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Abstract

Recent work has shown that Continuous Normal-
izing Flows (CNFs) can serve as generative mod-
els of images with exact likelihood calculation
and invertible generation/density estimation. In
this work we introduce a Multi-Resolution vari-
ant of such models (MRCNF). We introduce a
transformation between resolutions that allows
for no change in the log likelihood. We show
that this approach yields comparable likelihood
values for various image datasets, with improved
performance at higher resolutions, with fewer pa-
rameters, using only 1 GPU.

1. Introduction
Reversible generative models derived through the use of the
change of variables technique (Dinh et al., 2017; Kingma
& Dhariwal, 2018; Ho et al., 2019; Yu et al., 2020) are
growing in interest as generative models, because they en-
able efficient density estimation, efficient sampling, and
computation of exact likelihoods. A promising variation of
the change-of-variable approach is based on the use of a
continuous time variant of normalizing flows (Chen et al.,
2018; Grathwohl et al., 2019), which uses an integral over
continuous time dynamics to transform a base distribution
into the model distribution, called Continuous Normalizing
Flows (CNF). CNFs have been shown to be capable of mod-
elling complex distributions such as those associated with
images. While this new paradigm for the generative mod-
elling of images is not as mature as Generative Adversarial
Networks (GANs) (Goodfellow et al., 2016) or Variational
Autoencoders (VAEs) (Kingma & Welling, 2013) in terms
of the generated image quality, it is a promising direction of
research.
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Figure 1. The architecture of our MRCNF method (best viewed
in color). Continuous normalizing flows (CNFs) gs are used to
generate images xs from noise zs at each resolution, with those at
finer resolutions conditioned (dashed lines) on the coarser image
one level above xs+1, except at the coarsest level.

In this work, we focus on making the training of continuous
normalizing flows feasible for higher resolution images,
and help reduce computation time. We thus introduce a
novel multi-resolution technique for continuous normalizing
flows, by modelling the conditional distribution of high-
level information at each resolution in an autoregressive
fashion. We show that this makes the models perform better
at higher resolutions. A high-level view of our approach is
shown in Figure 1. Our main contributions are:

1. We introduce Multi-Resolution Continuous Normal-
izing Flows (MRCF), through which we achieve state-
of-the-art Bits-per-dimension (BPD) (negative log like-
lihood per pixel) on ImageNet64 using fewer model
parameters relative to comparable methods.

2. We propose a multi-resolution transformation that does
not add cost in terms of likelihood.

2. Background
2.1. Normalizing Flows

Normalizing flows (Tabak & Turner, 2013;
Jimenez Rezende & Mohamed, 2015; Dinh et al.,
2017; Papamakarios et al., 2019; Kobyzev et al., 2020) are
generative models that map a complex data distribution,
such as real images, to a known noise distribution. They
are trained by maximizing the log likelihood of their input
images. Suppose a normalizing flow g produces output z
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from an input x i.e. z = g(x). The change-of-variables
formula provides the likelihood of the image under this
transformation as:

log p(x) = log

∣∣∣∣det
dg

dx

∣∣∣∣+ log p(z) (1)

The first term on the right (log determinant of the Jacobian)
is often intractable, however, previous works on normalizing
flows have found ways to estimate this efficiently. The
second term, log p(z), is computed as the log probability of
z under a known noise distribution, typically the standard
Gaussian N .

2.2. Continuous Normalizing Flows

Continuous Normalizing Flows (CNF) (Chen et al., 2018;
Grathwohl et al., 2019; Finlay et al., 2020) are a variant of
normalizing flows that operate in the continuous domain,
using the framework of Neural ODEs (Chen et al., 2018).
Suppose CNF g transforms its state v(t) using a Neural
ODE with neural network f defining the differential. Here,
v(t0) = x is, say, an image, and at the final time step
v(t1) = z is a sample from a known noise distribution.

v(t1) = g(v(t0)) = v(t0) +

∫ t1

t0

f(v(t), t) dt (2)

Chen et al. (2018); Grathwohl et al. (2019) proposed a more
efficient method to compute the change in log-probability
in the context of CNFs, called the instantaneous variant of
the change-of-variables formula:

∆ log pv(t0)→v(t1) = −
∫ t1

t0

Tr
(

∂f

∂v(t)

)
dt (3)

An ODE solver solves both differential equations eq. (2)
and eq. (3). Thus, a CNF provides both the final state v(t1)
as well as the change in log probability ∆ log pv(t0)→v(t1).

Prior works (Grathwohl et al., 2019; Finlay et al., 2020;
Ghosh et al., 2020; Onken et al., 2021; Huang & Yeh, 2021)
have trained CNFs as reversible generative models of im-
ages, by maximizing the likelihood of images:

z = g(x); log p(x) = ∆ log px→z + log p(z) (4)

where x is an image, z and ∆ log px→z are computed by
the CNF using eq. (2) and eq. (3), and log p(z) is the likeli-
hood of the computed z under a known noise distribution,
typically the standard Gaussian N (0, I). CNF g is trained
by maximizing Ex log p(x). Novel images are generated by
sampling z from the known noise distribution, and running
it through the CNF in reverse.

3. Our method
Our method is a reversible generative model of images that
builds on top of CNFs. We introduce the notion of multiple

resolutions in images, and connect the different resolutions
in an autoregressive fashion. This helps generate images
faster, with better likelihood values at higher resolutions.
Moreover, we used only one GPU in all our experiments. We
call this model Multi-Resolution Continuous Normalizing
Flow (MRCNF).

3.1. Multi-Resolution image representation

Multi-resolution representations of images have been ex-
plored in computer vision for decades (Burt, 1981; Witkin,
1987; Burt & Adelson, 1983; Mallat, 1989; Marr, 2010). We
express an image x as a series of high-level information ys

not present in the immediate coarser images xs+1 (obtained
by averaging every 2×2 patch), and a final coarse image xS :

x→ (y1,x2)→ · · · → (y1,y2, . . . ,yS−1,xS) (5)

Our overall method is to map these S terms to S noise
samples using S CNFs.

3.2. Defining the high-level information ys

The multi-resolution representation in eq. (5) needs to be
invertible, i.e. it should be possible to deterministically
obtain xs from ys and xs+1, and vice versa. Further, it is
preferable that this transformation incurs minimal additional
computational cost, and does not add too much change in
log-likelihood. Hence, we choose to perform a linear trans-
formation taking into account the following properties: 1)
volume preserving i.e. determinant is 1, 2) angle preserving,
and 3) range preserving (respecting the maximum principle,
studied for some time, under the notion of the maximum
principle (Varga, 1966)).

Consider the simplest case of 2 resolutions where x1 is a
2×2 image with pixel values x1, x2, x3, x4, and x2 is a 1×1
image with pixel value x̄ = 1

4 (x1+x2+x3+x4). We require
three values (y1, y2, y3) = y1 that contain information not
present in x2, such that when they are combined with x2, x1

is obtained. This could be viewed as a problem of finding a
matrix M such that: [x1, x2, x3, x4]> = M [y1, y2, y3, x̄]>.
We fix the last column of M as [1, 1, 1, 1]>, since every
pixel value in x1 depends on x̄. Finding the rest of the
parameters can be viewed as requiring four 3D vectors that
are (ideally) non-trivially equally spaced. These can be
considered as the four corners of a tetrahedron in 3D space,
under any rotation in space and scaling of the vectors.

Out of the many possibilities for this tetrahedron, we could
choose the matrix that performs the Discrete Haar Wavelet
Transform (DHWT) (Mallat, 1989; Mallat & Peyré, 2009).
However, this has log

∣∣det(M−1)
∣∣ = log(1/2), and is

therefore not volume preserving. We introduce a variant of
the DHWT matrix that is unimodular, i.e. has a determinant
of 1 (therefore volume preserving), while also preserving
the range of the images for the input and its average:
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 , (7)

where c = 22/3, a = 4, and log
∣∣det(M−1)

∣∣ = log(1) = 0.
This can be scaled up to larger spatial regions by performing
the same calculation for each 2×2 patch. Let M be the
function that uses matrix M from above and combines
every pixel in xs+1 with 3 corresponding pixels in ys to
make the 2×2 patch at that location in xs using eq. (6):

xs = M(ys,xs+1) ⇐⇒ ys,xs+1 = M−1(xs) (8)

3.3. Multi-Resolution Continuous Normalizing Flows

Using the multi-resolution image representation in eq. (5),
we characterize the conditional distribution over the addi-
tional degrees of freedom (ys) required to generate a higher
resolution image (xs) that is consistent with the average
(xs+1) over the equivalent pixel space. At each resolution s,
we use a CNF to reversibly map between ys (or xS when
s=S) and a sample zs from a known noise distribution. At
generation, ys only adds information missing in xs+1, but
conditional on it. This framework ensures that one coarse
image could generate several potential fine images, but these
fine images have the same coarse image as their average.
This fact is preserved across resolutions.

In principle, any generative model could be used to map
between the multi-resolution image and noise. Normalizing
flows are good candidates for this as they are probabilistic
generative models that perform exact likelihood estimates,
and can be run in reverse to generate novel data from the
model’s distribution. This allows model comparison and
measurement of generalization to unseen data. We choose to
use the CNF variant of normalizing flows at each resolution,
since CNFs have recently been shown to be effective in
modeling image distributions using a fraction of the number
of parameters typically used in normalizing flows (and non
flow-based approaches), and their underlying framework
of Neural ODEs have been shown to be more robust than
convolutional layers (Yan et al., 2020).

Training: We train an MRCNF by maximizing the average
log-likelihood of the images in the training dataset under the
model, i.e. maxEx log p(x). The log probability of each
image log p(x) can be estimated recursively as:

log p(x) = log p(y1,x2) = log p(y1 | x2) + log p(x2)

=

S−1∑
s=1

(log p(ys | xs+1)) + log p(xS) (9)

where log p(xS) is computed by CNF gS using eq. (4):

zS = gS(xS); log p(xS) = ∆ log pxS→zS
+ log p(zS)

(10)
and log p(ys | xs+1) is also computed by CNFs gs similarly,
conditioning on the coarser image:{

zs = gs(ys | xs+1)

log p(ys | xs+1) = ∆ log p(ys→zs)|xs+1
+ log p(zs)

(11)

This model could be seen as a stack of CNFs connected
in an autoregressive fashion. Typically, likelihood-based
generative models are compared using the metric of bits-
per-dimension (BPD), i.e. the negative log likelihood per
pixel in the image:

BPD(x) =
− log p(x)

dims(x)
(12)

Hence, we train our MRCNF to minimize the average
BPD of the images in the training dataset, computed using
eq. (12). Although the final log likelihood log p(x) involves
sequentially summing over values returned by all S CNFs,
each CNF can be trained independently, in parallel.

We use FFJORD (Grathwohl et al., 2019) as the baseline
model for our CNFs. In addition, we use to two regulariza-
tion terms introduced by RNODE (Finlay et al., 2020) to
speed up the training of FFJORD models.

Generation: First, zs, s = 1, . . . , S are sampled from the
latent noise distributions. Given an S-resolution model,
CNF gs at resolution s transforms the noise sample zs to
high-level information ys conditioned on the immediate
coarse image xs+1 (except gS which is unconditioned). ys

and xs+1 are then combined to form xs as described in sec-
tion 3.2 (see fig. 1). This process is repeated progressively
from coarser to finer resolutions:

xS = g−1S (zS) s = S{
ys = g−1s (zs | xs+1)

xs = M(ys,xs+1)
s = S-1→ 1 (13)

4. Related work
Several prior works on normalizing flows — Glow (Kingma
& Dhariwal, 2018), Hoogeboom et al. (2019a;b), Mint-
Net (Song et al., 2019), MaCow (Ma et al., 2019), Durkan
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et al. (2019); Chen et al. (2020), Flow++ (Ho et al., 2019),
NanoFlow (Lee et al., 2020), Wavelet Flow (Yu et al., 2020),
DenseFlow (Grcić et al., 2021) — build on RealNVP (Dinh
et al., 2017). Although they achieve great results in terms
of BPD and image quality, they nonetheless report results
from significantly higher parameter (some with 100x!), and
several times GPU hours of training.

Although our MRCNF model is similar to the recently pub-
lished WaveletFlow (Yu et al., 2020), we generalize the
notion of a multi-resolution image representation. Wavelet-
Flow builds on the Glow (Kingma & Dhariwal, 2018) ar-
chitecture, while ours builds on CNFs. WaveletFlow claims
to have orthonormal transformation, our eq. (6) involves a
unimodular transformation. Finally, WaveletFlow applies
special sampling techniques to obtain better samples from
its model. We have so far not used such techniques for gen-
eration, but we believe they can potentially help our models
as well.

“Multiple scales” in prior normalizing flows: Normaliz-
ing flows (Dinh et al., 2017; Kingma & Dhariwal, 2018;
Grathwohl et al., 2019) try to be “multi-scale” by transform-
ing the input at one resolution in a smart way (squeezing
operation) such that the width of the features progressively
reduces. In contrast, our model stacks normalizing flows at
multiple resolutions in an autoregressive fashion.

5. Experimental results
We train Multi-Resolution Continuous Normalizing Flow
(MRCNF) and Multi-Resolution Continuous Normalizing
Flow - Wavelet (MRCNF-Wavelet) models on the Ima-
geNet (Deng et al., 2009) dataset at 32x32, 64x64, 128x128.
We build on the code provided in (Finlay et al., 2020)
(https://github.com/cfinlay/ffjord-rnode). In all cases, we
train using only one NVIDIA RTX 2080 Ti GPU with 11GB.

At lower resolution spaces, we achieve comparable BPDs in
lesser time with far fewer parameters than previous normal-
izing flows (and non flow-based approaches). However, the
power of the multi-resolution formulation is more evident
at higher resolutions: we achieve state-of-the-art BPD for
ImageNet64 with significantly fewer parameters and lower
time using only one GPU.

Progressive training: Since each resolution can be trained
independently, we train an MRCNF model on ImageNet128
by training only the finest resolution (128×128) conditioned
on the immediate coarser (64×64) images, and attach that
to a 3-resolution 64×64 model. The resulting 4-resolution
ImageNet128 model gives a BPD of 3.31 (Table 2) with just
2.74M parameters and 59 GPU hours of total training time.

Table 1. Bits-per-dimension (lower is better) of images for
CIFAR10, ImageNet at 32×32, and ImageNet at 64×64, re-
ported as the mean and standard deviation across the dataset.
We also report the number of parameters in the models,
and the time taken to train (in GPU hours). Most previous
models use multiple GPUs for training, all our models were
trained on only one GPU: NVIDIA RTX 2080 Ti 11GB.
‡As reported in (Ghosh et al., 2020). §Re-implemented by
us. ‘x’: Fails to train. Blank spaces indicate unreported
values. ∗RNODE (Finlay et al., 2020) used 4 GPUs to train
on ImageNet64.

IMAGENET32 IMAGENET64
BPD PARAM TIME BPD PARAM TIME

Flow-based Prior Work
RealNVP 4.28 46.0M 3.98 96.0M
Glow 4.09 66.1M 3.81 111.1M
MintNet 4.06 17.4M
MaCow 3.69 122.5M
Flow++ 3.86 169M 3.69 73.5M
Wavelet Flow 4.08 64M 3.78 96M 822
DenseFlow 3.63 310 3.35 224

1-Resolution CNF
FFJORD 3.96‡ 2.00M‡ >5days‡ x x
RNODE 2.36‡ 2.00M 30.1‡ 3.83∗ 2.00M 64.1∗

3.49§ 1.58M§ 40.39§

FFJORD + STEER 3.84 2.00M >5days
RNODE + STEER 2.35 2.00M 24.9

3.49§ 1.58M§ 30.07§

(OURS) Multi-Resolution CNF (MRCNF)
2-resolution 3.77 1.33M 18.18 - - -
2-resolution 3.78 6.68M 17.98 - - -
3-resolution 3.97 1.53M 13.78 3.61 2.04M 28.64

Table 2. Metrics for unconditional ImageNet128 generation.

IMAGENET128 BPD PARAM TIME
Parallel Multiscale (Reed et al., 2017) 3.55
SPN (Menick & Kalchbrenner, 2019) 3.08 250M
(OURS) 4-resolution MRCNF 3.30 2.74M 58.59

Figure 2. ImageNet: Example of super-resolving from ground truth
16×16 to 64×64. Top ground truth, middle generated, bottom
ground truth.
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6. Conclusion
We presented a Multi-Resolution approach to CNFs, which
provides an efficient framework for likelihood calculations
by training on a single GPU in lesser time with a signifi-
cantly fewer parameters. We see a marked improvement in
BPD for ImageNet64 and above.
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