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Abstract

In many real-world sequential decision-making
problems, an action does not immediately reflect
on the feedback and spreads its effects over a
long time frame. For instance, in online advertis-
ing, investing in a platform produces an instan-
taneous increase of awareness, but the actual re-
ward, i.e., a conversion, might occur far in the
future. Furthermore, whether a conversion takes
place depends on: how fast the awareness grows,
its vanishing effects, and the synergy or interfer-
ence with other advertising platforms. Previous
work has investigated the Multi-Armed Bandit
framework with the possibility of delayed and ag-
gregated feedback, without a particular structure
on how an action propagates in the future, dis-
regarding possible dynamical effects. In this pa-
per, we introduce a novel setting, the Dynamical
Linear Bandits (DLB), an extension of the linear
bandits characterized by a hidden state. When an
action is performed, the learner observes a noisy
reward whose mean is a linear function of the
hidden state and of the action. Then, the hidden
state evolves according to linear dynamics, af-
fected by the performed action too. We start by
introducing the setting, discussing the notion of
optimal policy, and deriving an expected regret
lower bound. Then, we provide an optimistic re-
gret minimization algorithm, Dynamical Linear
Upper Confidence Bound (DynLin-UCB), that
suffers an expected regret of order rO

´

d
?
T

p1´ρq3{2

¯

,
where ρ is a measure of the stability of the sys-
tem, and d is the dimension of the action vector.
Finally, we conduct a numerical validation on a
synthetic environment and on real-world data to
show the effectiveness of DynLin-UCB in com-
parison with several baselines.
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1. Introduction
In a large variety of sequential decision-making problems,
a learner must choose an action that, when executed, deter-
mines an evolution of the underlying system state that is
hidden to the learner. In these partially observable problems,
the learner observes a reward (i.e., feedback) representing
the combined effect of multiple actions played in the past.
For instance, in online advertising campaigns, the process
that leads to a conversion, i.e., marketing funnel (Court et al.,
2009), is characterized by complex dynamics and comprises
several phases. When heterogeneous campaigns/platforms
are involved, a profitable budget investment policy has to
account for the interplay between campaigns/platforms. In
this scenario, a conversion (e.g., a user’s purchase of a pro-
moted product) should be attributed not only to the latest ad
the user was exposed to, but also to previous ones (Berman,
2018).

The joint consideration of each funnel phase is a funda-
mental step towards an optimal investment solution while
considering the advertising campaigns/platforms indepen-
dently leads to sub-optimal solutions. Consider, for instance,
a simplified version of the funnel with two types of cam-
paigns: awareness (i.e., impression) ads and conversion
ads. The first kind of ad aims at improving brand aware-
ness, while the latter aims at creating the actual conversion.
If we evaluate the performances in terms of conversions
only, we will discover that impression ads are not instan-
taneously effective in creating conversions, so we will be
tempted to reduce the budget invested in such a campaign.
However, this approach is sub-optimal because impression
ads increase the chance to convert when a conversion ad is
shown after the impression (e.g., Hoban & Bucklin, 2015).
In addition, the effect of some ads, especially impression
ads delivered via television, may be delayed. It has been
demonstrated (Chapelle, 2014) that users remember adver-
tising over time in a vanishing way, leading to consequences
that non-dynamical models cannot capture. This kind of
interplay comprises more general scenarios than the simple
reward delay, including the case where the interaction is
governed by a dynamics hidden to the observer.

While this scenario can be indubitably modeled as a Partially
Observable Markov Decision Process (POMDP, Åström,
1965), the complexity of the framework and its general-
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ity are often not required to capture the main features of
the problem. Indeed, for specific classes of problems, the
Multi-Armed Bandit (MAB, Lattimore & Szepesvári, 2020)
literature has explored the possibility of experiencing de-
layed reward either assuming that the actual reward will
be observed, individually, in the future (e.g., Joulani et al.,
2013) or with the more realistic assumption that an aggre-
gated feedback is available (e.g., Pike-Burke et al., 2018),
with also specific applications to online advertising (Vernade
et al., 2017). Although effective in dealing with delay effects
and the possibility of a reward spread in the future (Cesa-
Bianchi et al., 2018), they do not account for the additional,
more complex, dynamical effects, which can be regarded as
the evolution of a hidden state.

In this work, we take a different perspective. We propose to
model the non-observable dynamical effects underlying the
phenomena as a Linear Time-Invariant (LTI) system (Hes-
panha, 2018). In particular, the system is characterized by
a hidden internal state xt (e.g., awareness) which evolves
via linear dynamics fed by the action ut (e.g., amount in-
vested) and affected by noise. At each round, the learner
experiences a reward yt (e.g., conversions), which is a noisy
observation that linearly combines the state xt and the ac-
tion ut. Our goal consists in learning an optimal policy so
as to maximize the expected cumulative reward. We call this
setting Dynamical Linear Bandits (DLBs) that, as we shall
see, reduces to linear bandits (Abbasi-Yadkori et al., 2011)
when no dynamics are involved. Because of the dynam-
ics, the effect of each action persists over time indefinitely
but, under stability conditions, it vanishes asymptotically.
This allows representing interference and synergy between
platforms, thanks to the dynamic nature of the system.

Contributions In Section 2, we introduce the Dynam-
ical Linear Bandit (DLB) setting to represent sequential
decision-making problems characterized by a hidden state
that evolves linearly according to an unknown dynamics.
We show that, under stability conditions, the optimal policy
corresponds to playing the constant action that leads the
system to the most profitable steady state. Then, we de-
rive an expected regret lower bound of order Ω

´

d
?
T

p1´ρq1{2

¯

,
being d the dimensionality of the action space and ρ ă 1
the spectral radius of the dynamical matrix of the system
evolution law.1 In Section 3, we propose a novel optimistic
regret minimization algorithm, Dynamical Linear Upper
Confidence Bound (DynLin-UCB), for the DLB setting.
DynLin-UCB takes inspiration from Lin-UCB but sub-
divides the optimization horizon T into increasing-length
epochs. In each epoch, an action is selected optimistically
and kept constant (i.e., persisted) so that the system approxi-
mately reaches the steady state. We provide a regret analysis
for DynLin-UCB showing that, under certain assumptions,

1The smaller ρ, the faster the system reaches its steady state.

it enjoys rO
´

d
?
T

p1´ρq3{2

¯

expected regret. In Section 5, we
provide a numerical validation, with both synthetic and real-
world data, compared with bandit baselines. The proofs of
all the results are reported in Appendix B.

Notation Let a, b P N with a ď b, we introduce
the symbols: Ja, bK :“ ta, . . . , bu, JbK :“ J1, bK, and
Ja,8M “ ta, a ` 1, . . . u . Let x,y P Rn, we denote
with xx,yy “ xTy “

řn
j“1 xiyi the inner product. For

a positive semidefinite matrix A P Rnˆn, we denote with
}x}2A “ xTAx the weighted 2-norm. The spectral ra-
dius ρpAq is the largest absolute value of the eigenvalues
of A, the spectral norm }A}2 is the square root of the
maximum eigenvalue of ATA. We introduce the maxi-
mum spectral norm to spectral radius ratio of the powers
of A defined as ΦpAq “ supτě0 }Aτ }2{ρpAqτ (Oymak
& Ozay, 2019). We denote with In the identity matrix of
order n and with 0n the vector of all zeros of dimension n.
A random vector x P Rn is σ2-subgaussian, in the sense
of Hsu et al. (2012), if for every vector ζ P Rn it holds that
E rexp pxζ,xyqs ď expp}ζ}22σ

2{2q.

2. Setting
In this section, we introduce the Dynamical Linear Bandits
(DLBs), the learner-environment interaction, assumptions,
and regret (Section 2.1). Then, we derive a closed-form
expression for the optimal policy for DLBs (Section 2.2).
Finally, we derive a lower bound to the regret, highlighting
the intrinsic complexities of the DLB setting (Section 2.3).

2.1. Problem Formulation

In a Dynamical Linear Bandit (DLB), the environment is
characterized by a hidden state, i.e., a n-dimensional real
vector, initialized to x1 P X , where X Ď Rn is the state
space. At each round t P N, the environment is in the
hidden state xt P X , the learner chooses an action, i.e.,
a d-dimensional real vector ut P U , where U Ď Rd is
the action space. Then, the learner receives a noisy re-
ward yt “ xω,xty ` xθ,uty ` ηt P Y , where Y Ď R is
the reward space, ω P Rn, θ P Rd are unknown parame-
ters, and ηt is a zero-mean σ2–subgaussian random noise,
conditioned to the past. Then, the environment evolves to
the new state according to the unknown linear dynamics
xt`1 “ Axt ` But ` ϵt, where A P Rnˆn is the dynamic
matrix, B P Rnˆd is the action-state matrix, and ϵt is a
zero-mean σ2–subgaussian random noise, conditioned to
the past, independent of ηt.2

Remark 2.1. The setting proposed above is a particular
case of a POMDP (Åström, 1965), in which the state xt

is non-observable, while the learner accesses the noisy

2n is the order of the LTI system (Kalman, 1963). We make
no assumption on the value of n and on its knowledge.
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observation yt that corresponds to the noisy reward too.
Furthermore, the setting can be viewed as a MISO (Multi-
ple Input Single Output) discrete-time LTI system (Kalman,
1963). Finally, the DLB reduces to (non-contextual) linear
bandit (Abbasi-Yadkori et al., 2011) when the hidden state
does not affect the reward, i.e., when ω “ 0.

Markov Parameters We revise a useful representation,
that for every H P JtK allows expressing yt in terms of the
sequence of the most recent H ` 1 actions pusqsPJt´H,tK,
reward noise ηt, H state noises pϵsqsPJt´H,t´1K, and start-
ing state xt´H (Ho & Kalman, 1966; Oymak & Ozay, 2019;
Tsiamis & Pappas, 2019; Sarkar et al., 2021):

yt“

H
ÿ

s“0

xhtsu,ut´sy

loooooooomoooooooon

action effect

`ωTAHxt´H
loooooomoooooon

starting state

`ηt`

H
ÿ

s“1

ωTAs´1ϵt´s

looooooooooomooooooooooon

noise

, (1)

where the sequence of vectors htsu P Rd for every s P N are
called Markov parameters and are defined as: ht0u “ θ and
htsu “ BTpAs´1qTω if s ě 1. Furthermore, we introduce
the cumulative Markov parameters, defined for every s, s1 P

N with s ď s1 as hJs,s1K “
řs1

l“s h
tlu and the corresponding

limit as s1 Ñ `8, i.e., hJs,`8M “
ř`8

l“s h
tlu. Finally, we

use the abbreviation h “ hJ0,`8M “ θ ` BTpIn ´ Aq´Tω.

We will make use of the following standard assumption
related to the stability of the dynamic matrix A, widely
employed in discrete–time LTI literature (Oymak & Ozay,
2019; Lale et al., 2020a;b).
Assumption 2.1 (Stability). The spectral radius of A is
strictly smaller than 1, i.e., ρpAq ă 1, and the maximum
spectral norm to spectral radius ratio of the powers of A is
bounded, i.e., ΦpAq ă `8.3

Policies and Performance The learner’s behavior is mod-
eled via a deterministic policy π “ pπtqtPN defined, for ev-
ery round t P N, as πt : Ht´1 Ñ U , mapping the history of
observations Ht´1 “ pu1, y1, . . . ,ut´1, yt´1q P Ht´1 to
an action ut “ πtpHt´1q P U , where Ht´1 “ pU ˆ Yqt´1

is the set of histories of length t ´ 1. The performance of
a policy π is evaluated in terms of the (infinite-horizon)
expected average reward:

Jpπq :“ lim inf
HÑ`8

E

«

1

H

H
ÿ

t“1

yt

ff

, (2)

where

$

’

&

’

%

xt`1 “ Axt ` But ` ϵt

yt “ xω,xty ` xθ,uty ` ηt

ut “ πtpHt´1q

, @t P N,

where the expectation is taken w.r.t. the randomness of the
state noise ϵt and reward noise ηt. If a policy π is constant,
i.e., πtpHt´1q “ u for every t P N, we abbreviate Jpuq “

3The latter is a mild assumption: if A is diagonalizable as
A “ QΛQ´1, then ΦpAq ď }Q}2}Q´1

}2 and it is finite. In
particular, if A is symmetric then ΦpAq “ 1.

Jpπq. A policy π˚ is an optimal policy if it maximizes the
expected average reward, i.e., π˚ P argmaxπ Jpπq, and
its performance is denoted by J˚ :“ Jpπ˚q.

We further introduce the following assumption that requires
the boundedness of the norms of the relevant quantities.
Assumption 2.2 (Boundedness). There exist Θ,Ω, B, U ă

`8 s.t.: }θ}2 ď Θ, }ω}2 ď Ω, }B}2 ď B, supuPU }u}2 ď

U , and supxPX }x}2 ď X , supuPU |Jpuq| ď 1.4

Regret The regret suffered by playing a policy π, compet-
ing against the optimal infinite-horizon policy π˚ over a
learning horizon T P N is given by:

Rpπ, T q :“ TJ˚ ´

T
ÿ

t“1

yt, (3)

where yt is the sequence of rewards collected by playing
π as in Equation (2). The goal of the learner consists in
minimizing the expected regret ERpπ, T q, where the ex-
pectation is taken w.r.t. the randomness of the reward.

2.2. Optimal Policy

In this section, we derive a closed-form expression for the
optimal policy π˚ for the infinite–horizon objective func-
tion, as introduced in Equation (2).
Theorem 2.1 (Optimal Policy). Under Assumptions 2.1
and 2.2, an optimal policy π˚ maximizing the (infinite-
horizon) expected average reward Jpπq (Equation 2), for
every round t P N and history Ht´1 P Ht´1 is given by:

π˚
t pHt´1q“u˚ where u˚Pargmax

uPU
Jpuq“xh,uy. (4)

Some remarks are in order. The optimal policy plays the con-
stant action u˚ P U which brings the system in the “most
profitable” steady-state.5 Indeed, the expression xh,uy can
be rewritten expanding the cumulative Markov parameter
as pθT ` ωTpIn ´ Aq´1Bqu˚ and x˚ “ pIn ´ Aq´1Bu˚

is the expression of the steady state x˚ “ Ax˚ ` Bu˚,
when applying action u˚. It is worth noting the role of
Assumption 2.1 which guarantees the existence of the in-
verse pIn ´ Aq´1. In this sense, our problem shares the
constant nature of the optimal policy with the linear bandit
setting (Abbasi-Yadkori et al., 2011), although ours is char-
acterized by an evolving state, which introduces a new trade-
off in the action selection. From the LTI system perspective,
this implies that we can restrict to open-loop stationary poli-
cies. The reason why DLBs do not benefit from closed-loop
policies, differently from other classical problems, such as

4The assumption of the bounded state norm }x}2 ď X holds
whenever the state noise ϵ is bounded. As shown by Agarwal et al.
(2019), this assumption can be relaxed, for unbounded subgaussian
noise, by conditioning to the event that none of the noise vectors
are ever large at the cost of an additional log T factor in the regret.

5In Appendix C, we show that the optimal policy is non–
stationary for the finite–horizon case.
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the LQG (Abbasi-Yadkori & Szepesvári, 2011), lies in the
linearity of the reward yt and in the additive noise ηt and ϵt,
making their presence irrelevant (in expectation) for control
purposes. Nonetheless, as we shall see, our problem poses
additional challenges compared to linear bandits since, in
order to assess the quality of an action u P U , instanta-
neous rewards are not reliable, and we need to let the system
evolve to the steady state and, only then, observe the reward.

2.3. Regret Lower Bound

In this section, we provide a lower bound to the expected
regret that any learning algorithm suffers when addressing
the learning problem in a DLB.

Theorem 2.2 (Lower Bound). For any policy π (even
stochastic), there exists a DLB fulfilling Assumptions 2.1
and 2.2, such that for sufficiently large T ě O

´

d2

1´ρpAq

¯

,
policy π suffers an expected regret lower bounded by:

ERpπ, T q ě Ω

˜

d
?
T

p1 ´ ρpAqq
1
2

¸

.

The lower bound highlights the main challenges of the DLB
learning problem. First of all, we observe a dependence
on 1{p1 ´ ρpAqq, being ρpAq the spectral radius of the
matrix A. This is in line with the intuition that, as ρpAq

approaches 1, the problem becomes more challenging. Fur-
thermore, we note that when ρpAq “ 0, i.e., the problem
has no dynamical effects, the lower bound matches the one
of linear bandits (Lattimore & Szepesvári, 2020). It is worth
noting that, for technical reasons, the result of Theorem 2.2
is derived under the assumption that, at every round t P JT K,
the agent observes both the state xt and the reward yt (see
Appendix B). Clearly, this represents a simpler setting w.r.t.
DLBs (in which xt is hidden) and, consequently, Theo-
rem 2.2 is a viable lower bound for DLBs too.

3. Algorithm
In this section, we present an optimistic regret minimization
algorithm for the DLB setting. Dynamical Linear Upper
Confidence Bound (DynLin-UCB), whose pseudocode is
reported in Algorithm 1, requires the knowledge of an upper-
bound ρ ă 1 on the spectral radius of the dynamic matrix
A (i.e., ρpAq ď ρ) and on the maximum spectral norm to
spectral radius ratio Φ ă `8 (i.e., ΦpAq ď Φ), as well as
the bounds on the relevant quantities of Assumption 2.2.6

6As an alternative, one can consider a more demanding require-
ment of the knowledge of a bound on the spectral norm }A}2 of A.
Similar assumptions regarding the knowledge of analogous quanti-
ties are considered in the literature, e.g., decay of Markov operator
norms (Simchowitz et al., 2020) and strong stability (Plevrakis &
Hazan, 2020), spectral norm bound (Lale et al., 2020a). As a side
note, the knowledge of ρ ě ρpAq (or an equivalent quantity) is
proved to be unavoidable by Theorem 2.2. Indeed, if no restriction

DynLin-UCB is based on the following simple observation.
To assess the quality of action u P U , we need to persist
in applying it so that the system approximately reaches the
corresponding steady state and, then, observe the reward yt,
representing a reliable estimate of Jpuq “ xh,uy. We shall
show that, under Assumption 2.1, the number of rounds
needed to approximately reach such a steady state is loga-
rithmic in the learning horizon T and depends on the upper
bound of the spectral norm ρ. After initializing the Gram
matrix V0 “ λId and the vectors b0 and ph0 both to 0d

(line 1), DynLin-UCB subdivides the learning horizon T
in M ď T epochs. Each epoch m P JMK is composed of
Hm `1 rounds, where Hm “ tlogm{ logp1{ρqu is logarith-
mic in the epoch index m. At the beginning of each epoch,
m P JMK, DynLin-UCB computes the upper confidence
bound (UCB) index (line 4) defined for every u P U as:

UCBtpuq :“ xpht´1,uy ` βt´1 }u}V´1
t´1

, (5)

where pht´1 “ V´1
t´1bt´1 is the Ridge regression estima-

tor of the cumulative Markov parameter h, as in Equa-
tion (4) and βt´1 ě 0 is an exploration coefficient to be
defined later. Similar to Lin-UCB (Abbasi-Yadkori et al.,
2011), the index UCBtpuq is designed to be optimistic, i.e.,
Jpuq ď UCBtpuq in high-probability for all u P U . Then,
the optimistic action ut P argmaxuPU UCBtpuq is exe-
cuted (line 6) and persisted for the next Hm rounds (lines 8-
11). The length of the epoch Hm is selected such that, under
Assumption 2.1, the system has approximately reached the
steady state after Hm ` 1 rounds. In this way, at the end of
epoch m, the reward yt is an almost-unbiased sample of the
steady-state performance Jputq. This sample is employed
to update the Gram matrix estimate Vt and the vector bt

(line 13), while the samples collected in the previous Hm

rounds are discarded (line 9). It is worth noting that by
setting Hm “ 0 for all m P JMK, DynLin-UCB reduces
to Lin-UCB. The following sections provide the concentra-
tion of the estimator pht´1 of h (Section 3.1) and the regret
analysis of DynLin-UCB (Section 3.2).

3.1. Self-Normalized Concentration Inequality for the
Cumulative Markov Parameter

In this section, we provide a self-normalized concentration
result for the estimate pht of the cumulative Markov param-
eter h. For every epoch m P JMK, we denote with tm the
last round of epoch m: t0 “ 0 and tm “ tm´1 ` 1 ` Hm.
At the end of each epoch m, we solve the Ridge regression
problem, defined for every round t P JT K as:
pht“argmin

rhPRd

ÿ

lPJMK:tlďtm

pytl ´xrh,utlyq2`λ
›

›rh
›

›

2

2
“V´1

t bt.

on ρpAq is enforced (i.e., just ρpAq ă 1), one can always consider
the DLB in which ρpAq “ 1 ´ 1{T ă 1 making the regret lower
bound degenerate to linear.
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Algorithm 1: DynLin-UCB.
Input :Regularization parameter λ ą 0, exploration

coefficients pβt´1qtPJT K, spectral radius upper
bound 0 ď ρ ă 1

1 Initialize t Ð 1, V0 “ λId, b0 “ 0d, ph0 “ 0d,

2 Define M “mintM 1
PN :

řM 1

m“1 1` t
logm

logp1{ρq
uąT u´1

3 for m P JMK do
4 Compute ut P argmaxuPU UCBtpuq

5 where UCBtpuq :“xpht´1,uy`βt´1 }u}
V´1

t´1

6 Play arm ut and observe yt
7 Define Hm “ t

logm
logp1{ρq

u

8 for j P JHmK do
9 Update Vt “ Vt´1, bt “ bt´1

10 t Ð t ` 1
11 Play arm ut “ ut´1 and observe yt
12 end
13 Update Vt “ Vt´1 ` utu

T
t , bt “ bt´1 ` utyt

14 Compute pht “ V´1
t bt

15 t Ð t ` 1
16 end

We now present the following self-normalized maximal
concentration inequality and, then, we compare it with the
existing results in the literature.

Theorem 3.1 (Self-Normalized Concentration). Let pphtqtPN
be the sequence of solutions of the Ridge regression prob-
lems of Algorithm 1. Then, under Assumption 2.1 and 2.2,
for every λ ě 0 and δ P p0, 1q, with probability at least
1 ´ δ, simultaneously for all rounds t P N, it holds that:
›

›

›

pht ´ h
›

›

›

Vt

ď
c1

?
λ
logpept ` 1qq ` c2

?
λ

`

d

2rσ2

ˆ

log

ˆ

1

δ

˙

`
1

2
log

ˆ

det pVtq

λd

˙˙

,

where c1 “ UΩΦpAq

´

UB
1´ρpAq

` X
¯

, c2 “ Θ `
ΩBΦpAq

1´ρpAq
,

and rσ2 “ σ2
´

1 `
Ω2ΦpAq

2

1´ρpAq2

¯

.

First, we note that when Ω “ 0 (ω “ 0n), i.e., the state does
not affect the reward, the bound perfectly reduces to the self-
normalized concentration used in linear bandits (Abbasi-
Yadkori et al., 2011, Theorem 1). In particular, we recognize
the second term due to the regularization parameter λ ą 0
and the third one, which involves the subgaussianity param-
eter rσ2, related to the joint contribution of the state and
reward noises. Furthermore, the first term is an additional
bias that derives from the epochs of length Hm ` 1. The
choice of the value Hm represents one of the main technical
novelties that, on the one hand, leads to a bias that conve-
niently grows logarithmically with t and, on the other hand,
can be computed without the knowledge of T .

It is worth looking at our result from the perspective of
learning the LTI system parameters. We can compare our

Theorem 3.1 with the concentration presented in (Lale et al.,
2020a, Appendix C), which represents, to the best of our
knowledge, the only result for the closed-loop identification
of LTI systems with non-observable states. First, note that,
although we focus on a MISO system (yt is a scalar, being
our reward), extending our estimator to multiple-outputs
(MIMO) is straightforward. Second, the approach of (Lale
et al., 2020a) employs the predictive form of the LTI sys-
tem to cope with the correlation introduced by closed-loop
control. This choice allows for convenient analysis of the es-
timated Markov parameters of the predictive form. However,
recovering the parameters of the original system requires
an application of the Ho-Kalman method (Ho & Kalman,
1966) which, unfortunately, does not preserve the concentra-
tion properties in general, but only for persistently exciting
actions. Our method, instead, forces to play an open-loop
policy within a single epoch (each with logarithmic dura-
tion), while the overall behavior is closed-loop, as the next
action depends on the previous-epoch estimates. In this way,
we are able to provide a concentration guarantee on the pa-
rameters of the original system without assuming additional
properties on the action signal.

3.2. Regret Analysis

In this section, we provide the analysis of the regret of
DynLin-UCB, when we select the exploration coefficient
βt based on the knowledge of the upper bounds ρ ă 1,
Φ ă `8, and those specified in Assumption 2.2, defined
for every round t P JT K as:

βt :“
c1

?
λ
logpept ` 1qq ` c2

?
λ

`

d

2σ2

ˆ

log

ˆ

1

δ

˙

`
d

2
log

ˆ

1 `
tU2

dλ

˙˙

,

where c1 “ UΩΦ
´

UB
1´ρ ` X

¯

, c2 “ Θ ` ΩBΦ
1´ρ , and σ2 “

σ2
´

1 ` Ω2Φ
2

1´ρ2

¯

. The following result provides the bound
on the expected regret of DynLin-UCB.

Theorem 3.2 (Upper Bound). Under Assumptions 2.1
and 2.2, selecting βt as in Equation (6) and δ “ 1{T ,
DynLin-UCB suffers an expected regret bounded as (high-
lighting the dependencies on T , ρ, d, and σ only):

ERpπDynLin-UCB, T q ď O

˜

dσ
?
T plog T q

3
2

1 ´ ρ

`

?
dT plog T q2

p1 ´ ρq
3
2

`
1

p1 ´ ρpAqq2

¸

.

Proof Sketch. The analysis of DynLin-UCB poses addi-
tional challenges compared to that of Lin-UCB (Abbasi-
Yadkori et al., 2011) because of the dynamic effects of the
hidden state. The idea behind the proof is to first derive
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a bound on a different notion of regret, i.e., the offline re-
gret: Roffpπ,T q“TJ˚ ´

řT
t“1Jputq, that compares J˚

with the steady-state performance Jputq of the action
ut “πtpHt´1q (Theorem B.2). This analysis of Roffpπ,T q

can be comfortably carried out, by adopting a proof strat-
egy similar to that of Lin-UCB. However, when applying
action ut, the DLB does not immediately reach the perfor-
mance Jputq as the expected reward Eryts experiences a
transitional phase before converging to the steady state. Un-
der stability (Assumption 2.1), it is possible to show that the
expected offline regret and the expected regret differ by a
constant: |ERpπ,T q´ERoffpπ,T q|ďOp1{p1´ρpAqq2q

(Lemma B.1).

Some observations are in order. We first note a dependence
on the term 1{p1 ´ ρq, which, in turn, depends on the upper
bound ρ of the spectral gap ρpAq. If the system does not
display a dynamics, i.e., we can set ρ “ 0, we obtain a
regret bound that, apart from logarithmic terms, coincides
with that of Lin-UCB, i.e., rOpdσ

?
T q. Instead, for slow-

converging systems, i.e., ρ « 1, the regret bound enlarges,
as expected. Clearly, a value of ρ too large compared to the
optimization horizon T (e.g., ρ “ 1 ´ 1{T 1{3) makes the
regret bound degenerate to linear. This is a case in which
the underlying system is so slow that the whole horizon T is
insufficient to approximately reach the steady state. Third,
the regret bound is the sum of three components: the first
one depends on the subgaussian proxy σ and is due to the
noisy estimation of the relevant quantities; the second one
is a bias due to the epoch-based structure of DynLin-UCB;
finally, the third one is constant (does not depend on T )
accounts for the time needed to reach the steady state.

Remark 3.1 (Regret upper bound (Theorem 3.2) and lower
bound (Theorem 2.2) Comparison). Apart from logarithmic
terms, we notice a tight dependence on d and on T . Instead,
concerning the spectral properties of A, in the upper bound,
we experience a dependence on 1{p1´ρq raised to a higher
power (either 1 for the term multiplied by d and 3{2 for
the term multiplied by

?
d) w.r.t. the exponent appearing in

the lower bound (i.e., 1{2). It is currently an open question
whether the lower bound is not tight (which is obtained
for a simpler setting in which the state is observable xt) or
whether more efficient algorithms for DLBs can be designed.
Furthermore, Theorem 3.2 highlights the impact of the upper
bound ρ compared with the true ρpAq.

4. Related Works
In this section, we survey and compare the literature with
a particular focus on bandits with delayed, aggregated, and
composite feedback (Joulani et al., 2013) and online control
for Linear Time-Invariant (LTI) systems (Hespanha, 2018).
Additional related works are reported in Appendix A.

Bandits with Delayed/Aggregated/Composite Feed-
back The Multi-Armed Bandit setting has been widely
employed as a principled approach to address sequential
decision-making problems (Lattimore & Szepesvári, 2020).
The possibility of experiencing delayed rewards has been
introduced by Joulani et al. (2013) and widely exploited
in advertising applications (Chapelle, 2014; Vernade et al.,
2017). A large number of approaches have extended this
setting either considering stochastic delays (Vernade et al.,
2020), unknown delays (Li et al., 2019; Lancewicki et al.,
2021), arm-dependent delays (Manegueu et al., 2020), non-
stochastic delays (Ito et al., 2020; Thune et al., 2019; Jin
et al., 2022). Some methods relaxed the assumption that
the individual reward is revealed after the delay expires,
admitting the possibility of receiving anonymous feedback,
which can be aggregated (Pike-Burke et al., 2018; Zhang
et al., 2021) or composite (Cesa-Bianchi et al., 2018; Garg &
Akash, 2019; Wang et al., 2021). Most of these approaches
are able to achieve rOp

?
T q regret, plus additional terms

depending on the extent of the delay. In our DLBs, the
reward is generated over time as a combined effect of past
and present actions through a hidden state, while these ap-
proaches generate the reward instantaneously and reveal it
(individually or in aggregate) to the learner in the future and
no underlying state dynamics is present.

Online Control of Linear Time-Invariant Systems The
particular structure imposed by linear dynamics makes our
approach comparable to LTI online control for partially
observable systems (e.g., Lale et al., 2020b; Simchowitz
et al., 2020; Plevrakis & Hazan, 2020). While the dynam-
ical model is similar, in online control of LTI systems,
the perspective is quite different. Most of the works ei-
ther consider the Linear Quadratic Regulator (Mania et al.,
2019; Lale et al., 2020b) or (strongly) convex objective
functions (Mania et al., 2019; Simchowitz et al., 2020; Lale
et al., 2020a), achieving, in most of the cases rOp

?
T q re-

gret for strongly convex functions and rOpT 2{3q for con-
vex functions. Recently, rOp

?
T q regret rate has been ob-

tained for convex function too, by means of geometric ex-
ploration methods (Plevrakis & Hazan, 2020). Compared
to DynLin-UCB, the algorithm of Plevrakis & Hazan
(2020) considers general convex costs but assumes the ob-
servability of the state and limits to the class of disturbance
response controllers (Li & Bosch, 1993) that do not include
the constant policy. Moreover, the regret bound of Plevrakis
& Hazan (2020) differs from Theorem 3.2, as it shows a
cubic dependence on the system order7 and an implicit non-
trivial dependence on the dynamic matrix A. Instead, our
Theorem 3.2 is remarkably independent of the system or-
der n. Furthermore, Lale et al. (2020a) reach OplogpT qq

regret in the case of strongly convex cost functions compet-

7This holds for known cost functions. Instead, for unknown
costs, the exponent becomes 24 (Plevrakis & Hazan, 2020).
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ing against the best persistently exciting controller (i.e., a
controller implicitly maintaining a non-null exploration).
Some approaches are designed to deal with adversarial
noise (Simchowitz et al., 2020). All of these solutions,
however, look for the best closed-loop controller within
a specific class, e.g., disturbance response control (Li &
Bosch, 1993). These controllers, however, do not allow us
to easily incorporate constraints on the action space, which
could be of crucial importance in practice, e.g., in advertis-
ing domains. DynLin-UCB works with an arbitrary action
space and, thanks to the linearity of the reward, does not
require complex closed-loop controllers.

5. Numerical Simulations
In this section, we provide numerical validations of
DynLin-UCB in both a synthetic scenario and a domain
obtained from real-world data. The goal of these simula-
tions is to highlight the behavior of DynLin-UCB in com-
parison with bandit baselines, describing advantages and
disadvantages. The first experiment is a synthetic setting
in which we can evaluate the performances of all the so-
lutions and the sensitivity of DynLin-UCB w.r.t. the ρ
parameter (Section 5.1). Then, we show a comparison
in a DLB scenario retrieved from real-world data (Sec-
tion 5.2). The code of the experiments can be found at
https://github.com/marcomussi/DLB. Details
and additional experiments can be found in Appendix E.

Baselines We consider as main baseline Lin-UCB (Abbasi-
Yadkori et al., 2011), designed for linear bandits. We in-
clude Exp3 (Auer et al., 1995) usually employed in (non-
adaptive) adversarial settings, and its extension to k-length
memory (adaptive) adversaries Exp3-k by Dekel et al.
(2012).8 Additionally, we perform a comparison with al-
gorithms for regret minimization in non-stationary environ-
ments: D-Lin-UCB (Russac et al., 2019), an extension of
Lin-UCB for non-stationary settings, and AR2 (Chen et al.,
2021), a bandit algorithm for processes presenting temporal
structure. Lastly, in the case of real-world data, we compare
our solution with a human-expert policy (Expert). This
policy is directly generalized from the original dataset by
learning via regression the average budget allocation over
all platforms from the available data.

For the baselines which do not support vectorial actions, we
perform a discretization of the action space U that surely
contains optimal action. Concerning the hyperparameters of
the baselines, whenever possible, they are selected as in the
respective original papers. The experiments are presented
with a regularization parameter λ P t1, log T} for the algo-
rithms which require it (i.e., DynLin-UCB, Lin-UCB, and

8k is proportional to tlogM{ logp1{ρqu. In Appendix A.3 we
elaborate on the use of adversarial bandit algorithms for DLBs.

D-Lin-UCB).9 Further information about the hyperparam-
eters of the baselines and the adopted optimistic exploration
bounds are presented in Appendix E.1.

5.1. Synthetic Data

Setting We consider a DLB defined by the following ma-
trices A “ diagpp0.2, 0, 0.1qq, B “ diagpp0.25, 0, 0.1qq,
θ “ p0, 0.5, 0.1qT, ω “ p1, 0, 0.1qT and a Gaussian noise
with σ “ 0.01 (diagonal covariance matrix for the state
noise).10 This way, the spectral gap of the dynamical matrix
is ρpAq “ 0.2 and ΦpAq “ 1. Moreover, the cumula-
tive Markov parameter is given by h “ p0.56, 0.5, 0.11qT.
We consider the action space U “ tpu1, u2, u3qT P

r0, 1s3 with u1 ` u2 ` u3 ď 1.5u that simulates a total
budget of 1.5 to be allocated to the three platforms. Thus, a
“myopic” agent would simply look at how the action imme-
diately propagates to the reward through θ, and will invest
the budget in the second component of the action, which is
weighted by 0.5. Instead, a “far-sighted” agent, aware of the
system evolution, will look at the cumulative Markov param-
eter h, realizing that the most convenient action is investing
in the first component, weighted by 0.56. Therefore, the
optimal action is u˚ “ p1, 0.5, 0qT leading to J˚ “ 0.81.

Comparison with the bandit baselines Figure 1
shows the performance in terms of cumulative regret of
DynLin-UCB, Lin-UCB, D-Lin-UCB, AR2, Exp3, and
Exp3-k. The experiments are conducted over a time hori-
zon of 1 million rounds. For DynLin-UCB, we employed,
for the sake of this experiment, the true value of the spec-
tral gap, i.e., ρ “ ρpAq “ 0.2. First of all, we observe
that both Exp3 and Exp3-k suffers a significantly large
cumulative regret. Similar behavior is displayed by AR2.
Moreover, all the versions of Lin-UCB and D-Lin-UCB
suffer linear regret. The best performance of D-Lin-UCB
is obtained when the discount factor γ is close to 1 (the
weights take the form wt “ γ´t), and the behavior is com-
parable with the one of Lin-UCB. Even for a quite fast sys-
tem (ρpAq “ 0.2), ignoring the system dynamics, and the
presence of the hidden state, has made both Lin-UCB and
D-Lin-UCB commit (in their best version, with λ “ log T )
to the sub-optimal (myopic) action u˝ “ p0.5, 1, 0qT with
performance J˝ “ 0.78 ă J˚, with also a relevant vari-
ance. On the other hand, DynLin-UCB is able to maintain

9For DynLin-UCB, log T is a nearly optimal choice for λ as
it can be seen by looking at the first two addenda of the exploration
factor in Equation (6).

10It is worth noting that the decision of using diagonal matrices
is just for explanation purposes and w.l.o.g. (at least in the class of
diagonalizable dynamic matrices). Indeed, we are just interested in
the cumulative Markov parameter h and we could have obtained
the same results with an equivalent (non-diagonal) representation,
by applying an inevitable transformation T as A1

“ TAT´1,
ω1

“ T´Tω, and B1
“ TB.
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the upper bound on the spectral radius ρ
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Figure 3. Cumulative regret for
DynLin-UCB, the other bandit
baselines and the Expert in the system
generalized from real-world data (50
runs, mean ˘ std).

a smaller and stable (variance is negligible) sublinear regret
in both its versions, with a notable advantage when using
λ “ log T .

Sensitivity to the Choice of ρ The upper bound ρ of the
spectral radius ρpAq “ 0.2 represents a crucial parameter
of DynLin-UCB. While an overestimation ρ " ρpAq

does not compromise the regret rate but tends to slow
down the convergence process, a severe underestimation
ρ ! ρpAq might prevent learning at all. In Figure 2, we
test DynLin-UCB against a misspecification of ρ, when
λ “ log T . We can see that by considering ρ “ 2ρpAq,
DynLin-UCB experiences a larger regret but still sublin-
ear and smaller w.r.t. Lin-UCB with λ “ log T . Even by
reducing ρ P t0.1, 0.05u, DynLin-UCB is able to keep the
regret sublinear, showing remarkable robustness to misspec-
ification. Clearly, setting ρ “ 0 makes the regret almost
degenerate to linear.

5.2. Real-world Data

We present an experimental evaluation based on real-
world data coming from three web advertising platforms
(Facebook, Google, and Bing), related to several cam-
paigns for an invested budget of 5 Million EUR over 2 years.
Starting from such data, we learn the best DLB model by
means of a specifically designed variant of the Ho-Kalman
algorithm (Ho & Kalman, 1966).11 We used the learned
model to build up a simulator. The resulting system has
ρpAq “ 0.67. We evaluate DynLin-UCB against the base-
lines for T “ 106 steps over 50 runs.

Results Figure 3 shows the results in terms of cumulative
regret. It is worth noting that no algorithm, except for
DynLin-UCB, is able to converge to the optimal choice.
Indeed, they immediately commit to a sub-optimal solution.

11See Appendix D.

DynLin-UCB, instead, shows a convergence trend towards
the optimal policy over time for both λ “ 1 and λ “ log T ,
even if the best-performing version is the one which employs
λ “ log T . The Expert, which has a preference towards
maximizing the instantaneous effect of the actions only and
does not take into account correlations between platforms,
displays a sub-optimal performance.

6. Discussion and Conclusions
In this paper, we have introduced the Dynamical Linear Ban-
dits (DLBs), a novel model to represent sequential decision-
making problems in which the system is characterized by a
non-observable hidden state that evolves according to linear
dynamics and by an observable noisy reward that linearly
combines the hidden state and the action played. This model
accounts for scenarios that cannot be easily represented by
existing bandit models that consider delayed and aggregated
feedback. We have derived a regret lower bound that high-
lights the main complexities of the DLB problem. Then,
we have proposed a novel optimistic regret minimization
approach, DynLin-UCB, that, under stability assumption,
is able to achieve sub-linear regret. The numerical simula-
tion in both synthetic and real-world domains succeeded in
showing that, in a setting where the baselines mostly suffer
linear regret, our algorithm consistently enjoys sublinear
regret. Furthermore, DynLin-UCB proved to be robust to
misspecification of its most relevant hyper-parameter ρ. To
the best of our knowledge, this is the first work addressing
this family of problems, characterized by hidden linear dy-
namics, with a simple, yet effective, bandit-like approach.
Short-term future directions include efforts in closing the
gap between the regret lower and upper bounds. Long-term
future directions should focus on extending the present ap-
proach to non-linear system dynamics and embedding in the
algorithm additional budget constraints enforced over the
optimization horizon.
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A. Additional Related Works
In this appendix, we report additional details about the related works.

A.1. Delayed/Aggregated Feedback with DLBs

In this appendix, we show how we can model delayed and composite feedback with DLBs. For the delayed feedback, we
focus on the case in which either the delay is fixed to the value τ ě 1, i.e., the reward of the pull performed at round t is
experienced at round t ` τ . For the composite feedback, we assume that the reward of the pull performed at round t is
spread over the next τ ě 1 rounds with fixed weights pw1, . . . , wτ q. Denoting with Rt the full reward (not observed) due to
the pull performed at round t, the agent at round t observes the weighted sum of the rewards reported below:12

τ
ÿ

l“1

wlRt´l. (6)

These two cases can be modeled as DLBs with a suitable encoding of the arms and choice of matrices. In particular,
assuming to have K arms, we take the arm set U to be the canonical basis of RK , and we denote with µ the vector of
expected rewards. We define θ “ 0 and:

A “

¨

˚

˚

˚

˚

˚

˝

0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

˛

‹

‹

‹

‹

‹

‚

P Rτˆτ , B “

¨

˚

˚

˚

˚

˚

˝

µT
K

0T
K

0T
K
...

0T
K

˛

‹

‹

‹

‹

‹

‚

P RτˆK ,

ωdelay “

¨

˚

˚

˚

˚

˚

˝

0
0
0
...
1

˛

‹

‹

‹

‹

‹

‚

P Rτ , ωcomposite “

¨

˚

˚

˚

˚

˚

˝

w1

w2

w3

...
wτ

˛

‹

‹

‹

‹

‹

‚

P Rτ .

However, DLBs cannot model random or adversarial delays. Nevertheless, DLBs can capture scenarios of composite
feedback in which the reward is spread over an infinite number of rounds. Keeping the K-armed case introduced above, we
can consider the simplest example of a reward that spreads as an autoregressive process AR(1) with parameter γ P p0, 1q,
that cannot be represented using the standard composite feedback. In such a case, we simply need a system with order n “ 1
with matrices (actually scalars):

A “ γ, B “ uT , ω “ 1.

Clearly, one can consider AR(m) processes (Bacchiocchi et al., 2022) by employing systems of order n “ m ą 1.

A.2. Partially Observable Markov Decision Processes

As already noted, looking at DLBs in their generality, we realize that our model is a particular subclass of the Partially
Observable Markov Decision Processes (POMDP, Åström, 1965). However, in the POMDP literature, no particular structure
of the hidden state dynamics is assumed. The specific linear dynamics are rarely considered, as well as the possibility of a
reward that is a linear combination of the hidden state and the action. Nevertheless, several works accounted for the presence
of constraints (Isom et al., 2008; Undurti & How, 2010; Kim et al., 2011) without exploiting the linearity and without regret
guarantees.

A.3. Adversarial Bandits

It is worth elaborating on the adaptation of adversarial MAB algorithms to this setting. First, since the reward distribution in
DLBs depends at every round t on the sequence of actions played by the agent prior to t, we can reduce the DLB setting to
an adversarial bandit with an adaptive (or non-oblivious) adversary. Second, such an adversary must have infinite memory
in principle. Third, our regret definition of Section 2 is a policy regret (Dekel et al., 2012) that compares the algorithm
performance against playing the optimal policy in hindsight from the beginning, as opposed to the external regret often

12It is worth noting that the fixed-delay case is a particular case of composite feedback, where w1 “ ¨ ¨ ¨ “ wτ´1 “ 0 and wτ “ 1.
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employed for non-adaptive adversaries. It is well known that for infinite-memory adaptive adversaries, no algorithm can
achieve sublinear policy regret. Nevertheless, for DLB setting, we know that the effect of the past is always vanishing (given
Assumption 2.1 enforcing ρpAq ă 1), so we can approximate our setting as a finite-memory setting, by considering memory
length k9r

logM
log 1{ρ s, where M is the one defined in Algorithm 1 (line 2), with an additional regret term only logarithmic in

the optimization horizon T . Then, given this approximation, we can make use of an adversarial bandit algorithm (designed
for non-adaptive adversaries) in the framework proposed by Dekel et al. (2012) to make it effective for the finite-memory
adaptive adversary setting. In the case of an optimal algorithm, such as Exp3 (Auer et al., 2002), suffering an external
regret of order rOp

?
MT q, being M the number of arms, the version to address this finite-memory adaptive adversary setting

suffers a regret bounded by rOppk ` 1qM1{3T 2{3q, as shown in Theorem 2 of Dekel et al. (2012).

A.4. Other Approaches

Non-stationary bandits (Gur et al., 2014) can be regarded as bandits with a hidden state that evolves through a (possibly
non-linear) dynamics. The main difference compared with our DLBs is that the hidden state evolves in an uncontrollable
way, i.e., it does not depend on the sequence of actions performed so far. Russac et al. (2019) extend the linear bandit setting
by considering a non-stationary evolution of the parameter θ˚

t . The notion of dynamic bandit is further studied by Chen et al.
(2021), where an auto-regressive process is considered for the evolution of the reward through time and by Nobari (2019)
that propose a practical approach to cope with this setting.

B. Proofs and Derivations
In this section, we provide the proofs we have omitted in the main paper.

B.1. Proofs of Section 2

Before we proceed, we introduce a different notion of regret useful for analysis purposes, that we name offline regret. This
notion of regret compares J˚ with the steady-state performance of the action ut “ πtpHt´1q played at each round t P JT K
by the agent:

Roffpπ, T q :“ TJ˚ ´

T
ÿ

t“1

Jputq. (7)

We denote with ERoffpπ, T q the expected offline regret, where the expectation is taken w.r.t. the randomness of the reward.
Clearly, the two notions of regret coincide when the system has no dynamics.

The following result relates the offline and the (online) expected regret.

Lemma B.1. Under Assumptions 2.1 and 2.2, for any policy π, it holds that:
ˇ

ˇERoffpπ, T q ´ ERpπ, T q
ˇ

ˇ ď
ΩΦpAqBU

p1 ´ ρpAqq2
`

ΩΦpAqX

1 ´ ρpAq
.

Proof. First of all, we observe that for any policy, the cumulative effect of the noise components is zero-mean. Thus, it
suffices to consider the deterministic evolution of the system. For every t P JT K, let us denote with Eryts the expected
reward at time t and with Jputq as the steady-state performance when executing action ut:

Eryts “

t´1
ÿ

s“0

xhtsu,ut´sy ` ωTAt´1x1 “ θTut ` ωT
t´1
ÿ

s“1

As´1But´s ` ωTAt´1x1,

Jputq “ θTut ` ωT pId ´ Aq
´1

ut “ θTut ` ωT
`8
ÿ

s“0

Asut.

We now proceed by summing over t P JT K. First of all, we consider the following preliminary result involving yt, which is
obtained by rearranging the summations:

T
ÿ

t“1

Eryts “ θT
T

ÿ

t“1

ut ` ωT
T

ÿ

t“1

t´1
ÿ

s“1

As´1But´s ` ωT
T

ÿ

t“1

At´1x1

12
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“ θT
T

ÿ

t“1

ut ` ωT
T´1
ÿ

t“1

˜

T´t´1
ÿ

s“0

As

¸

But ` ωT
T

ÿ

t“1

At´1x1.

Thus, we have:
ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

pJputq ´ Erytsq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ωT
T

ÿ

t“1

˜

`8
ÿ

s“0

As ´

T´t´1
ÿ

s“0

As

¸

But ´ ωT
T

ÿ

t“1

At´1x1

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ωT
T

ÿ

t“1

˜

`8
ÿ

s“T´t

As

¸

But ´ ωT
T

ÿ

t“1

At´1x1

ˇ

ˇ

ˇ

ˇ

ˇ

ď ΩΦpAqBU
T

ÿ

t“1

`8
ÿ

s“T´t

ρpAqs ` ΩΦpAqX
T

ÿ

t“1

ρpAqt´1 (8)

ď
ΩΦpAqBU

1 ´ ρpAq

T
ÿ

t“1

ρpAqT´t `
ΩΦpAqX

1 ´ ρpAq
(9)

ď
ΩΦpAqBU

p1 ´ ρpAqq2
`

ΩΦpAqX

1 ´ ρpAq
, (10)

where line (8) follows from Assumptions 2.1 and 2.2, lines (9) and (10) follow from bounding the summations with the
series. The result follows by observing that:

ERoffpπ, T q ´ ERpπ, T q “

T
ÿ

t“1

pJputq ´ Erytsq .

Theorem 2.2 (Lower Bound). For any policy π (even stochastic), there exists a DLB fulfilling Assumptions 2.1 and 2.2,
such that for sufficiently large T ě O

´

d2

1´ρpAq

¯

, policy π suffers an expected regret lower bounded by:

ERpπ, T q ě Ω

˜

d
?
T

p1 ´ ρpAqq
1
2

¸

.

Proof. To derive the lower bound, we take inspiration from the construction of (Lattimore & Szepesvári, 2020) for linear
bandits (Theorem 24.1). We consider a class of DLBs defined in terms of fixed 0 ď ρ ă 1 and 0 ď ϵ ď ρ with ω “ 1d,
θ “ ´

2p1´ρq`ϵ
2p1´pρ´ϵqq

1d, B “ p1 ´ ρqId and with a diagonal dynamical matrix A “ diagpaq, defined in terms of the vector a
belonging to the set A “ tρ, ρ ´ ϵud. The available actions are U “ t´1, 1ud. Let us note that |A| “ |U | “ 2d. Thus, in
our set of DLBs, the vector a fully characterizes the problem. Moreover, we observe that, given the diagonal a “ diagpAq,
we can compute the cumulative Markov parameter ha “ signpaq ϵ

2p1´pρ´ϵqq
.13 As a consequence the optimal action can be

defined as u˚
a “ signpaq, whose performance is given by J˚

a “ xha,u
˚
ay “ ϵd

2p1´pρ´ϵqq
.

Let us consider the probability distribution over the canonical bandit model induced by executing a policy π in a DLB
characterized by the diagonal of the dynamical matrix a P A and with Gaussian diagonal noise:

Pa “

T
ź

t“1

N pxt`1|Axt ` But, σ
2IdqN pyt|xθ,uty ` xω,xty, σ

2qπtput|Ht´1q,

where Ht´1 is the history of observations up to time t´1. We denote with Ea the expectation induced by the distribution Pa.
For every i P JdK, let us now consider an alternative DLB instance that differs on the dynamical matrix only. Specifically:

a1
j “

$

’

&

’

%

aj if j ‰ i

ρ if j “ i and aj “ ρ ´ ϵ

ρ ´ ϵ if j “ i and aj “ ρ

, @j P JdK.

13For a vector v P Rd, we denote with signpvq P t´1, 1u
d the vector of the signs of the components of v. It is irrelevant how we

convene to define the sign of 0.
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By relative entropy identities (Lattimore & Szepesvári, 2020), let A “ diagpaq and A1 “ diagpa1q, we have:

DKL pPa,Pa1 q “ Ea

«

T
ÿ

t“1

DKL
`

N p¨|Axt ` But, σ
2Idq,N p¨|A1xt ` But, σ

2Idq
˘

ff

“
1

2σ2

T
ÿ

t“1

Ea

”

›

›

`

A ´ A1
˘

xt

›

›

2

2

ı

“ ϵ2Ea

“

x2
t,i

‰

.

We proceed at properly bounding the KL-divergence, letting ei be the i-th vector of the canonical basis of Rd and convening
that x0 “ 0d:

Ea

“

x2
t,i

‰

“ Ea

»

–

˜

t´1
ÿ

s“1

eTiA
sBut´s `

t´1
ÿ

s“1

eTiA
sϵt´s

¸2
fi

fl

“ Ea

»

–

˜

p1 ´ ρq

t´1
ÿ

s“1

asiut´s,i `

t´1
ÿ

s“1

asiϵt´s,i

¸2
fi

fl

“ Ea

»

—

—

—

—

–

p1 ´ ρq2
t´1
ÿ

s“1

t´1
ÿ

l“1

as`l
i ut´s,iut´l,i

looooooooooooooooooomooooooooooooooooooon

(a)

`2 p1 ´ ρq

t´1
ÿ

s“1

t´1
ÿ

l“1

as`l
i ut´s,iϵt´l,i

loooooooooooooooooomoooooooooooooooooon

(b)

`

t´1
ÿ

s“1

t´1
ÿ

l“1

as`l
i ϵt´s,iϵt´l,i

looooooooooooomooooooooooooon

(c)

fi

ffi

ffi

ffi

ffi

fl

Let us start with (a):

p1 ´ ρq2Ea

«

t´1
ÿ

s“1

t´1
ÿ

l“1

as`l
i ut´s,iut´l,i

ff

ď p1 ´ ρq2
t´1
ÿ

s“1

t´1
ÿ

l“1

ρs`l ď 1,

having observed that |ut´s,i|, |ut´l,i| ď 1, that |ai| ď ρ, and bounding the summations with the series. Let us move to (b):

p1 ´ ρqEa

«

t´1
ÿ

s“1

t´1
ÿ

l“1

as`l
i ut´s,iϵt´l,i

ff

“ p1 ´ ρqEa

«

t´1
ÿ

s“1

t´1
ÿ

l“s`1

as`l
i ut´s,iϵt´l,i

ff

` p1 ´ ρq

�������������:0

Ea

«

t´1
ÿ

l“1

t´1
ÿ

s“l

as`l
i ut´s,iϵt´l,i

ff

ď p1 ´ ρq

t´1
ÿ

s“1

t´1
ÿ

l“s`1

ρs`lEa r|ϵt´l,i|s

ď
σ

1 ´ ρ

c

2

π
,

having observed that ut´s,i and ϵt´l,i are independent when s ě l and ϵt´l,i has zero mean, that |ut´s,i| ď 1, that as`l
i ď

ρs`l, and that the expectation of the absolute value of random variable normally distributed is given by E r|ϵt´l,i|s “ σ
b

2
π .

Finally, let us consider (c):

Ea

«

t´1
ÿ

s“1

t´1
ÿ

l“1

as`l
i ϵt´s,iϵt´l,i

ff

“ Ea

«

t´1
ÿ

s“1

a2si ϵt´s,iϵt´s,i

ff

` 2

��������������:0

Ea

«

t´2
ÿ

s“1

t´1
ÿ

l“s`1

as`l
i ϵt´s,iϵt´l,i

ff

ď σ2
t´1
ÿ

s“1

ρ2s ď
σ2

1 ´ ρ2
ď

σ2

1 ´ ρ
,

having observed that the noise vectors ϵt´l,i and ϵt´s,i are independent whenever s ‰ l, that Earϵ2t´s,is “ σ2, and having
bounded the sum with the series. Coming back to the original bound, we have:

Ea

“

x2
t,i

‰

ď 1 `
1

1 ´ ρ

˜

σ2 ` 2σ

c

2

π

¸

.

14



Dynamical Linear Bandits

For i P JdK and a P A, we introduce the symbol:

pa,i “ Pa

˜

T
ÿ

t“1

1tsignput,iq ‰ signpha,iqu ě
T

2

¸

.

Thus, for a and a1 defined as above, by the Bretagnolle-Huber inequality (Lattimore & Szepesvári, 2020, Theorem 14.2), we
have:

pa,i ` pa1,i ě
1

2
exp p´DKL pPa,Pa1 qq “

1

2
exp

˜

´
1

2σ2

T
ÿ

t“1

EP

”

›

›

`

A ´ A1
˘

xt

›

›

2

2

ı

¸

ě
1

2
exp

˜

´
Tϵ2

2

˜

1

σ2
`

1

1 ´ ρ

˜

1 `
2

σ

c

2

π

¸¸¸

ě
1

2
exp

ˆ

´
2Tϵ2

1 ´ ρ

˙

,

having selected σ2 “ 1. We use the notation
ř

a´i
to denote the multiple summation

ř

a1,...,ai´1,ai`1,...,adPtρ,ρ´ϵud´1 :

ÿ

aPA
2´d

d
ÿ

i“1

pa,i “

d
ÿ

i“1

ÿ

a´i

2´d
ÿ

aiPtρ,ρ´ϵu

pa,i

ě

d
ÿ

i“1

ÿ

a´i

2´d ¨
1

2
exp

ˆ

´
2Tϵ2

1 ´ ρ

˙

“
d

4
exp

ˆ

´
2Tϵ2

1 ´ ρ

˙

.

Therefore, with this averaging argument, we can conclude that there exists a˚ P A such that
řd

i“1 pa˚,i ě d
4 exp

´

´ 2Tϵ2

1´ρ

¯

.
For this choice a˚, we consider u˚

a˚ “ signpa˚q P U , we can proceed to the lower bound on the expected offline regret:

ERoffpπ, T q “

T
ÿ

t“1

Ea˚ rxha˚ ,u˚
a˚ ´ utys

“

T
ÿ

t“1

Ea˚

«

d
ÿ

i“1

1tsignput,iq ‰ signpha˚,iqu
ϵ

1 ´ pρ ´ ϵq

ff

“
ϵ

1 ´ pρ ´ ϵq

T
ÿ

t“1

d
ÿ

i“1

Pa˚

`

signput,iq ‰ signpha˚,iq
˘

ě
Tϵ

2p1 ´ pρ ´ ϵqq

d
ÿ

i“1

Pa˚

˜

T
ÿ

t“1

1tsignput,iq ‰ signpha˚,iqu ě
T

2

¸

“
Tϵ

2p1 ´ pρ ´ ϵqq

d
ÿ

i“1

pa˚,i ě
Tdϵ

8p1 ´ pρ ´ ϵqq
exp

ˆ

´
2Tϵ2

1 ´ ρ

˙

.

We now maximize over 0 ď ϵ ă ρ. To this end, we perform the substitution ϵ “
p1´ρqrϵ
1´rϵ , with 0 ď rϵ ď ρ:

Tdϵ

8p1 ´ pρ ´ ϵqq
exp

ˆ

´
2Tϵ2

1 ´ ρ

˙

“
Tdrϵ

8
exp

ˆ

´
2rϵ2T p1 ´ ρq

p1 ´ rϵq2

˙

ě
Tdrϵ

8
exp

`

´8rϵ2T p1 ´ ρq
˘

,

where the last inequality holds for rϵ ď 1
2 . We not take rϵ “ 1?

8T p1´ρq
which is smaller than 1

2 if T ě 1
2p1´ρq

, to get:

ERoffpπ, T q ě
d

?
T

a

512ep1 ´ ρq
.

Notice that with this choice of rϵ (and, consequently, of ϵ), for sufficiently large T , we fulfill Assumption 2.2. Indeed:

θ “ ´1 `
1

a

32T p1 ´ ρq
, J˚

a “
d

a

32T p1 ´ ρq
.
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Thus, we require T ě O
´

d2

1´ρ

¯

. Finally, to convert this result to the expected regret, we employ Lemma B.1:

ERoffpπ, T q ě ERoffpπ, T q ´
d

1 ´ ρ
.

Under the constraint T ě O
´

d2

1´ρ

¯

, we observe that:

ERoffpπ, T q ě Ω

˜

d
?
T

p1 ´ ρq
1
2

¸

.

Theorem 2.1 (Optimal Policy). Under Assumptions 2.1 and 2.2, an optimal policy π˚ maximizing the (infinite-horizon)
expected average reward Jpπq (Equation 2), for every round t P N and history Ht´1 P Ht´1 is given by:

π˚
t pHt´1q“u˚ where u˚Pargmax

uPU
Jpuq“xh,uy. (4)

Proof. Referring to the notation of Appendix C, we first observe that for every policy π, we have Jpπq “

lim infHÑ`8 JHpπq, where JHpπq “ 1
H Er

řH
t“1 yts, is the H-horizon expected average reward. Let us start with

Equation (18), a fixed finite H P N, and considering the sequence of actions pu1,u2, . . . q generated by policy π:

JHpπq “
1

H

H
ÿ

s“1

xhJ0,H´sK,Erussy `
1

H

H
ÿ

t“1

ωTAt´1 Erx1s

“
1

H

H
ÿ

s“1

xh,Erussy ´
1

H

H
ÿ

s“1

xhJH´s`1,`8M,Erussy `
1

H

H
ÿ

t“1

ωTAt´1 Erx1s.

Now, we consider two bounds on JHpπq, obtained by an application of Cauchy-Schwarz inequality on the second addendum:

JHpπq ď
1

H

H
ÿ

s“1

xh,Erussy `
1

H

H
ÿ

s“1

›

›

›
hJH´s`1,`8M

›

›

›

2
}Eruss}2

`
1

H

H
ÿ

t“1

ωTAt´1 Erx1s “: JÒ

Hpπq,

JHpπq ě
1

H

H
ÿ

s“1

xh,Erussy ´
1

H

H
ÿ

s“1

›

›

›
hJH´s`1,`8M

›

›

›

2
}Eruss}2

`
1

H

H
ÿ

t“1

ωTAt´1 Erx1s “: JÓ

Hpπq.

Concerning the term }Eruss}2, we have that }Eruss}2 ď Er}us}2s ď U , having used Jensen’s inequality and under
Assumption 2.2. Regarding the second term, using Assumptions 2.1 and 2.2, we obtain:

›

›

›
hJH´s`1,`8M

›

›

›

2
“

›

›

›

›

›

`8
ÿ

l“H´s`1

BTpAl´1qTω

›

›

›

›

›

2

ď BΩ
`8
ÿ

l“H´s`1

ΦpAqρpAql´1

“ BΩΦpAq
ρpAqH´s

1 ´ ρpAq
. (11)

Plugging this result into the summation over s, we obtain:

1

H
¨
BΩΦpAq

1 ´ ρpAq

H
ÿ

s“1

ρpAqH´s “
BΩΦpAqp1 ´ ρpAqHq

Hp1 ´ ρpAqq2
.

It is simple to observe that the last term approaches zero as H Ñ `8. Moreover, with an analogous argument,
it can be proved that

›

›

›

1
H

řH
t“1 ω

TAt´1 Erx1s

›

›

›

2
Ñ 0 as H Ñ `8. Thus, we have that lim infHÑ`8 JÓ

Hpπq “

16



Dynamical Linear Bandits

lim infHÑ`8 JÒ

Hpπq. Consequently, by the squeezing theorem of limits, we have:

Jpπq “ lim inf
HÑ`8

JÒ

Hpπq “ lim inf
HÑ`8

JÓ

Hpπq

“ lim inf
HÑ`8

1

H

H
ÿ

s“1

xh,Erussy “ hT

˜

lim inf
HÑ`8

1

H

H
ÿ

s“1

Eruss

¸

.

It follows that an optimal policy is a policy that plays the constant action u˚ P argmaxuPUxh,uy.

B.2. Proofs of Section 3

Theorem 3.1 (Self-Normalized Concentration). Let pphtqtPN be the sequence of solutions of the Ridge regression problems
of Algorithm 1. Then, under Assumption 2.1 and 2.2, for every λ ě 0 and δ P p0, 1q, with probability at least 1 ´ δ,
simultaneously for all rounds t P N, it holds that:

›

›

›

pht ´ h
›

›

›

Vt

ď
c1

?
λ
logpept ` 1qq ` c2

?
λ

`

d

2rσ2

ˆ

log

ˆ

1

δ

˙

`
1

2
log

ˆ

det pVtq

λd

˙˙

,

where c1 “ UΩΦpAq

´

UB
1´ρpAq

` X
¯

, c2 “ Θ `
ΩBΦpAq

1´ρpAq
, and rσ2 “ σ2

´

1 `
Ω2ΦpAq

2

1´ρpAq2

¯

.

Proof. First of all, let us properly relate the round t P JT K and the index of the epoch m P JMK. For every epoch m P JMK,
we denote with tm the last round of epoch m (i.e., the one in which we update the relevant matrices Vt and bt):14

t0 “ 0, tm “ tm´1 ` 1 ` Hm.

We now proceed to define suitable filtrations. Let F “ pFtqtPJT K such that for every t ě 1, the random variables
tu1, y1, . . . ,ut´1, yt´1,utu are Ft´1-measurable, i.e., Ft´1 “ σpu1, y1, . . . ,ut´1, yt´1,utq. Let us also consider the
filtration indexed by m, denoted with rF “ p rFmqmPJMK and defined for all m P JMK as rFm “ Ftm`1´1. Thus, the random
variables rFm´1-measurable are those realized until the end of epoch m except for ytm .

Since the estimates pht do not change within an epoch, we need to guarantee the statement for all rounds ttmumPJMK only.
For these rounds, we define the following quantities:

rym “ ytm ,

rum “ utm , (or any ul with l P Jtm´1 ` 1, tmK since they are all equal)

rξm “ ηtm `

Hm`1
ÿ

s“1

ωTAs´1ϵtm´s,

rxm´1 “ xtm´1
,

rhm “ phtm ,

rVm “ Vtm ,

rbm “ btm .

We prove that prξmqmPJMK is a martingale difference process adapted to the filtration rF. To this end, we recall that, by
construction, pηtqtPJT K and pϵtqtPJT K are martingale difference processes adapted to the filtration F. It is clear that rξm is
Fm-measurable and, being σ2-subgaussian it is absolutely integrable. Furthermore, using the tower law of expectation:

E
”

rξm| rFm´1

ı

“ E

«

ηtm `

Hm`1
ÿ

s“1

ωTAs´1ϵtm´s|Ftm´1

ff

“ E rηtm |Ftm´1s ` E

«

Hm`1
ÿ

s“1

ωTAs´1 Erϵtm´s|Ftm´s´1s|Ftm´1

ff

“ 0,

since the system is operating by persisting the action after having decided it at the beginning of the epoch. Thus, by

14It is worth noting that the variables tm are deterministic.
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exploiting the decomposition in Equation (1), we can write:

rym “ ytm “ xhJ0,Hm`1K, rumy ` ωTAHm`1xtm´1
` ηtm `

Hm`1
ÿ

s“1

ωTAs´1ϵtm´s

“ xhJ0,Hm`1K, rumy ` ωTAHm`1
rxm´1 ` rξm

“ xh, rumy ´ xhJHm`2,8M, rumy ` ωTAHm`1
rxm´1 ` rξm, (12)

where we simply exploit the identity h “ hJ0,Hm`1K ` hJHm`2,8M. We now introduce the following vectors and matrices:

rUm “

¨

˚

˝

ruT1
...

ruTm

˛

‹

‚

P Rmˆd, rym “

¨

˚

˝

ry1
...

rym

˛

‹

‚

P Rm,

rξm “

¨

˚

˝

rξ1
...

rξm

˛

‹

‚

P Rm, rνm “

¨

˚

˝

ωTAH1`2
rx0

...
ωTAHm`2

rxm´1

˛

‹

‚

P Rm,

rgm “

¨

˚

˝

xhJH1`1,8M, ru1y

...
xhJHm`1,8M, rumy

˛

‹

‚

P Rm.

Using the vectors and matrices above, we observe that rVm “ λI ` rUT
m

rUm and rbm “ rUT
mrym. Furthermore, by exploiting

Equation (12), we can write:

rym “ rUmh ´ rgm ` rνm ` rξm.

Let us consider the estimate at m P JMK:

rhm “ rV´1
m

rbm “

´

λI ` rUT
m

rUm

¯´1
rUT

mrym

“

´

λI ` rUT
m

rUm

¯´1
rUT

m

´

rUmh ´ rgm ` rνm ` rξm

¯

“ h `

´

λI ` rUT
m

rUm

¯´1 ´

´λh ´ rUT
mrgm ` rUT

mrνm ` rUT
m

rξm

¯

.

We now proceed at bounding the } ¨ }
rVm

-norm, and exploit the triangle inequality:
›

›

›

rhm ´ h
›

›

›

rVm

ď λ
›

›

›

rV´1
m h

›

›

›

rVm

`

›

›

›

rV´1
m

rUT
mrgm

›

›

›

rVm

`

›

›

›

rV´1
m

rUT
mrνm

›

›

›

rVm

`

›

›

›

rV´1
m

rUT
m

rξm

›

›

›

rVm

“ λ }h}
rV´1

m
looomooon

(a)

`

›

›

›

rUT
mrgm

›

›

›

rV´1
m

loooooomoooooon

(b)

`

›

›

›

rUT
mrνm

›

›

›

rV´1
m

loooooomoooooon

(c)

`

›

›

›

rUT
m

rξm

›

›

›

rV´1
m

loooooomoooooon

(d)

,

where we simply exploited the identity }V´1x}2V “ xTV´1VV´1x “ xTV´1x “ }x}2V´1 . We now bound one term at a
time. Let us start with (a):

(a)2 “ λ2 }h}
2
rV´1

m
“ λ2hT rV´1

m h

ď λ2
›

›

›

rV´1
m

›

›

›

2
}h}

2
2

ď λ }h}
2
2

ď λ

ˆ

Θ `
ΩBΦpAq

1 ´ ρpAq

˙2

,

where we observed that
›

›

›

rV´1
m

›

›

›

2
ď

›

›

›

rVm

›

›

›

´1

2
ď λ´1. Finally, we have bounded the norm of h:

}h}2 “

›

›

›

›

›

`8
ÿ

s“0

htsu

›

›

›

›

›

2
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ď

`8
ÿ

s“0

›

›

›
htsu

›

›

›

2

ď }θ}2 ` }ω}2}B}2

`8
ÿ

s“1

}A}s´1

ď Θ `
ΩBΦpAq

1 ´ ρpAq
,

where we have exploited Assumptions 2.1 and 2.2.

We now move to term (b):

(b)2 “

›

›

›

rUT
mrgm

›

›

›

2

rV´1
m

“ rgTm
rUm

rV´1
m

rUT
mrgm

ď
1

λ

›

›

›
rgTm

rUm

›

›

›

2

2

“
1

λ

›

›

›

›

›

m
ÿ

l“1

xrul,h
JHl`2,8Myrul

›

›

›

›

›

2

2

ď
1

λ

˜

m
ÿ

l“1

}rul}
2
2

›

›

›
hJHl`2,8M

›

›

›

2

¸2

ď
U4Ω2B2ΦpAq2

λp1 ´ ρpAqq2
¨

˜

m
ÿ

l“1

ρpAqHl`1

¸2

,

where we have employed the following inequality:
›

›

›
hJHl`2,8M

›

›

›

2
“

›

›

›

›

›

ωT
`8
ÿ

j“Hl`2

Aj´1B

›

›

›

›

›

2

ď }ω}2 }B}2

`8
ÿ

j“Hl`2

›

›Aj´1
›

›

2

ď ΩBΦpAq
ρpAqHl`1

1 ´ ρpAq
.

Let us now consider term (c):

(c)2 “

›

›

›

rUT
mrνm

›

›

›

2

rV´1
m

“ rνTm
rUm

rV´1
m

rUT
mrνm

ď
1

λ

›

›

›

rUT
mrνm

›

›

›

2

2

“
1

λ

›

›

›

›

›

m
ÿ

s“1

ωTAHl`1
rxl´1rul

›

›

›

›

›

2

2

ď
1

λ

˜

m
ÿ

s“1

}ω}2
›

›AHl`1
›

›

2
}rxl´1}2}rul}2

¸2

ď
X2Ω2U2ΦpAq2

λ
¨

˜

m
ÿ

l“1

ρpAqHl`1

¸2

.

We now bound the summations, exploiting the inequality ρpAq ď ρ, holding by assumption:
m
ÿ

l“1

ρpAqHl`1 “

m
ÿ

l“1

ρpAq

Y

log l

log 1
ρ

]

`1

ď

m
ÿ

l“1

ρpAq

log l

log 1
ρ
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“

m
ÿ

l“1

exp

˜

´
log 1

ρpAq

log 1
ρ

log l

¸

“

m
ÿ

l“1

1

l
ď logpm ` 1q ` 1 ď logpt ` 1q ` 1 “ logpept ` 1qq,

having exploited the fact that m ď t and the bound with the integral to the harmonic sum.

Finally, we consider term (d). In this case, we apply Theorem 1 of (Abbasi-Yadkori et al., 2011), observing that the
conditions are satisfied. To this end, we first need to determine the subgaussianity constant for the noise process rξl. For
every l P JmK and ζ P R, and properly using the tower law of expectation:

E
”

exp
´

ζrξl

¯

| rFl´1

ı

“ E

«

exp

˜

ζηtl ` ζ
Hm`1

ÿ

s“1

ωTAs´1ϵtl´s

¸

|Ftl´1

ff

“ E rexp pζηtlq |Ftl´1s

Hm`1
ź

s“1

E
“

E
“

exp
`

ζωTAs´1ϵtl´s

˘

|Ftl´1´s

‰

|Ftl´1

‰

ď exp

ˆ

ζ2σ2

2

˙ Hm`1
ź

s“1

E
„

exp

ˆ

ζ2}ωTAs´1}22σ
2

2

˙

|Ftl´1

ȷ

ď exp

ˆ

ζ2σ2

2

˙ Hm`1
ź

s“1

exp

ˆ

ζ2Ω2ΦpAq2ρpAq2ps´1qσ2

2

˙

ď exp

˜

σ2ζ2

2

˜

1 ` Ω2ΦpAq2
`8
ÿ

s“1

ρpAq2ps´1q

¸¸

“ exp

ˆ

σ2ζ2

2

ˆ

1 `
Ω2ΦpAq2

p1 ´ ρpAq2q

˙˙

.

Thus, simultaneously for all m P JMK, with probability at least 1 ´ δ, it holds that:

(d)2 “

›

›

›

rUT
m

rξm

›

›

›

2

rV´1
m

ď 2σ2

ˆ

1 `
Ω2ΦpAq2

p1 ´ ρpAq2q

˙

¨

˝log

ˆ

1

δ

˙

`
1

2
log

¨

˝

det
´

rVm

¯

λd

˛

‚

˛

‚.

We now proceed at bounding the offline regret Roff and, then, relating the offline regret Roff with the online regret R, as
defined in the main paper.

Theorem B.2 (Offline Regret Upper Bound). Under Assumptions 2.1 and 2.2, having selected βt as in Equation (6), for
every δ P p0, 1q, with probability at least 1 ´ δ, DynLin-UCB suffers an offline regret Roff bounded as:

RoffpπDynLin-UCB, T q ď

g

f

f

e8dTβ2
T´1

˜

1 `
log T

log 1
ρ

¸

log

ˆ

1 `
TU2

dλ

˙

.

Moreover, by setting δ “ 1{T , highlighting the dependencies on T , ρ, d, and σ only, the expected offline regret ERoff is
bounded as:

ERoffpπDynLin-UCB, T q ď O

˜

dσ
?
T plog T q

3
2

1 ´ ρ
`

?
dT plog T q2

p1 ´ ρq
3
2

¸

.

Proof. For every epoch m P JMK, let us define rβm´1 “ βtm´1
and define the confidence set Cm´1 “ trh P Rd :

}rh ´ rhm´1}
rVm´1

ď rβm´1u. Let us start by considering the instantaneous offline regret rrm at epoch m P JMK. Let

u˚ P argmaxuPU xh,uy and let rhÒ
m´1 P Cm´1 such that UCBtm´1`1prumq “ xrhÒ

m´1, rumy. Thus, with probability at least
1 ´ δ, we have:

rrm “ J˚ ´ Jprumq “ xh,u˚y ´ xh, rumy ˘ xrhÒ
m´1, rumy
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ď xrhÒ
m´1 ´ h, rumy (13)

ď

›

›

›

rhÒ
m´1 ´ h

›

›

›

rVm´1

}rum}
rV´1

m´1

ď

ˆ

›

›

›

rhÒ
m´1 ´ rhm´1

›

›

›

rVm´1

`

›

›

›

rhm´1 ´ h
›

›

›

rVm´1

˙

}rum}
rV´1

m´1
(14)

ď 2rβm´1 }rum}
rV´1

m´1
. (15)

where line (13) follows from the optimism, line (14) derives from triangle inequality, line (15) is obtained by observing that
h P Cm´1 with probability at least 1 ´ δ, simultaneously for all m P JMK, thanks to Theorem 3.1, having observed that
rβm´1 is larger than the right hand side of Theorem 3.1.

We now move to the cumulative offline regret over the whole horizon T , by decomposing w.r.t. the epochs and recalling that
we pay the same instantaneous regret within each epoch:

RoffpDynLin-UCB, T q “

M
ÿ

m“1

pHm ` 1qrrm ď

g

f

f

e

M
ÿ

m“1

pHm ` 1q2

g

f

f

e

M
ÿ

m“1

rr2m.

Concerning the first summation, we proceed as follows, recalling that M ď T and Hm ď HM for all m P JMK:
M
ÿ

m“1

pHm ` 1q2 ď T pHM ` 1q ď T

˜

1 `
log T

log 1
ρ

¸

.

For the second summation, we follow the usual derivation for linear bandits, recalling that rβM´1 ě maxt1, rβm´1u for all
m P JMK and that under Assumption 2.2 we have that rr2m ď 2. In particular:

rr2m ď min
!

2, 2rβM´1 }rum}
rV´1

m´1

)

ď 2rβM´1 min
!

1, }rum}
rV´1

m´1

)

.

Plugging this inequality into the second summation, we obtain:
M
ÿ

m“1

rr2m ď 4rβ2
M´1

M
ÿ

m“1

min
!

1, }rum}
2
rV´1

m´1

)

ď 8drβ2
M´1 log

ˆ

1 `
MU2

dλ

˙

ď 8dβ2
T´1 log

ˆ

1 `
TU2

dλ

˙

,

where the last passage follows from the elliptic potential lemma (Lattimore & Szepesvári, 2020, Lemma 19.4). Putting all
together, we obtain the inequality holding with probability at least 1 ´ δ:

RoffpDynLin-UCB, T q ď

g

f

f

e8dTβ2
T´1

˜

1 `
log T

log 1
ρ

¸

log

ˆ

1 `
TU2

dλ

˙

,

having observed that rβM´1 ď βT´1 We can also arrive at a problem-dependent regret bound, by setting ∆ :“
infuPUxh,uyăxh,u˚y xh,u˚ ´ uy (if it exists ą 0). Since the instantaneous regret is either 0 or at least ∆, we have:

RoffpDynLin-UCB, T q ď

M
ÿ

m“1

pHm ` 1q
rr2m
∆

ď
HM ` 1

∆
8drβ2

M´1 log

ˆ

1 `
MU2

dλ

˙

ď
8d

∆

˜

1 `
log T

log 1
ρ

¸

β2
T´1 log

ˆ

1 `
TU2

dλ

˙

.

By setting δ “ 1{T , replacing the value of βT´1, we obtain the offline regret in expectation, highlighting the dependence on
T , ρ, d, and σ only:

ERoffpDynLin-UCB, T q ď O

˜

dσ
?
T plog T q

3
2

1 ´ ρ
`

?
dT plog T q2

p1 ´ ρq
3
2

¸

,

where we used the fact that 1
log 1

ρ

ď 1
1´ρ and ρpAq ď ρ.
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The following lemma relates the expected offline regret with the expected online regret.

Theorem 3.2 (Upper Bound). Under Assumptions 2.1 and 2.2, selecting βt as in Equation (6) and δ “ 1{T , DynLin-UCB
suffers an expected regret bounded as (highlighting the dependencies on T , ρ, d, and σ only):

ERpπDynLin-UCB, T q ď O

˜

dσ
?
T plog T q

3
2

1 ´ ρ

`

?
dT plog T q2

p1 ´ ρq
3
2

`
1

p1 ´ ρpAqq2

¸

.

Proof. The result is simply obtained by exploiting the offline regret bound of Theorem B.2 and by upper bounding the
expected regret using Lemma B.1.

C. Finite-Horizon Setting
In this section, we compare the finite-horizon setting with the infinite-horizon one presented in the main paper. We shall
show that under Assumption 2.1, the two settings tend to coincide when the horizon is sufficiently large. Let us start by
introducing the H–horizon expected average reward, with H P N being the optimization horizon:

JHpπq :“ E

«

1

H

H
ÿ

t“1

yt

ff

where

$

’

&

’

%

xt`1 “ Axt ` But ` ϵt

yt “ xω,xty ` xθ,uty ` ηt

ut “ πtpHt´1q

, t P rHs, (16)

where the expectation is taken w.r.t. the randomness of the state noise ϵt and reward noise ηt. We now show that the optimal
policy for the finite-horizon setting is a non-stationary open-loop policy.

Theorem C.1 (Optimal Policy for the H–Horizon Setting). If H P N, an optimal policy π˚
H “ pπ˚

H,tqtPJHK maximizing the
H-horizon expected average reward Jpπq as in Equation (16) is given by:

@t P JHK, @Ht´1 P Ht´1 : π˚
H,tpHt´1q “ u˚

H,t where u˚
H,t P argmax

uPU
xhJ0,H´tK,uy.

Proof. We start by expressing for every t P JHK the reward yt as a function of the sequence of actions u “ pu1, . . . ,uHq

produced by a generic policy π. By exploiting Equation (4) instanced with H “ t ´ 1, we have:

yt “

t´1
ÿ

s“0

xhtsu,ut´sy ` ωTAt´1x1 ` ηt `

t´1
ÿ

s“1

ωTAs´1ϵt´s.

By computing the expectation, using linearity, and recalling that the noises are zero-mean, we obtain:

Eryts “

t´1
ÿ

s“0

xhtsu,Erut´ssy ` ωTAt´1 Erx1s.

By averaging over t P JHK, we obtain the H-horizon expected average reward:

JHpπq “
1

H

H
ÿ

t“1

Eryts

“
1

H

H
ÿ

t“1

t´1
ÿ

s“0

xhtsu,Erut´ssy `
1

H

H
ÿ

t“1

ωTAt´1 Erx1s

“
1

H

H
ÿ

s“1

˜

H
ÿ

t“s

htt´su

¸T

Eruss `
1

H

H
ÿ

t“1

ωTAt´1 Erx1s (17)

“
1

H

H
ÿ

s“1

xhJ0,H´sK,Erussy `
1

H

H
ÿ

t“1

ωTAt´1 Erx1s. (18)

where line (17) is obtained by renaming the indexes of the summations, and line (18) comes from the definition of cumulative
Markov parameter hJ0,H´sK. It is now simple to see, as no noise is present in the expression, that the performance
JHpπq is maximized by taking at each round s P N an action u˚

s “ π˚
s pHs´1q such that whose expectation satisfies

Eru˚
s s “ argmaxErussxh

J0,H´sK,Erussy. Clearly, we can take the deterministic action such that u˚
s “ Eru˚

s s.
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We now show that for sufficiently large H , the H-horizon expected average reward JH tends to coincide with the infinite-
horizon expected average reward.

Proposition C.2. Let H P N. Then, for every policy π it holds that:

|JHpπq ´ Jpπq| ď
BUΩΦpAqp1 ´ ρpAqHq

Hp1 ´ ρpAqq
.

Proof. Consider two horizons H ă H 1 P N, and let pu1,u2, . . . q be the sequence of actions played by policy π. Using
Equation (18), we have:

JHpπq ´ JH1 pπq “
1

H

H
ÿ

s“1

xhJ0,H´sK,Erussy ´
1

H 1

H1
ÿ

s“1

xhJ0,H1
´sK,Erussy (19)

“
1

H

H
ÿ

s“1

xhJ0,H´sK ´ h,Erussy ´
1

H 1

H1
ÿ

s“1

xhJ0,H1
´sK ´ h,Erussy (20)

“ ´
1

H

H
ÿ

s“1

xhJH´s`1,`8M,Erussy `
1

H 1

H1
ÿ

s“1

xhJH1
´s`1,`8M,Erussy. (21)

As shown in Appendix B.1, we have that the second addendum vanishes as H 1 approaches `8:

1

H 1

ˇ

ˇ

ˇ

ˇ

ˇ

H1
ÿ

s“1

xhJH1
´s`1,`8M,Erussy

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ 0 when H 1 Ñ `8.

Concerning the first addendum, we have:

1

H

ˇ

ˇ

ˇ

ˇ

ˇ

H
ÿ

s“1

xhJH´s`1,`8M,Erussy

ˇ

ˇ

ˇ

ˇ

ˇ

ď
U

H

H
ÿ

s“1

›

›

›
hJH´s`1,`8M

›

›

›

2

ď
BUΩΦpAq

H

H
ÿ

s“1

ρpAqH´s

“
BUΩΦpAqp1 ´ ρpAqHq

Hp1 ´ ρpAqq
.

D. System Identification
This section presents a solution to identify matrices A, B, C, and D characterizing an LTI system starting from a single
trajectory. We adopt a variant of the Ho-Kalman (Ho & Kalman, 1966) algorithm. We start from the identification method
proposed by Lale et al. (2020a, Section 3), where authors consider a system of the type (strictly proper):

xt`1 “ Axt ` But ` ϵt, (22)
ryt “ Cxt ` zt.

Our setting can be seen as (not strictly proper):
xt`1 “ Axt ` But ` ϵt, (23)

yt “ Cxt ` Dut ` zt,

with xt, ϵt P Rn, ut P Rp, and yt, zt P Rm. The noise over state transition model ϵt and output zt are σ2-subgaussian
random variables. We consider in this part the standard control problem notation adopted for LTI systems. The mapping
to our problem is straightforward by considering C “ ωT and D “ θT. In predictive form, the system described in
Equation (22) is:

pxt`1 “ Āpxt ` But ` Fryt,

ryt “ Cpxt ` et,

where:
Ā “ A ´ FC,
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F “ AΣCTpCΣCT ` σ2Iq´1,

and Σ is the solution to the following DARE (Discrete Algebraic Riccati Equation):
Σ “ AΣAT ´ AΣCTpCΣCT ` σ2Iq´1CΣAT ` σ2I.

In order to identify this LTI system, we want to detect a matrix rGy:
rGy “

“

CF CĀF . . . CĀH´1F CB CĀB . . .CĀH´1B
‰

. (24)

To identify through least squares method matrix rGy , we construct for each t, a vector rϕt:
rϕt “

“

yTt´1 . . . yTt´H uTt´1 . . . uTt´H

‰T
P Rpm`pqH . (25)

The system output ryt can be rewritten as:

ryt “ rGy
rϕt ` et ` CAHxt´H .

The output of the system under analysis (Equation 23) is:

yptq “ ryt ` Dut “ rGy
rϕt ` Dut ` et ` CAHxt´H

We can incorporate the contribution of Dut in rGy obtaining Gy:
Gy “

“

CF CĀF . . . CĀH´1F D CB CĀB . . .CĀH´1B
‰

.

The related vector ϕt is:
ϕt “

“

yTt´1 . . . yTt´H uTt uTt´1 . . . uTt´H

‰T
P Rpm`pqH`p. (26)

The best value of Gy can be found through regularized least squares as in Lale et al. (2020a, Equation 10):

pGy “ argmin
X

λ}X}2F `

t
ÿ

τ“t´H

}yτ ´ Xϕτ }22, (27)

where } ¨ }F represents the Frobenius norm.

The matrix D can be directly retrieved from pGy. In order to get matrices A, B, and C, we remove the values related to D

from pGy and we retrieve rGy . From now on, we refer to the algorithm proposed in Lale et al. (2020a, Appendix B).

E. Integration on Numerical Simulations
This section is divided in three parts. First, in Section E.1, we provide additional information about the baselines, their
hyperparameters and the optimistic bounds. Second, in Section E.2, we provide all the matrices and vectors generalized to
run the real-world experiment. Third, in Section E.3, we provide further results for the simulations presented in Section 5.1.

E.1. Additional Notes on the Baselines

As mentioned in Section 5, the chosen baselines are Lin-UCB (Abbasi-Yadkori et al., 2011), D-Lin-UCB (Russac et al.,
2019), AR2 (Chen et al., 2021), Exp3 (Auer et al., 1995), Exp3-k (Dekel et al., 2012; Auer et al., 1995) and the Expert
(the latter available only in the case of real-world data). All the hyperparameters, whenever possible, are set as prescribed in
the original papers. The bounds used for the exploration are adjusted in order to be able to fairly compete in this setting, and
are considered as follows:

βLin-UCBt :“ c2
?
λ `

d

2σ2

ˆ

log

ˆ

1

δ

˙

`
d

2
log

ˆ

1 `
tU2

dλ

˙˙

,

βD-Lin-UCBt :“ c2
?
λ `

d

2σ2

ˆ

log

ˆ

1

δ

˙

`
d

2
log

ˆ

1 `
tU2

dλ

ˆ

1 ´ γ2t

1 ´ γ2

˙˙˙

,

where c2 and σ2 are as prescribed in Section 3.2, and the hyperparameter γ of D-Lin-UCB is tuned.

For AR2, the hyperparameter α, describing the correlation over time is considered equal to ρpAq.

In the case of Exp3, the rewards are rescaled in order to make them range in r0, 1s with high probability, as follows:

rt “
rt ` 2ξ

4ξ
, where ξ “

ˆ

Θ `
ΩB

1 ´ ρpAq

˙

U.
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Figure 4. Performance of DynLin-UCB, Lin-UCB, D-Lin-UCB, AR2, Exp3 and Exp3-k at different values of σ. (50 runs, mean ˘

std)

Furthermore, in the case of Exp3-k, the batch dimension k is considered as:

k “

R

logM

log 1{ρ

V

,

where M is the one defined in Algorithm 1 (line 2). This batch size k ensures that, at each time t, the contribution of actions
us is negligible, with s P Jt ´ k ´ 1K. The rewards collected in the same batch are averaged and transformed as in Exp3.

E.2. Further Information on the Real-world Setting

The real-world setting is generalized through a dataset containing real data related to the budgets invested in each advertising
platform (i.e., the ut) and the overall generated conversions (i.e., the yt) collected from three of the most important
advertising platforms of the web (Facebook, Google, and Bing), related to a large number of campaigns for a value of
more than 5 Million USD over 2 years. Starting from such data, we generalized the best model by means of a specifically
designed variant of the Ho-Kalman algorithm (Ho & Kalman, 1966), as described in Appendix D. We used the matrices
estimated with Ho-Kalman to build up a simulator. The resulting system has ρpAq “ 0.67, and is characterized as follows:

A “

¨

˝

0.38 0.33 0.6
0.07 0.76 ´0.54
0.18 0.34 0.05

˛

‚, B “

¨

˝

0.14 0.34 ´0.05
´0.17 0.03 ´0.01
0.04 ´0.09 0.17

˛

‚, ω “

¨

˝

´0.61
´0.04
´0.13

˛

‚, θ “

¨

˝

0.13
0.41
0.02

˛

‚.

E.3. Additional Numerical Simulations

These additional results are obtained in the setting presented in Section 5.1. However, here, we want to analyze the behavior
of DynLin-UCB and the other bandit baselines at different magnitudes of noise in both the state transition model and the
output. The noise in this simulation is a zero-mean Gaussian noise with σ P t0.001, 0.01, 0.1u.

Results Figure 4 shows the results of the experiment for the different values of σ. It is clearly visible how DynLin-UCB
performs in almost the same way no matter the noise to which the system is subject, always leading to sub-linear regret.
On the other hand, the cumulative regret of both Lin-UCB and D-Lin-UCB is different in every simulation we perform.
Indeed, with a low level of noise (Figure 4a) reaches linear regret and does not converge, while for large values of noise, it
converges very quickly (Figure 4c). This is due to the nature of the confidence bound of linear bandits, which is not able to
take into account such a complex scenario and leads to no guarantees in this setting. Exp3, Exp3-k, and AR2 are not able
to reach the optimum in this scenario, independently from the noise magnitude σ, and provide large values of (linear) regret.

E.4. Computational Time

The code used for the results provided in this section has been run on an Intel(R) I5 8259U @ 2.30GHz CPU with 8 GB of
LPDDR3 system memory. The operating system was macOS 12.2.1, and the experiments have been run on Python 3.9.7.
A single run of DynLin-UCB takes 110 seconds to run. It is worth noting that the time complexity of DynLin-UCB is
upper-bounded by the one of Lin-UCB.

25


