

ENTROPIC CONFINEMENT AND MODE CONNECTIVITY IN OVERPARAMETERIZED NEURAL NETWORKS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Modern neural networks exhibit a striking property: basins of attraction in the
012 loss landscape are often connected by low-loss paths, yet optimization dynamics
013 generally remain confined to a single convex basin (Baity-Jesi et al., 2019; Juneja
014 et al., 2023) and rarely explore intermediate points. We resolve this paradox by
015 identifying entropic barriers arising from the interplay between curvature varia-
016 tions along these paths and noise in optimization dynamics. Empirically, we find
017 that curvature systematically rises away from minima, producing effective forces
018 that bias noisy dynamics back toward the endpoints — even when the loss remains
019 nearly flat. These barriers persist longer than energetic barriers, shaping the late-
020 time localization of solutions in parameter space. Our results highlight the role of
021 curvature-induced entropic forces in governing both connectivity and confinement
022 in deep learning landscapes.
023

1 INTRODUCTION

024 Deep neural networks trained, in the overparametrized regime, exhibit a number of surprising and
025 counterintuitive properties. One of the most striking is the observation that distinct solutions, found
026 with standard optimization algorithms, are often connected by low-loss paths in parameter space
027 (Garipov et al., 2018; Draxler et al., 2018; Frankle et al., 2020). Such *mode connectivity* results im-
028 ply that the landscape is far less rugged than once assumed: minima that appear isolated are, in fact,
029 linked by paths of low, nearly constant loss. At the same time, however, optimization dynamics dis-
030 play a seemingly contradictory behavior. Standard training with stochastic gradient descent (SGD),
031 with or without momentum, converges to a well-defined minimum and rarely explores regions of
032 parameter space corresponding to these paths (Baity-Jesi et al., 2019).
033

034 We argue that this paradox can be resolved by recognizing the role of *entropic forces* generated by
035 curvature variations along connecting paths. Although the loss may be nearly flat along these paths,
036 the curvature of the landscape typically increases away from found minima, producing effective
037 barriers that bias stochastic dynamics back toward the endpoints. These barriers emerge from the
038 interaction between fluctuations induced by SGD noise and the Hessian spectrum along low-energy
039 paths. In this way, regions of parameter space that are energetically connected become effectively
040 disconnected.
041

042 1.1 RELATED WORK

043 Our work aims to unify insights from two areas: First, we draw on insights from a body of work that
044 shows SGD has an *implicit bias* towards flatter minima the strength of which increases with smaller
045 minibatch size.
046

047 This behavior is attributed to the higher noise levels in gradient estimates, which act as a form of
048 implicit regularization preventing convergence to sharp minima and instead favoring wider, flatter
049 basins that generalize better (Keskar et al., 2017). Several works have formalized this intuition: Jas-
050 trzebski et al. (2018) and Smith & Le (2018) interpret the minibatch noise as an effective temperature
051 that enables exploration and escape from sharp valleys; Wei & Schwab (2019) and Xie et al. (2021)
052 further show that the resulting dynamics can be modeled as a stochastic process biased toward flat
053 regions. Collectively, these studies demonstrate that curvature and generalization are deeply inter-
054 twined with the stochastic geometry of the optimization trajectory. We leverage these insights to

conduct a deeper analysis of *mode connectivity* in neural network training. Garipov et al. (2018) and Draxler et al. (2018) showed the existence of nonlinear paths of low-loss between different minima found by training with different random seeds. Subsequently, Frankle et al. (2020) showed that when the training dynamics of two networks are tied together early in training, the resulting minima, found after training is complete, are *linearly* connected by paths of low-loss. Follow-up work has analyzed in more depth how linear mode connectivity emerges (Singh et al., 2024; Zhou et al., 2023), and such work has important implications for model merging (Ainsworth et al., 2023; Singh & Jaggi, 2020) and weight-space ensembling (Izmailov et al., 2018; Wortsman et al., 2021; Gagnon-Audet et al., 2023; Wortsman et al., 2022).

1.2 CONTRIBUTIONS

Our main contributions are as follows:

- We show empirically that the curvature along minimum-loss paths between minima increases away from the endpoints.
- We argue that such a “bump” in the curvature leads to an *entropic barrier*, and that such entropic barriers lead to confinement of solutions even when the loss is low along a path in parameter space.
- We show that despite the existence of low-loss connecting paths between solutions, entropic forces confine models to specific regions of parameter space.
- We show that entropic barriers between minima persist longer than energetic barriers, when considering models that shared the first k epochs of training, suggesting that both energetic and entropic forces are responsible for the final region of parameter space that a model ends up in.

2 BACKGROUND: ENTROPIC FORCES AND CURVATURE

It is well established in statistical physics that the state of a system is governed not only by energetic forces—derived from gradients of an energy or potential—but also by entropic forces, arising from thermal fluctuations. In the context of neural networks, the energy landscape is defined by the training loss, and its gradient directs the deterministic component of learning. However, the stochasticity introduced by finite learning rates and minibatch sampling induces an effective temperature, making entropic contributions to the trajectory of the model non-negligible. As a result, optimization can be biased toward broader, flatter regions of the landscape—not because they are lower in loss, but because they occupy a larger volume in parameter space. We illustrate this idea in a simple toy model. Consider a Brownian particle evolving in a two-dimensional potential

$$\dot{\mathbf{x}} = -\nabla V(\mathbf{x}) + \xi(t), \quad V(x, y) = \frac{1}{2}g(y)x^2, \quad g(y) > 0 \quad (1)$$

where ξ is white delta correlated Gaussian noise, $\langle \xi_i(t)\xi_j(t') \rangle = 2T\delta_{ij}\delta(t-t')$, and $g(y)$ is an arbitrary positive function of the coordinate y . In the analogy to deep learning, V plays the role of the task loss function, while the noise ξ arises from SGD noise due to minibatching and finite learning rate. To leading order one can identify $T \propto \eta/B$, for a learning rate η and batch size B , (Mandt et al., 2017; Smith et al., 2020; Liu et al., 2021), though the precise relationship depends on local curvature and other details of the loss landscape (Ziyin et al., 2021). In this simple motivating example we assume ξ is white and Gaussian, even though in deep networks the SGD noise is neither perfectly white nor perfectly Gaussian. In this analogy, y corresponds to soft modes (directions with nearly flat curvature where the loss hardly changes), and x represents the stiff modes (directions associated with large eigenvalues of the Hessian).

For fixed y , the distribution of x is Gaussian with variance $\langle x^2 \rangle = Tg(y)^{-1}$. When x relaxes on a much faster timescale than y —for instance when the curvature of the potential along the x -direction is much larger than that along the y -direction—we may average over the fast variable x to obtain an effective dynamics for y :

$$\dot{y} = -\partial_y g(y) \langle x^2 \rangle + \xi = -T \frac{1}{g(y)} \frac{dg(y)}{dy} + \xi. \quad (2)$$

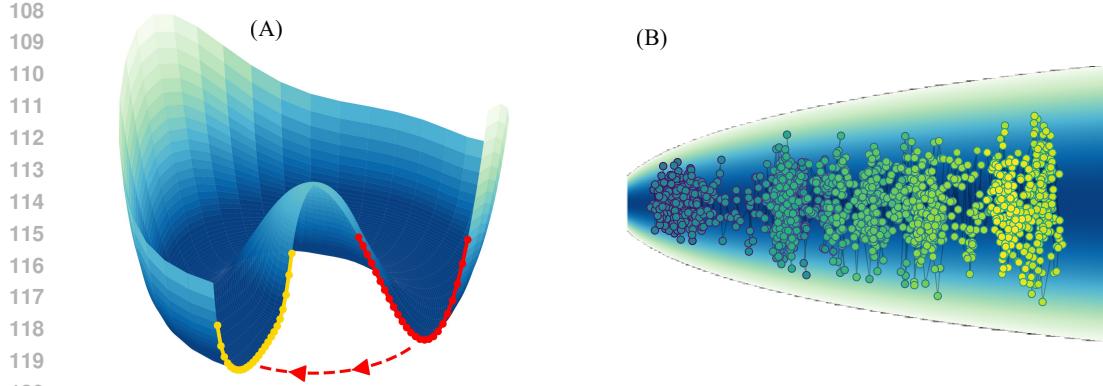


Figure 1: **Curvature produces an entropic force.** (A) Illustration of a potential $V(r, \theta)$ with a circular minimum at $r = 1$, where the curvature varies with angle. At zero temperature ($T = 0$), the angular distribution is uniform, $P(\theta) = 1/(2\pi)$. At finite temperature, thermal fluctuations bias the system toward flatter regions (yellow) rather than sharper ones (red). (B) Example of a Brownian particle diffusing along the ridge of a loss landscape, lighter colors correspond to larger times. Entropic forces generated by fluctuations push the particle toward flatter directions, effectively favoring broader regions of the landscape.

This equation can be rewritten as a gradient-flow dynamics generated by an effective potential $V_{\text{eff}}(y)$:

$$\dot{y} = -\frac{dV_{\text{eff}}(y)}{dy} + \xi, \quad V_{\text{eff}}(y) = T \ln g(y), \quad \langle \xi(t) \xi(t') \rangle = 2T \delta(t - t'). \quad (3)$$

The resulting stochastic dynamics converge to a Boltzmann-like stationary distribution (Gardiner et al., 2004),

$$P(y) \propto \exp\left[-\frac{V_{\text{eff}}(y)}{T}\right]. \quad (4)$$

Equation 3 reveals the key mechanism: the force is proportional to the negative derivative of $g(y)$, effectively driving the system towards smaller values of $g(y)$, corresponding to flatter directions in x . We call these forces entropic because they are proportional to the effective temperature T and therefore vanish in the absence of noise. This is a familiar principle in statistical physics, where the thermodynamic state of a system is determined by a competition between minimizing energy and maximizing entropy, with the temperature controlling the relative importance of the two. In Fig. 1, we illustrate this effect with two example potentials whose curvature varies with one of the coordinates, showing how the resulting entropic force pushes the system toward flatter regions.

In deep neural networks, these forces are expected to grow stronger as the effective temperature increases, making them more prominent for large learning rates and small minibatches, as we illustrate in Section 4.1. When entropy outweighs energy, entropic forces can even dominate, potentially driving optimization to *climb* the loss landscape. An example of this phenomenon in a deep network is also shown in Section 4.1.

This minimal example is far from capturing the full complexity of the dynamics in regions of approximately constant low loss of real deep neural networks. Nevertheless, it illustrates how stochasticity interacts with curvature to favor flatter minima. Even when the training loss is near zero, these entropic barriers can effectively confine solutions to specific regions of parameter space. In the remainder of this paper, we show empirically that entropic forces arising from the curvature of loss landscapes in real networks trained on natural images produce qualitatively similar behavior.

3 METHODS

We begin by training a collection of image-classification models on CIFAR-10 using both Wide ResNet and ResNet architectures, each initialized from different random seeds to obtain a diverse

162 set of distinct minima. For every pair of minima under study, we construct a low-loss path connecting
 163 them using the AutoNEB algorithm of Draxler et al. (2018).

164 Once the MEP is obtained, we analyze its geometric and dynamical properties. First, we measure
 165 curvature along the path using several complementary Hessian-based statistics, allowing us to char-
 166 acterize how flatness varies between the endpoints and the interior of the path. Second, we study
 167 optimization dynamics constrained to the MEP by projecting SGD updates onto the nearest path seg-
 168 ment. This controlled setting isolates how stochasticity interacts with curvature: models initialized
 169 along the MEP exhibit systematic drift toward flatter regions, revealing the action of entropic forces
 170 whose strength grows with the effective noise level. We then proceed to analyze this phenomenon at
 171 a finer scale by studying linearly connected minima, following the approach of Frankle et al. (2020).

173 3.1 TRAINING DETAILS

174 Unless otherwise specified, all experiments are conducted on Wide ResNet-16-4 (Zagoruyko &
 175 Komodakis, 2016) trained on the CIFAR-10 dataset (Krizhevsky, 2009). Following standard practice
 176 (Zagoruyko & Komodakis, 2016), we use stochastic gradient descent (SGD) with momentum $\beta =$
 177 0.9, weight decay regularization $w = 5 \times 10^{-4}$, and an initial learning rate of $\eta = 0.1$. Models
 178 are trained for 200 epochs with a batch size of 256, and the learning rate is reduced by a factor
 179 of 5 at 30%, 60%, 80%, and 90% of the total training epochs. We apply mild data augmentation
 180 consisting of random horizontal flips and random crops with 4-pixel padding followed by resizing
 181 to the original 32×32 resolution.

184 3.2 MINIMUM ENERGY PATHS

185 To explore the structure of the loss landscape between different solutions, we identify low-loss
 186 connecting paths using the *Automatic Nudged Elastic Band* (AutoNEB) algorithm introduced by
 187 Draxler et al. (2018). In brief, the algorithm initializes k intermediate *pivots* along the straight-line
 188 path between two minima and optimizes their positions such that they evolve as if connected by
 189 elastic springs, while minimizing the loss orthogonal to the path.

190 Since the loss along the straight segments between pivots may still be high, AutoNEB dynamically
 191 adds new pivots whenever the loss along a segment exceeds a predefined threshold. This adaptive
 192 refinement ensures a smooth, low-loss path is found. Following Draxler et al. (2018), we refer to
 193 such paths as minimum energy paths (MEPs), by analogy with physical systems. Importantly, the
 194 optimization dynamics is such that it does not change the length of the segments composing the
 195 MEP, so when a new pivot is inserted between two existing pivots, the resulting segments remain
 196 shorter than the original. In the following, the relative position along the MEP is reported in terms
 197 of pivot index, normalized by the total number of pivots. Note that this parameterization does not
 198 reflect the actual metric distance along the path, as the pivot density and length are non-uniform, see
 199 Figure 7 in Appendix A.3.

200 Unless otherwise specified, all MEPs shown in the paper are computed using a sequence of refine-
 201 ment cycles with decreasing learning rates. Specifically, we run four cycles each with the following
 202 parameters: $(0.1, 10)$, $(5 \times 10^{-2}, 5)$, $(10^{-2}, 5)$, and $(10^{-3}, 5)$, where each tuple denotes (learning
 203 rate, number of epochs).

206 3.3 CURVATURE MEASURES

207 A natural measure of the curvature of the loss landscape is the Hessian of the loss function, defined
 208 as $\mathcal{H} \equiv \nabla_\theta^2 \mathcal{L}(\theta)$. More precisely, it is the *spectrum* of the Hessian that captures the local geometry
 209 of the landscape. However, if the model has N parameters, then $\mathcal{H} \in \mathbb{R}^{N \times N}$, making it intractable
 210 to compute or store explicitly for modern networks. Instead, we use three independent summary
 211 statistics of the Hessian spectrum, each providing a tractable yet informative proxy for curvature.

212 We estimate the *maximum eigenvalue* of the Hessian, $\lambda_{\max}(\mathcal{H})$, using the *power iteration method*
 213 (see, e.g., Yao et al. (2020)). Crucially, this method requires only Hessian–vector products, which
 214 can be computed efficiently via automatic differentiation in $\mathcal{O}(N)$ time. The update rule for the

216 power method is:
 217

218 $v^{(n+1)} = \frac{\mathcal{H}v^{(n)}}{\|\mathcal{H}v^{(n)}\|}, \quad \text{where } \mathcal{H}v = \sum_{\beta} \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_{\alpha} \partial \theta_{\beta}} v_{\beta}.$ (5)
 219
 220

221 After a few iterations, $v^{(n)}$ converges to the dominant eigenvector, and $\lambda_{\max} \approx \|\mathcal{H}v^{(n)}\|.$
 222

223 We estimate the *trace* of the Hessian and part of its spectrum using its connection to the Fisher
 224 Information Matrix near a minimum. Specifically, when θ^* is a local minimum and the model is
 225 well-calibrated, the Hessian can be approximated by the Fisher Information Matrix:
 226

227 $\mathcal{F}(\theta^*) \equiv \mathbb{E}_{(x,y) \sim D} [s_{\theta}(x, y) s_{\theta}^{\top}(x, y)] \Big|_{\theta^*} \quad s_{\theta}(x, y) \equiv \nabla_{\theta} \log p_{\theta}(y | x)$ (6)
 228
 229

230 where $s_{\theta}(x, y)$ is the score. This equivalence is discussed further in the Appendix A.2. From
 231 this expression, we can compute the trace of the Fisher—and hence approximate the trace of the
 232 Hessian—by summing the diagonal elements of the outer product $s_{\theta} s_{\theta}^{\top}.$
 233

234 As a third measure, we compute the Fisher matrix on a small random subset of the training dataset
 235 of size E , and perform singular value decomposition (SVD) on the resulting score matrix, which
 236 has shape $N \times (CE)$, where N is the number of parameters and C the number of classes. This
 237 procedure efficiently estimates the leading components of the curvature spectrum without requiring
 238 full-batch computation or explicit construction of the full Hessian matrix.
 239

3.3.1 A NOTE ON REPARAMETERIZATION

240 Dinh et al. (2017) showed that symmetries in the architecture of networks allow deep networks to be
 241 re-parameterized without changing the function computed by the network. While this observation
 242 potentially makes the Hessian a poor tool for studying generalization, we note that when considering
 243 SGD optimization dynamics it is still the Hessian and not a reparameterization invariant measure
 244 that governs the dynamics of the system. Particularly, for any symmetry T_{α} that leaves the function
 245 computed by the network the same, we have that $\nabla_{\alpha} L(T_{\alpha} \theta) = 0$, and so flat directions induced by
 246 a symmetry do not induce a gradient.
 247

4 RESULTS

4.1 ENTROPIC CONFINEMENT

248 In Figure 2, we show the loss (C) and the curvature—quantified by the the trace $\text{Tr}(\mathcal{H})$ (A) and
 249 the maximum eigenvalue $\lambda_{\max}(\mathcal{H})$ (B) of the Hessian—along MEPs connecting different pairs of
 250 minima of Wide ResNet-16-4. Interestingly, the loss along the MEP is often lower than at the
 251 endpoints. This behavior likely arises because each pivot is pulled downward both by the loss
 252 gradient (locally minimizing energy) and by the coupling to the neighboring pivots. This effectively
 253 lowers the noise experienced by the system effectively allowing to reach deeper minima. Despite
 254 the absence of loss barriers along the MEPs, we observe a sharp rise in curvature along the MEP¹,
 255 measured either via λ_{\max} or the Hessian trace. The curvature decreases only near the endpoint
 256 minima. As argued in Section 2, such variations in curvature generate entropic forces that bias
 257 optimization toward flatter regions, even in the absence of explicit loss barriers.
 258

259 One might argue that the increase in sharpness along the MEP is simply a consequence of the
 260 decreasing loss or an effective reduction in learning rate, especially given prior work suggesting
 261 a relationship between sharpness and learning rate (Cohen et al., 2021). We argue that this is not
 262 the case: while the loss drops between the first and second pivots, it then remains approximately
 263 constant along the rest of the MEP. In contrast, both sharpness metrics—maximum eigenvalue and
 264 trace of the Hessian—continue to rise. This indicates that the observed increase in curvature is not
 265 merely a byproduct of lower loss or implicit regularization, but rather reflects a genuine change in
 266 the geometry of the optimization landscape.
 267

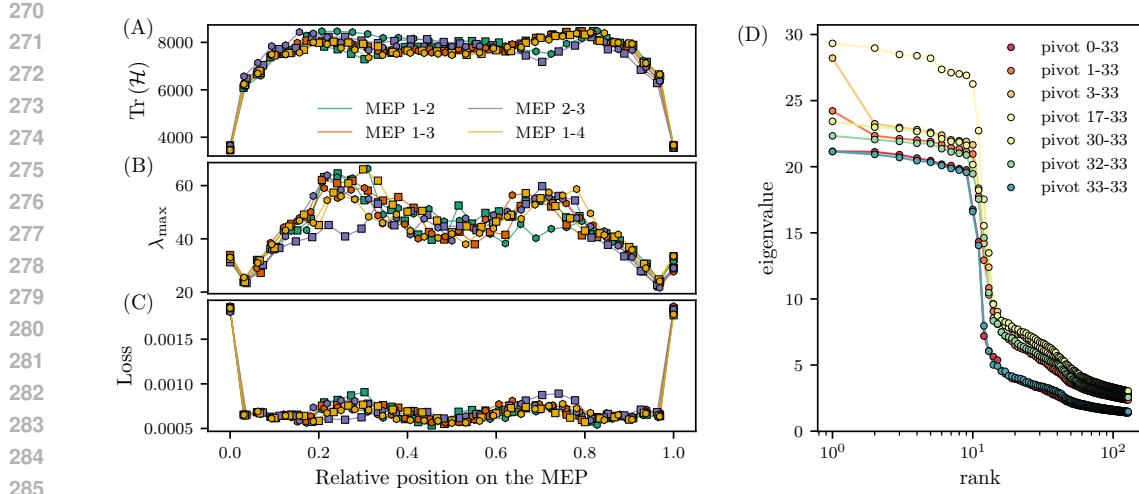


Figure 2: Entropy induces barriers between minima. **(A,B)** Curvature along minimum energy paths (MEPs) connecting different minima, measured via the trace of the Hessian (A) and the maximum eigenvalue of the Hessian (B). Numbers indicate distinct minima found via independent training runs, markers indicate pivot points; different colors correspond to different pairs of minima, and marker shapes denote MEPs found via different instantiations of the AutoNEB random seed. **(C)** Cross entropy loss along MEPs connecting different pairs of regular minima. **(D)** Spectrum of the Hessian along MEP 1–2, estimated via singular value decomposition (SVD) of the score matrix computed on $E = 1024$ training examples. As we move into the interior of the MEP, the entire spectrum shifts upward, reflecting an increase in the curvature in all directions along the path.

4.1.1 MEASUREMENT OF ENTROPIC FORCE

To directly observe these entropic effects, we initialize models at specific points along a given MEP and study how stochastic gradient descent pushes them along the path. We use a variant of SGD that projects updates back onto the nearest linear segment of the MEP, ensuring that dynamics remain constrained to the path (see Section A.1 for details). Without this projection, standard SGD causes the models to leave the MEP and wander along other directions in the loss landscape that are not aligned with the MEP. This projected training variant is only used for the experiments in Figures 3, 4 and 8. In this context, to fairly compare experiments that use different learning rates, we plot results against an effective time, defined as the product of the number of optimizer updates and the learning rate, $t_{\text{eff}} = (\text{optimizer updates}) \times \eta$.

As shown in Figure 3(A), when a model is initialized along the MEP, it is pushed back toward the nearest (and relatively flatter) endpoint of the path. Models starting deeper within the MEP take longer to relax to the endpoints. We also note that entropic forces drive the optimization back towards the first pivot despite the fact that the loss actually increases along this path, illustrating a scenario where entropic force is stronger than energetic force. This observation can be understood more easily through a statistical physics lens: the noisy dynamics drive the system to minimize not the energy but the *free energy* – the system balances the effects of energy and entropy.

In Figure 3(B) and (C), we show how minibatch size and learning rate affect the dynamics along the MEP. As expected for a genuine entropic force, its strength increases with the effective temperature. Accordingly, relaxation is faster for smaller minibatches, as shown in Figure 3(B), and for larger learning rates (lr), as shown in Figure 3(C). In the Appendix, Figure 8, we show explicitly how the entropic force scales with the batch size.

¹A small dip is visible near the endpoints in Figure 2(B), where the estimated maximum eigenvalue of the Hessian briefly decreases. We believe this artifact is due to the estimation procedure: computing the Hessian away from an exact minimum introduces a correction proportional to the norm of the gradient. This effect is stronger at the ends of the MEP, where the loss is slightly higher. Interestingly, this dip is not present in the estimates based on the Fisher Information Matrix (panel (A) and (D)).

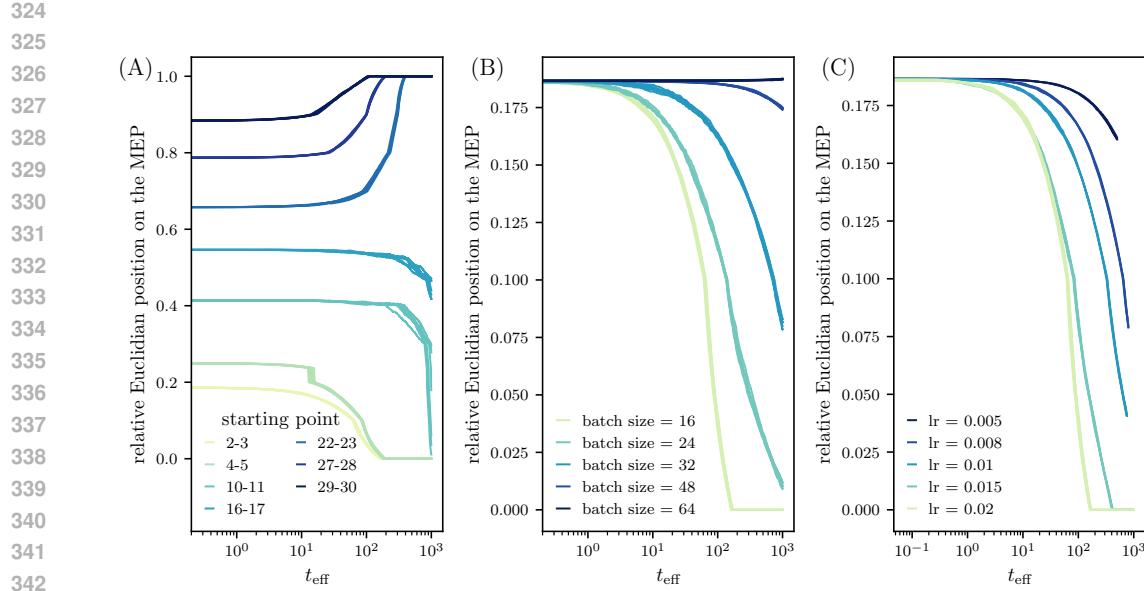


Figure 3: **Relaxation dynamics induced by entropic forces.** (A) Relaxation dynamics along the MEP for Vanilla projected SGD (batch size $B = 16$, learning rate $\eta = 0.02$) for models initialized at different points along the MEP (We use MEP 1-2 from Figure 2). The legend shows the two closest pivots to each starting point. Models initialized deeper along the MEP take longer to relax to the endpoint. (B, C) Models are initialized between the second and third pivots of the MEP, and trained using projected SGD constrained to the path (see Section A.1). The y -axis shows the relative Euclidean distance along the MEP, where 0 and 1 correspond to the endpoints of the path. The entropic force drives the models back toward the endpoints. (B) Models trained with learning rate $\eta = 0.02$ for increasing batch sizes. Relaxation to the endpoint is faster for smaller minibatches, indicating that entropic forces are stronger for smaller batch sizes. (C) Models trained with minibatch size 16 for increasing learning rates. Relaxation to the endpoint is faster for larger learning rates, indicating that entropic forces are stronger at higher effective temperatures. Different curves of the same color correspond to different realizations of the SGD noise.

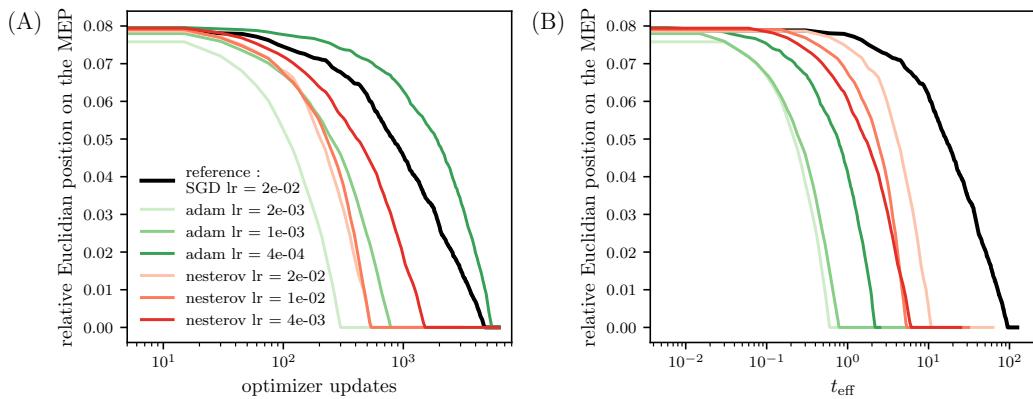


Figure 4: **Relaxation dynamics induced by entropic forces for different optimizers.** Relaxation dynamics along the MEP for projected dynamics using Adam (green) and SGD with Nesterov momentum (red), compared to vanilla SGD (black). We plot the results against the number of updates (A) and the effective time (B). The effect of the entropic forces seems to be more prominent for both Adam and SGD with Nesterov momentum.

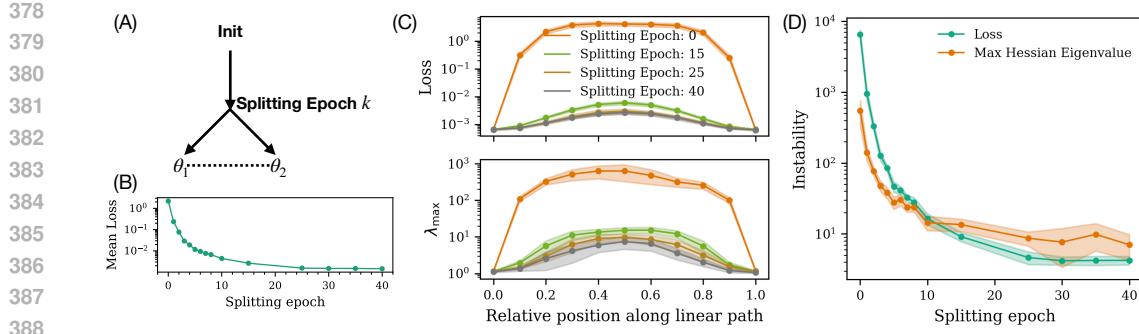


Figure 5: Entropic barriers are relevant later in training. **(A)** Linear mode connectivity schematic (Frankle et al., 2020). We train a network to epoch k , then produce two new networks via different data ordering, and measure the loss along a linear path. **(B)** The average loss along such a path goes down as k increases, decreasing rapidly with k . **(C)** *Top*: The loss profile along linear paths for various k . *Bottom*: The curvature profile, measured by the maximum Hessian eigenvalue, for various k . **(D)** We plot the *instability* (The relative change along the path) of the loss and the curvature. For small k , the loss exhibits larger instability, while for larger k , the curvature exhibits larger instability.

In Figure 4, we investigate how the choice of optimizer affects the entropic force. We show that (projected) Adam and SGD with momentum both respond *more* strongly to changes in curvature than vanilla SGD. This suggests that the effect of entropic forces may become more important when using adaptive optimizers or using momentum.

The increase of the curvature along the MEP adds nuance to the idea that the loss landscape consists of one large “valley” containing all the parameter configurations with low loss: Although minima in such a valley may be connected energetically, our experiments suggest that such a valley is effectively broken up into disconnected regions by entropic barriers. We emphasize that entropic “barriers” are not barriers in the most literal sense of the word: the model is not dynamically forbidden from crossing such barriers. Rather, the noisy dynamics ensure that crossing an entropic barrier is statistically extremely unlikely. We therefore say that the model is “effectively forbidden” from crossing such a barrier.

4.2 LINEAR MODE CONNECTIVITY

Although we have argued that entropic forces separate the low-loss region of parameter space into regions effectively confined by entropic barriers, we have not yet addressed how and when these confined regions are chosen along the course of training. In this section we will take steps towards answering this question through the lens of linear mode connectivity. Following the methods of Frankle et al. (2020), we train M networks with a *shared* data order up until epoch k , which we will call the *splitting epoch*. After epoch k , each of the M networks sees an *independent* ordering of the data and can then potentially move away from its “siblings,” the other $M - 1$ networks. The sibling networks are then trained until convergence. All networks trained in this section use the ResNet-20 architecture (He et al., 2015), unless otherwise noted.

The crucial observation in Frankle et al. (2020) is that once k becomes sufficiently large, the sibling networks become connected by linear paths of low loss, implying that they converge to the same region of parameter space. Interestingly, k does not have to be very large compared to the number of epochs required for convergence before linear mode connectivity is observed. In Figure 5, we reproduce these experiments, and measure the curvature along the linear, low-loss paths between converged siblings. Similarly to the nonlinear case (Section 4.1), we see a bump in the curvature along these paths. Additionally, we notice that these entropic barriers persist for larger values of k than their energetic counterparts, implying that entropic forces contribute relatively more to the final stages of the model’s localization to a region of parameter space. To see this, we plot the *instability* as a function of k (Figure 5D). The instability measures the relative change, max/min, in the metric (loss or curvature) along the linear path. For small values of k , the loss has the larger instability, while for larger values of k the curvature exhibits greater instability.

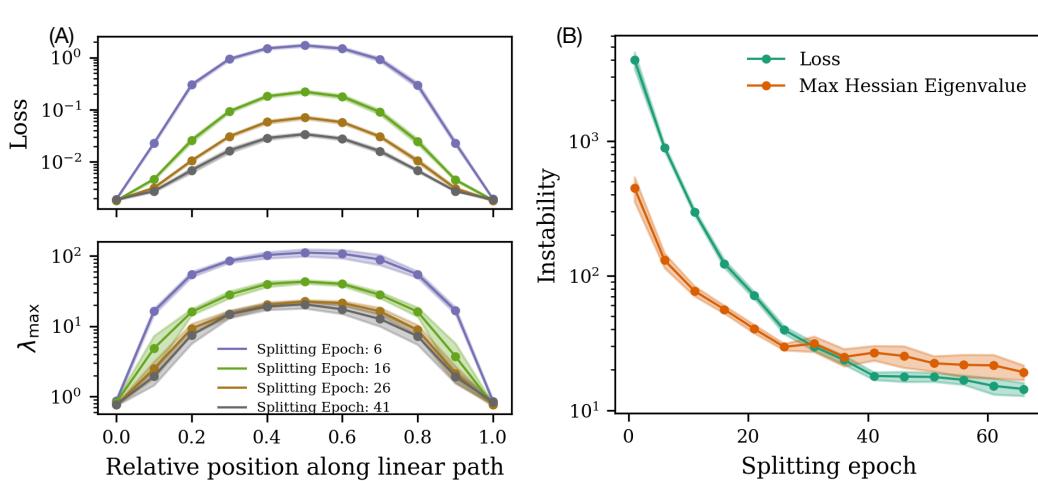


Figure 6: Entropic barrier behavior persists across datasets & architectures. (A) The average loss along a linear interpolating path goes down as the splitting epoch k increases, for a ResNet-110 trained on CIFAR-100. (B) Entropic barriers become more relevant late in training for a ResNet-110 trained on CIFAR-100.

In Figure 6, we show that this behavior persists across datasets & architectures, and repeat our analysis for a ResNet-110 trained on CIFAR-100. We see similar behaviors in the loss and in the curvature (Figure 6A) across both datasets, emphasizing that these trends are not dataset-specific. We also see similar behavior to Figure 5D for CIFAR-100, where entropic barriers become relatively more important over the course of training (See Figure 6B). In the Appendix Figure 9, we show that a ResNet-20 trained on CIFAR-100 also exhibits similar behavior.

5 DISCUSSION

Entropic Confinement. Our results provide new insight into the global geometry of the loss landscape. While prior work has emphasized that minima are often connected by low-loss paths, forming a single broad “valley” of solutions (Garipov et al., 2018; Frankle et al., 2020), our findings reveal that these paths are not flat when entropic forces are taken into consideration (Figure 2). Instead, they exhibit systematic increases in curvature away from their endpoints, producing localized “bumps” in sharpness. This observation refines the valley picture: the basin of low-loss solutions is structured by curvature variations that give rise to entropic barriers.

We show that the forces produced by curvature variations along connecting paths consistently drive optimization dynamics back toward flatter regions near the minima (Figure 3). In particular, models initialized away from a minimum but constrained to remain on the path show persistent drift back toward the endpoint, even though the loss profile is nearly flat. We also observe that smaller batches and larger learning rates accelerate relaxation, showing that the strength of the entropic force depends on the noise level. Entropic forces are not necessarily negligible – we show empirically that they can drive models *up* a loss gradient.

Entropic Linear Mode Connectivity. Our analysis of linear mode connectivity further shows that entropic forces play an important role late in training. As the splitting epoch increases, energetic barriers along linear paths decrease, but curvature barriers persist for longer into training (Figure 5, Figure 6). This suggests a two-phase picture of training: early dynamics are dominated by energetic forces that drive the model into a low-loss basin, while later on entropic forces become more relevant. Our experiments have important implications for late-time dynamics of deep network training, basin selection, and parameter-space ensembling techniques. In particular, earlier work including Altuntaş et al. (2025), demonstrates that the final basin a network ends up in is highly sensitive to perturbations in the weights, especially early in training. These findings suggest that even small contributions from entropic forces could have an outsized effect on the model’s long-term fate.

486 **Confinement and Generalization.** Our findings may also provide insight into generalization
 487 properties of overparameterized models. Empirically, models trained with SGD tend to find a gener-
 488 alizing solutions and not overfit the data, even after many epochs of training. This occurs *despite* the
 489 fact that the loss landscape is energetically flat, raising the question of why optimization dynamics
 490 do not diffuse into regions of parameter space that overfit the training data.

491 We posit that generalizing minima may be effectively disconnected from overfit minima via en-
 492 tropic barriers. Entropic barriers could make paths to such regions effectively inaccessible: even
 493 when overfitting solutions are connected to flatter ones by low-loss paths, entropic forces could
 494 shield the generalizing solutions by repelling SGD away from regions of parameter space that do
 495 not generalize. Our results suggest that this is a promising avenue for future work. In fact, there is
 496 evidence that models in similar convex basins of attraction share generalization properties (Juneja
 497 et al., 2023).

498 **Weight-space averaging.** Our work also provides a new lens through which to view weight-space
 499 ensembling techniques. The study of global loss landscape features, such as mode connectivity
 500 (Draxler et al., 2018; Frankle et al., 2020), has been crucial in developing methods like Stochastic
 501 Weight Averaging (SWA) (Izmailov et al., 2018; Wortsman et al., 2021). Our findings suggest a
 502 more nuanced picture of the global landscape: techniques like SWA may be averaging minima that,
 503 while energetically connected within a single low-loss valley, may be effectively disconnected by
 504 the entropic barriers we observe. This would imply that the SWA solution cannot be easily found by
 505 diffusive optimization dynamics at the bottom of a valley in the loss landscape. A valuable avenue
 506 for future work would be to analyze the connectivity properties of these averaged minima to better
 507 understand how weight-space averaging is able to construct solutions with favorable generalization
 508 properties.

509 **Limitations & Future Work** We note that there is a large space of low-loss paths connecting min-
 510 ima, and that the methods used here to find such paths (AutoNEB & linear interpolation) introduce a
 511 source of bias in the paths we consider. While we acknowledge that this bias could impact the gen-
 512 erality of our conclusions, we also observe similar qualitative profiles in the curvature across these
 513 two methods, even though they introduce different sources of bias. We believe it is an important
 514 and promising direction for future work to investigate how to sample the space of paths in a more
 515 principled manner.

517 6 CONCLUSION

518 We identify a key geometric feature of neural network loss landscapes and its impact on optimization
 519 dynamics. Our central finding is that low-loss paths connecting distinct minima consistently exhibit
 520 a rise in curvature away from their endpoints. We show that this variation, when coupled with
 521 the inherent noise of stochastic gradient descent, gives rise to entropic barriers. We demonstrate
 522 empirically that these barriers generate effective forces that confine the optimizer to flatter regions
 523 near the minima, even when the path is energetically favorable.

524 Our experiments exploring the curvature along linearly mode-connected networks reveal that the
 525 mechanism of entropic confinement is particularly relevant during the later stages of training, shap-
 526 ing the final localization and stability of the learned solution. Our results establish these curvature-
 527 induced forces as a key element in understanding the behavior of stochastic optimizers. This geo-
 528 metric perspective offers new insights into how the landscape itself guides the discovery of stable
 529 and well-generalizing models, providing a promising direction for future research.

530 **Ethics Statement.** We do not foresee any direct ethical concerns arising from this work. Our
 531 study focuses on better understanding optimization in machine learning, without direct deployment
 532 in sensitive application domains. We note that we have used language models to polish the text of
 533 this manuscript in places.

534 **Reproducibility Statement.** We have provided descriptions of all algorithms, models, and experi-
 535 mental setups in the main text and appendix. Training procedures and dataset details are documented
 536 to facilitate replication. When the author list is unblinded, we will release our codebase to enable
 537 full reproducibility of our results.

540 REFERENCES
541

542 Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models mod-
543 ule permutation symmetries. In *The Eleventh International Conference on Learning Representa-*
544 *tions*, 2023. URL <https://openreview.net/forum?id=CQsmMYmlP5T>.

545 Gü̈l Sena Altintaş, Devin Kwok, Colin Raffel, and David Rolnick. The butterfly effect: Neural net-
546 work training trajectories are highly sensitive to initial conditions. In *Forty-second International*
547 *Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=L1Bm396P0X>.

549 Marco Baity-Jesi, Levent Sagun, Mario Geiger, Stefano Spigler, G̈̄rard Ben Arous, Chiara Cam-
550 marota, Yann LeCun, Matthieu Wyart, and Giulio Biroli. Comparing dynamics: deep neural
551 networks versus glassy systems*. *Journal of Statistical Mechanics: Theory and Experiment*,
552 2019(12):124013, dec 2019. doi: 10.1088/1742-5468/ab3281. URL <https://dx.doi.org/10.1088/1742-5468/ab3281>.

555 Jeremy Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent on
556 neural networks typically occurs at the edge of stability. In *International Conference on Learning*
557 *Representations*, 2021. URL <https://openreview.net/forum?id=jh-rTtvkGeM>.

558 Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
559 for deep nets. In *International Conference on Machine Learning*, pp. 1019–1028. PMLR, 2017.

561 Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no barriers
562 in neural network energy landscape. In Jennifer Dy and Andreas Krause (eds.), *Proceedings of*
563 *the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine*
564 *Learning Research*, pp. 1309–1318. PMLR, 10–15 Jul 2018. URL <https://proceedings.mlr.press/v80/draxler18a.html>.

566 Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Linear mode
567 connectivity and the lottery ticket hypothesis. In *Proceedings of the 37th International Conference*
568 *on Machine Learning*, ICML’20. JMLR.org, 2020.

570 Jean-Christophe Gagnon-Audet, Ricardo Pio Monti, and David J. Schwab. AWE: Adaptive weight-
571 space ensembling for few-shot fine-tuning. In *ICLR 2023 Workshop on Mathematical and Em-*
572 *pirical Understanding of Foundation Models*, 2023. URL <https://openreview.net/forum?id=rrMIP1boZL>.

574 Crispin W Gardiner et al. *Handbook of stochastic methods*, volume 3. Springer Berlin, 2004.

575

576 Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wil-
577 son. Loss surfaces, mode connectivity, and fast ensembling of dnns. In S. Bengio,
578 H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), *Ad-*
579 *vances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc.,
580 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/be3087e74e9100d4bc4c6268cdbe8456-Paper.pdf.

582 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
583 nition, 2015. URL <https://arxiv.org/abs/1512.03385>.

584

585 Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry P. Vetrov, and Andrew Gordon Wilson.
586 Averaging weights leads to wider optima and better generalization. *CoRR*, abs/1803.05407, 2018.
587 URL <http://arxiv.org/abs/1803.05407>.

588 Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Ben-
589 gio, and Amos Storkey. Finding flatter minima with sgd, 2018. URL <https://openreview.net/forum?id=r1VF9dCUG>.

590

592 Jeevesh Juneja, Rachit Bansal, Kyunghyun Cho, João Sedoc, and Naomi Saphra. Linear connec-
593 tivity reveals generalization strategies. In *The Eleventh International Conference on Learning*
Representations, 2023. URL <https://openreview.net/forum?id=hY6M0JH13uL>.

594 Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
 595 ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
 596 *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=H1oyR1Ygg>.

597

598 Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

599

600 Kangqiao Liu, Liu Ziyin, and Masahito Ueda. Noise and fluctuation of finite learning rate stochastic
 601 gradient descent. In *International Conference on Machine Learning*, pp. 7045–7056. PMLR,
 602 2021.

603 Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient descent as approximate
 604 bayesian inference. *Journal of Machine Learning Research*, 18(134):1–35, 2017.

605

606 Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. In H. Larochelle,
 607 M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural In-*
 608 *formation Processing Systems*, volume 33, pp. 22045–22055. Curran Associates, Inc.,
 609 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/fb2697869f56484404c8ceee2985b01d-Paper.pdf.

610

611 Sidak Pal Singh, Linara Adilova, Michael Kamp, Asja Fischer, Bernhard Schölkopf, and Thomas
 612 Hofmann. Landscaping linear mode connectivity. In *High-dimensional Learning Dynamics*
 613 *2024: The Emergence of Structure and Reasoning*, 2024. URL <https://openreview.net/forum?id=OSNMqvPi6>.

614

615 Samuel Smith, Erich Elsen, and Soham De. On the generalization benefit of noise in stochastic
 616 gradient descent. In *International Conference on Machine Learning*, pp. 9058–9067. PMLR,
 617 2020.

618

619 Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and stochastic gradient
 620 descent. In *International Conference on Learning Representations*, 2018.

621

622 Mingwei Wei and David J Schwab. How noise affects the hessian spectrum in overparameterized
 623 neural networks, 2019. URL <https://arxiv.org/abs/1910.00195>.

624

625 Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
 626 Raphael Gontijo-Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, and Ludwig
 627 Schmidt. Robust fine-tuning of zero-shot models. *arXiv preprint arXiv:2109.01903*, 2021.
 628 <https://arxiv.org/abs/2109.01903>.

629

630 Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
 631 Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
 632 Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accu-
 633 racy without increasing inference time. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
 634 Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International*
 635 *Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*,
 636 pp. 23965–23998. PMLR, 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/wortsman22a.html>.

637

638 Zeke Xie, Issei Sato, and Masashi Sugiyama. A diffusion theory for deep learning dynamics:
 639 Stochastic gradient descent exponentially favors flat minima. In *International Conference on*
 640 *Learning Representations*, 2021. URL https://openreview.net/forum?id=wXgk_iCiYGo.

641

642 Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian: Neural networks
 643 through the lens of the hessian. In *2020 IEEE international conference on big data (Big data)*,
 644 pp. 581–590. IEEE, 2020.

645

646 Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. *CoRR*, abs/1605.07146, 2016.
 647 URL <http://arxiv.org/abs/1605.07146>.

648

649 Zhanpeng Zhou, Yongyi Yang, Xiaojiang Yang, Junchi Yan, and Wei Hu. Going beyond linear mode
 650 connectivity: The layerwise linear feature connectivity, 2023. URL <https://arxiv.org/abs/2307.08286>.

648 Liu Ziyin, Kangqiao Liu, Takashi Mori, and Masahito Ueda. Strength of minibatch noise in sgd.
 649 *arXiv preprint arXiv:2102.05375*, 2021.
 650

651 **A APPENDIX**

652 **A.1 k -STEP PROJECTED SGD**

653 In order to directly measure the effect of entropic forces in a controlled setting, we use a modified
 654 version of SGD. Our algorithm deals with two conflicting considerations: First, we would like to
 655 limit the scope of our observation to models that lie on a linear path, or more generally models that
 656 lie on a MEP. However, we would also like to run optimization in such a way that entropic forces
 657 arising from curvature are still relevant to the optimization dynamics. The key observation is that if
 658 we were to run SGD on a line in parameter space, projecting back to the line after each optimization
 659 step, we would remove the effect of entropic forces, which arise from noisy multi-step optimization
 660 dynamics Wei & Schwab (2019). Motivated by this, we propose a natural algorithm that trades
 661 off between these two considerations by taking multiple SGD steps between before projecting the
 662 parameters back to the liner path (or MEP).
 663

664 **Algorithm 1** k -step projected SGD

665 **Input:** A model $f_\theta(x)$, a loss function $L(\theta, x, y)$, an integer k , path pivots $\theta_0, \theta_1, \dots, \theta_N$ SGD
 666 learning rate η , SGD batch size B .
 667 **while** not converged **do**
 668 **for** $i = 1$ to k **do**
 669 Draw a batch $b \leftarrow \{x_j, y_j\}_{j=1}^B \sim D_{\text{train}}$
 670 $\theta \leftarrow \theta - \eta \nabla_\theta L(\theta, b)$
 671 **end for**
 672 Project θ onto the closest segment (across n) connecting θ_n and θ_{n+1} .
 673 **end while**

674 In this way, k trades off the effect of entropic forces (large k) vs how close to the linear, low-loss
 675 path optimization stays (small k). In Figure 3, we use $k = 15$ and run the algorithm along the MEP
 676 1-2. The number of steps plotted on the horizontal axis is the “raw” number of SGD steps – i.e. the
 677 number of times the parameter vector of the network was updated.

678 **A.2 THE FISHER TRICK FOR ESTIMATING THE HESSIAN**

679 Computing the full Hessian of the training loss is intractable for modern neural networks due to
 680 both memory and runtime constraints. The Hessian matrix has $\mathcal{O}(N_p^2)$ parameters, where N_p is the
 681 number of parameters of the network, hence even just computing and storing the Hessian matrix is
 682 prohibitive. A common workaround is to exploit the equivalence between the Hessian of the loss
 683 and the Fisher Information Matrix (FIM) at a minimum.

684 If, as in the case of image classification, the loss is the negative log-likelihood,

$$685 \mathcal{L}(\theta) = - \sum_{(x,y) \in D} \log p_\theta(y | x).$$

686 At any parameter vector θ that minimizes the loss function $\mathcal{L}(\theta)$, we have that
 687 $\mathbb{E}_{p_\theta(y|x)} [\log(p_\theta(y|x))] = 0$, taking the derivative of this equation with respect to θ and using the
 688 log-derivative trick we have:

$$689 \mathbb{E}_{p_\theta(y|x)} [\nabla_\theta \log(p_\theta(y|x))] = \mathbb{E}_{p_\theta(y|x)} [\nabla_\theta^2 p_\theta(y|x)] - \mathbb{E}_{p_\theta(y|x)} [\nabla_\theta \log(p_\theta(y|x)) \nabla_\theta \log(p_\theta(y|x))] \quad (7)$$

690 Therefore at any minimum θ^* of the loss, the Hessian of the loss coincides with the Fisher information
 691 matrix $\mathcal{F}(\theta^*)$,

$$692 \mathcal{F}(\theta^*) \equiv \mathbb{E}_{(x,y) \sim D} [\nabla_\theta \log p_\theta(y | x) \nabla_\theta \log p_\theta(y | x)^\top] \Big|_{\theta^*}. \quad (8)$$

This identity allows us to approximate Hessian eigenvalues using stochastic estimates of the FIM. In practice, the FIM is easier to estimate than the Hessian, since it can be decomposed into a product of low-rank matrices.

A.3 SUPPLEMENTARY FIGURES

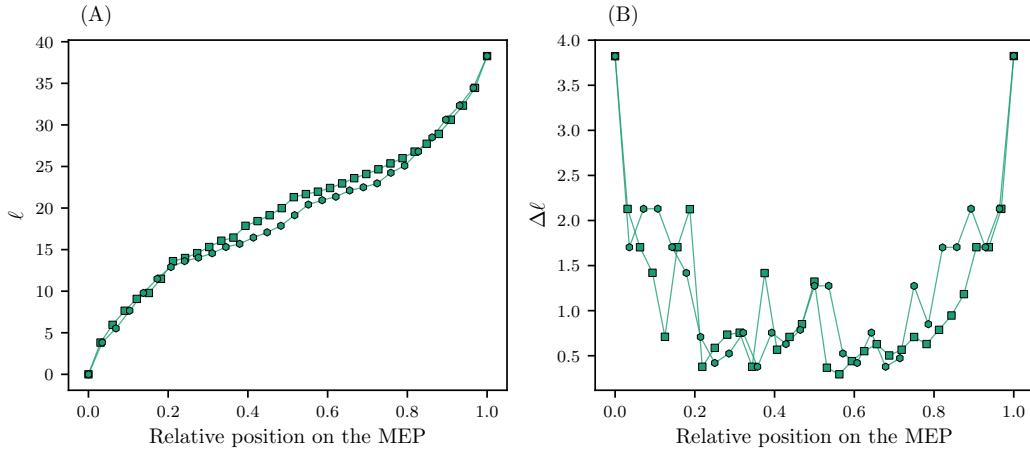


Figure 7: Properties of MEPs constructed with AutoNEB. The AutoNEB algorithm updates the positions of pivots without changing the lengths ℓ of the segments connecting them, and adds new pivots along segments where the loss is not well-approximated by the linear interpolation, see Draxler et al. (2018). As a result, the Euclidean distance between consecutive pivots is not constant, and pivots tend to be denser near the middle of the MEP. **(A)** Relative Euclidean distance of each pivot measured from the first pivot, illustrating the cumulative distance along the MEP. **(B)** Lengths of individual segments between consecutive pivots, showing that the spacing $\Delta\ell$ is non-uniform. Note that the values in (A) correspond to the cumulative sum of the segment lengths shown in (B).

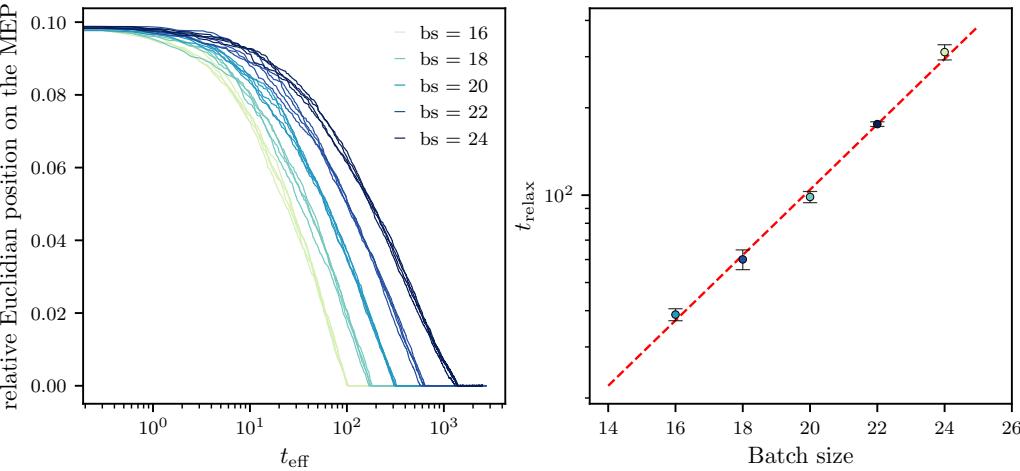


Figure 8: Relaxation dynamics induced by entropic forces. (A) Relaxation dynamics along the MEP using Vanilla projected SGD (see Section A.1) with learning rate $\eta = 0.02$ for models initialized at the second pivot of the MEP. Different colors indicate different minibatch sizes, and different curves correspond to different realizations. (B) Dependence of the characteristic relaxation time, defined as the time required for the relative distance along the MEP to decrease by a factor of e . The relaxation time appears to be well described by a growing exponential.

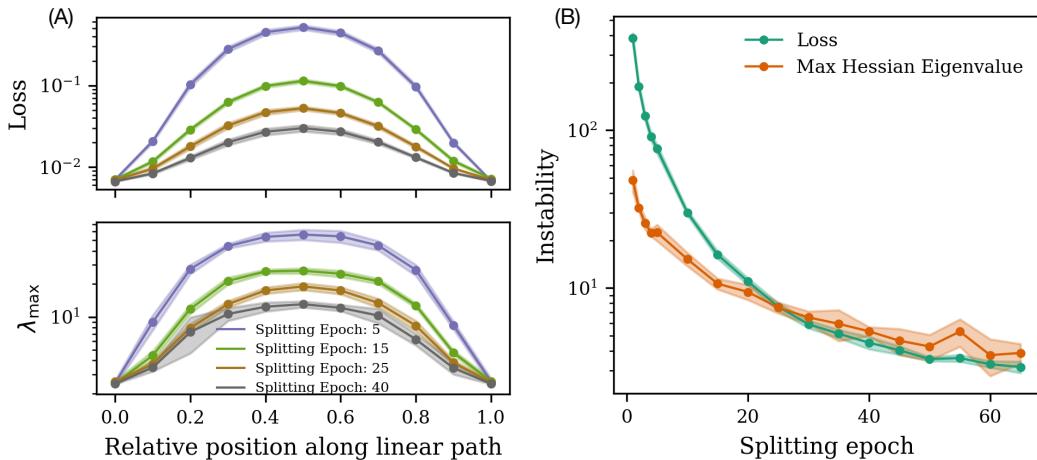


Figure 9: Entropic barrier behavior persists across datasets. (A) The average loss along a linear interpolating path goes down as k increases, for a ResNet-20 trained on CIFAR-100. (B) Entropic barriers become more relevant late in training for a ResNet-20 trained on CIFAR-100.