

θpθ(y|x)
]
− Epθ(y|x) [∇θ log(pθ(y|x))∇θ log(pθ(y|x))]

(6)
Therefore at any minimum θ⋆ of the loss, the Hessian of the loss coincides with the Fisher informa-
tion matrix F(θ⋆),

F(θ⋆) ≡ E(x,y)∼D

[
∇θ log pθ(y | x)∇θ log pθ(y | x)⊤

]∣∣∣∣
θ⋆

. (7)

This identity allows us to approximate Hessian eigenvalues using stochastic estimates of the FIM.
In practice
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