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ABSTRACT

Modern neural networks exhibit a striking property: basins of attraction in the
loss landscape are often connected by low-loss paths, yet optimization dynamics
generally remain confined to a single convex basin (Baity-Jesi et al., 2019; Juneja
et al., 2023) and rarely explore intermediate points. We resolve this paradox by
identifying entropic barriers arising from the interplay between curvature varia-
tions along these paths and noise in optimization dynamics. Empirically, we find
that curvature systematically rises away from minima, producing effective forces
that bias noisy dynamics back toward the endpoints — even when the loss remains
nearly flat. These barriers persist longer than energetic barriers, shaping the late-
time localization of solutions in parameter space. Our results highlight the role of
curvature-induced entropic forces in governing both connectivity and confinement
in deep learning landscapes.

1 INTRODUCTION

Deep neural networks trained, in the overparametrized regime, exhibit a number of surprising and
counterintuitive properties. One of the most striking is the observation that distinct solutions, found
with standard optimization algorithms, are often connected by low-loss paths in parameter space
(Garipov et al., 2018; Draxler et al., 2018; Frankle et al., 2020). Such mode connectivity results im-
ply that the landscape is far less rugged than once assumed: minima that appear isolated are, in fact,
linked by paths of low, nearly constant loss. At the same time, however, optimization dynamics dis-
play a seemingly contradictory behavior. Standard training with stochastic gradient descent (SGD),
with or without momentum, converges to a well-defined minimum and rarely explores regions of
parameter space corresponding to these paths (Baity-Jesi et al., 2019).

We argue that this paradox can be resolved by recognizing the role of entropic forces generated by
curvature variations along connecting paths. Although the loss may be nearly flat along these paths,
the curvature of the landscape typically increases away from found minima, producing effective
barriers that bias stochastic dynamics back toward the endpoints. These barriers emerge from the
interaction between fluctuations induced by SGD noise and the Hessian spectrum along low-energy
paths. In this way, regions of parameter space that are energetically connected become effectively
disconnected.

1.1 RELATED WORK

Our work aims to unify insights from two areas: First, we draw on insights from a body of work that
shows SGD has an implicit bias towards flatter minima the strength of which increases with smaller
minibatch size.

This behavior is attributed to the higher noise levels in gradient estimates, which act as a form of
implicit regularization preventing convergence to sharp minima and instead favoring wider, flatter
basins that generalize better (Keskar et al., 2017). Several works have formalized this intuition: Jas-
trzebski et al. (2018) and Smith & Le (2018) interpret the minibatch noise as an effective temperature
that enables exploration and escape from sharp valleys; Wei & Schwab (2019) and Xie et al. (2021)
further show that the resulting dynamics can be modeled as a stochastic process biased toward flat
regions. Collectively, these studies demonstrate that curvature and generalization are deeply inter-
twined with the stochastic geometry of the optimization trajectory. We leverage these insights to
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conduct a deeper analysis of mode connectivity in neural network training. Garipov et al. (2018)
and Draxler et al. (2018) showed the existence of nonlinear paths of low-loss between different
minima found by training with different random seeds. Subsequently, Frankle et al. (2020) showed
that when the training dynamics of two networks are tied together early in training, the resulting
minima, found after training is complete, are linearly connected by paths of low-loss. Follow-up
work has analyzed in more depth how linear mode connectivity emerges (Singh et al., 2024; Zhou
et al., 2023), and such work has important implications for model merging (Ainsworth et al., 2023;
Singh & Jaggi, 2020) and weight-space ensembling (Izmailov et al., 2018; Wortsman et al., 2021;
Gagnon-Audet et al., 2023; Wortsman et al., 2022).

1.2 CONTRIBUTIONS

Our main contributions are as follows:

• We show empirically that the curvature along minimum-loss paths between minima in-
creases away from the endpoints.

• We argue that such a “bump” in the curvature leads to an entropic barrier, and that such
entropic barriers lead to confinement of solutions even when the loss is low along a path in
parameter space.

• We show that despite the existence of low-loss connecting paths between solutions, entropic
forces confine models to specific regions of parameter space.

• We show that entropic barriers between minima persist longer than energetic barriers, when
considering models that shared the first k epochs of training, suggesting that both energetic
and entropic forces are responsible for the final region of parameter space that a model
ends up in.

2 BACKGROUND: ENTROPIC FORCES AND CURVATURE

It is well established in statistical physics that the state of a system is governed not only by energetic
forces—derived from gradients of an energy or potential—but also by entropic forces, arising from
thermal fluctuations. In the context of neural networks, the energy landscape is defined by the train-
ing loss, and its gradient directs the deterministic component of learning. However, the stochasticity
introduced by finite learning rates and minibatch sampling induces an effective temperature, making
entropic contributions to the trajectory of the model non-negligible. As a result, optimization can
be biased toward broader, flatter regions of the landscape—not because they are lower in loss, but
because they occupy a larger volume in parameter space. We illustrate this idea in a simple toy
model. Consider a Brownian particle evolving in a two-dimensional potential

ẋ = −∇V (x) + ξ(t), V (x, y) =
1

2
g(y)x2, g(y) > 0 (1)

where ξ is white delta correlated Gaussian noise, ⟨ξi(t)ξj(t′)⟩ = 2Tδijδ (t− t′), and g(y) is an
arbitrary positive function of the coordinate y. In the analogy to deep learning, V plays the role
of the task loss function, while the noise ξ arises from SGD noise due to minibatching and finite
learning rate. To leading order one can identify T ∝ η/B, for a learning rate η and batch size B,
(Mandt et al., 2017; Smith et al., 2020; Liu et al., 2021), though the precise relationship depends on
local curvature and other details of the loss landscape (Ziyin et al., 2021). In this simple motivating
example we assume ξ is white and Gaussian, even though in deep networks the SGD noise is neither
perfectly white nor perfectly Gaussian. In this analogy, y corresponds to soft modes (directions with
nearly flat curvature where the loss hardly changes), and x represents the stiff modes (directions
associated with large eigenvalues of the Hessian).

For fixed y, the distribution of x is Gaussian with variance ⟨x2⟩ = Tg(y)−1. When x relaxes on a
much faster timescale than y—for instance when the curvature of the potential along the x-direction
is much larger than that along the y-direction—we may average over the fast variable x to obtain an
effective dynamics for y:

ẏ = − ∂yg(y) ⟨x2⟩+ ξ = −T 1

g(y)

dg(y)

dy
+ ξ. (2)
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(A) (B)

Figure 1: Curvature produces an entropic force. (A) Illustration of a potential V (r, θ) with a
circular minimum at r = 1, where the curvature varies with angle. At zero temperature (T = 0), the
angular distribution is uniform, P (θ) = 1/(2π). At finite temperature, thermal fluctuations bias the
system toward flatter regions (yellow) rather than sharper ones (red). (B) Example of a Brownian
particle diffusing along the ridge of a loss landscape, lighter colors correspond to larger times. En-
tropic forces generated by fluctuations push the particle toward flatter directions, effectively favoring
broader regions of the landscape.

This equation can be rewritten as a gradient-flow dynamics generated by an effective potential
Veff(y):

ẏ = −dVeff(y)

dy
+ ξ, Veff(y) = T ln g(y), ⟨ξ(t) ξ(t′)⟩ = 2T δ(t− t′). (3)

The resulting stochastic dynamics converge to a Boltzmann-like stationary distribution (Gardiner
et al., 2004),

P (y) ∝ exp

[
−Veff(y)

T

]
. (4)

Equation 3 reveals the key mechanism: the force is proportional to the negative derivative of g(y),
effectively driving the system towards smaller values of g(y), corresponding to flatter directions in
x. We call these forces entropic because they are proportional to the effective temperature T and
therefore vanish in the absence of noise. This is a familiar principle in statistical physics, where
the thermodynamic state of a system is determined by a competition between minimizing energy
and maximizing entropy, with the temperature controlling the relative importance of the two. In
Fig. 1, we illustrate this effect with two example potentials whose curvature varies with one of the
coordinates, showing how the resulting entropic force pushes the system toward flatter regions.

In deep neural networks, these forces are expected to grow stronger as the effective temperature
increases, making them more prominent for large learning rates and small minibatches, as we illus-
trate in Section 4.1. When entropy outweighs energy, entropic forces can even dominate, potentially
driving optimization to climb the loss landscape. An example of this phenomenon in a deep network
is also shown in Section 4.1.

This minimal example is far from capturing the full complexity of the dynamics in regions of approx-
imately constant low loss of real deep neural networks. Nevertheless, it illustrates how stochasticity
interacts with curvature to favor flatter minima. Even when the training loss is near zero, these
entropic barriers can effectively confine solutions to specific regions of parameter space. In the re-
mainder of this paper, we show empirically that entropic forces arising from the curvature of loss
landscapes in real networks trained on natural images produce qualitatively similar behavior.

3 METHODS

We begin by training a collection of image-classification models on CIFAR-10 using both Wide
ResNet and ResNet architectures, each initialized from different random seeds to obtain a diverse
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set of distinct minima. For every pair of minima under study, we construct a low-loss path connecting
them using the AutoNEB algorithm of Draxler et al. (2018).

Once the MEP is obtained, we analyze its geometric and dynamical properties. First, we measure
curvature along the path using several complementary Hessian-based statistics, allowing us to char-
acterize how flatness varies between the endpoints and the interior of the path. Second, we study
optimization dynamics constrained to the MEP by projecting SGD updates onto the nearest path seg-
ment. This controlled setting isolates how stochasticity interacts with curvature: models initialized
along the MEP exhibit systematic drift toward flatter regions, revealing the action of entropic forces
whose strength grows with the effective noise level. We then proceed to analyze this phenomenon at
a finer scale by studying linearly connected minima, following the approach of Frankle et al. (2020).

3.1 TRAINING DETAILS

Unless otherwise specified, all experiments are conducted on Wide ResNet-16-4 (Zagoruyko &
Komodakis, 2016) trained on the CIFAR-10 dataset (Krizhevsky, 2009). Following standard practice
(Zagoruyko & Komodakis, 2016), we use stochastic gradient descent (SGD) with momentum β =
0.9, weight decay regularization w = 5 × 10−4, and an initial learning rate of η = 0.1. Models
are trained for 200 epochs with a batch size of 256, and the learning rate is reduced by a factor
of 5 at 30%, 60%, 80%, and 90% of the total training epochs. We apply mild data augmentation
consisting of random horizontal flips and random crops with 4-pixel padding followed by resizing
to the original 32× 32 resolution.

3.2 MINIMUM ENERGY PATHS

To explore the structure of the loss landscape between different solutions, we identify low-loss
connecting paths using the Automatic Nudged Elastic Band (AutoNEB) algorithm introduced by
Draxler et al. (2018). In brief, the algorithm initializes k intermediate pivots along the straight-line
path between two minima and optimizes their positions such that they evolve as if connected by
elastic springs, while minimizing the loss orthogonal to the path.

Since the loss along the straight segments between pivots may still be high, AutoNEB dynamically
adds new pivots whenever the loss along a segment exceeds a predefined threshold. This adaptive
refinement ensures a smooth, low-loss path is found. Following Draxler et al. (2018), we refer to
such paths as minimum energy paths (MEPs), by analogy with physical systems. Importantly, the
optimization dynamics is such that it does not change the length of the segments composing the
MEP, so when a new pivot is inserted between two existing pivots, the resulting segments remain
shorter than the original. In the following, the relative position along the MEP is reported in terms
of pivot index, normalized by the total number of pivots. Note that this parameterization does not
reflect the actual metric distance along the path, as the pivot density and length are non-uniform, see
Figure 7 in Appendix A.3.

Unless otherwise specified, all MEPs shown in the paper are computed using a sequence of refine-
ment cycles with decreasing learning rates. Specifically, we run four cycles each with the following
parameters: (0.1, 10), (5×10−2, 5), (10−2, 5), and (10−3, 5), where each tuple denotes (learning
rate, number of epochs).

3.3 CURVATURE MEASURES

A natural measure of the curvature of the loss landscape is the Hessian of the loss function, defined
as H ≡ ∇2

θL(θ). More precisely, it is the spectrum of the Hessian that captures the local geometry
of the landscape. However, if the model has N parameters, then H ∈ RN×N , making it intractable
to compute or store explicitly for modern networks. Instead, we use three independent summary
statistics of the Hessian spectrum, each providing a tractable yet informative proxy for curvature.

We estimate the maximum eigenvalue of the Hessian, λmax(H), using the power iteration method
(see, e.g., Yao et al. (2020)). Crucially, this method requires only Hessian–vector products, which
can be computed efficiently via automatic differentiation in O(N) time. The update rule for the
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power method is:

v(n+1) =
Hv(n)
∥Hv(n)∥ , where Hv =

∑
β

∂2L(θ)
∂θα∂θβ

vβ . (5)

After a few iterations, v(n) converges to the dominant eigenvector, and λmax ≈ ∥Hv(n)∥.
We estimate the trace of the Hessian and part of its spectrum using its connection to the Fisher
Information Matrix near a minimum. Specifically, when θ⋆ is a local minimum and the model is
well-calibrated, the Hessian can be approximated by the Fisher Information Matrix:

F(θ⋆) ≡ E(x,y)∼D

[
sθ(x, y)s

⊤
θ (x, y)

]∣∣∣∣
θ⋆

sθ(x, y) ≡ ∇θ log pθ(y | x) (6)

where sθ(x, y) is the score. This equivalence is discussed further in the Appendix A.2. From
this expression, we can compute the trace of the Fisher—and hence approximate the trace of the
Hessian—by summing the diagonal elements of the outer product sθs⊤θ .

As a third measure, we compute the Fisher matrix on a small random subset of the training dataset
of size E, and perform singular value decomposition (SVD) on the resulting score matrix, which
has shape N × (CE), where N is the number of parameters and C the number of classes. This
procedure efficiently estimates the leading components of the curvature spectrum without requiring
full-batch computation or explicit construction of the full Hessian matrix.

3.3.1 A NOTE ON REPARAMETERIZATION

Dinh et al. (2017) showed that symmetries in the architecture of networks allow deep networks to be
re-parameterized without changing the function computed by the network. While this observation
potentially makes the Hessian a poor tool for studying generalization, we note that when considering
SGD optimization dynamics it is still the Hessian and not a reparameterization invariant measure
that governs the dynamics of the system. Particularly, for any symmetry Tα that leaves the function
computed by the network the same, we have that ∇αL(Tαθ) = 0, and so flat directions induced by
a symmetry do not induce a gradient.

4 RESULTS

4.1 ENTROPIC CONFINEMENT

In Figure 2, we show the loss (C) and the curvature—quantified by the the trace Tr(H) (A) and
the maximum eigenvalue λmax(H) (B) of the Hessian—along MEPs connecting different pairs of
minima of Wide ResNet-16-4. Interestingly, the loss along the MEP is often lower than at the
endpoints. This behavior likely arises because each pivot is pulled downward both by the loss
gradient (locally minimizing energy) and by the coupling to the neighboring pivots. This effectively
lowers the noise experienced by the system effectively allowing to reach deeper minima. Despite
the absence of loss barriers along the MEPs, we observe a sharp rise in curvature along the MEP1,
measured either via λmax or the Hessian trace. The curvature decreases only near the endpoint
minima. As argued in Section 2, such variations in curvature generate entropic forces that bias
optimization toward flatter regions, even in the absence of explicit loss barriers.

One might argue that the increase in sharpness along the MEP is simply a consequence of the
decreasing loss or an effective reduction in learning rate, especially given prior work suggesting
a relationship between sharpness and learning rate (Cohen et al., 2021). We argue that this is not
the case: while the loss drops between the first and second pivots, it then remains approximately
constant along the rest of the MEP. In contrast, both sharpness metrics—maximum eigenvalue and
trace of the Hessian—continue to rise. This indicates that the observed increase in curvature is not
merely a byproduct of lower loss or implicit regularization, but rather reflects a genuine change in
the geometry of the optimization landscape.
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Figure 2: Entropy induces barriers between minima. (A,B) Curvature along minimum energy paths
(MEPs) connecting different minima, measured via the trace of the Hessian (A) and the maximum
eigenvalue of the Hessian (B). Numbers indicate distinct minima found via independent training
runs, markers indicate pivot points; different colors correspond to different pairs of minima, and
marker shapes denote MEPs found via different instantiations of the AutoNEB random seed. (C)
Cross entropy loss along MEPs connecting different pairs of regular minima. (D) Spectrum of the
Hessian along MEP 1–2, estimated via singular value decomposition (SVD) of the score matrix
computed on E = 1024 training examples. As we move into the interior of the MEP, the entire
spectrum shifts upward, reflecting an increase in the curvature in all directions along the path.

4.1.1 MEASUREMENT OF ENTROPIC FORCE

To directly observe these entropic effects, we initialize models at specific points along a given MEP
and study how stochastic gradient descent pushes them along the path. We use a variant of SGD that
projects updates back onto the nearest linear segment of the MEP, ensuring that dynamics remain
constrained to the path (see Section A.1 for details). Without this projection, standard SGD causes
the models to leave the MEP and wander along other directions in the loss landscape that are not
aligned with the MEP. This projected training variant is only used for the experiments in Figures
3, 4 and 8. In this context, to fairly compare experiments that use different learning rates, we plot
results against an effective time, defined as the product of the number of optimizer updates and the
learning rate, teff = (optimizer updates)× η.

As shown in Figure 3(A), when a model is initialized along the MEP, it is pushed back toward
the nearest (and relatively flatter) endpoint of the path. Models starting deeper within the MEP
take longer to relax to the endpoints. We also note that entropic forces drive the optimization back
towards the first pivot despite the fact that the loss actually increases along this path, illustrating a
scenario where entropic force is stronger than energetic force. This observation can be understood
more easily through a statistical physics lens: the noisy dynamics drive the system to minimize not
the energy but the free energy – the system balances the effects of energy and entropy.

In Figure 3(B) and (C), we show how minibatch size and learning rate affect the dynamics along the
MEP. As expected for a genuine entropic force, its strength increases with the effective temperature.
Accordingly, relaxation is faster for smaller minibatches, as shown in Figure 3(B), and for larger
learning rates (lr), as shown in Figure 3(C). In the Appendix, Figure 8, we show explicitly how the
entropic force scales with the batch size.

1A small dip is visible near the endpoints in Figure 2(B), where the estimated maximum eigenvalue of the
Hessian briefly decreases. We believe this artifact is due to the estimation procedure: computing the Hessian
away from an exact minimum introduces a correction proportional to the norm of the gradient. This effect is
stronger at the ends of the MEP, where the loss is slightly higher. Interestingly, this dip is not present in the
estimates based on the Fisher Information Matrix (panel (A) and (D) ).
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Figure 3: Relaxation dynamics induced by entropic forces. (A) Relaxation dynamics along the
MEP for Vanilla projected SGD (batch size B = 16, learning rate η = 0.02) for models initialized at
different points along the MEP (We use MEP 1-2 from Figure 2). The legend shows the two closest
pivots to each starting point. Models initialized deeper along the MEP take longer to relax to the
endpoint. (B, C) Models are initialized between the second and third pivots of the MEP, and trained
using projected SGD constrained to the path (see Section A.1). The y-axis shows the relative Eu-
clidean distance along the MEP, where 0 and 1 correspond to the endpoints of the path. The entropic
force drives the models back toward the endpoints. (B) Models trained with learning rate η = 0.02
for increasing batch sizes. Relaxation to the endpoint is faster for smaller minibatches, indicating
that entropic forces are stronger for smaller batch sizes. (C) Models trained with minibatch size 16
for increasing learning rates. Relaxation to the endpoint is faster for larger learning rates, indicating
that entropic forces are stronger at higher effective temperatures. Different curves of the same color
correspond to different realizations of the SGD noise.
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Figure 4: Relaxation dynamics induced by entropic forces for different optimizers. Relaxation
dynamics along the MEP for projected dynamics using Adam (green) and SGD with Nesterov mo-
mentum (red), compared to vanilla SGD (black). We plot the results against the number of updates
(A) and the effective time (B). The effect of the entropic forces seems to be more prominent for both
Adam and SGD with Nesterov momentum.
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Figure 5: Entropic barriers are relevant later in training. (A) Linear mode connectivity schematic
(Frankle et al., 2020). We train a network to epoch k, then produce two new networks via different
data ordering, and measure the loss along a linear path. (B) The average loss along such a path
goes down as k increases, decreasing rapidly with k. (C) Top: The loss profile along linear paths for
various k. Bottom: The curvature profile, measured by the maximum Hessian eigenvalue, for various
k. (D) We plot the instability (The relative change along the path) of the loss and the curvature. For
small k, the loss exhibits larger instability, while for larger k, the curvature exhibits larger instability.

In Figure 4, we investigate how the choice of optimizer affects the entropic force. We show that
(projected) Adam and SGD with momentum both respond more strongly to changes in curvature
than vanilla SGD. This suggests that the effect of entropic forces may become more important when
using adaptive optimizers or using momentum.

The increase of the curvature along the MEP adds nuance to the idea that the loss landscape consists
of one large “valley” containing all the parameter configurations with low loss: Although minima
in such a valley may be connected energetically, our experiments suggest that such a valley is ef-
fectively broken up into disconnected regions by entropic barriers. We emphasize that entropic
“barriers” are not barriers in the most literal sense of the word: the model is not dynamically forbid-
den from crossing such barriers. Rather, the noisy dynamics ensure that crossing an entropic barrier
is statistically extremely unlikely. We therefore say that the model is “effectively forbidden” from
crossing such a barrier.

4.2 LINEAR MODE CONNECTIVITY

Although we have argued that entropic forces separate the low-loss region of parameter space into
regions effectively confined by entropic barriers, we have not yet addressed how and when these
confined regions are chosen along the course of training. In this section we will take steps towards
answering this question through the lens of linear mode connectivity. Following the methods of
Frankle et al. (2020), we train M networks with a shared data order up until epoch k, which we will
call the splitting epoch. After epoch k, each of the M networks sees an independent ordering of the
data and can then potentially move away from its “siblings,” the other M − 1 networks. The sibling
networks are then trained until convergence. All networks trained in this section use the ResNet-20
architecture (He et al., 2015), unless otherwise noted.

The crucial observation in Frankle et al. (2020) is that once k becomes sufficiently large, the sibling
networks become connected by linear paths of low loss, implying that they converge to the same
region of parameter space. Interestingly, k does not have to be very large compared to the number
of epochs required for convergence before linear mode connectivity is observed. In Figure 5, we
reproduce these experiments, and measure the curvature along the linear, low-loss paths between
converged siblings. Similarly to the nonlinear case (Section 4.1), we see a bump in the curvature
along these paths. Additionally, we notice that these entropic barriers persist for larger values of k
than their energetic counterparts, implying that entropic forces contribute relatively more to the final
stages of the model’s localization to a region of parameter space. To see this, we plot the instability
as a function of k (Figure 5D). The instability measures the relative change, max/min, in the metric
(loss or curvature) along the linear path. For small values of k, the loss has the larger instability,
while for larger values of k the curvature exhibits greater instability.
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(A) (B)

Resnet 110, CIFAR100

Figure 6: Entropic barrier behavior persists across datasets & architectures. (A) The average loss
along a linear interpolating path goes down as the splitting epoch k increases, for a ResNet-110
trained on CIFAR-100. (B) Entropic barriers become more relevant late in training for a ResNet-
110 trained on CIFAR-100.

In Figure 6, we show that this behavior persists across datasets & architectures, and repeat our
analysis for a ResNet-110 trained on CIFAR-100. We see similar behaviors in the loss and in the
curvature (Figure 6A) across both datasets, emphasizing that these trends are not dataset-specific.
We also see similar behavior to Figure 5D for CIFAR-100, where entropic barriers become relatively
more important over the course of training (See Figure 6B). In the Appendix Figure 9, we show that
a ResNet-20 trained on CIFAR-100 also exhibits similar behavior.

5 DISCUSSION

Entropic Confinement. Our results provide new insight into the global geometry of the loss land-
scape. While prior work has emphasized that minima are often connected by low-loss paths, forming
a single broad “valley” of solutions (Garipov et al., 2018; Frankle et al., 2020), our findings reveal
that these paths are not flat when entropic forces are taken into consideration (Figure 2). Instead, they
exhibit systematic increases in curvature away from their endpoints, producing localized “bumps”
in sharpness. This observation refines the valley picture: the basin of low-loss solutions is structured
by curvature variations that give rise to entropic barriers.

We show that the forces produced by curvature variations along connecting paths consistently drive
optimization dynamics back toward flatter regions near the minima (Figure 3). In particular, models
initialized away from a minimum but constrained to remain on the path show persistent drift back
toward the endpoint, even though the loss profile is nearly flat. We also observe that smaller batches
and larger learning rates accelerate relaxation, showing that the strength of the entropic force de-
pends on the noise level. Entropic forces are not necessarily negligible – we show empirically that
they can drive models up a loss gradient.

Entropic Linear Mode Connectivity. Our analysis of linear mode connectivity further shows that
entropic forces play an important role late in training. As the splitting epoch increases, energetic
barriers along linear paths decrease, but curvature barriers persist for longer into training (Figure 5,
Figure 6). This suggests a two-phase picture of training: early dynamics are dominated by energetic
forces that drive the model into a low-loss basin, while later on entropic forces become more rele-
vant. Our experiments have important implications for late-time dynamics of deep network training,
basin selection, and parameter-space ensembling techniques. In particular, earlier work including
Altıntaş et al. (2025), demonstrates that the final basin a network ends up in is highly sensitive to
perturbations in the weights, especially early in training. These findings suggest that even small
contributions from entropic forces could have an outsized effect on the model’s long-term fate.

9
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Confinement and Generalization. Our findings may also provide insight into generalization
properties of overparameterized models. Empirically, models trained with SGD tend to find a gener-
alizing solutions and not overfit the data, even after many epochs of training. This occurs despite the
fact that the loss landscape is energetically flat, raising the question of why optimization dynamics
do not diffuse into regions of parameter space that overfit the training data.

We posit that generalizing minima may be effectively disconnected from overfit minima via en-
tropic barriers. Entropic barriers could make paths to such regions effectively inaccessible: even
when overfitting solutions are connected to flatter ones by low-loss paths, entropic forces could
shield the generalizing solutions by repelling SGD away from regions of parameter space that do
not generalize. Our results suggest that this is a promising avenue for future work. In fact, there is
evidence that models in similar convex basins of attraction share generalization properties (Juneja
et al., 2023).

Weight-space averaging. Our work also provides a new lens through which to view weight-space
ensembling techniques. The study of global loss landscape features, such as mode connectivity
(Draxler et al., 2018; Frankle et al., 2020), has been crucial in developing methods like Stochastic
Weight Averaging (SWA) (Izmailov et al., 2018; Wortsman et al., 2021). Our findings suggest a
more nuanced picture of the global landscape: techniques like SWA may be averaging minima that,
while energetically connected within a single low-loss valley, may be effectively disconnected by
the entropic barriers we observe. This would imply that the SWA solution cannot be easily found by
diffusive optimization dynamics at the bottom of a valley in the loss landscape. A valuable avenue
for future work would be to analyze the connectivity properties of these averaged minima to better
understand how weight-space averaging is able to construct solutions with favorable generalization
properties.

Limitations & Future Work We note that there is a large space of low-loss paths connecting min-
ima, and that the methods used here to find such paths (AutoNEB & linear interpolation) introduce a
source of bias in the paths we consider. While we acknowledge that this bias could impact the gen-
erality of our conclusions, we also observe similar qualitative profiles in the curvature across these
two methods, even though they introduce different sources of bias. We believe it is an important
and promising direction for future work to investigate how to sample the space of paths in a more
principled manner.

6 CONCLUSION

We identify a key geometric feature of neural network loss landscapes and its impact on optimization
dynamics. Our central finding is that low-loss paths connecting distinct minima consistently exhibit
a rise in curvature away from their endpoints. We show that this variation, when coupled with
the inherent noise of stochastic gradient descent, gives rise to entropic barriers. We demonstrate
empirically that these barriers generate effective forces that confine the optimizer to flatter regions
near the minima, even when the path is energetically favorable.

Our experiments exploring the curvature along linearly mode-connected networks reveal that the
mechanism of entropic confinement is particularly relevant during the later stages of training, shap-
ing the final localization and stability of the learned solution. Our results establish these curvature-
induced forces as a key element in understanding the behavior of stochastic optimizers. This geo-
metric perspective offers new insights into how the landscape itself guides the discovery of stable
and well-generalizing models, providing a promising direction for future research.

Ethics Statement. We do not foresee any direct ethical concerns arising from this work. Our
study focuses on better understanding optimization in machine learning, without direct deployment
in sensitive application domains. We note that we have used language models to polish the text of
this manuscript in places.

Reproducibility Statement. We have provided descriptions of all algorithms, models, and experi-
mental setups in the main text and appendix. Training procedures and dataset details are documented
to facilitate replication. When the author list is unblinded, we will release our codebase to enable
full reproducibility of our results.
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A APPENDIX

A.1 k-STEP PROJECTED SGD

In order to directly measure the effect of entropic forces in a controlled setting, we use a modified
version of SGD. Our algorithm deals with two conflicting considerations: First, we would like to
limit the scope of our observation to models that lie on a linear path, or more generally models that
lie on a MEP. However, we would also like to run optimization in such a way that entropic forces
arising from curvature are still relevant to the optimization dynamics. The key observation is that if
we were to run SGD on a line in parameter space, projecting back to the line after each optimization
step, we would remove the effect of entropic forces, which arise from noisy multi-step optimization
dynamics Wei & Schwab (2019). Motivated by this, we propose a natural algorithm that trades
off between these two considerations by taking multiple SGD steps between before projecting the
parameters back to the liner path (or MEP).

Algorithm 1 k-step projected SGD

Input: A model fθ(x), a loss function L(θ, x, y), an integer k, path pivots θ0, θ1, . . . θN SGD
learning rate η, SGD batch size B.
while not converged do

for i = 1 to k do
Draw a batch b← {xj , yj}Bj=1 ∼ Dtrain

θ ← θ − η∇θL(θ, b)
end for
Project θ onto the closest segment (across n) connecting θn and θn+1.

end while

In this way, k trades off the effect of entropic forces (large k) vs how close to the linear, low-loss
path optimization stays (small k). In Figure 3, we use k = 15 and run the algorithm along the MEP
1-2. The number of steps plotted on the horizontal axis is the “raw” number of SGD steps – i.e. the
number of times the parameter vector of the network was updated.

A.2 THE FISHER TRICK FOR ESTIMATING THE HESSIAN

Computing the full Hessian of the training loss is intractable for modern neural networks due to
both memory and runtime constraints. The Hessian matrix hasO

(
N2

p

)
parameters, where Np is the

number of parameters of the network, hence even just computing and storing the Hessian matrix is
prohibitive. A common workaround is to exploit the equivalence between the Hessian of the loss
and the Fisher Information Matrix (FIM) at a minimum.

If, as in the case of image classification, the loss is the negative log-likelihood,

L(θ) = −
∑

(x,y)∈D

log pθ(y | x).

At any parameter vector θ that minimizes the loss function L(θ), we have that
Epθ(y|x) [log(pθ(y|x))] = 0, taking the derivative of this equation with respect to θ and using the
log-derivative trick we have:

Epθ(y|x) [∇θ log(pθ(y|x))] = Epθ(y|x)
[
∇2

θpθ(y|x)
]
− Epθ(y|x) [∇θ log(pθ(y|x))∇θ log(pθ(y|x))]

(7)
Therefore at any minimum θ⋆ of the loss, the Hessian of the loss coincides with the Fisher informa-
tion matrix F(θ⋆),

F(θ⋆) ≡ E(x,y)∼D

[
∇θ log pθ(y | x)∇θ log pθ(y | x)⊤

]∣∣∣∣
θ⋆

. (8)
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This identity allows us to approximate Hessian eigenvalues using stochastic estimates of the FIM.
In practice, the FIM is easier to estimate than the Hessian, since it can be decomposed into a product
of low-rank matrices.

A.3 SUPPLEMENTARY FIGURES
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Figure 7: Properties of MEPs constructed with AutoNEB. The AutoNEB algorithm updates
the positions of pivots without changing the lengths ℓ of the segments connecting them, and adds
new pivots along segments where the loss is not well-approximated by the linear interpolation, see
Draxler et al. (2018). As a result, the Euclidean distance between consecutive pivots is not constant,
and pivots tend to be denser near the middle of the MEP. (A) Relative Euclidean distance of each
pivot measured from the first pivot, illustrating the cumulative distance along the MEP. (B) Lengths
of individual segments between consecutive pivots, showing that the spacing ∆ℓ is non-uniform.
Note that the values in (A) correspond to the cumulative sum of the segment lengths shown in (B).
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Figure 8: Relaxation dynamics induced by entropic forces. (A) Relaxation dynamics along the MEP
using Vanilla projected SGD (see Section A.1) with learning rate η = 0.02 for models initialized at
the second pivot of the MEP. Different colors indicate different minibatch sizes, and different curves
correspond to different realizations. (B) Dependence of the characteristic relaxation time, defined as
the time required for the relative distance along the MEP to decrease by a factor of e. The relaxation
time appears to be well described by a growing exponential.
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Figure 9: Entropic barrier behavior persists across datasets. (A) The average loss along a linear
interpolating path goes down as k increases, for a ResNet-20 trained on CIFAR-100. (B) Entropic
barriers become more relevant late in training for a ResNet-20 trained on CIFAR-100.
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