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ABSTRACT

Model pruning is a popular approach to enable the deployment of large deep
learning models on edge devices with restricted computational or storage capacities.
Although sparse models achieve performance comparable to that of their dense
counterparts at the level of the entire dataset, they exhibit high accuracy drops for
some data sub-groups. Existing methods to mitigate this disparate impact induced
by pruning (i) rely on surrogate metrics that address the problem indirectly and
have limited interpretability; or (ii) scale poorly with the number of protected
sub-groups in terms of computational cost. We propose a constrained optimization
approach that directly addresses the disparate impact of pruning: our formulation
bounds the accuracy change between the dense and sparse models, for each sub-
group. This choice of constraints provides an interpretable success criterion to
determine if a pruned model achieves acceptable disparity levels. Experimental
results demonstrate that our technique scales reliably to problems involving large
models and hundreds of protected sub-groups.

1 INTRODUCTION

Current deep learning practice displays a trend towards larger architectures (Bommasani et al.,
2021), as exemplified by popular models such as GPT-4 (OpenAI, 2023), Llama 2 (Touvron et al.,
2023) and DALL-E 2 (Ramesh et al., 2022). Model compression techniques such as pruning (Gale
et al., 2019), knowledge distillation (Hinton et al., 2015), or quantization (Gholami et al., 2021) are
crucial towards enabling the deployment of large models across a wide range of platforms, including
resource-constrained edge devices like smartphones.

Despite achieving comparable performance at an aggregate level over the entire dataset, pruned models
often exhibit significant accuracy reduction for some data sub-groups (Hooker et al., 2019; 2020;
Paganini, 2020). In particular, under-represented groups can suffer high performance degradation
while the overall performance remains unaffected, thus exacerbating systemic biases in machine
learning models. Tran et al. (2022) refer to this phenomenon as the disparate impact of pruning.

Existing mitigation methods face challenges in terms of interpretability and scalability to a large
number of sub-groups. Tran et al. (2022) introduce constraints aiming to equalize the loss of the
sparse model across sub-groups. However, their approach does not account for the unequal group-
level performance of the dense model. Moreover, while the loss can be a useful surrogate for training,
this method addresses the disparate impact issue indirectly as it focuses on controlling the loss, rather
than group-level changes in accuracy. Alternatively, Lin et al. (2022) compute per-group importance
scores for every model parameter to determine the weights to be pruned. This approach becomes
prohibitively expensive when the model or the number of sub-groups is large.

In this work, we characterize the disparate impact of pruning in terms of the group-level accuracy gaps
between the dense and sparse models. Additionally, we propose a problem formulation that directly
addresses the disparate impact of pruning by imposing constraints on the per-group excess accuracy
gaps (CEAG). A key advantage of our proposed formulation is that it enjoys interpretable semantics:
feasible solutions of our optimization problem correspond to models with low pruning-induced
disparity. Finally, our approach introduces a negligible computational overhead (Appendix E.1)
compared to (disparity-agnostic) naive fine-tuning of the sparse model, making it applicable to
problems with large numbers of groups, such as intersectional fairness tasks.

∗Equal contribution. Contact: merajhashemi@yahoo.co.uk, juan.ramirez@mila.quebec.
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Figure 1: Left: A dense model is sparsified with GMP, and then subjected to either (i) naive
fine-tuning (NFT, using ERM), (ii) equalized loss constraints (Tran et al., 2022, EL), or (iii) our
approach (CEAG). Right: Positive (resp. negative) excess accuracy gaps (EAGs, §3.1) indicate
groups whose performance degraded more (resp. less) than the model’s overall accuracy change.
Models with low disparate impact have EAGs that concentrate around zero. CEAG consistenly
yields models with lower disparity (ΨPW, §3.1) than NFT and EL. For example, NFT yields a
10% hyper-degradation (EAG, ψg) on group Others. Results correspond to race prediction on UTKFace,
with race as group attribute at 90% sparsity. Metrics are measured on the training set and averaged over 5 seeds.

Fig. 1 illustrates the reliability of our approach at mitigating the disparate impact of pruning. We
measure disparity in terms of excess accuracy gaps (EAGs, §3.1). Naive fine-tuning yields models that
disproportionately affect group Others, and while the equalized loss formulation mitigates the issue,
our formulation consistently reduces the pruning-induced disparity. See §5 for further discussion.

The main contributions of our work1 are as follows:

• We formulate a constrained optimization problem (CEAG, §3) that directly controls disparate
impact by bounding group-level accuracy gaps between the dense and sparse models.

• We propose an algorithm for solving constrained optimization problems with non-
differentiable, stochastic constraints (§4). We use proxy constraints (Cotter et al., 2019) to
address non-differentiablity; and introduce replay buffers (§4.2) for handling noise in the
estimation of constraints.

• Our replay buffers improve the training dynamics of the equalized loss formulation proposed
by Tran et al. (2022). The improved dynamics lead to better models in terms of disparity.

• Our experiments demonstrate that we can reliably mitigate the disparate impact of pruning
across multiple architectures, datasets, and sparsity levels (§5). These results carry over to
tasks with intersectional groups, and up to hundreds of constraints.

Our experimental results indicate that all methods considered in this paper (including ours) fail to
mitigate pruning-induced disparities on unseen data. To the best of our knowledge, we are the first
to document this generalization challenge. Despite this, our proposed method constitutes a step in
the right direction since our approach is the only one that reliably mitigates the disparate impact of
pruning on the training set. We hope our empirical observations will motivate further research on
improving the generalization properties of methods for mitigating the disparate impact of pruning.

2 RELATED WORKS

Disparate Impact of Pruning. Hooker et al. (2019; 2020) and Paganini (2020) document the dis-
parate impact of pruning where some classes experience a more significant performance degradation
compared to others. Existing methods to mitigate disparity involve fairness-aware pruning (Lin et al.,
2022) or formulating constraints on a surrogate metric such as the loss (Tran et al., 2022).

1Our code is available here: https://github.com/merajhashemi/balancing-act
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Lin et al. (2022) propose a pruning technique that removes weights based on a heuristic metric that
relates parameters with their importance for predicting samples from each group. This approach
scales poorly as it requires computing importance scores for each weight and group.

Tran et al. (2022) apply constraints to match the sparse model’s loss on each sub-group to the
aggregate loss. These constraints are (i) agnostic to the performance of the dense model on each
group and (ii) are based on the loss, which is a surrogate metric for assessing the accuracy-based
disparate impact. Since the disparate impact of pruning is measured with respect to a reference model,
the equalized loss formulation addresses the problem indirectly. Moreover, loss-based constraints
lack the interpretability of the per-group accuracy changes between the sparse and dense models.

Fairness and Constraints. Independent of model pruning, fairness in machine learning models is a
well studied problem (Dwork et al., 2012; Dieterich et al., 2016; Verma & Rubin, 2018; Mehrabi
et al., 2021; Zemel et al., 2013; Zhao & Gordon, 2022). Enforcing fairness with constraints has
mainly focused on imposing requirements such as demographic parity, equalized odds, equal oppor-
tunity (Hardt et al., 2016), accuracy parity (Agarwal et al., 2018; Berk et al., 2021), or combinations
of these properties (Zafar et al., 2017; Lowy et al., 2021; Bakker et al., 2020; Shui et al., 2022). The
disparate impact of pruning is a fairness notion in the context of sparsity that aims to match the
performance of a sparse model to that of a reference dense model.

Constrained Optimization. Constrained formulations have gained popularity in different sub-fields
of machine learning such as safe reinforcement learning (Stooke et al., 2020), active learning (Elenter
et al., 2022) and sparsity (Gallego-Posada et al., 2022). These constrained formulations lead to
stochastic min-max optimization problems, which can be challenging to optimize due to their non-
convexity (Lin et al., 2020). We make use of proxy constraints (Cotter et al., 2019) to solve problems
with interpretable but non-differentiable constraints.

Variance Reduction. The stochasticity in gradient estimates introduces additional optimization
challenges (Beznosikov et al., 2023). Variance reduction techniques (Gower et al., 2020) have been
employed to improve convergence on stochastic optimization (Defazio et al., 2014), and in min-max
games (Chavdarova et al., 2019). In this work, we leverage the idea of replay buffers (Mnih et al.,
2013) to reduce the noise in the estimation of stochastic constraints.

3 ADDRESSING THE DISPARATE IMPACT OF PRUNING VIA ACCURACY GAPS

In this section, we propose using accuracy gaps (AGs) to quantify the disparate impact induced by
model pruning. AGs are group-level measurements that quantify changes in accuracy between the
dense and sparse models. As we will see, large discrepancies in AGs across groups correspond to
scenarios where pruning-induced disparity is high. In §3.2, we propose a problem formulation that
yields models with low disparity by explicitly constraining deviations in the group accuracy gaps.

3.1 ACCURACY GAPS

We consider a supervised learning problem on a dataset D = {(xi, yi, gi)}Ni=1 of N i.i.d tuples, each
comprising features x ∈ X , target class y ∈ [K] and group membership g ∈ G. The dataset can be
partitioned into sub-groups Dg ≜ {(xi, yi, gi) ∈ D | gi = g} for every g ∈ G.

Let hθ : X → RK be a predictor with parameters θ ∈ Θ. The accuracy of hθ on a sample set D
is A(θ|D) ≜ 1

|D|
∑

(x,y,g)∈D 1{argmax[hθ(x)] = y}. In particular, A(θ|D) denotes the model
accuracy on the entire dataset, while A(θ|Dg) is the model accuracy on a specific sub-group g.

Given access to a dense pre-trained model, we are interested in the effect of pruning on the accuracy
across sub-groups Dg. In realistic pruning applications the dense model may exhibit different
accuracies across sub-groups, thus we do not aim to equalize the accuracy of the sparse model across
groups. Therefore, we argue that the accuracies after pruning should change (approximately)
equally across sub-groups.

Let θd and θs denote the parameters of the dense and sparse models, respectively. We define the
global accuracy gap ∆(θs,θd) and group accuracy gaps ∆g (θs,θd) as:

∆(θs,θd) ≜ A(θd|D)−A(θs|D), (1)

∆g (θs,θd) ≜ A(θd|Dg)−A(θs|Dg) ∀g ∈ G. (2)
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A positive gap (resp. negative) corresponds to a degradation (resp. improvement) in the performance
of the sparse model with respect to that of the dense model. This correspondence holds both at the
global ∆(θs,θd) and group levels ∆g (θs,θd).

Disparate Impact of Pruning. Following our discussion above, we say a sparse model hθs experi-
ences low disparate impact (with respect to a dense model hθd

) if the changes in performance are
similar across sub-groups, i.e. ∆g (θs,θd) ≈ ∆g′ (θs,θd) ,∀g, g′ ∈ G.

Due to the loss of model capacity caused by pruning, typically ∆(θs,θd) > 0. Thus, we consider
∆(θs,θd) as the reference point for defining the group excess accuracy gaps (EAGs):

ψg (θs,θd) ≜ ∆g (θs,θd)−∆(θs,θd) , ∀g ∈ G. (3)

If ψg (θs,θd) > 0, then g is more negatively impacted by pruning than the overall dataset. Conversely,
ψg′ (θs,θd) < 0 indicates that group g′ was less affected relative to the overall model degradation.

Note that if ψg = 0,∀g ∈ G, then it follows that ∆g (θs,θd) = ∆g′ (θs,θd) ,∀g, g′ ∈ G, and there
is no disparate impact. Thus, we quantify the disparate impact of pruning via:

ΨPairWise (θs,θd) ≜ max
g,g′∈G

ψg (θs,θd)−ψg′ (θs,θd) = max
g∈G

∆g (θs,θd)−min
g′∈G

∆g′ (θs,θd) . (4)

Note that ΨPW ≥ 0 always. Moreover, ΨPW = 0 if and only if we are in an ideal setting where the
accuracy gaps are equal across all groups. However, aiming to constraint ΨPW directly can be difficult
in practice (see Appendix B.3). Instead, we consider constraints on each individual group EAG.

3.2 CONSTRAINED EXCESS ACCURACY GAPS FORMULATION

We propose to impose upper-bounds (with a tolerance level ϵ ≥ 0) on the values of ψg (θs,θd) ≤ ϵ.
Since ϵ ≥ 0, the constraints are effectively only enforced on ψg (θs,θd) > 0, corresponding to
groups experiencing hyper-degradation in performance (with respect to the average degradation)2.
Imposing a lower bound on group EAGs ψg would allow for better control over the resulting disparate
impact ΨPW. However, solving the problem with both of these bounds is challenging due to the small
size of the feasible region relative to the estimation noise in the constraints. Appendix B.3 provides
further discussion and motivation regarding the choice to constrain only positive ψg values.

This choice motivates an operational definition of disparate impact which focuses on the group with
the highest EAG, given by maxg ψg . Bounding this quantity can be achieved by imposing constraints
on every EAG. This gives rise to the following optimization problem with per-group constraints:

(CEAG) argmin
θs∈Θ

L(θs|D), s.t. ψg (θs,θd) = ∆g (θs,θd)−∆(θs,θd) ≤ ϵ, ∀g ∈ G (5)

where L(θ|D) is the loss of hθ on dataset D, and the tolerance ϵ ≥ 0 is the maximum allowed EAG.

When ∆(θs,θd) > 0, the constraints require that the performance degradation for each group be at
most the overall model degradation plus the tolerance. Conversely, if ∆(θs,θd) < 0, the constraints
prescribe that all group accuracies must increase by at least the overall improvement, except for an ϵ.

3.3 DISCUSSION

By formulating constraints on EAGs, CEAG directly addresses the disparate impact of pruning and
has benefits in terms of interpretability, flexibility, and accountability. See Appendix B for alternative
constrained formulations for addressing the disparate impact of pruning.

Tackling disparate impact. Existing methods aim to mitigate disparate impact by enforcing proper-
ties on the sparse model while being agnostic to the performance of the dense model. Since EAGs
relate the per-group performance of the dense and sparse models, we argue that our approach actually
addresses pruning-induced disparity, rather than other fairness notions such as loss equalization as
proposed by Tran et al. (2022).

Interpretability. The choice of tolerance level ϵ directly translates to bounds on AGs. For example,
setting ϵ = 1% implies the worst affected class may not lose beyond 1% accuracy compared to the

2Note that the set of hyper-degraded groups {g ∈ G |ψg (θs,θd) > 0} depends directly on the parameters
of the sparse model θs and thus changes at every training step.
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overall model change. In contrast, it is challenging to set interpretable tolerance levels for constraints
based on losses.

Flexibility. CEAG allows for some slack in the disparity of the pruned model, as prescribed by the
tolerance ϵ. This flexibility allows incorporating application-specific requirements into the learning
procedure. For example, small tolerance values allow enforcing strict fairness regulations. Moreover,
this flexibility may be necessary in practice since the reduced capacity of the sparse model can make
it impossible to attain ∆g (θs,θd) = ∆ (θs,θd) ∀g ∈ G.

Accountability. Being a constrained approach, establishing feasibility with respect to CEAG
constitutes a clear success criterion to determine if a pruned model achieves acceptable disparity
levels: a model is only admissible if it satisfies the constraints at a prescribed tolerance level.

4 SOLVING THE CONSTRAINED EXCESS ACCURACY GAPS PROBLEM

A popular approach to solve constrained optimization problems such as CEAGin Eq. (5) is to
formulate its Lagrangian and optimize the resulting min-max problem:

min
θs∈Θ

max
λ≥0

L(θs,λ) ≜ L(θs|D) +
∑
g∈G

λg (ψg (θs,θd)− ϵ) , (6)

where λg ≥ 0 is the Lagrange multiplier associated with the constraint for group g and λ = [λg]g∈G .
We refer to θs as the primal parameters, and to λ as the dual parameters.

Optimizing deep neural networks can be challenging, and generally requires carefully crafted proce-
dures and extensive hyper-parameter tuning (Choi et al., 2019). We are interested in re-using standard
techniques for optimizing θs. Therefore, we consider a generic optimization protocol on θs and
gradient ascent on λ, instead of specialized optimization approaches for min-max games such as
extragradient (Gidel et al., 2019; Korpelevich, 1976).

4.1 OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

A natural next step is to optimize Eq. (6) with gradient-based updates. Unfortunately, this is not
possible as the ψg terms are not continuous (since they are accuracy gaps), and are non-differentiable
with respect to θs. Therefore, we must resort to a surrogate ψ̃g for computing gradients with respect to
θs. In contrast, Eq. (6) is differentiable with respect to λ, with gradients corresponding to constraint
violations. Thus, the dual variables can be updated using the non-differentiable constraints ψg . This
update scheme is inspired by the proxy-constraint technique introduced by Cotter et al. (2019).

θ∗
s ,λ

∗ ∈


argmin
θs∈Θ

Lθ(θs,λ)
∆
= L(θs|D) +

∑
g∈G λgψ̃g (θs,θd)

argmax
λ≥0

Lλ(θs,λ)
∆
=

∑
g∈G λg

(
ψg (θs,θd)− ϵ

)
,

(7)

Specifically, we choose surrogates ψ̃g given by the excess (negative) loss gaps: ψ̃g (θs,θd) ≜
−
(
L(θd|Dg)−L(θs|Dg)

)
+
(
L(θd|D)−L(θs|D)

)
. Note that ψ̃g has the same structure as ψg , but

replaces accuracy measurements with negative loss terms. This is a reasonable choice of surrogate
function since drops in accuracy for the sparse model correspond to increases in loss.

Eq. (7) represents a two-player, non-zero-sum game. Rather than replacing the non-differentiable
constraints with their surrogates everywhere, this approach only performs the replacement when
necessary, i.e., for computing gradients for the primal parameters. Preserving the actual constraints
on the dual objective Lλ(θs,λ) is useful as it results in a problem closer to Eq. (6).

Equation (7) can be optimized via gradient descent on θs (based on Lθ) and gradient ascent on λ
(based on Lλ). Alternating gradient descent-ascent (Alt-GDA) updates yield:

λ(t+1)
g =

[
λ(t)g + ηλ

(
ψg

(
θ(t)
s ,θd

)
− ϵ

)]
+

(8)

θ(t+1)
s = θ(t)

s − ηθ

∇θL
(
θ(t)
s |D

)
+

∑
g∈G

λ(t+1)
g ∇θψ̃g

(
θ(t)
s ,θd

) , (9)
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where ηθ and ηλ are step-sizes and [ · ]+ = max(·, 0). We initialize the Lagrange multipliers to
λ(0) = 0. Appendix A contains more details on non-convex constrained optimization.

Algorithm 1 Constrained Excess Accuracy Gap (CEAG)
Input: θ: Initial model parameters, ηθ: Primal step-size, ηλ: Dual step-size, k: Memory size for

replay buffer, ϵ: Tolerance hyper-parameter, B: Batch size, T: Total number of iterations,
Ag

dense: Accuracy of the dense model on each group g, Adense: Aggregate accuracy of the
dense model.

1: λg ← 0, ∀g ∈ G ▷ Initialize dual parameters
2: bufg ← queue(k), ∀g ∈ G ▷ Initialize replay buffer
3: for iter = 1, . . . ,T do
4: x,y,g← Sample {(xi, yi, gi)}Bi=1 ∼ D ▷ Sample batch from training set
5: idxg ← (g == g), ∀g ∈ G ▷ Calculate sub-group indices for batch
6: ŷ← hθ(x) ▷ Compute forward-pass
7: bufg ← UPDATEBUFFER(bufg, ŷ,y,idxg), ∀g ∈ G ▷ Update replay buffer
8: ψg ← QUERYBUFFERS({bufg}Gg=1, k, {A

g
dense}

G
g=1, Adense) ▷ Query replay buffers

9: ψ̃g ← COMPUTESURROGATE(ŷ,y,idxg), ∀g ∈ G ▷ Compute surrogates
10: λg ← max{0, λg + ηλ(ψg − ϵ)}, ∀g ∈ G ▷ Update dual params

11: gradθ ← ∇θ

[
L (θ|(x,y)) +

∑
g∈G λgψ̃g

]
▷ Compute primal gradient

12: θ ← PRIMALOPTIMUPDATE(ηθ,gradθ) ▷ Update model params
13: end for
14: return θ

4.2 STOCHASTIC CONSTRAINTS AND REPLAY BUFFERS

In practice, the problem in Eq. (5) is solved by using mini-batch samples from the dataset to estimate
the objective function, the constraints, and their gradients. This procedure can yield constraint
estimates with high variance across mini-batches, especially for under-represented groups; or for all
groups when the number of constraints is large. In extreme cases, a mini-batch may contain very few
samples from a given sub-group, leading to multiplier updates based on very noisy estimates.

We overcome these issues by estimating constraints based on information across multiple mini-
batches. For calculating AGs, (i) we compute the performance of the dense model on the whole
dataset (once at the beginning of training), and (ii) we estimate the accuracy of the sparse model from
per-sample accuracy measurements on the k most recent datapoints of each group. We refer to the
data structure that stores historic accuracies as a replay buffer (RB), given the analogy to the technique
used in reinforcement learning (Mnih et al., 2013). The choice of buffer size k introduces a trade-off
between reducing the variance of the constraints, and biasing estimates towards old measurements.

These adjustments reduce variance in the estimation of the constraints, thus yielding stable updates
for the multipliers. This allows us to solve Eq. (5) in settings with large numbers of constraints
relative to the choice of batch size. We do not apply variance reduction on the model updates. For
details on our implementation of replay buffers, see Appendix C. For experimental evidence on their
benefits, see §5.3 and Appendix C.1.

4.3 ALGORITHMIC DETAILS

Algorithm 1 presents our approach for solving CEAG. Note that Algorithm 1 is applicable to a broader
class of constrained optimization problems with stochastic constraints, including the equalized loss
formulation of Tran et al. (2022) (see Appendix B.1 for details).

Computational Overhead. The constrained approach in Algorithm 1 represents a negligible com-
putational overhead compared to fine-tuning the sparse model with empirical risk minimization.
An iteration of Alt-GDA (Eq. (8)) requires one forward pass and one backward pass through the
model since the same iterate of θs is used for both the primal and dual updates. This matches the
cost of gradient descent for ERM, except for the minimal overhead associated with the evaluation
of constraints after the forward pass. Note that, given our choice of surrogate, the gradient of the
Lagrangian with respect to θs is a weighted average of the per-sample loss gradients, which autograd
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frameworks can compute as efficiently as ∇θL (θs|D). For empirical evidence supporting the claim
that CEAG has negligible computational overhead compared to ERM, see Appendix E.1.

Memory Cost. The memory overhead of our approach is negligible in the context of training deep
networks: storing the dual variables requires one float per constraint, and the replay buffers store only
|G| booleans for each one of the k slots in the buffer memory.

5 EXPERIMENTS

In this section, we present an empirical comparison between naive fine-tuning, equalized loss (Tran
et al., 2022), and our proposed CEAG approach. The main goal of our experiments is to train
sparse models with low pruning-induced disparity. While low disparity may introduce a trade-off
with aggregate performance, we aim to achieve comparable overall accuracy to mitigation-agnostic
methods. We explore the reliability and accountability of our approach, along with the effect of replay
buffers on the constrained optimization problem. Our experiments demonstrate that our method
successfully scales to problems with hundreds of groups.

5.1 EXPERIMENTAL SETUP

Tasks and architectures. We carry out experiments on the FairFace (Kärkkäinen & Joo, 2021)
and UTKFace (Zhang et al., 2017) datasets, following the works of Lin et al. (2022) and Tran et al.
(2022). Additionally, we perform experiments on CIFAR-100 (Krizhevsky, 2009), a task with a
large number of sub-groups. The choice of target and group attributes for each dataset is specified in
Appendix D.1. The architectures for each task, and the source of our pre-trained models are presented
in Appendices D.3 and D.4, respectively.

Baseline methods. We compare with three baseline mitigation methods (i) NFT: the last iterate when
fine-tuning the sparse model via ERM, (ii) NFT+ES: the best iterate of NFT in terms of test accuracy
(early stopping), and (iii) EL+RB: our re-implementation of the equalized loss formulation proposed
by Tran et al. (2022), enhanced with replay buffers (see Appendix B.1). The optimization hyper-
parameters employed for each mitigation method (including CEAG) are described in Appendix D.6.

Model pruning. Previous work has shown that gradual magnitude pruning (GMP) (Zhu & Gupta,
2017) achieves SOTA aggregate performance on unstructured sparsity tasks (Blalock et al., 2020).
Because of this (and its simplicity), we employ unstructured GMP on all our tasks. GMP gradually
prunes the model by removing parameters with the smallest magnitude once every epoch. The
remaining weights are fine-tuned in between pruning episodes. We carry out GMP during the first 15
epochs. Appendix D.5 provides further details on our pruning protocol.

Choice of sparsity levels. For very high levels of unstructured sparsity (over 95%), Gale et al. (2019)
observe that pruning has a devastating impact on the overall performance of ResNet-50 models (He
et al., 2016). In contrast, performance remains essentially unaffected for models with up to 85%
sparsity. These observations may not carry over to other architectures such as MobileNets (Sandler
et al., 2018), or other ResNets. Nonetheless, our experiments stick to the [85%, 95%] range, except
for FairFace experiments, where we consider 99% sparsity, akin to FairGrape (Lin et al., 2022).

Software. Our implementations use PyTorch 1.13.0 (Paszke et al., 2019) and the Cooper library for
constrained optimization (Gallego-Posada & Ramirez, 2022).

Experimental uncertainty. All metrics reported in our tables and plots follow the pattern avg ±
std. Unless mentioned otherwise, all our experimental metrics are aggregated across 5 seeds.

For comprehensive experimental results across multiple tasks and sparsity levels, see Appendix F.

5.2 FAIRFACE AND UTKFACE

ResNet-34 Models on FairFace. Table 1 includes results for FairFace classification at 99% sparsity.
We compare the behavior of NFT, NFT+ES, EL+RB, and CEAG. We quote the results reported for
the FairGRAPE technique3, aggregated over 3 seeds.

We observe that CEAG attains a feasible model in training (maxg ψg ≤ ϵ), as well as the smallest
maxg ψg both in the training and test sets. This does not come at the cost of aggregate performance,

3We do not re-run FairGRAPE owing to its high computational cost, see discussion in Appendix E.2
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as all methods achieve a comparable test accuracy of around 65%. We observe that FairGRAPE’s
maxg ψg and ΨPW are significantly higher than that of all other methods.

Table 1: Race prediction task on FairFace with race as group attribute. CEAG achieves a maxg ψg

within the prescribed threshold. Tol (ϵ) is the tolerance hyper-parameter of CEAG. We do not specify ϵ for
other formulations as they do not admit a tolerance.

Sparsity Method Train Test
Accuracy ΨPW maxg ψg Tol (ϵ) Accuracy ΨPW maxg ψg

99

NFT 76.1 ± 0.2 3.9 ± 0.9 2.3 ± 0.3 – 65.2 ± 0.4 4.2 ± 0.5 2.1 ± 0.5
NFT + ES 74.0 ± 2.5 7.2 ± 3.3 4.0 ± 1.4 – 65.4 ± 0.4 6.3 ± 2.6 2.9 ± 1.3
EL + RB 76.1 ± 0.1 8.8 ± 1.3 2.6 ± 0.2 – 65.1 ± 0.4 6.0 ± 1.5 2.4 ± 0.4
FairGRAPE – – – – 65.1 15.9 10.7
CEAG 76.2 ± 0.1 3.5 ± 0.6 1.8 ± 0.4 ≤ 2% ✓ 65.2 ± 0.4 4.3 ± 0.8 2.0 ± 0.3

Table 2: Race prediction task on the UTKFace dataset with the intersection of race and gender as
group attribute. For instance, if a sample has race Black and gender Female, its group is Black-Female.
CEAG consistently achieves a maxg ψg within the threshold, across sparsities.

Sparsity Method Train Test
Accuracy ΨPW maxg ψg Tol (ϵ) Accuracy ΨPW maxg ψg

90

NFT 98.1 ± 0.1 11.5 ± 0.7 10.0 ± 0.7 – 79.6 ± 0.5 8.9 ± 2.3 3.1 ± 0.5
NFT + ES 90.5 ± 4.7 49.8 ± 23.0 44.8 ± 20.8 – 81.0 ± 0.2 12.0 ± 5.3 6.9 ± 4.8
EL + RB 98.3 ± 0.2 3.2 ± 0.6 2.4 ± 0.6 – 79.4 ± 0.5 11.4 ± 0.9 3.0 ± 1.1
CEAG 96.2 ± 0.1 2.4 ± 0.6 1.0 ± 0.3 ≤ 3% ✓ 80.2 ± 0.1 6.0 ± 2.5 2.3 ± 1.0

92.5

NFT 95.1 ± 0.2 34.2 ± 1.6 30.7 ± 1.5 – 79.2 ± 0.2 8.8 ± 3.2 3.6 ± 1.3
NFT + ES 91.2 ± 2.7 53.3 ± 9.6 48.0 ± 8.3 – 80.4 ± 0.4 7.5 ± 3.4 5.4 ± 3.1
EL + RB 95.4 ± 0.3 11.1 ± 1.5 8.6 ± 1.4 – 78.7 ± 0.3 16.3 ± 3.9 3.3 ± 0.6
CEAG 93.4 ± 0.3 3.8 ± 0.4 2.3 ± 0.4 ≤ 3% ✓ 79.5 ± 0.1 10.8 ± 2.2 3.3 ± 1.0
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Figure 2: Trade-off between disparity and accuracy for UTKFace race prediction with race as group
attribute. NFT and EL+RB yield models with high disparity. In contrast, CEAG consistently
produces models that mitigate the disparate impact of pruning. CEAG’s gains do not entail a
degradation in overall test accuracy. Vertical dashed lines indicate the tolerance (ϵ) of our method, with
colors corresponding to different sparsity levels.

MobileNet-V2 Models on UTKFace. Fig. 2 illustrates results for UTKFace with race as group
attribute. CEAG consistently attains feasible models in training, and the smallest values of maxg ψg

in the test set. CEAG attains comparable performance to NFT and EL+RB in the test set.

Table 2 presents results for UTKFace with intersectional groups (race ∩ gender). NFT and NFT+ES
have very high disparity metrics. In contrast, CEAG attains a feasible maxg ψg and the smallest
ΨPW in the training set, for all sparsities. Our approach has worse aggregate performance than NFT
and EL+RB in the train set; however, the test accuracy of these three methods is comparable.

For NFT, both Fig. 2 and Table 2 show significantly higher disparity metrics in training when
compared to in test. This is an indicator that the sparse model achieves good performance in training
by overfitting to the majority groups and losing a lot of performance on the under-represented groups.
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5.3 SCALING TO LARGE NUMBERS OF GROUPS

CifarResNet-56 models on CIFAR-100. Table 3 contains results for CIFAR-100 classification at
92.5% sparsity. By having the groups correspond to class labels, constrained formulations for this
experiment have 100 constraints. We include two additional experiments to illustrate the importance
of replay buffers: equalized loss (EL), and CEAG (no RB), both without replay buffers.

Disparity metrics for EL and CEAG are better when employing replay buffers, both on the train
and test sets. This difference is more notable for EL. We also observe the RBs improve the training
dynamics of the dual variables (Appendix C.1). CEAG obtains the best disparity on the train set.
Nonetheless, all approaches have a significant generalization gap in terms of disparity measurements.
We observe that the best accuracy and the smallest maxg ψg on the test set are obtained by EL+RB.

Table 3: CIFAR-100 classification with the group attributes being the class labels, at 92.5% sparsity.
EL is the equalized loss formulation without replay buffers; CEAG (no RB) is similarly defined.

Sparsity Method Train Test
Accuracy ΨPW maxg ψg Tol (ϵ) Accuracy ΨPW maxg ψg

92.5

NFT 99.8 ± 0.0 3.7 ± 0.9 3.0 ± 0.9 – 64.9 ± 0.4 26.2 ± 5.2 14.3 ± 3.4
NFT + ES 99.3 ± 0.2 6.8 ± 1.9 5.8 ± 1.8 – 65.2 ± 0.4 27.4 ± 2.3 14.6 ± 2.0
EL 98.5 ± 0.1 11.3 ± 0.9 9.8 ± 1.0 – 65.3 ± 0.5 25.8 ± 2.0 14.1 ± 1.3
EL + RB 99.5 ± 0.0 6.7 ± 1.4 5.7 ± 1.5 – 65.3 ± 0.4 24.2 ± 2.9 13.3 ± 2.4
CEAG (no RB) 99.6 ± 0.0 2.6 ± 0.3 1.7 ± 0.2 ≤ 2% ✓ 65.0 ± 0.4 27.2 ± 2.6 14.9 ± 2.5
CEAG 99.6 ± 0.0 2.4 ± 0.2 1.6 ± 0.1 ≤ 2% ✓ 64.8 ± 0.3 25.0 ± 1.9 13.8 ± 1.2

6 DISCUSSION

It is important to develop techniques that reliably mitigate the disparate impact of pruning since
deploying pruned models can have downstream consequences. We observe that NFT is unsucessful
at doing this, and NFT+ES amplifies the disparity induced by pruning. In contrast, CEAG reduces
disparity while achieving comparable aggregate performance to NFT. However, we observe that all
mitigation approaches may fail to mitigate disparate impact on unseen data.

Mitigating the disparate impact of pruning. Unlike other mitigation methods, our approach
consistently mitigates the disparate impact of pruning on the training set. We observe this across a
wide range of tasks and architectures. In contrast, other mitigation approaches generally yield worse
maximum degradation maxg ψg . In particular, NFT+ES yields models with very high disparity.

Accuracy trade-off. CEAG may introduce a trade-off in terms of accuracy in order to satisfy the
disparity requirements. On the train set, we observe a small degradation in performance in comparison
to NFT, typically of at most 2%; on the test set, CEAG’s accuracy is comparable to that of NFT.

Reliability. Our approach reliably yields models within the requested disparity levels. Moreover,
CEAG results in the smallest variance of the maxg ψg and ΨPW metrics across seeds.

Generalization. Although CEAG reliably satisfies the constraints on the train set, this may not
transfer to the test set. We highlight that (i) these generalization issues are present for other mitigation
methods, and (ii) our approach generally achieves better test disparity than the baselines. Improving
the generalization of disparity mitigation methods is an important direction for future research.

7 CONCLUSION

In this paper, we explore mitigating the disparate impact of pruning. We formalize disparate impact in
terms of accuracy gaps between the dense and sparse models, and propose a constrained optimization
approach for mitigating it. Our formulation offers interpretable constraints and allows for algorithmic
accountability. Although other methods can indirectly reduce disparity, our approach reliably
addresses the disparate impact of pruning across a wide range of tasks, while attaining comparable
aggregate performance. In particular, our method successfully scales to tasks with hundreds of sub-
groups. Despite the fact that current mitigation methods exhibit generalization issues, our approach
represents a solid step towards mitigating the disparate impact of pruning.
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ETHICS STATEMENT

• Facial recognition. Our paper makes use of datasets that contain face images. We focus on
these datasets as they illustrate the disparate impact of pruning, and for comparisons with
previous work. We would like to highlight that although our method focuses on reducing
the disparate impact across groups, we do not endorse the use of our algorithm in facial
recognition systems.

• Data annotation. We use the UTKFace (Zhang et al., 2017) and FairFace (Kärkkäinen &
Joo, 2021) datasets in this work. These datasets include annotations for sensitive demo-
graphic attributes such as race, gender, and age. However, it is essential to recognize that
these annotations represent normative ways of perceiving gender, race, and age, and we do
not endorse or promote these normative categorizations.

• Ethical sourcing of data. We don’t endorse using datasets where the data may not have
been ethically sourced or the workers/subjects involved in the data collection process are
not fairly compensated.

• Fairness notions. We explore a specific notion of fairness in this paper: the disparate impact
of pruning. Our framework can be extended to other fairness notions by incorporating
additional constraints. However, certain notions of fairness are incompatible with each other,
and a “fair” model in one definition could be “unfair” with respect to another (Friedler et al.,
2021). Therefore, our method should not be considered a solution to all notions of fairness.

• Disparate impact of pruning. In this paper, we propose a constrained optimization
technique that mitigates the disparate impact of pruning and successfully solve the problem
on the training data. Unfortunately, like all other surveyed techniques, we observe significant
challenges at mitigating disparate impact on unseen data. We advise practitioners to consider
the implications of these generalization challenges when deploying sparse models in real-
world systems.

• Deploying pruned models. We hope our paper brings about an important discussion on
the implications of deploying pruned deep learning models in edge devices. As shown in
this work, despite the application of mitigation techniques, pruning can exacerbate systemic
biases. In particular, given the generalization issues across mitigation methods, it could
cause unintended consequences when used in commercial applications.

REPRODUCIBILITY STATEMENT

We provide our code4, including scripts to replicate the experiments in this paper. The pseudo-code
of our algorithm is described in Algorithm 1. Experimental details, as well as the hyper-parameters
used in our experiments, are included in Appendix D. Our implementation uses the open-source
libraries PyTorch (Paszke et al., 2019) and Cooper (Gallego-Posada & Ramirez, 2022).
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A CONSTRAINED AND MIN-MAX OPTIMIZATION

Lagrangian-based constrained optimization has gained popularity in machine/deep learning owing to
the fine-grained control it provides over specific properties of models (Cotter et al., 2019; Stooke
et al., 2020; Elenter et al., 2022; Gallego-Posada et al., 2022; Hounie et al., 2023). In the context of
our work, attaining a desired disparity level can be done directly by imposing the excess accuracy gap
constraints presented in Eq. (5). In contrast, achieving bounded disparity by augmenting the training
objective with additive penalties is challenging as it requires iteratively tuning a penalty coefficient
per group (Gallego-Posada et al., 2022).

The Lagrangian-based approach involves solving a non-convex-concave min-max optimization
problem. In general, as long as the constraints are differentiable, the min-max problem can be
optimized with gradient-based updates. Fortunately, Cotter et al. (2019) show how even when the
constraints are non-differentiable (but differentiable surrogates are available) proxy constraints can
be used to find a semi-coarse correlated equilibrium of the min-max problem.

The solution to the min-max optimization problem (i.e. a saddle point) associated with the Lagrangian
corresponds to a global constrained minimizer of the original constrained problem (Bertsekas, 1997).
However, a saddle point of the Lagrangian may not exist for non-convex problems (Cotter et al.,
2019; von Neumann, 1928).

In the context of machine learning, the success of adversarial formulations such as GANs (Goodfellow
et al., 2014) and adversarial training (Madry et al., 2018) has sparked interest in min-max optimization.
Lin et al. (2020) prove local linear convergence for simultaneous gradient descent-ascent in the non-
convex-concave setting. Moreover, Zhang et al. (2022) prove local linear convergence of Alt-GDA
in the strongly-convex-concave setting. They observe that the iteration complexity of Alt-GDA is
optimal (Mokhtari et al., 2020), thus matching that of extragradient (Korpelevich, 1976; Gidel et al.,
2019). These observations motivate our choice of Alt-GDA for optimizing Eq. (5).

Recent work has studied the statistical properties of constrained optimization problems (Chamon &
Ribeiro, 2020; Chamon et al., 2022). This line of work has formulated PAC generalization bounds on
feasibility and optimality, arguing that learning with constraints is not a more difficult problem than
learning without constraints (Chamon & Ribeiro, 2020).

B ALTERNATIVE CONSTRAINED FORMULATIONS

This section elaborates on alternative constrained formulations for mitigating the disparate impact of
pruning. Appendix B.1 presents the equalized loss formulation of Tran et al. (2022), Appendix B.2
describes a problem that constrains excess loss gaps of the sparse model, and Appendix B.3 formulates
problems that (approximately) equalize the per-group excess accuracy gaps.

B.1 EQUALIZED LOSS

Equation (10) presents the equalized loss formulation for mitigating disparate impact (Tran et al.,
2022). This formulation matches the loss of each group with the overall loss.

argmin
θ∈Θ

L(θ|D), s.t. L(θ|Dg)− L(θ|D) = 0, ∀g ∈ G (10)

Tran et al. (2022) provide theoretical arguments to link disparate impact (in terms of group-level
excess loss gaps) to the loss on each group. This justifies their choice of constraints.

Our implementation of this approach follows a pipeline akin to Algorithm 1: we optimize it with
alternating gradient descent-ascent and use group replay buffers to reduce variance in the estimation
of the constraints for updating the dual variables. The storage cost associated with the buffer in this
setting is higher than that for CEAG, since per-sample losses (floating point numbers) are stored
instead of accuracies (booleans).

As shown in Appendix C.1, we notice smoother training dynamics for the multipliers when using
the replay buffers. Table 3 shows how the equalized loss formulation benefits from them in terms of
mitigating the disparate impact of pruning.
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B.2 CONSTRAINED EXCESS LOSS GAPS

An alternative to both CEAG and Eq. (10) is to constrain loss gaps between the dense and sparse
models. This yields the following constrained excess loss gaps problem:

argmin
θs∈Θ

L(θs|D) (11)

s.t. ψ̃g = −
(
L(θd|Dg)− L(θs|Dg)

)
+
(
L(θd|D)− L(θs|D)

)
≤ ϵ, ∀g ∈ G

This formulation addresses the disparate impact of pruning, although in terms of loss gaps instead of
accuracy gaps. Selecting a tolerance ϵ for this formulation can be challenging as it requires specifying
acceptable levels of excess loss gaps, which can vary significantly across tasks.

B.3 CONSTRAINED ΨPW

Constrained disparate impact. A natural formulation to consider involves constraining the disparate
impact, as defined in Eq. (4). The constrained optimization can be formulated as:

argmin
θs∈Θ

L(θs|D), s.t. ΨPW = max
g∈G

∆g (θs,θd)−min
g∈G

∆g (θs,θd) ≤ ϵ. (12)

The constraint on ΨPW considers the difference between the most and least degraded groups. There-
fore, when calculating the gradient of the Lagrangian, only the contribution from said extreme groups
appears. This “lack of signal” may make optimization dynamics challenging, illustrated in Fig. 3. The
formulation successfully mitigates the disparate impact problem in the context of race prediction for
the UTKFace dataset, which features 5 sub-groups. However, when confronted with the CIFAR-100
dataset, encompassing 100 sub-groups, gradient-based approaches to solve Eq. (12) are unable to
identify a feasible solution. For both of these scenarios, we observed that the value of the (single)
Lagrange multiplier grew continuously, without settling, confirming the previous intuition regarding
poor optimization dynamics.
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Figure 3: Evolution of disparate impact of pruning (ΨPW) during training under Eq. (12). Left:
UTKFace dataset at 92.5% sparsity. Right: CIFAR-100 dataset at 95% sparsity. The horizontal
dashed lines indicate the tolerance (ϵ) of 5% and 10%, respectively.

A potential approach to alleviate this problem could be to introduce constraints on the pair-wise
accuracy gaps:

argmin
θs∈Θ

L(θs|D), s.t.− ϵ ≤ ∆g (θs,θd)−∆g′ (θs,θd) ≤ ϵ, ∀g, g′ ∈ G. (13)

However, this alternative formulation requires quadratically many constraints in the number of
protected groups and does not scale to situations where the number of protected groups is large.

Equalized excess accuracy gaps. Equalizing the per-group excess accuracy gaps to zero gives rise
to the following formulation:

argmin
θs∈Θ

L(θs|D), s.t. ψg = ∆g (θs,θd)−∆(θs,θd) = 0, ∀g ∈ G. (14)

Compared to CEAG, this formulation (i) does not have an additional tolerance hyper-parameter ϵ,
and (ii) prevents groups from having negative EAGs.
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However, Eq. (14) can be challenging to solve because it may not have any feasible solutions;
equalizing accuracy values may not be possible due to their discrete nature. Moreover, the lack of a
tolerance hyper-parameter hurts flexibility as disparity requirements cannot be incorporated into the
problem formulation.

Approximately equal excess accuracy gaps. A possible way to circumvent the limitations of
Eq. (14) is to formulate the constrained problem:

argmin
θs∈Θ

L(θs|D), s.t. |ψg| = |∆g (θs,θd)−∆(θs,θd) | ≤ ϵ, ∀g ∈ G. (15)

Feasible solutions of Eq. (15) achieve ΨPW ≤ 2ϵ by imposing both an upper and a lower bound on
per-group EAGs. Compared to CEAG, this formulation prevents groups from experiencing a large
improvement in performance compared to the global accuracy gap. Compared to Eq. (14), it allows
for some tolerance at satisfying the equality. Naturally, for reasonable values of ϵ, Eq. (15) has a
non-empty set of feasible solutions.

However, since the feasible set of Eq. (15) is small (as prescribed by ϵ), solving it is challenging,
especially in the context of stochastic optimization. Mini-batch estimates of the constraints have a
high chance of being infeasible due to the small feasible region and noise in the estimation. This
leads to updates on the dual variables that are positive most of the time. In turn, this yields dual
variables that perpetually increase and never stabilize.

Two-sided inequality. Alternatively, a two-sided inequality constrained optimization problem is:

argmin
θs∈Θ

L(θs|D) (16)

s.t. ψg = ∆g (θs,θd)−∆(θs,θd) ≤ ϵ, ∀g ∈ G (17)
−ψg = − (∆g (θs,θd)−∆(θs,θd)) ≤ ϵ, ∀g ∈ G. (18)

This problem allows for individual dual variables to behave akin to those of CEAG. However, note
how the two constraints for each EAG introduce conflicting terms to the gradient of θs: the model
would aim to increase or decrease ψg depending on the current values of the dual variables.

Discussion. We focus on Eq. (5), and argue that constraining negative EAGs is not crucial for
mitigating disparity. A side effect of this choice is allowing for sparse models whose group AGs are
arbitrarily below the overall AG. In practice, this may lead to some groups improving their perfor-
mance while the overall model accuracy decreases. We argue that this behavior is not problematic
since it is only likely to manifest for under-represented groups: groups with few samples can deviate
in performance from other groups, without significantly influencing overall accuracy.

Eqs. (14) to (16) consider bounds on negative EAGs, but carrying out experiments on them is outside
the scope of our work.

C REPLAY BUFFERS

Algorithm 2 Update Buffer
Input: bufg: Buffer for group g, ŷ: A batch of model predictions, y: The batch of true targets,

idxg: The sub-group indices of the batch.
1: function UPDATEBUFFER(bufg, ŷ,y,idxg)
2: SampleAcc← (ŷ == y)[idxg]
3: bufg ← PUSH(bufg , SampleAcc) ▷ Drops old elements to respect capacity k
4: return bufg

5: end function

Algorithms 2 and 3 contain functions for updating and querying the replay buffers, respectively.
These are called by Algorithm 1. Note that we wait until a buffer has been filled before considering
its contents for computing the ψg terms. Before a buffer is filled, its corresponding ψg is 0.

For all groups, we consider the same buffer memory size k. Thus, the effective dataset used when
computing EAGs of the sparse model is balanced across groups: it has k samples per group. However,
when the original dataset is not balanced, this design implies that over-represented classes refresh
their buffers faster as oppossed to under-represented classes.
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Algorithm 3 Query Buffers
Input: bufg,∀g ∈ G: All replay buffers, k: Memory size for the replay buffers, Ag

dense: Accuracy of
the dense model on each group g, Adense: Aggregate accuracy of the dense model.

1: function QUERYBUFFERS({bufg}Gg=1, k, {A
g
dense}

G
g=1, Adense)

2: I ← {} ▷ Indices of full buffers
3: for g ∈ G do
4: if LEN(bufg) == k then
5: I ← I ∪ {g}
6: SampleAccg ← QUERY(bufg, k) ▷ Query all elements of each buffer
7: Ag

sparse ← AVERAGE(SampleAccg)
8: end if
9: end for

10: Asparse ← AVERAGE({Ag
sparse}g∈I) ▷ Compute aggregate accuracy from full buffers

11: for g ∈ G do
12: if g ∈ I then
13: ψg ← (Ag

sparse −Ag
dense)− (Asparse −Adense)

14: else
15: ψg ← 0 ▷ Ignore non-full buffers in ψg

16: end if
17: end for
18: return {ψg}Gg=1
19: end function

C.1 TRAINING DYNAMICS WITH REPLAY BUFFERS

In Fig. 4, we present the behavior of a select multiplier in a CIFAR-100 experiment with 90% sparsity.
We depict two training stages: on the left, the multiplier consistently maintains a non-zero value,
while on the right, it is frequently around zero. Multipliers are initialized at zero, and are expected to
increase during the first stages of training when constraints may not be satisfied. Moreover, they are
expected to eventually stabilize at a value (possibly zero) if their corresponding constraint is inactive
at the solution.

On the left plot, we observe a smooth curve for the dual variable corresponding to the run with replay
buffers. In contrast, the dual variable for the run without buffers is more noisy. On the right plot, the
multiplier associated with the run without buffers becomes active more frequently than the multiplier
of the run with buffers. Given the small magnitude of these multipliers (up to 0.003), the constraint
may actually be feasible in this region and so the desirable behavior is to keep multipliers at 0.
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Figure 4: Effects of replay buffers on the multiplier dynamics on CIFAR-100 under 90% sparsity. As
expected, the multiplier exhibits notably smoother dynamics when using replay buffers.

C.2 REPLAY BUFFER SIZE ABLATION

Table 4 showcases the effect of the choice of buffer size in terms of accuracy and disparate impact.
We observe that having a buffer is beneficial in terms of the train and test maxg ψg, while yielding
models with similar accuracy to those obtained without replay buffers.
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Table 4: Effects of the memory size of replay buffers on a CIFAR-100 task at 95% sparsity. Not using
a buffer yields poor results in terms of maxg ψg. For experiments with buffers, different choices of
memory sizes yield comparable results. We consider a tolerance of ϵ = 5%.

Buffer Size (k) Train Test
Accuracy maxg ψg Accuracy maxg ψg

No Buffer 95.8 ± 0.15 5.8 ± 0.53 62.5 ± 0.41 17.1 ± 3.59
20 95.7 ± 0.10 5.4 ± 0.69 62.6 ± 0.30 16.0 ± 2.82
40 95.6 ± 0.12 5.7 ± 0.49 62.7 ± 0.28 14.8 ± 1.52
60 95.6 ± 0.16 5.5 ± 0.63 62.7 ± 0.26 14.5 ± 1.92
80 95.6 ± 0.17 5.5 ± 0.42 62.8 ± 0.44 16.4 ± 4.59

We observe that changing the buffer size has a small impact in terms of accuracy. In terms of maxg ψg ,
the smallest (20) and largest (80) choices of buffer size result in more significant overfitting compared
to 40 and 60. Moreover, the maximum EAG in test shows high variance in these cases. Table 4
motivates our choice of k = 40 for most experiments.

D EXPERIMENTAL DETAILS

Our implementations are in PyTorch 1.13.0 (Paszke et al., 2019), with the Cooper library for
Lagrangian-based constrained optimization (Gallego-Posada & Ramirez, 2022).

Pipeline. As illustrated in Fig. 1, our pipeline consists of 3 stages: (i) obtaining a dense pre-trained
model, (ii) pruning said model using gradual magnitude pruning, and (iii) fine-tuning the sparse
model using either empirical risk minimization, the equalized loss formulation of Tran et al. (2022),
or our approach.

Dense models. Except for tasks involving the UTKFace dataset, we use publicly accessible pre-
trained dense models. Appendix D.4 provides references to the pre-trained models we use throughout
this work.

Pruning. We perform unstructured, layer-wise, gradual magnitude pruning (Zhu & Gupta, 2017)
with a cubic sparsity schedule (see Appendix D.5). We sparsify the weights of the model, but not the
biases. We also do not sparsify the input and output layers of the model, as recommended by Gale
et al. (2019). See more details in Appendix D.3.

Tolerance level ϵ. We choose the tolerance level for each experiment by running NFT, measuring its
corresponding maxg ψg and choosing a value of ϵ below this level. This protocol is ran independently
for every task and every sparsity level. Finally, note that since EL imposes an equality constraint,
there is no tolerance hyper-parameter to be chosen.

D.1 TASKS AND PROTECTED ATTRIBUTES

We carry out experiments on the UTKFace (Zhang et al., 2017), FairFace (Kärkkäinen & Joo, 2021),
and CIFAR-100 (Krizhevsky, 2009) datasets; these respectively employ MobileNet-V2 (Sandler
et al., 2018), ResNet-34 (He et al., 2016), and CifarResNet-56 models (Chen, 2021), using different
sparsity levels. These details are summarized in Table 5.

We highlight the data transformations and the batch size we employ for each dataset in Table 6.

D.2 MITIGATION SCHEMES

This section describes the approaches considered throughout this work for fine-tuning the sparse
model, with or without a scheme to mitigate the disparate impact of pruning. We fine-tune sparse
models on UTKFace and CIFAR for 45 epochs, and for 32 epochs on FairFace.

Naive Fine Tuning (NFT). The sparse model is fine-tuned on the training set using ERM.
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Table 5: Tasks considered throughout this work.

Dataset Model Predicted Group SparsityAttribute Attribute

UTKFace MobileNet-V2
Race Race 85, 90, 92.5
Gender Race 85, 90, 92.5
Race Race ∩ Gender 85, 90, 92.5

FairFace ResNet-34
Race Race 99
Gender Race 99
Race Race ∩ Gender 99

CIFAR-100 CifarResNet-56 Class Class 90, 92.5, 95

Table 6: Transformations and batch sizes considered for each dataset.

Dataset Transformations Batch Size
Train Test

UTKFace RandomHorizontalFlip(0.5) – 128

FairFace Resize(224,224)
Resize(224,224) 256

RandomHorizontalFlip(0.5)

CIFAR – – 128

Naive Fine Tuning with Early Stopping (NFT+ES). Obtained by selecting the best iterate of NFT
in terms of test accuracy. We analyze this approach since early stopping is a popular technique in deep
learning practice and, as evidenced by our experiments, often results in higher disparity (compared to
the last iterate in NFT).

EL. Our implementation of the equalized loss method proposed by Tran et al. (2022). More details of
this formulation can be found in Appendix B.1.

EL+RB. Enhanced version of EL employing replay buffers (§4.2) for updating the dual variables.
The replay buffers store the per-sample losses observed at the mini-batch level across groups.

CEAG. Our constrained excess accuracy gap approach (see §4.3), which uses replay buffers by
default.

D.3 MODEL ARCHITECTURES

We employ MobileNet-V2 (Sandler et al., 2018), ResNet-34, and CifarResNet-56 models (He et al.,
2016). ResNet-34 models are composed of bottleneck residual blocks He et al. (2016), while
CifarResNet-56 models use basic residual blocks (Chen, 2021).

Following Evci et al. (2020), across all models, we do not sparsify the biases due to their low footprint
towards the total number of parameters. We also do not sparsify the first and last layers of the model
as recommended by Gale et al. (2019).

Table 7 specifies the number of parameters of all considered architectures. We also provide the number
of parameters remaining post-pruning across the considered sparsities for the reader’s convenience.

D.4 PRE-TRAINED MODELS

Reusing and fine-tuning of pre-trained deep learning models is a common practice. For example, a
typical application pipeline might involve (i) obtaining a pre-trained model, (ii) fine-tuning it on an
application-specific task, and (iii) pruning it before deployment.

Therefore, we concentrate on studying the behavior of mitigation techniques when applied to openly
available pre-trained models.
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Table 7: Statistics on the total number of parameters and active parameters at different sparsity levels
for our employed architectures. †Sparsifiable parameters indicate the number of parameters that may be
removed during pruning (thus, excluding non-prunable parameters such as biases). ‡Parameter counts reported
for MobileNet-V2 and ResNet-34 models are for race prediction tasks on UTKFace and FairFace, respectively.

Architecture Total Sparsifiable Active parameters at sparsity:

Params Params† 85% 90% 92.5% 95% 99%

MobileNet–V2‡ 2,230,277 2,222,944 366,946 255,250 198,709 – –
ResNet-34‡ 21,288,263 21,275,136 – – – – 241,751
CifarResNet-56 861,620 854,656 – 96,179 74,889 53,621 –

• ResNet-34 models for FairFace use the weights provided by Kärkkäinen & Joo (2021).
• CifarResNet-56 models for CIFAR-100 use the weights provided by Chen (2021).
• We were unable to find publicly available pre-trained MobileNet-V2 models for the UTKFace

dataset. Thus, we train these from scratch (see details below). As part of our reproducibility
efforts, we are making our pre-trained UTKFace MobileNet-V2 models openly available.

For training UTKFace models, we use SGD with an initial learning rate of 0.01, decayed by a factor
of 0.1 at training milestones of 60%, 80%, and 90% of total training epochs. We use a momentum
coefficient of 0.9, and train for a total of 50 epochs. These hyper-parameters are used both for race
and gender prediction tasks.

The group-wise performance for all the dense models is reported in Tables 17, 18, 20, 21, 23, 24, 26,
27, 29, 30, 32 and 33.

D.5 GRADUAL MAGNITUDE PRUNING

As mentioned in §5.1, our experiments perform Gradual Magnitude Pruning (GMP), where a fraction
of the smallest weights (in magnitude) is pruned on every epoch. Zhu & Gupta (2017) consider the
following cubic schedule prescribing the proportion of parameters to prune at every epoch:

st = sf + (si − sf )
(
1− t− t0

(Tend − t0)∆t

)3

t ∈ {t0, t0 +∆t, ..., t0 + (Tend − t0)∆t}, (19)

where t0 is the initial training step, ∆t is the pruning frequency (in epochs), Tend is final epoch of
pruning, and si and sf denote the initial and final sparsities, respectively.

Our experiments carry out GMP since epoch t0 = 0, throughout Tend = 15− 1 = 14 epochs, and
perform pruning once every epoch (∆t = 1).

D.6 PRIMAL OPTIMIZATION HYPER-PARAMETERS

We make use of SGD with momentum as the primal optimizer for all of our experiments. In our
initial ablation experiments on the choice of primal optimizer, we found that employing SGD with
momentum outperformed or matched the performance of Adam (Kingma & Ba, 2014).

For UTKFace and CIFAR-100 datasets, we employ a primal step size of 1 · 10−2 along with a
momentum of 0.9 (Polyak), and apply weight decay at the rate of 1 · 10−4.

For FairFace, we employ Nesterov momentum with a step-size of 1 · 10−3 and apply a weight decay
of 1 · 10−2. Specifically, for race prediction tasks, we utilize a momentum of 0.95, while for gender
prediction tasks, a momentum of 0.99 is employed.

Additionally, we use PyTorch’s MultiStepLR as the learning rate scheduler, with decay γ = 0.1
across all experiments. For UTKFace and CIFAR-100, we set scheduler milestones at 60%, 80% and
90% of the total training epochs (including the execution of GMP). For instance, for a task that has
60 epochs where it employs GMP on 15 epochs, the above milestones would activate at epoch 36,
epoch 48 and epoch 54. For race prediction on FairFace we use a single milestone at 90%, while
gender prediction on FairFace uses a constant learning rate of 1 · 10−2.
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D.7 DUAL OPTIMIZATION HYPER-PARAMETERS

We employ stochastic gradient ascent on the dual parameters (corresponding to the Lagrange multi-
pliers) in all experiments. The choices of dual learning rate are presented in Tables 8 to 13.

We fix k = 40 as the memory size for the replay buffer. Preliminary ablations on the choice of
k ∈ [20, 80] showed low sensitivity to the specific value of this hyper-parameter (See Appendix C.2).

Note that the order of magnitude for the dual step-size choices is relatively consistent across datasets,
tasks, sparsity levels and disparity tolerances. This highlights the ease of tuning exhibited by this
hyper-parameter.

D.7.1 UTKFACE

Table 8: Tolerance and dual step-size for CEAG on UTKFace tasks.

Target Attribute Group Attribute Sparsity Dual Step-Size (ηλ) Tolerance ϵ (%)

Gender Race
85 2 · 10−3 0.5
90 1 · 10−4 0.5
92.5 3 · 10−3 0.5

Race Race
85 1 · 10−4 0.25
90 2 · 10−3 1
92.5 2 · 10−3 1

Race Race ∩ Gender
85 1 · 10−5 0.5
90 1 · 10−3 3
92.5 1 · 10−3 3

Table 9: Dual step-size for EL+RB on UTKFace tasks.

Target Attribute Group Attribute Sparsity Dual Step-Size (ηλ)

Gender Race
85 1 · 10−4

90 1 · 10−5

92.5 1 · 10−5

Race Race
85 1 · 10−5

90 1 · 10−5

92.5 1 · 10−5

Race Race ∩ Gender
85 1 · 10−5

90 1 · 10−5

92.5 1 · 10−5

D.7.2 FAIRFACE

Table 10: Tolerance and dual step-size for CEAG on FairFace tasks at 99% sparsity.

Target Attribute Group Attribute Dual Step-Size (ηλ) Tolerance ϵ (%)

Gender Race 1 · 10−5 1
Race Race 1 · 10−4 2
Race Race ∩ Gender 1 · 10−5 0.25
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Table 11: Dual step-size for EL+RB on FairFace tasks.

Target Attribute Group Attribute Dual Step-Size (ηλ)

Gender Race 1 · 10−5

Race Race 1 · 10−5

Race Race ∩ Gender 1 · 10−5

D.7.3 CIFAR

Table 12: Tolerance and dual step-size for CEAG on CIFAR tasks.

Target Attribute Group Attribute Sparsity Dual Step-Size (ηλ) Tolerance ϵ (%)

Class Class
90 2 · 10−3 1
92.5 2 · 10−3 2
95 1 · 10−3 5

Table 13: Dual step-size for EL+RB on CIFAR tasks.

Target Attribute Group Attribute Sparsity Dual Step-Size (ηλ)

Class Class
90 1 · 10−5

92.5 1 · 10−5

95 1 · 10−5

E ADDITIONAL EXPERIMENTS

E.1 COMPUTATIONAL OVERHEAD

Table 14 presents the wall-clock time of an experiment for different mitigation approaches on CIFAR-
100 at 95% sparsity. Note that the reported time includes the 15 epochs of gradual magnitude pruning
of the dense model, as well as the 45 epochs of fine-tuning.

Table 14: Runtime of different mitigation approaches on CIFAR-100 at 95% sparsity. All runs are
run on NVIDIA A100-SXM4-80GB GPUs. Runtimes are average across 5 runs for each mitigation
method.

Method
Min Median Max

Wall-clock Overhead Wall-clock Overhead Wall-clock Overhead
Time wrt NFT Time wrt NFT Time wrt NFT

NFT 1h 0m 04s 1× 1h 3m 13s 1× 1h 12m 19s 1×
EL 1h 2m 37s 1.031× 1h 4m 34s 1.021× 1h 15m 50s 1.049×
EL+RB 1h 4m 15s 1.058× 1h 7m 10s 1.062× 1h 17m 35s 1.073×
CEAG (No RB) 1h 2m 08s 1.023× 1h 3m 08s 0.998× 1h 8m 35s 0.948×
CEAG 1h 1m 58s 1.020× 1h 4m 28s 1.020× 1h 6m 27s 0.919×

We observe a negligible increase in training time for constrained approaches that use replay buffers
relative to NFT. For approaches that do not use replay buffers, the runtime is essentially the same as
NFT. This overhead is especially insignificant considering that the CIFAR-100 problem involves 100
constraints.
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E.2 COMPARISON TO FAIRGRAPE (LIN ET AL., 2022)

Computational cost: As a benchmarking exercise, we re-ran the code provided by Lin et al. (2022)
for UTKFace Race prediction and Race as protected group5. The method took more than 90 hours
of compute time on an NVIDIA A100-SXM4-80GB GPU. Given how prohibitively expensive this
is, we refrained from running experiments with FairGRAPE. Furthermore, we expect the runtime to
increase for tasks with larger numbers of protected groups.

UTKFace: Lin et al. (2022) apply their method on UTKFace, but remove race group Others from the
dataset. The authors state that this was done as Others is an ambiguous class. Since we consider the
complete dataset in our experiments, we can not compare directly to the numbers reported by Lin
et al. (2022).

Although we could apply CEAG to the UTKFace dataset without race group Others, we choose
not to since we observe that this group is generally the most disproportionately affected by pruning.
Table 15 shows that NFT can achieve models with low disparity on UTKFace without Others, but
presents significantly worse accuracy and higher disparity on experiments with Others.

Table 15: NFT results on UTKFace race prediction with race as group attribute, with and without
race group Others.

Setup Train Test
Accuracy ΨPW maxg ψg Accuracy ΨPW maxg ψg

UTKFace (without Others) 99.5 ± 0.0 2.0 ± 0.16 0.5 ± 0.00 86.7 ± 0.55 10.9 ± 1.68 7.4 ± 0.14
UTKFace 98.2 ± 0.0 9.9 ± 0.82 8.7 ± 0.82 79.5 ± 0.46 6.1 ± 1.60 2.2 ± 0.68

E.3 SENSITIVITY ANALYSIS

Table 16 presents the sensitivity of our approach to the tolerance hyperparameter ϵ on a UTKFace
race prediction task with race as group attribute.

Table 16: Race prediction task for UTKFace with race as group attribute, at 92.5% sparsity. All
experiments use a dual step size of 2 · 10−3. Results are aggregated across 5 seeds.

Tolerance Accuracy maxg ψg

1.5 93.6 ± 0.1 0.9 ± 0.61
1.0 93.4 ± 0.3 1.1 ± 0.36
0.5 93.2 ± 0.2 1.2 ± 0.44
0 93.2 ± 0.2 0.9 ± 0.24

We observe small improvements in performance for experiments with large tolerance values. For low
tolerance values, we observe that feasibility is not attained. Moreover, the resulting maxg ψg values
are similar across the considered tolerances. These observations are indicative of robustness to the
choice of tolerance.

F COMPREHENSIVE EXPERIMENTAL RESULTS

This section contains the results corresponding to all experiments mentioned in Table 5 across all
datasets, sparsities, and tasks considered in our work. As mentioned earlier, all metrics reported in
our tables and plots follow the pattern avg± std. Unless mentioned otherwise, all our experimental
metrics are aggregated across 5 seeds.

Some of the tables displayed below are extensions of tables presented in the main paper. Such tables
have been clearly identified in the captions. For the tables reporting group accuracies, we report the
numbers for both the dense model as well as all the sparse models.

5The FairGRAPE implementation can be found here: https://github.com/Bernardo1998/FairGRAPE
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F.1 UTKFACE

We use MobileNet-V2 Sandler et al. (2018), similar to Lin et al. (2022).

F.1.1 GENDER

Table 17: Groupwise train accuracy for gender prediction in UTKFace with race as protected attribute,
across sparsities.

Sparsity Method White Black Asian Indian Others

85

Dense 100.0 99.9 99.9 99.8 99.3
NFT 99.9 ± 0.02 99.8 ± 0.04 99.9 ± 0.06 99.8 ± 0.02 99.3 ± 0.1
EL + RB 99.9 ± 0.01 99.8 ± 0.03 99.9 ± 0.03 99.8 ± 0.04 99.4 ± 0.13
CEAG 99.9 ± 0.03 99.8 ± 0.06 99.9 ± 0.05 99.8 ± 0.03 99.3 ± 0.12

90

Dense 100.0 99.9 99.9 99.8 99.3
NFT 99.8 ± 0.03 99.8 ± 0.04 99.7 ± 0.09 99.6 ± 0.1 98.9 ± 0.17
EL + RB 99.8 ± 0.05 99.8 ± 0.05 99.7 ± 0.09 99.6 ± 0.08 99.0 ± 0.17
CEAG 99.8 ± 0.02 99.8 ± 0.02 99.7 ± 0.12 99.7 ± 0.04 99.1 ± 0.1

92.5

Dense 100.0 99.9 99.9 99.8 99.3
NFT 99.4 ± 0.07 99.5 ± 0.08 98.8 ± 0.22 99.1 ± 0.11 98.0 ± 0.23
EL + RB 99.5 ± 0.05 99.6 ± 0.09 98.6 ± 0.23 99.1 ± 0.1 98.1 ± 0.45
CEAG 99.1 ± 0.22 99.3 ± 0.28 99.6 ± 0.12 98.7 ± 0.11 98.5 ± 0.29

Table 18: Groupwise test accuracy for gender prediction in UTKFace with race as protected attribute,
across sparsities.

Sparsity Method White Black Asian Indian Others

85

Dense 94.2 95.0 89.5 93.2 89.5
NFT 92.0 ± 0.42 94.0 ± 0.82 87.0 ± 0.62 92.5 ± 0.37 88.6 ± 0.83
EL + RB 92.1 ± 0.45 94.2 ± 0.52 87.2 ± 0.72 92.1 ± 0.41 88.4 ± 0.4
CEAG 91.9 ± 0.3 93.8 ± 0.41 86.7 ± 0.75 92.1 ± 0.55 88.1 ± 1.03

90

Dense 94.2 95.0 89.5 93.2 89.5
NFT 91.1 ± 0.67 92.6 ± 0.57 85.9 ± 0.95 91.6 ± 0.67 87.1 ± 0.85
EL + RB 91.0 ± 0.1 93.0 ± 0.38 86.4 ± 0.64 91.4 ± 0.45 87.6 ± 0.83
CEAG 91.0 ± 0.56 93.2 ± 0.64 85.5 ± 0.73 91.8 ± 0.64 86.3 ± 1.03

92.5

Dense 94.2 95.0 89.5 93.2 89.5
NFT 90.5 ± 0.67 92.6 ± 0.62 85.1 ± 0.83 91.0 ± 0.89 87.3 ± 1.05
EL + RB 90.2 ± 0.54 93.2 ± 0.66 85.0 ± 1.57 90.6 ± 0.4 86.6 ± 1.35
CEAG 90.6 ± 1.0 92.7 ± 0.2 85.8 ± 0.93 90.5 ± 0.76 87.1 ± 0.91

Table 19: Gender prediction on UTKFace with race as group attribute, across sparsities. CEAG
consistently achieves a maxg ψg within the threshold, across sparsities.

Sparsity Method Train Test
Accuracy ΨPW maxg ψg Tol (ϵ) Accuracy ΨPW maxg ψg

85

NFT 99.8 ± 0.01 0.3 ± 0.15 0.0 ± 0.02 – 91.5 ± 0.25 2.2 ± 0.87 0.9 ± 0.43
NFT + ES 98.0 ± 1.72 1.7 ± 1.19 1.3 ± 0.91 – 91.8 ± 0.28 2.1 ± 0.69 0.8 ± 0.23
EL + RB 99.9 ± 0.02 0.3 ± 0.18 0.0 ± 0.01 – 91.5 ± 0.29 1.9 ± 0.71 0.9 ± 0.41
CEAG 99.8 ± 0.01 0.3 ± 0.16 0.1 ± 0.05 ≤ 0.5% ✓ 91.3 ± 0.3 2.1 ± 0.78 0.9 ± 0.51

90

NFT 99.7 ± 0.04 0.4 ± 0.26 0.3 ± 0.2 – 90.5 ± 0.2 2.7 ± 1.03 1.3 ± 0.65
NFT + ES 97.4 ± 1.59 2.5 ± 1.42 1.8 ± 1.15 – 91.0 ± 0.15 1.8 ± 0.9 1.0 ± 0.65
EL + RB 99.7 ± 0.05 0.3 ± 0.16 0.2 ± 0.15 – 90.6 ± 0.17 2.0 ± 0.52 0.8 ± 0.27
CEAG 99.7 ± 0.03 0.2 ± 0.1 0.2 ± 0.05 ≤ 0.5% ✓ 90.4 ± 0.37 3.0 ± 0.82 1.4 ± 0.51

92.5

NFT 99.2 ± 0.08 1.0 ± 0.17 0.7 ± 0.19 – 90.0 ± 0.44 3.1 ± 0.71 1.4 ± 0.57
NFT + ES 96.2 ± 1.82 3.0 ± 0.98 2.2 ± 0.8 – 90.4 ± 0.37 2.8 ± 0.55 1.2 ± 0.52
EL + RB 99.2 ± 0.07 1.3 ± 0.34 0.9 ± 0.3 – 89.8 ± 0.29 3.1 ± 1.64 1.5 ± 0.98
CEAG 99.1 ± 0.14 0.8 ± 0.24 0.4 ± 0.09 ≤ 0.5% ✓ 90.1 ± 0.52 2.2 ± 0.75 1.0 ± 0.2
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Figure 5: UTKFace gender prediction with race as protected attribute.

F.1.2 RACE

Table 20: Groupwise train accuracy for race prediction in UTKFace with race as protected attribute,
across sparsities.

Sparsity Method White Black Asian Indian Others

85

Dense 99.8 99.7 99.9 99.8 99.5
NFT 99.7 ± 0.08 99.6 ± 0.11 99.8 ± 0.06 99.7 ± 0.06 99.0 ± 0.13
EL + RB 99.6 ± 0.11 99.6 ± 0.18 99.8 ± 0.1 99.8 ± 0.14 99.5 ± 0.1
CEAG 99.6 ± 0.13 99.5 ± 0.17 99.7 ± 0.09 99.7 ± 0.19 99.8 ± 0.09

90

Dense 99.8 99.7 99.9 99.8 99.5
NFT 98.6 ± 0.26 99.2 ± 0.24 99.3 ± 0.04 98.9 ± 0.2 89.0 ± 0.79
EL + RB 98.4 ± 0.19 98.8 ± 0.18 99.2 ± 0.22 98.7 ± 0.3 94.3 ± 0.61
CEAG 95.7 ± 0.35 95.5 ± 0.35 96.0 ± 0.4 97.1 ± 0.52 98.4 ± 0.42

92.5

Dense 99.8 99.7 99.9 99.8 99.5
NFT 96.8 ± 0.15 98.0 ± 0.23 98.2 ± 0.44 96.3 ± 0.47 69.4 ± 3.72
EL + RB 95.9 ± 0.37 97.2 ± 0.23 97.6 ± 0.55 95.9 ± 0.56 82.5 ± 1.36
CEAG 93.2 ± 0.28 92.9 ± 0.74 92.8 ± 0.99 93.9 ± 0.79 95.4 ± 0.35

Table 21: Groupwise test accuracy for race prediction in UTKFace with race as protected attribute,
across sparsities.

Sparsity Method White Black Asian Indian Others

85

Dense 90.6 87.9 88.5 80.7 29.2
NFT 87.3 ± 0.24 84.4 ± 1.32 86.7 ± 0.82 74.9 ± 1.01 31.0 ± 1.55
EL + RB 87.2 ± 0.48 84.1 ± 0.74 86.1 ± 1.33 75.2 ± 1.53 32.8 ± 1.47
CEAG 86.5 ± 0.31 84.3 ± 1.31 85.7 ± 1.25 75.3 ± 1.26 32.1 ± 2.36

90

Dense 90.6 87.9 88.5 80.7 29.2
NFT 86.5 ± 0.52 83.3 ± 1.28 84.2 ± 2.46 74.6 ± 0.44 28.8 ± 1.95
EL + RB 86.2 ± 0.94 83.7 ± 0.91 83.6 ± 1.15 75.3 ± 1.08 31.4 ± 1.33
CEAG 86.6 ± 0.83 84.2 ± 1.1 85.6 ± 1.12 77.7 ± 1.07 29.1 ± 2.73

92.5

Dense 90.6 87.9 88.5 80.7 29.2
NFT 86.3 ± 0.78 83.8 ± 0.58 84.6 ± 0.8 73.8 ± 1.04 28.5 ± 2.52
EL + RB 85.1 ± 1.0 82.8 ± 1.37 83.5 ± 1.49 73.4 ± 1.09 30.9 ± 2.49
CEAG 85.5 ± 0.6 83.0 ± 0.65 84.6 ± 1.66 76.3 ± 0.47 31.8 ± 2.38
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Table 22: Race prediction on UTKFace with race as protected attribute, across sparsities. CEAG
almost always achieves a maxg ψg within the threshold. It also has the minimum maxg ψg across
sparsities.

Sparsity Method Train Test
Accuracy ΨPW maxg ψg Tol (ϵ) Accuracy ΨPW maxg ψg

85

NFT 99.7 ± 0.02 0.3 ± 0.16 0.2 ± 0.13 – 80.6 ± 0.42 7.6 ± 1.8 2.7 ± 0.78
NFT + ES 92.1 ± 4.2 35.1 ± 20.55 30.3 ± 17.82 – 81.1 ± 0.51 10.7 ± 2.01 5.2 ± 2.81
EL + RB 99.7 ± 0.03 0.4 ± 0.09 0.2 ± 0.08 – 80.6 ± 0.44 9.2 ± 2.67 2.4 ± 1.16
CEAG 99.6 ± 0.05 0.8 ± 0.14 0.2 ± 0.05 ≤ 0.25% ✓ 80.3 ± 0.5 8.4 ± 2.95 2.0 ± 0.91

90

NFT 98.2 ± 0.08 9.9 ± 0.82 8.7 ± 0.82 – 79.5 ± 0.46 6.1 ± 1.6 2.2 ± 0.68
NFT + ES 90.6 ± 4.72 45.5 ± 22.51 40.6 ± 20.13 – 81.0 ± 0.24 8.0 ± 4.73 5.3 ± 4.68
EL + RB 98.3 ± 0.06 4.4 ± 0.58 3.6 ± 0.61 – 79.7 ± 0.37 8.0 ± 1.68 1.7 ± 0.91
CEAG 96.1 ± 0.11 3.5 ± 0.51 0.8 ± 0.26 ≤ 1% ✓ 80.5 ± 0.25 5.2 ± 1.86 1.5 ± 0.2

92.5

NFT 95.1 ± 0.36 28.2 ± 3.49 25.3 ± 3.35 – 79.4 ± 0.17 6.1 ± 3.0 2.5 ± 1.01
NFT + ES 91.2 ± 4.29 43.5 ± 10.64 38.7 ± 8.87 – 80.2 ± 0.21 5.7 ± 2.79 3.5 ± 1.76
EL + RB 95.4 ± 0.22 14.6 ± 1.31 12.5 ± 1.12 – 78.6 ± 0.33 9.0 ± 3.2 2.2 ± 0.95
CEAG 93.4 ± 0.31 3.5 ± 0.86 1.1 ± 0.36 ≤ 1% ✗ 79.6 ± 0.4 8.0 ± 2.59 1.3 ± 0.43
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Figure 6: UTKFace race prediction with race as protected attribute.

F.1.3 INTERSECTIONAL

For the sake of brevity, we use acronyms to refer to the intersectional sub-groups. The acronyms
are separated by a dash, the initial part refers to the race and the later part refers to the gender. For
instance, W-M refers to White and Male. Other races are B-Black, A-Asian, I-Indian, and O-Others.

Table 23: Groupwise train accuracy for race prediction in UTKFace with intersection of race and
gender as protected attribute, across sparsities.

Sparsity Method W-M W-F B-M B-F A-M A-F I-M I-F O-M O-F

85

Dense 99.7 99.9 99.6 99.8 99.8 99.9 99.7 99.9 99.3 99.6
NFT 99.6 ± 0.09 99.7 ± 0.16 99.6 ± 0.18 99.7 ± 0.08 99.6 ± 0.09 99.9 ± 0.09 99.7 ± 0.1 99.8 ± 0.12 98.6 ± 0.37 99.2 ± 0.27
EL + RB 99.5 ± 0.09 99.5 ± 0.14 99.6 ± 0.16 99.7 ± 0.07 99.7 ± 0.12 99.9 ± 0.06 99.7 ± 0.15 99.9 ± 0.15 99.6 ± 0.19 99.7 ± 0.13
CEAG 99.6 ± 0.11 99.7 ± 0.1 99.6 ± 0.2 99.7 ± 0.09 99.7 ± 0.1 100.0 ± 0.04 99.7 ± 0.17 99.9 ± 0.07 99.4 ± 0.14 99.6 ± 0.17

90

Dense 99.7 99.9 99.6 99.8 99.8 99.9 99.7 99.9 99.3 99.6
NFT 98.6 ± 0.2 98.4 ± 0.21 99.1 ± 0.27 99.1 ± 0.23 99.2 ± 0.24 99.5 ± 0.15 99.0 ± 0.33 98.8 ± 0.21 87.7 ± 1.07 89.9 ± 1.88
EL + RB 98.3 ± 0.31 98.0 ± 0.29 98.7 ± 0.44 98.6 ± 0.28 98.9 ± 0.27 99.2 ± 0.15 98.3 ± 0.6 98.1 ± 0.45 97.3 ± 0.64 95.6 ± 0.59
CEAG 96.4 ± 0.39 96.0 ± 0.33 96.1 ± 0.34 96.2 ± 0.27 95.3 ± 0.28 97.0 ± 0.78 95.7 ± 0.66 96.2 ± 0.57 96.0 ± 0.98 96.6 ± 1.29

92.5

Dense 99.7 99.9 99.6 99.8 99.8 99.9 99.7 99.9 99.3 99.6
NFT 97.1 ± 0.61 96.7 ± 0.42 97.7 ± 0.46 98.0 ± 0.27 98.2 ± 0.33 98.8 ± 0.34 96.5 ± 0.54 96.3 ± 0.71 63.8 ± 1.49 70.9 ± 2.09
EL + RB 95.9 ± 0.48 95.1 ± 0.43 96.8 ± 0.32 96.9 ± 0.23 97.1 ± 0.5 98.1 ± 0.58 94.8 ± 0.83 94.8 ± 0.51 88.7 ± 1.91 86.4 ± 1.64
CEAG 94.2 ± 0.49 93.4 ± 0.16 93.6 ± 0.93 94.2 ± 0.58 91.9 ± 1.18 94.2 ± 0.55 91.6 ± 0.41 92.8 ± 1.31 92.0 ± 0.99 92.7 ± 1.89
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Table 24: Groupwise test accuracy for race prediction in UTKFace with intersection of race and
gender as protected attribute, across sparsities.

Sparsity Method W-M W-F B-M B-F A-M A-F I-M I-F O-M O-F

85

Dense 90.9 90.2 86.9 88.9 87.5 89.3 81.0 80.4 26.4 31.6
NFT 87.3 ± 0.7 86.5 ± 0.79 82.6 ± 1.21 86.7 ± 1.66 84.2 ± 1.91 87.5 ± 0.6 74.3 ± 1.66 78.4 ± 2.26 29.3 ± 1.56 32.0 ± 3.4
EL + RB 87.3 ± 0.9 86.1 ± 1.18 82.2 ± 1.73 85.6 ± 0.51 84.5 ± 2.53 86.7 ± 1.88 74.6 ± 1.57 78.1 ± 1.15 31.2 ± 2.36 32.1 ± 2.81
CEAG 87.2 ± 0.65 85.8 ± 0.76 82.6 ± 1.27 86.0 ± 0.96 84.6 ± 0.52 87.7 ± 1.76 74.0 ± 1.18 77.2 ± 1.7 31.5 ± 1.83 32.3 ± 3.18

90

Dense 90.9 90.2 86.9 88.9 87.5 89.3 81.0 80.4 26.4 31.6
NFT 86.8 ± 0.87 86.4 ± 0.97 81.9 ± 1.5 85.2 ± 1.1 82.2 ± 2.46 84.4 ± 1.99 74.2 ± 0.53 75.4 ± 1.09 26.8 ± 3.26 31.6 ± 1.74
EL + RB 85.9 ± 1.17 85.6 ± 1.33 82.5 ± 0.58 83.8 ± 0.48 83.4 ± 1.95 85.0 ± 2.07 73.8 ± 1.29 76.1 ± 1.45 30.3 ± 1.11 32.3 ± 2.81
CEAG 86.2 ± 1.35 87.2 ± 0.92 83.5 ± 1.57 85.6 ± 0.6 82.6 ± 1.52 86.5 ± 1.22 76.9 ± 1.26 76.6 ± 1.23 25.8 ± 2.63 29.8 ± 1.16

92.5

Dense 90.9 90.2 86.9 88.9 87.5 89.3 81.0 80.4 26.4 31.6
NFT 86.5 ± 1.04 86.6 ± 0.92 81.9 ± 1.48 83.0 ± 1.28 82.3 ± 1.09 85.5 ± 1.61 72.8 ± 1.26 75.6 ± 2.2 26.8 ± 3.56 29.6 ± 1.36
EL + RB 85.0 ± 0.83 84.9 ± 0.9 81.8 ± 0.92 82.8 ± 1.28 81.7 ± 0.97 85.6 ± 1.32 72.8 ± 0.81 74.0 ± 2.07 32.8 ± 6.05 33.9 ± 2.71
CEAG 86.8 ± 0.64 85.3 ± 1.22 82.5 ± 1.47 84.8 ± 0.58 81.8 ± 1.98 86.2 ± 1.15 73.7 ± 1.73 76.0 ± 1.41 29.5 ± 1.4 30.7 ± 2.73

Table 25: Race prediction task on the UTKFace dataset with the intersection of race and gender as
group attribute, across sparsities. For instance, if a sample has race as Black and gender as Female, its
group label is Black-Female. CEAG consistently achieves a maxg ψg within the threshold, across
sparsities. This table is an extension of Table 2.

Sparsity Method Train Test
Accuracy ΨPW maxg ψg Tol (ϵ) Accuracy ΨPW maxg ψg

85

NFT 99.6 ± 0.03 0.8 ± 0.26 0.5 ± 0.33 – 80.6 ± 0.44 10.3 ± 2.09 3.4 ± 1.29
NFT + ES 91.8 ± 4.03 37.0 ± 21.45 31.8 ± 18.93 – 81.2 ± 0.4 13.0 ± 3.29 5.2 ± 2.03
EL + RB 99.7 ± 0.02 0.8 ± 0.37 0.2 ± 0.08 – 80.4 ± 0.29 11.7 ± 3.4 3.4 ± 1.53
CEAG 99.7 ± 0.03 0.5 ± 0.1 0.2 ± 0.04 ≤ 0.5% ✓ 80.4 ± 0.27 12.2 ± 2.62 3.6 ± 1.14

90

NFT 98.1 ± 0.06 11.5 ± 0.72 10.0 ± 0.67 – 79.6 ± 0.49 8.9 ± 2.35 3.1 ± 0.46
NFT + ES 90.5 ± 4.73 49.8 ± 23.02 44.8 ± 20.76 – 81.0 ± 0.24 12.0 ± 5.34 6.9 ± 4.79
EL + RB 98.3 ± 0.19 3.2 ± 0.63 2.4 ± 0.61 – 79.4 ± 0.5 11.4 ± 0.91 3.0 ± 1.06
CEAG 96.2 ± 0.1 2.4 ± 0.59 1.0 ± 0.27 ≤ 3% ✓ 80.2 ± 0.13 6.0 ± 2.48 2.3 ± 1.03

92.5

NFT 95.1 ± 0.17 34.2 ± 1.64 30.7 ± 1.48 – 79.2 ± 0.16 8.8 ± 3.18 3.6 ± 1.3
NFT + ES 91.2 ± 2.66 53.3 ± 9.55 48.0 ± 8.28 – 80.4 ± 0.35 7.5 ± 3.41 5.4 ± 3.13
EL + RB 95.4 ± 0.27 11.1 ± 1.45 8.6 ± 1.42 – 78.7 ± 0.27 16.3 ± 3.92 3.3 ± 0.62
CEAG 93.4 ± 0.31 3.8 ± 0.4 2.3 ± 0.41 ≤ 3% ✓ 79.5 ± 0.14 10.8 ± 2.21 3.3 ± 1.02
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Figure 7: UTKFace race prediction with race and gender (intersectional) as protected attributes.

F.2 FAIRFACE

We make use of ResNet-34 models (He et al., 2016) on FairFace, similar to Lin et al. (2022).
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F.2.1 GENDER

Table 26: Groupwise train accuracy for gender prediction in FairFace with race as protected attribute.
Sparsity Method East Asian Indian Black White Middle Eastern Latino Hispanic S.E. Asian

99

Dense 97.2 97.1 94.9 97.4 98.0 97.2 96.8
NFT 99.4 ± 0.21 99.4 ± 0.23 98.9 ± 0.12 99.3 ± 0.14 99.5 ± 0.15 99.3 ± 0.2 99.2 ± 0.31
EL + RB 99.2 ± 0.21 99.4 ± 0.11 99.0 ± 0.24 99.4 ± 0.03 99.6 ± 0.06 99.4 ± 0.09 99.2 ± 0.13
CEAG 99.3 ± 0.16 99.2 ± 0.21 98.9 ± 0.25 99.3 ± 0.12 99.5 ± 0.13 99.3 ± 0.15 99.1 ± 0.11

Table 27: Groupwise test accuracy for gender prediction in FairFace with race as protected attribute.
Sparsity Method East Asian Indian Black White Middle Eastern Latino Hispanic S.E. Asian

99

Dense 95.2 95.6 90.0 94.2 96.6 95.2 94.4
NFT 92.1 ± 0.54 93.4 ± 0.53 86.5 ± 0.78 91.6 ± 0.48 95.1 ± 0.56 93.4 ± 0.59 91.4 ± 0.59
EL + RB 92.4 ± 0.41 92.9 ± 1.14 86.8 ± 0.68 91.8 ± 0.2 94.9 ± 0.39 93.6 ± 0.36 91.4 ± 0.33
CEAG 92.8 ± 0.49 92.7 ± 0.32 86.2 ± 0.45 91.3 ± 0.66 94.6 ± 0.25 93.8 ± 0.25 91.2 ± 0.55

Table 28: Gender prediction on FairFace with race as protected attribute. CEAG achieves a maxg ψg

within the threshold.

Sparsity Method Train Test
Accuracy ΨPW maxg ψg Tol (ϵ) Accuracy ΨPW maxg ψg

99

NFT 99.3 ± 0.17 2.6 ± 0.23 0.9 ± 0.13 – 91.8 ± 0.17 2.4 ± 0.81 1.1 ± 0.42
NFT + ES 97.6 ± 1.29 1.5 ± 0.67 0.5 ± 0.19 – 92.2 ± 0.13 2.8 ± 0.45 1.5 ± 0.35
EL + RB 99.3 ± 0.09 2.7 ± 0.22 0.8 ± 0.07 – 91.9 ± 0.21 2.1 ± 0.39 1.0 ± 0.34
FairGrape – – – – 90.5 2.3 1.0
CEAG 99.2 ± 0.14 2.7 ± 0.22 0.9 ± 0.07 ≤ 1% ✓ 91.7 ± 0.1 2.4 ± 0.48 1.2 ± 0.44
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Figure 8: FairFace gender prediction with race as protected attribute.

F.2.2 RACE

Table 29: Groupwise train accuracy for race prediction in FairFace with race as protected attribute.
Sparsity Method East Asian Indian Black White Middle Eastern Latino Hispanic S.E. Asian

99

Dense 84.8 81.9 90.9 84.7 76.8 68.0 74.1
NFT 81.1 ± 0.88 78.2 ± 0.59 87.3 ± 0.43 80.9 ± 1.06 70.2 ± 0.73 63.2 ± 1.47 68.6 ± 1.18
EL + RB 78.7 ± 0.58 77.0 ± 0.95 84.7 ± 0.93 78.8 ± 1.03 71.9 ± 0.39 69.7 ± 1.13 70.1 ± 1.13
CEAG 80.7 ± 0.95 77.9 ± 0.61 87.2 ± 0.61 80.4 ± 1.14 73.7 ± 0.79 63.1 ± 1.46 68.5 ± 1.22
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Table 30: Groupwise test accuracy for race prediction in FairFace with race as metrics attribute.
Sparsity Method East Asian Indian Black White Middle Eastern Latino Hispanic S.E. Asian

99

Dense 78.3 72.2 86.2 77.2 63.9 58.1 64.3
NFT 72.5 ± 0.98 65.8 ± 0.97 81.4 ± 0.41 70.1 ± 1.34 55.7 ± 0.94 50.9 ± 1.19 56.1 ± 1.06
EL + RB 70.6 ± 1.28 65.0 ± 1.24 79.3 ± 0.57 68.3 ± 0.85 56.5 ± 0.54 54.8 ± 1.07 57.7 ± 1.86
CEAG 72.5 ± 1.25 65.8 ± 1.04 81.5 ± 0.6 69.5 ± 1.32 57.5 ± 0.84 50.3 ± 1.22 56.4 ± 0.89

Table 31: Race prediction task on FairFace with race as group attribute. Tol (ϵ) is the tolerance
hyper-parameter of CEAG. We do not specify ϵ for other formulations as they do not admit a tolerance.
CEAG achieves a maxg ψg within the threshold. This table is already presented in the main paper as
Table 1, we include this for completeness.

Sparsity Method Train Test
Accuracy ΨPW maxg ψg Tol (ϵ) Accuracy ΨPW maxg ψg

99

NFT 76.1 ± 0.19 3.9 ± 0.91 2.3 ± 0.26 – 65.2 ± 0.44 4.2 ± 0.51 2.1 ± 0.51
NFT + ES 74.0 ± 2.55 7.2 ± 3.35 4.0 ± 1.38 – 65.4 ± 0.35 6.3 ± 2.59 2.9 ± 1.3
EL + RB 76.1 ± 0.13 8.8 ± 1.26 2.6 ± 0.21 – 65.1 ± 0.44 6.0 ± 1.51 2.4 ± 0.36
FairGrape – – – – 65.1 15.9 10.7
CEAG 76.2 ± 0.13 3.5 ± 0.61 1.8 ± 0.42 ≤ 2% ✓ 65.2 ± 0.37 4.3 ± 0.8 2.0 ± 0.32
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Figure 9: FairFace race prediction with race as protected attribute.

F.2.3 INTERSECTIONAL

For the sake of brevity, we use acronyms to refer to the intersectional sub-groups. The acronyms
are separated by a dash, the initial part refers to the race and the later part refers to the gender.
For instance, EA-M refers to East Asian and Male. Other races are I-Indian, B-Black, W-White,
ME-Middle Eastern, LH-Latino Hispanic, and SA-South East Asian.

Table 32: Groupwise train accuracy for race prediction in FairFace with intersection of race and
gender as protected attribute.

Sparsity Method EA-M EA-F I-M I-F B-M B-F W-M W-F ME-M ME-F LH-M LH-F SA-M SA-F

99

Dense 83.8 86.3 80.9 83.3 89.8 91.9 83.7 85.4 80.7 68.0 64.9 70.9 75.3 72.4
NFT 78.6 ± 0.91 83.2 ± 0.81 76.8 ± 0.6 78.9 ± 0.48 86.5 ± 0.57 87.9 ± 0.43 79.3 ± 1.14 82.0 ± 1.08 74.0 ± 0.49 60.3 ± 1.02 59.3 ± 1.72 66.4 ± 1.31 69.8 ± 1.57 67.1 ± 1.16
EL + RB 77.9 ± 0.77 82.5 ± 0.71 76.7 ± 0.72 78.9 ± 0.31 86.0 ± 0.58 87.3 ± 0.52 78.8 ± 1.33 81.5 ± 1.03 74.4 ± 0.56 62.6 ± 0.8 61.0 ± 2.1 67.4 ± 1.57 70.2 ± 1.17 67.3 ± 1.22
CEAG 78.6 ± 0.72 83.1 ± 0.85 76.5 ± 0.77 79.0 ± 0.35 86.5 ± 0.58 87.9 ± 0.57 79.1 ± 1.15 81.7 ± 1.13 74.8 ± 0.77 63.1 ± 0.75 59.5 ± 1.59 66.0 ± 1.31 69.5 ± 1.48 66.8 ± 1.16

Table 33: Groupwise test accuracy for race prediction in FairFace with intersection of race and gender
as protected attribute.

Sparsity Method EA-M EA-F I-M I-F B-M B-F W-M W-F ME-M ME-F LH-M LH-F SA-M SA-F

99

Dense 78.8 77.9 68.5 75.9 86.1 86.4 75.6 79.1 71.7 47.7 53.5 62.5 67.3 61.0
NFT 70.6 ± 0.98 74.3 ± 1.63 61.4 ± 1.42 70.8 ± 0.9 83.1 ± 0.23 79.8 ± 0.53 69.3 ± 1.33 71.0 ± 1.78 62.4 ± 1.23 42.0 ± 2.72 46.1 ± 1.42 55.7 ± 1.28 57.6 ± 0.83 54.8 ± 1.0
EL + RB 69.6 ± 0.95 73.9 ± 1.73 60.7 ± 1.62 70.4 ± 0.64 82.7 ± 1.02 79.2 ± 1.19 68.8 ± 1.3 70.3 ± 1.2 62.8 ± 0.85 44.2 ± 1.93 46.3 ± 1.69 56.1 ± 1.42 58.0 ± 0.72 55.2 ± 0.84
CEAG 70.7 ± 1.15 74.3 ± 1.87 61.2 ± 1.48 70.9 ± 1.11 82.5 ± 0.24 80.1 ± 0.73 69.4 ± 1.22 70.5 ± 1.6 62.6 ± 1.05 43.3 ± 1.74 46.1 ± 1.18 55.1 ± 2.6 57.6 ± 0.82 55.1 ± 1.32
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Table 34: Race prediction on FairFace with intersection of gender and race as protected attribute.
CEAG achieves a maxg ψg within the threshold.

Sparsity Method Train Test
Accuracy ΨPW maxg ψg Tol (ϵ) Accuracy ΨPW maxg ψg

99

NFT 75.8 ± 0.17 5.2 ± 0.94 2.9 ± 0.42 – 65.3 ± 0.45 7.6 ± 0.66 3.4 ± 0.73
NFT + ES 73.7 ± 2.33 8.9 ± 3.83 4.6 ± 2.14 – 65.4 ± 0.37 9.0 ± 2.45 4.3 ± 1.56
EL + RB 75.8 ± 0.16 4.0 ± 1.72 2.3 ± 0.15 – 65.1 ± 0.4 7.6 ± 0.96 3.1 ± 0.36
CEAG 75.8 ± 0.14 4.3 ± 0.42 2.3 ± 0.26 ≤ 2.5% ✓ 65.3 ± 0.51 7.6 ± 1.23 3.5 ± 0.97
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Figure 10: FairFace race prediction with race and gender (intersection) as protected attribute.

F.3 CIFAR-100

We consider CifarResNet-56 (Chen, 2021) models for this task. We consider a scenario where
both the target and group attributes correspond to the class labels. In the context of mitigating the
disparate impact of pruning, we want to ensure that none of the classes degrade more than the average
degradation with a tolerance of ϵ. The dense model performance is 72.61%.

Table 35: CIFAR-100 classification with the group attributed being the class labels. CEAG yields
the best model in terms of disparate impact on the training set, and is competitive in terms of ΨPW
and maxg ψg on the test set.

Sparsity Method Train Test
Accuracy ΨPW maxg ψg Tol (ϵ) Accuracy ΨPW maxg ψg

90

NFT 99.9 ± 0.0 0.9 ± 0.18 0.4 ± 0.18 – 66.7 ± 0.35 25.0 ± 3.08 12.9 ± 2.92
NFT + ES 99.9 ± 0.01 1.1 ± 0.3 0.6 ± 0.3 – 66.9 ± 0.27 24.6 ± 1.52 12.7 ± 1.72
EL 99.8 ± 0.03 3.1 ± 0.61 2.4 ± 0.59 – 67.0 ± 0.32 24.4 ± 3.13 12.4 ± 1.72
EL + RB 99.9 ± 0.01 1.3 ± 0.23 0.8 ± 0.22 – 67.0 ± 0.38 23.6 ± 1.52 12.2 ± 2.06
CEAG (no RB) 100.0 ± 0.01 1.0 ± 0.09 0.4 ± 0.09 ≤ 1% ✓ 66.4 ± 0.31 26.4 ± 3.21 13.8 ± 1.77
CEAG 99.9 ± 0.01 1.0 ± 0.09 0.4 ± 0.08 ≤ 1% ✓ 66.7 ± 0.34 23.4 ± 1.52 12.5 ± 1.4

92.5

NFT 99.8 ± 0.02 3.7 ± 0.86 3.0 ± 0.87 – 64.9 ± 0.39 26.2 ± 5.22 14.3 ± 3.39
NFT + ES 99.3 ± 0.2 6.8 ± 1.9 5.8 ± 1.8 – 65.2 ± 0.42 27.4 ± 2.3 14.6 ± 1.97
EL 98.5 ± 0.09 11.3 ± 0.9 9.8 ± 0.95 – 65.3 ± 0.51 25.8 ± 2.05 14.1 ± 1.29
EL + RB 99.5 ± 0.01 6.7 ± 1.42 5.7 ± 1.48 – 65.3 ± 0.41 24.2 ± 2.86 13.3 ± 2.35
CEAG (no RB) 99.6 ± 0.04 2.6 ± 0.3 1.7 ± 0.19 ≤ 2% ✓ 65.0 ± 0.37 27.2 ± 2.59 14.9 ± 2.48
CEAG 99.6 ± 0.04 2.4 ± 0.17 1.6 ± 0.15 ≤ 2% ✓ 64.8 ± 0.3 25.0 ± 1.87 13.8 ± 1.16

95

NFT 96.2 ± 0.09 14.8 ± 1.16 11.1 ± 1.24 – 62.6 ± 0.29 28.4 ± 3.21 15.6 ± 2.57
NFT + ES 93.9 ± 0.83 20.0 ± 1.52 14.6 ± 1.43 – 63.3 ± 0.21 30.6 ± 5.55 16.1 ± 3.22
EL 87.9 ± 0.45 21.4 ± 1.36 14.5 ± 1.31 – 60.7 ± 0.48 32.8 ± 3.7 16.1 ± 4.57
EL + RB 94.6 ± 0.12 18.4 ± 1.05 13.6 ± 1.07 – 62.8 ± 0.16 27.4 ± 1.34 14.8 ± 0.85
CEAG (no RB) 95.8 ± 0.15 9.2 ± 0.52 5.8 ± 0.53 ≤ 5% ✗ 62.5 ± 0.41 29.6 ± 4.34 17.1 ± 3.59
CEAG 95.6 ± 0.12 9.1 ± 0.64 5.7 ± 0.49 ≤ 5% ✗ 62.7 ± 0.28 27.6 ± 1.14 14.8 ± 1.52
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Figure 11: CIFAR-100 classification with both target and protected attribute being the class labels.
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