
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

POST-TRAINING SPARSE ATTENTION WITH DOUBLE
SPARSITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Long-context inference of Large Language Models (LLMs) is known to be chal-
lenging due to the excessive Key-Value(KV) cache accesses. This paper introduces
“Double Sparsity,” a novel post-training sparse attention technique designed to
alleviate this bottleneck by reducing KV cache access. Double Sparsity combines
token sparsity, which focuses on using only the important tokens for computing
self-attention, with channel sparsity, an approach that uses important feature chan-
nels for identifying important tokens. Our key insight is that the pattern of channel
sparsity is highly static, allowing us to use offline calibration to make it efficient at
runtime, thereby enabling accurate and efficient identification of important tokens.
Moreover, this method can be combined with offloading to achieve significant
memory usage reduction. Experimental results demonstrate that Double Sparsity
can achieve 1

16 sparsity with minimal impact on accuracy across various tasks with
different architectures including MHA, GQA, MoE and vision language model. It
brings up to a 14.1× acceleration in attention operations and a 1.9× improvement
in end-to-end inference on GPUs with various batch sizes. With CPU offloading
under extremely long-context settings (e.g., 256K), it achieves a decoding speed
acceleration of 16.3× compared to state-of-the-art solutions. Our code is integrated
into a widely-used framework SGLang and deployed in real-world workloads.

1 INTRODUCTION

Large Language Models (LLMs) have significantly advanced machine learning capabilities, en-
abling a wide range of applications from natural language processing to complex problem-solving
tasks (OpenAI, 2023; Touvron et al., 2023; Google, 2023). Recent progress has dramatically extended
the context window of LLMs from 2K to 1M, enabling more long-context applications (Dubey
et al., 2024). However, long-context inference is costly and slow due to its token-by-token gener-
ation scheme. This auto-regressive process requires loading the entire previous Key-Value (KV)
cache to generate the next token, making the self-attention layers extremely memory-intensive and
time-consuming (Williams et al., 2009; Liu et al., 2024b). Furthermore, simultaneously serving
multiple long-context requests within a single batch greatly increases the size of KV cache, making
the inference more memory-intensive (Zhao et al., 2024). For example, serving 16 requests of 8k
length with a Llama-2-7B model, a 64 GB KV Cache requires 44 ms, which accounts for more than
80% of the total serving time.

In this paper, we explore methods to reduce access to the KV cache during inference, thereby making
attention computation more bandwidth-efficient and accelerating its execution. Our focus is on
post-training methods that can be directly applied to a pre-trained model to provide wall-clock
acceleration without requiring excessive additional training or fine-tuning overhead. Prior work has
attempted to leverage quantization (Hooper et al., 2024; Liu et al., 2024b), compression (Nawrot
et al., 2024), and sparsity (Zhang et al., 2024; Anagnostidis et al., 2024; Ge et al., 2024; Ribar et al.,
2023) to achieve these goals. Among them, sparsity holds significant potential if a high sparsity
ratio can be achieved. The intuition of sparsification is that not every token is equally important for
decoding the next token. Therefore, during the decoding process, we can rely on a small subset of
important tokens to compute the self-attention, achieving nearly the same results. While the approach
of sparse attention seems intuitive, previous research has struggled to find a post-training sparse
attention method that maintains high accuracy while being runtime-efficient.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The primary challenge in post-training sparse attention lies in accurately and efficiently identifying
important tokens. A naive approach entails calculating the entire attention weight matrices and
then sorting the tokens based on the accumulated attention weights. Although this method can
precisely identify important tokens, it fails to offer a runtime speedup, as it requires computing the
full attention weight matrices, which is precisely the step we aim to avoid. Previous studies have
proposed various methods for selecting important tokens; however, these methods either lead to
significant accuracy losses or fail to achieve practical wall-clock acceleration. Notably, H2O (Zhang
et al., 2024) employs a dynamic strategy that maintains a small, fixed-size cache of important tokens
during the decoding steps. Due to its limited size, it must evict tokens during these steps, and once
evicted, these tokens cannot be reinstated if they become important later. This approach can lead to
significant accuracy degradation since it cannot predict which tokens will be important in the future.
Quest (Tang et al., 2024) and SparQ (Ribar et al., 2023), in contrast, retain all tokens and dynamically
select important ones at each decoding step, with different importance estimation methods. Quest
proposes a page-based estimation method, which is efficient but fails to accurately identify important
tokens. SparQ, while being more accurate, falls short of achieving the desired speedup and incurs
considerable memory overhead. Therefore, designing a both efficient and accurate estimation method
remains a significant challenge.

The

capital

of

America
Key Cache Label Cache

Initialize Label Cache

city
K Proj

Select Top-K Tokens 
(K=3 here)

The
capital

of
America

city

is
Q Proj

K Proj

Update Label Cache

Extract Query Label

2.4
13.6

-0.7
37.9

22.0

9.3

Compute Approximate 
Attention Weight

0.1

0.7

0.2

Softmax

Prefilling Decoding

Figure 1: An overview of the Double Sparsity algorithm, including label cache initialization during the prefill
stage and sparse attention during the decode stage. Please refer to Section 4 for details.

We propose “Double Sparsity,” a method that leverages both token sparsity and channel sparsity
to achieve accurate and efficient post-training sparse attention. Token sparsity refers to the sparse
attention method mentioned above (Zhang et al., 2024), which uses only important tokens to compute
self-attention. Channel sparsity estimates the importance of tokens at runtime using heavy channels in
embedding. Our key insight is that while token sparsity is highly dynamic, channel sparsity exhibits
static patterns, enabling us to identify and select important channels through offline calibration.
This static channel sparsity thus provides an efficient way to achieve dynamic token sparsity at
runtime. Furthermore, once we can quickly identify important tokens for the current layer, we extend
this process by predicting the important tokens of the next layer. We achieve this by utilizing the
embedding similarity between adjacent layers. This approach enables us to offload the entire KV
cache to host memory and prefetch only the important tokens to GPU memory, significantly reducing
GPU memory footprint.

We demonstrate that “Double Sparsity” can achieve an 1
16 token sparsity and an 1

16 channel sparsity
simultaneously while incurring only a negligible accuracy loss across a broad array of benchmarks,
including language modeling, question answering, and retrieval tasks. The sparsity directly leads to
the reduction of memory access and runtime speedup. “Double Sparsity” accelerates the attention
operation by up to 14.1× at a sparsity level of 1

16 on NVIDIA A10G and A100 GPUs, closely
approaching the theoretical acceleration upper bound. It accelerates end-to-end inference in our
evaluated workloads by up to 1.9×. With offloading and prefetch, it achieves a decoding throughput
that is 16.3× higher than the state-of-the-art offloading-based solutions at a sequence length of 256K.

2 BACKGROUND

2.1 PRELIMINARIES ON SELF-ATTENTION AND NOTATIONS

Attention computation is one of the major bottlenecks in LLM Inference, especially when the
sequence length is large (Tay et al., 2022). This is caused by its quadratic computational complexity.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Let dh denote the head dimension, and S denote the number of tokens. We use the decoding step as
an example to illustrate the self-attention computation. Each token carries three tensors to embed its
information, which are called query, key, and value. In an attention layer, let q ∈ Rdh represents the
query tensor for input token, K ∈ RS×dh represents the key tensor for all tokens, and V ∈ RS×dh

represents the value tensor for all tokens. The attention is obtained through the formula shown below:

y = softmax

(
q ·KT

√
dh

)
· V

2.2 POST-TRAINING SPARSE ATTENTION

In this work, we introduce the term “post-training sparse attention,” analogous to “post-training
quantization.” Post-training sparse attention refers to techniques that exploit inherent model sparsity,
such as token-level sparsity, to accelerate attention calculations without requiring additional training.
In the field of LLMs, many works have utilized post-training sparse attention, including H2O,
StreamingLLM (Xiao et al., 2024), SparQ and Quest. However, these methods come with significant
limitations on either maintaining good accuracy or achieving fast inference (details see Section 3),
presenting serious challenges for post-training sparse attention.

3 CHALLENGES IN POST-TRAINING SPARSE ATTENTION

In this section, we discuss prior research on post-training sparse attention, identifying the challenges
and shortcomings that have prevented these approaches from achieving their full potential. More
related works are included in Section 7.

3.1 RETRIEVAL ACCURACY

One of the most challenging issues for post-training sparse attention is maintaining retrieval accuracy.
For instance, StreamingLLM discards earlier tokens except for a few tokens at the beginning, which
are called attention sinks, while H2O selectively drops tokens based on previous attention scores.
Although discarding tokens can accelerate computations, this exclusion leads to the loss of critical
information, potentially compromising the model’s retrieval accuracy. As highlighted in Jelassi et al.
(2024), this issue is inherent to techniques that rely on discarding tokens, prompting the exploration
of sparse attention methods that preserve access to the complete KV cache.

3.2 BANDWIDTH FRIENDLINESS

Achieving wall-clock speedup poses a greater challenge while maintaining model retrieval accuracy,
particularly because some post-training sparse attention techniques are not hardware-friendly. For
instance, SparQ retains the complete KV cache and computes attention selectively on a subset of the
KV cache based on the estimation with query. This approach theoretically allows for acceleration
while maintaining accuracy. However, SparQ’s estimation method uses heavy channels to approximate
attention scores, which causes non-contiguous memory access at the granularity of 2B for FP16.
Such irregular access can substantially waste memory bandwidth, as GPU is designed to efficiently
deal with continuous 16B memory loading (NVIDIA, 2020). As a result, despite being designed to
accelerate processing, SparQ achieves only a modest 1.3 × speed increase in attention computations.
We further quantify this effect in Appendix B. Therefore, it is crucial to develop an algorithm that
ensures continuous memory access patterns to accelerate attention while preserving accuracy.

3.3 MEMORY FOOTPRINT

Besides the efficiency of memory bandwidth, long-context inference is still challenging because of
the substantial memory capacity required to store the KV cache, as post-training sparse attention can’t
prune tokens to assure great accuracy. E.g., with Llama2-7B and a context length of 128K, 64GB is
still needed even with 1/16 token sparsity. To mitigate this large memory footprint, FlexGen (Sheng
et al., 2023b) offloads the entire KV cache on the CPU and loads it to the GPU layer-by-layer during
the decoding process. However, the communication overhead of loading the KV cache for all previous

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

tokens within a single layer is still large enough to affect overall inference efficiency. In sparse
attention, considering that important tokens constitute just a small fraction of all tokens, the time
taken to load these specific tokens to the GPU is considerably less than the time required for loading
the entire KV cache. By accurately predicting the important tokens and efficiently managing when
and how data is transferred and processed, it’s possible to significantly reduce both the time and
memory overhead typically associated with maintaining a full KV cache.

To address these challenges, we propose two post-training sparse attention techniques. In Section 4,
we introduce Double Sparsity, which accelerates attention by up to 16 × with minimal additional
memory consumption. In Section 5, we present Double Sparsity-Offload, which reduces memory
usage to 1

16 of the original without increasing latency.

4 DOUBLE SPARSITY

Based on the insights of Section 3, we pro-
pose Double Sparsity, a hardware-friendly and
bandwidth-efficient post-training sparse atten-
tion mechanism. This approach overcomes the
challenges highlighted in previous post-training
sparse attention techniques by ensuring no loss of
information, as it maintains the entire KV cache.
To avoid the cache misses associated with runtime
sorting, Double Sparsity utilizes offline calibra-
tion to pre-determine outlier channels for each
transformer layer. A compact label cache is em-
ployed to store outlier channel values from the
Key cache, optimizing memory access patterns to
leverage GPU’s preference for contiguous mem-
ory access. Algorithm 1 and Figure 1 illustrate
the decoding process of Double Sparsity.

Algorithm 1 Double Sparsity Decode

Input: Query vector q ∈ Rdh , Key cache
K ∈ RS×dh , Value cache V ∈ RS×dh , Label
cache L ∈ RS×r, Calibrated channel index
list C ∈ Nr, Top-k token number k
Output: Sparse attention output y

1: qlabel ← q[C]

2: L[−1,:] ← K[−1,C]

3: ŝ← qlabel · L
4: i← argtopk(ŝ, k)

5: s← softmax
(

q·KT [i,:]√
dh

)
6: y ← s · V [i, :]

7: return y

4.1 OFFLINE CALIBRATION

Offline calibration is a commonly used technique to identify channel sparsity, particularly effective
for pinpointing outlier channels. For example, AWQ (Lin et al., 2023) utilizes offline calibration
to identify salient weight channels that significantly impact model performance. Inspired by this
approach, we employ offline calibration to pre-determine the channels that most influence attention
scores. Attention computation can be expressed as A = Q ·KT , which can be broken down into
A =

∑dh

i Si where Si = Qi ∗Ki. Due to channel sparsity, only a few Si have a significant impact on
A. Therefore, by conducting offline calibration on a small validation set, we can efficiently identify
these critical channels by computing the argmaxi Si. Figure 7a in Appendix A illustrates the outlier
channels identified by AWQ and Double Sparsity.

To validate the efficacy of outlier channels identified through offline calibration, we conducted a
comparison in Appendix A between the outlier channel indices derived from offline calibration and
those determined during the online decoding process. A significant overlap between the two sets
underscores the reliability of offline-calibrated outliers. Figure 7b illustrates this relationship. An
observation from the comparison is that when the ratio surpasses 0.25, the overlap reaches 0.95.

4.2 FORWARDING WITH LABEL CACHE

After identifying the outlier channel indices, it becomes crucial to access them efficiently. Reading
these channels directly from the Key cache can lead to non-contiguous memory accesses, which
significantly under-utilized the bandwidth. To alleviate non-contiguous memory accesses, we leverage
a label cache to store pre-determined heavy channel values. This label cache allows for continuous
memory access when computing approximate attention, avoiding the need to retrieve non-contiguous

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

segments from the Key cache. During the prefilling stage, all heavy channel values from the Key
cache are stored in the label cache; in the decoding phase, only the heavy channel values of new
tokens are added. Since approximate attention is not sensitive to precision, we can store the label
cache in 4-bit. This approach enables us to maintain a label cache that is only 1

16 the size of the K
cache, facilitating contiguous memory access and significantly improving the hit rate of L1/L2 caches,
thereby optimizing inference speed and efficiency. In Appendix B, an ablation study was conducted to
evaluate the impact of label caches. The results demonstrated that a label cache accelerates decoding
speeds by 2 to 4 times compared to configurations without a label cache.

5 REDUCING GPU MEMORY USAGE WITH DOUBLE SPARSITY-OFFLOAD

Building upon Double Sparsity, we further propose the Double Sparsity-Offload technique to reduce
the large GPU memory footprint introduced by long-context inference. This approach significantly
diminishes the memory capacity requirement to 1

16 of the original KV caches. By optimizing memory
footprint, Double Sparsity-Offload enables efficient decoding under extremely long-context settings
with limited GPU memory resources.

5.1 PREFETCHING TOKENS WITH DOUBLE BUFFER

The Double Sparsity-Offload algorithm introduces a prefetching technique with a double buffer
during for decoding process, following the design principles of prior works (Lee et al., 2024; Shi
et al., 2024). Our key idea is to utilize inter-layer similarity to predict and prefetch the heavy tokens
for the next layer and overlap the computation with memory transfer. The complete KV cache is
offloaded to the CPU, while the GPU maintains only the label cache and a double buffer. During
the decoding process, each layer processes its embeddings through the next layer’s query projection
to generate an approximate query for the subsequent layer. This approximate query is then used to
compute the next layer’s approximate attention. While the current layer’s attention and feed-forward
network computations are being performed, the tokens corresponding to the approximate attention
results for the next layer are loaded to the GPU. This use of double buffering allows for a smooth and
efficient overlap of computation and memory transfer.

5.2 EMPIRICAL ANALYSIS: EMBEDDING SIMILARITY BETWEEN LAYERS

The feasibility of the Double Sparsity-Offload algorithm is based on the high degree of similarity
between embeddings across consecutive layers. To empirically validate this assumption, we conducted
an analysis using the Pile validation dataset, applied to the Llama-2-7B model. We measured the
cosine similarity of embeddings between every two consecutive layers throughout the model. The
results show that apart from the first two layers, the second and third layers, and the very last layers
(30 and 31), all other layer pairs exhibited a cosine similarity exceeding 90%, with the majority of
layers showing similarities above 95%, as illustrated in Figure 2. These high similarity scores support
the viability of utilizing prior layer embeddings to predict queries for subsequent layers in Double
Sparsity-Offload.

Figure 2: Average cosine similarity of embeddings across all attention heads between layers 0-1,
1-2, 2-3, and 3-4 on the Pile dataset for Llama-2-7B model. The cosine similarity pattern for other
consecutive layers except the very last layers is similar to the pattern for layers 2-3 and 3-4.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Comparison of sparsity-related techniques. ‘SparQ (1xK)’ denotes single-dimension storage
of the Key cache, while ‘SparQ (2xK)’ refers to dual-dimension storage of the Key cache. Quest
stores max and min representations per page with a page size of 16, indicating α is 1/8.

Method On-device Cache Size Cache IO-Complexity Min β Speedup

H2O S × β S × β 1/5 Yes
SparQ (1xK) S S × β 1/8 No
SparQ (2xK) S × 1.5 S × β 1/8 Yes
AWQ S S 1 Yes
Quest S × (1 + α

2 ) S × β 1/16 Yes
Double Sparsity S × (1 + α

2 ) S × β 1/16 Yes
Double Sparsity-Offload S × α

2 S × β 1/16 Yes

5.3 COMPLEXITY ANALYSIS

To understand the potential speedup of Double Sparsity, we need to analyze its Cache IO-Complexity
since attention mechanisms are bandwidth-bounded. Most sparse attention techniques can be simpli-
fied into two steps: calculating approximate attention and computing attention over k tokens. We
denote α as the ratio of memory access in the first step relative to the K cache size, and β as the ratio
of memory access in the second step relative to the KV cache size. Memory-wise, the total access of
Double Sparsity comprises O(d) bytes for Q, O(S × r) for the label cache, O(2× k× d) for the KV
cache, leading to a total of O(S × r+ 2× k× d) = O(α× S × d+ 2× β × S × d). Given that the
approximate attention phase of Double Sparsity does not involve softmax operations, it allows for
high parallelism compared to the following step. Therefore, the overall IO complexity of Double
Sparsity primarily depends on the latter step, which can be approximated as O(2× β × S × d). This
analysis reveals that Double Sparsity’s time complexity is linearly dependent on β, and the extra
memory overhead is linearly proportional to α. Table 1 summarizes all the sparsity works discussed,
specifying their overhead, complexity, and speedup.

6 EXPERIMENT

In Section 6.1, we demonstrate that both Double Sparsity and Double Sparsity-Offload maintain
robust performance with a sparsity setting of 1/16 across various benchmarks, including Wiki-2
perplexity (Merity et al., 2016), MultifieldQA (Bai et al., 2023), GovReport (Huang et al., 2021),
HotpotQA (Yang et al., 2018), TriviaQA (Joshi et al., 2017), NarrativeQA (Kočiský et al., 2017),
and Qasper (Dasigi et al., 2021). In key-value retrieval tasks (Li et al., 2023), Double Sparsity
significantly outperforms other post-training sparse attention techniques. In Section 6.2, we compare
Double Sparsity against state-of-the-art attention and end-to-end implementations. Results show that
Double Sparsity achieves up to a 16-fold acceleration in attention mechanisms and up to a twofold
increase in overall end-to-end processing speed. Additionally, Double Sparsity-Offload achieves a
16-fold acceleration compared to FlexGen Offload.

6.1 ACCURACY EVALUATION

6.1.1 WIKI-2 PERPLEXITY

Wiki-2 perplexity is a benchmark derived from Wikipedia articles, offering a comprehensive test
of language modeling. We evaluate Double Sparsity on Wiki-2 with different sparsity levels under
different models. Note that a lower perplexity indicates better model performance. Table 2 illustrates
the changes in perplexity across different sparsity levels for each model.

To demonstrate the model’s performance at different sparsity levels and justify our selection of a
sparsity level of 1/16, we constructed a 3D bar chart. According to Figure 8 in Appendix C, a
noticeable shift in perplexity is observed as the sparsity level goes beyond 1/16.

To validate the robustness of Double Sparsity, we conducted a series of ablation studies across various
model configurations and conditions. Table 3 demonstrates the effectiveness of Double Sparsity
across various model sizes, attention mechanisms, and MoE configurations. The sparsity level of

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Perplexity of models at various sparsity levels. Note the minimal changes in perplexity from
sparsity levels 1 to 1/16, with a significant performance gap emerging between levels 1/16 and 1/32.

Sparsity Level

Model 1 1/2 1/4 1/8 1/16 1/32

Llama-7B 5.68 5.69 5.69 5.72 5.80 7.66
Llama-2-7B 5.47 5.48 5.53 5.56 5.76 12.01
Llama-2-7B (offloading) 5.47 5.48 5.54 5.57 5.86 15.29
Llama-3.1-8B 6.24 6.24 6.25 6.27 6.35 8.56
Llama-3-70B-Instruct 5.31 5.29 5.33 5.35 5.54 13.47
Mistral-7B 5.25 5.25 5.26 5.27 5.37 14.55

Table 3: Ablation study on different architectural models with different outlier types at 1/16 sparsity
level. GQA models are incompatible with K outlier channel. ‘random’ denotes using random channel.

Model Architecture Original Double Sparsity

random q outlier k outlier qk outlier

Llama-2-7B Single/MHA 5.47 8.62 6.45 6.61 5.76
Llama-2-7B-chat Single/MHA 6.94 10.1 7.8 9.44 7.14
Mistral-7B Single/GQA 5.25 6.06 5.79 N/A 5.37
Llama-2-70B Single/GQA 3.32 5.15 3.69 N/A 5.17
Mixtral-8x7B MoE/GQA 3.84 N/A 3.84 N/A 17.3
Llama-3.2-11B-Vision VLM 7.23 N/A 8.85 N/A N/A

Double Sparsity can be adaptively specified according to the task. Based on the results of perplexity
evaluations, we can designate 1/16 as the common sparsity level.

6.1.2 LONG CONTEXT BENCHMARKS

We used Llama-3.1-8B-Instruct to evaluate the performance of Double Sparsity across multiple
long context benchmarks at various levels of sparsity, comparing its effectiveness with that of
StreamingLLM, H2O and Quest. As illustrated in Figure 3, Double Sparsity maintains its performance
with nearly no drop in accuracy at a sparsity level of 1/16, outperforming other techniques. We also
evaluated Double Sparsity on Llama-2-7B-chat in Appendix D.

6.1.3 KEY-VALUE RETRIEVAL

The key-value retrieval benchmark is designed to assess a model’s in-context retrieval capabilities.
Our experiments compared Double Sparsity against other post-training sparsity techniques, including
H2O, StreamingLLM, and Quest. We also tested the performance of Double Sparsity with the
Llama-3.1-8B-128k model to observe how accuracy changes as context length increases. As shown
in Figure 4, we demonstrate that Double Sparsity significantly surpasses the other techniques in
key-value retrieval tasks. Notably, Double Sparsity and Double Sparsity-Offload show equivalent
performance, highlighting that the offloading mechanism exhibits almost no decay.

6.2 SPEEDUP EVALUATION

6.2.1 SETUPS

Hardware. Our experiments were conducted on two types of GPUs: the A10G and the A100-SXM.

Implementation. For the Double Sparsity Attention, we utilized PyTorch to compute approximate
attention and select the top-k tokens. The kernel for attention over top-k tokens was designed using
OpenAI Triton. For end-to-end testing, we replaced the full attention mechanism in gpt-fast (Py-
Torch, 2023b) with our Double Sparsity Attention. For Double Sparsity-Offload, we implemented
asynchronous CPU to GPU memory copying using CUDA streams and DGL (Wang et al., 2019)’s
gathering kernel.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: We tested Double Sparsity and other baselines on six long-context benchmarks. ‘DS’
denotes Double Sparsity, ‘Stream’ denotes StreamingLLM, and ‘Full’ indicates the score of normal
inference. It is noted that Double Sparsity outperformed all other baselines.

Figure 4: Performance of Double Sparsity and other baselines tested via key-value retrieval, examining
different sparsity levels at a fixed 16k context length and various context lengths at a fixed 1/16
sparsity level. Double Sparsity outperformed all other baselines in both settings.

Workload. We selected Llama-2-7B as base model and focused on high-workload scenarios to push
the limits of Double Sparsity. This included a range of batch sizes from 4 to 32 and sequence lengths
from 1024 to 16384. For Double Sparsity-Offload, we extended testing to extreme conditions on
the A100 GPU, exploring sequence lengths from 64K to 256K. Given that gpt-fast’s KV cache is
pre-allocated, the tokens-per-second throughput depends solely on the batch size and sequence length.

Baseline. For attention acceleration evaluations, we use the ‘scaled_dot_product_attention’ as our
baseline. This implementation ranks among the fastest attention mechanisms, dynamically allocating
computation among the most efficient options including FlashAttention-2 (Dao, 2023), Memory-
Efficient Attention (Lefaudeux et al., 2022), and the top-performing kernels from the PyTorch team. In
the end-to-end speed evaluations of Double Sparsity, gpt-fast (PyTorch, 2023a) serves as the baseline,
distinguished as the state-of-the-art for Llama models on the A100 GPU. It offers exceptionally low
latency and throughput that surpasses that of the huggingface transformers by tenfold. For evaluating
Double Sparsity-Offload, we compare it against FlexGen Offloading, which shares the same gpt-fast
codebase and memory footprint.

Other Settings. Given Double Sparsity’s focus on the attention mechanism, both weights and
activations were set to FP16 precision. Furthermore, considering the limitations imposed by Triton
kernels on Torch compile options, neither Double Sparsity nor gpt-fast employed the Torch compiler.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Latency and speedup of Double Sparsity Attention at various batch sizes and sequence
lengths. ‘DS’ indicates double sparsity attention. ‘Flash’ indicates the ‘scaled_dot_product_attention’,
which is the fastest of FlashAttention-2 and Memory-Efficient Attention.

Figure 6: Throughput (token/s) and speedup of Double Sparsity (Offloading) in end-to-end scenarios.

6.2.2 ATTENTION OPERATOR SPEEDUP

Figure 5 provides a comprehensive view of the latency and speedup of Double Sparsity compared
to ‘scaled_dot_product_attention’ across different batch sizes and sequence lengths. On the A10G
GPU, every case achieves at least a 5× speedup, with more than half exceeding 9×. Notably, Double
Sparsity achieves a linear speedup at a sequence length of 4096 with large batch sizes. On the A100
GPU, nearly all cases see at least 4× faster processing, with larger batches reaching up to 10×
speedup. The greater speedup for smaller batches on the A10G might be due to the launch time of
Triton kernels, which becomes significant when the kernel execution time on the A100 is short.

6.2.3 END-TO-END INFERENCE SPEEDUP

Figure 6 (a)(b) presents the throughput comparison between Double Sparsity and gpt-fast, measured
in tokens per second across various batch sizes and sequence lengths. We deployed the Llama-2-7B
model and maximized memory usage to achieve high workload conditions. The results indicate that
Double Sparsity yields a minimum speedup of 1.3x across all tested conditions. In certain scenarios,
the speedup approached twofold, showcasing Double Sparsity’s overall efficiency.

In Figure 6 (c)(d), we compare the throughput of Double Sparsity-Offload to FlexGen under a
constrained memory footprint, set at 1/16 of a full KV cache for both methods. Both techniques
utilize a double buffer for asynchronous data copying. The results show that Double Sparsity-Offload
achieves a 4-8× speedup over FlexGen under regular workloads, and a 16× speedup in scenarios
with long texts ranging from 64K to 256K in sequence length.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

7 RELATED WORK

Sparse Attention Inference Due to the significant memory-intensive nature of self-attention, many
studies have focused on exploiting sparsity to accelerate the inference process. These efforts can
be categorized under three main criteria: 1) static or dynamic sparse patterns; 2) the presence of
token eviction; 3) accelerating prefilling or decoding. StreamingLLM (Xiao et al., 2024) and LM-
Infinite (Han et al., 2023) utilize static sparse patterns with token eviction to accelerate decoding.
These approaches achieve inference acceleration by preserving only a small and fixed number of
initial tokens along with local tokens. H2O (Zhang et al., 2024) and Scissorhands (Liu et al., 2024a)
employ dynamic sparse patterns with token eviction for decoding, preserving only a small fraction of
the KV cache called heavy hitters according to accumulated attention scores, while FastGen (Ge et al.,
2024) uses adaptive sparse attention patterns for different attention heads. MInference (Jiang et al.,
2024) serves as a prefilling acceleration method that retains all tokens. It first identifies sparse patterns
within the model via offline calibration, and then leverages these identified patterns to accelerate the
pre-filling stage. SparQ (Ribar et al., 2023) and Quest (Tang et al., 2024) implement dynamic sparse
decoding while preserving all tokens without eviction. SparQ filters the important tokens using heavy
channels of incoming query and Key cache. Quest segments token into multiple pages and proposes
a page-based estimation method to utilize sparsity in self-attention.

Sparse Attention Training There are also many efforts to reduce attention complexity through
training (Qiu et al., 2020; Ding et al., 2023; Tay et al., 2020; Chen et al., 2021). For example,
Sparse transformer (Child et al., 2019) reduces the complexity to O(n

√
n) by introducing sparse

factorization of the attention matrix. Reformer (Kitaev et al., 2019) achieves O(n log n) complexity
via locality-sensitive hashing. Longformer (Beltagy et al., 2020), BigBard (Zaheer et al., 2020), and
Linformer (Wang et al., 2020) further reduce the complexity to linear. Linear attention architectures
have also been proposed in Katharopoulos et al. (2020).

Other Attention and Inference Optimizations Despite efforts to sparsify the self-attention com-
putation, there are many other optimizations for attention efficiency. Common techniques include
quantization and compression (Hooper et al., 2024; Liu et al., 2024b; Kang et al., 2024; Nawrot et al.,
2024), efficient attention architecture like multi-query attention (Shazeer, 2019) and group-query
attention (Ainslie et al., 2023), and memory-efficient attention algorithms (Rabe & Staats, 2021;
Dao et al., 2022). Alternatives to transformers include using the state space model to remove the
attention mechanism (Gu et al., 2021). Other common inference optimizations for LLMs include
batching Yu et al. (2022), memory optimizations Sheng et al. (2023b); Kwon et al. (2023); Aminabadi
et al. (2022), parameter sharing Sheng et al. (2023a); Chen et al. (2023), speculative decoding Stern
et al. (2018); Leviathan et al. (2023); Miao et al. (2023), scheduling Han et al. (2022); Agrawal et al.
(2023); Patel et al. (2023); Zhong et al. (2024), quantization Xiao et al. (2023); Lin et al. (2023);
Dettmers et al. (2022); Frantar et al. (2022), and sparsification Frantar & Alistarh (2023).

8 FUTURE DIRECTIONS AND CONCLUSION

Future Directions. Double Sparsity can be integrated with other sparse attention techniques. For
instance, Quest could harness Double Sparsity using heavy channels instead of max-min representa-
tions to reduce total memory access. Similarly, MInference could employ heavy channels in place of
pooling when computing block sparse patterns to increase accuracy. Despite the progress made with
Double Sparsity, several limitations remain that reveal promising directions for future research. It is
challenging to perfectly overlap communication with computation. Enhancing asynchronous capa-
bilities to mask communication overheads presents a promising direction that allows for significant
acceleration with a minimal memory footprint.

Conclusion. In this work, we introduced Double Sparsity and Double Sparsity-Offload, innovative
post-training sparse attention techniques. Double Sparsity leverages offline calibration and label
cache to achieve nearly lossless performance across various benchmarks at a 1/16 sparsity level.
Performance tests showed that Double Sparsity could accelerate attention computations by up to
16× and achieve an end-to-end speedup of 1.9×. Double Sparsity-Offload significantly reduced KV
Cache memory usage to 1/16, outperforming the throughput of previous SOTA offloading techniques
by 16 times.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Amey Agrawal, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav S Gulavani, and Ra-
machandran Ramjee. Sarathi: Efficient llm inference by piggybacking decodes with chunked
prefills. arXiv preprint arXiv:2308.16369, 2023.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Minjia Zhang, Ammar Ahmad Awan, Cheng
Li, Du Li, Elton Zheng, Jeff Rasley, Shaden Smith, Olatunji Ruwase, et al. Deepspeed infer-
ence: Enabling efficient inference of transformer models at unprecedented scale. arXiv preprint
arXiv:2207.00032, 2022.

Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci, Aurelien Lucchi, and Thomas
Hofmann. Dynamic context pruning for efficient and interpretable autoregressive transformers.
Advances in Neural Information Processing Systems, 36, 2024.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding, 2023.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain:
Unifying sparse and low-rank attention. Advances in Neural Information Processing Systems, 34:
17413–17426, 2021.

Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis Ceze, and Arvind Krishnamurthy. Punica:
Multi-tenant lora serving. arXiv preprint arXiv:2310.18547, 2023.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. URL https://openai.com/blog/sparse-transformers, 2019.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A. Smith, and Matt Gardner. A dataset
of information-seeking questions and answers anchored in research papers, 2021. URL https:
//arxiv.org/abs/2105.03011.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, Shaohan Huang, Wenhui Wang, Nanning
Zheng, and Furu Wei. Longnet: Scaling transformers to 1,000,000,000 tokens. arXiv preprint
arXiv:2307.02486, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip

11

https://arxiv.org/abs/2105.03011
https://arxiv.org/abs/2105.03011


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov,
Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah,
Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu
Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani,
Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz
Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis,
Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov,
Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy,
Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit
Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou,
Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia
Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan,
Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla,
Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao,
Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent
Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu,
Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia,
Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen
Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex
Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei
Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew
Ryan, Ankit Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley
Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin
Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu,
Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt
Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Damon
Civin, Dana Beaty, Daniel Kreymer, Daniel Li, Danny Wyatt, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix
Kreuk, Feng Tian, Firat Ozgenel, Francesco Caggioni, Francisco Guzmán, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern,
Govind Thattai, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid
Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen
Suk, Henry Aspegren, Hunter Goldman, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-
Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher, Jean-Baptiste
Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul,
Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie,
Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik
Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly
Michelena, Keqian Li, Kun Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen,
Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu,
Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Maria
Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev,
Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
Nikolay Pavlovich Laptev, Ning Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia
Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan
Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara
Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh
Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe,
Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan
Govindaprasad, Sumit Gupta, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury,
Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe
Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi,
Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vítor Albiero, Vlad Ionescu,
Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang,
Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang,
Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang,
Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd
of models, 2024. URL https://arxiv.org/abs/2407.21783.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Optq: Accurate quantization
for generative pre-trained transformers. In The Eleventh International Conference on Learning
Representations, 2022.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive KV cache compression for LLMs. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=uNrFpDPMyo.

Google. Gemini: a family of highly capable multimodal models. arXiv preprint arXiv:2312.11805,
2023.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2021.

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite: Simple
on-the-fly length generalization for large language models. arXiv preprint arXiv:2308.16137,
2023.

Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen. Microsecond-scale preemption for
concurrent {GPU-accelerated}{DNN} inferences. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pp. 539–558, 2022.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for long
document summarization, 2021.

Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. arXiv preprint arXiv:2402.01032, 2024.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Minference
1.0: Accelerating pre-filling for long-context llms via dynamic sparse attention, 2024. URL
https://arxiv.org/abs/2407.02490.

13

https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://arxiv.org/abs/2407.02490


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. triviaqa: A Large Scale Distantly
Supervised Challenge Dataset for Reading Comprehension. arXiv e-prints, art. arXiv:1705.03551,
2017.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. Gear: An efficient kv cache compression recipefor near-lossless generative inference of llm.
arXiv preprint arXiv:2403.05527, 2024.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2019.

Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis,
and Edward Grefenstette. The narrativeqa reading comprehension challenge, 2017. URL https:
//arxiv.org/abs/1712.07040.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611–626, 2023.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. Infinigen: Efficient generative
inference of large language models with dynamic kv cache management, 2024. URL https:
//arxiv.org/abs/2406.19707.

Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano, Sean
Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, Daniel Haziza, Luca
Wehrstedt, Jeremy Reizenstein, and Grigory Sizov. xformers: A modular and hackable transformer
modelling library. https://github.com/facebookresearch/xformers, 2022.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Dacheng Li, Rulin Shao, Anze Xie, Lianmin Zheng Ying Sheng, Joseph E. Gonzalez, Ion Stoica,
Xuezhe Ma, and Hao Zhang. How long can open-source llms truly promise on context length?,
June 2023. URL https://lmsys.org/blog/2023-06-29-longchat.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
aware weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978,
2023.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024a.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024b.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae Ying Yee Wong,
Zhuoming Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating
generative llm serving with speculative inference and token tree verification. arXiv preprint
arXiv:2305.09781, 2023.

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski, David Tarjan, and Edoardo M Ponti. Dynamic
memory compression: Retrofitting llms for accelerated inference. arXiv preprint arXiv:2403.09636,
2024.

14

https://arxiv.org/abs/1712.07040
https://arxiv.org/abs/1712.07040
https://arxiv.org/abs/2406.19707
https://arxiv.org/abs/2406.19707
https://github.com/facebookresearch/xformers
https://lmsys.org/blog/2023-06-29-longchat


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

NVIDIA. developing-cuda-kernels-to-push-tensor-cores-to-the-
absolute-limit-on-nvidia-a100. https://developer.download.
nvidia.com/video/gputechconf/gtc/2020/presentations/
s21745-developing-cuda-kernels-to-push-tensor-cores-to-the-absolute-limit-on-nvidia-a100.
pdf, 2020. [Accessed 01-10-2024].

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Pratyush Patel, Esha Choukse, Chaojie Zhang, Íñigo Goiri, Aashaka Shah, Saeed Maleki, and Ricardo
Bianchini. Splitwise: Efficient generative llm inference using phase splitting. arXiv preprint
arXiv:2311.18677, 2023.

PyTorch. gpt-fast. https://github.com/pytorch-labs/gpt-fast, 2023a.

PyTorch. Accelerating generative ai with pytorch 2.0. https://pytorch.org/blog/
accelerating-generative-ai-2/, May 2023b.

Jiezhong Qiu, Hao Ma, Omer Levy, Wen-tau Yih, Sinong Wang, and Jie Tang. Blockwise self-
attention for long document understanding. In Findings of the Association for Computational
Linguistics: EMNLP 2020, pp. 2555–2565, 2020.

Markus N Rabe and Charles Staats. Self-attention does not need o(n2) memory. arXiv preprint
arXiv:2112.05682, 2021.

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas Orr.
Sparq attention: Bandwidth-efficient llm inference. arXiv preprint arXiv:2312.04985, 2023.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper, Nicholas Lee, Shuo Yang, Christopher Chou,
Banghua Zhu, Lianmin Zheng, Kurt Keutzer, Joseph E. Gonzalez, and Ion Stoica. S-lora: Serving
thousands of concurrent lora adapters. arXiv preprint arXiv:2311.03285, 2023a.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of
large language models with a single gpu. In International Conference on Machine Learning, pp.
31094–31116. PMLR, 2023b.

Zhenmei Shi, Yifei Ming, Xuan-Phi Nguyen, Yingyu Liang, and Shafiq Joty. Discovering the gems
in early layers: Accelerating long-context llms with 1000x input token reduction, 2024. URL
https://arxiv.org/abs/2409.17422.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information Processing Systems, 31, 2018.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference, 2024.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention. In
International Conference on Machine Learning, pp. 9438–9447. PMLR, 2020.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. ACM
Computing Surveys, 55(6):1–28, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv
preprint arXiv:1909.01315, 2019.

15

https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21745-developing-cuda-kernels-to-push-tensor-cores-to-the-absolute-limit-on-nvidia-a100.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21745-developing-cuda-kernels-to-push-tensor-cores-to-the-absolute-limit-on-nvidia-a100.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21745-developing-cuda-kernels-to-push-tensor-cores-to-the-absolute-limit-on-nvidia-a100.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21745-developing-cuda-kernels-to-push-tensor-cores-to-the-absolute-limit-on-nvidia-a100.pdf
https://github.com/pytorch-labs/gpt-fast
https://pytorch.org/blog/accelerating-generative-ai-2/
https://pytorch.org/blog/accelerating-generative-ai-2/
https://arxiv.org/abs/2409.17422


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual performance
model for multicore architectures. Commun. ACM, 52(4):65–76, April 2009. ISSN 0001-0782. doi:
10.1145/1498765.1498785. URL https://doi.org/10.1145/1498765.1498785.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=NG7sS51zVF.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering, 2018. URL https://arxiv.org/abs/1809.09600.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca:
A distributed serving system for {Transformer-Based} generative models. In 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 22), pp. 521–538, 2022.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36, 2024.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving, 2024. URL https://arxiv.org/abs/2310.19102.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao
Zhang. Distserve: Disaggregating prefill and decoding for goodput-optimized large language
model serving. arXiv preprint arXiv:2401.09670, 2024.

16

https://doi.org/10.1145/1498765.1498785
https://openreview.net/forum?id=NG7sS51zVF
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/2310.19102


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A OFFLINE CALIBRATION ILLUSTRATION

The x-axis of the Figure 7b denotes the ratio of the selected top-k channels to the total number of
channels, while the y-axis quantifies the degree of overlap between the offline and online outliers.

(a) Outlier channels of AWQ and Double Sparsity.
(b) Outlier channel overlap rate between offline
calibration and online decoding.

Figure 7: Analysis of Double Sparsity calibration in identifying outlier channels

B FORWARD WITHOUT LABEL CACHE

To investigate the significance of the label cache in the forward pass of Double Sparsity, we conducted
experiments comparing performance with and without the label cache. As depicted in Table 4, label
caches significantly enhance the forward pass, yielding a speedup ranging from 2 to 4 times.

Table 4: Latency comparing performance With and Without Label Cache.

Batch Seq Len With Label Cache (ms) Without Label Cache (ms) Speedup

4 2048 0.165 0.279 1.7
4 4096 0.181 0.559 3.1
4 8192 0.504 1.250 2.5
4 16384 1.550 3.000 1.9
32 2048 0.467 1.960 4.2
32 4096 0.983 3.950 4.0
32 8192 3.600 9.540 2.6
32 16384 12.600 24.000 1.9

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C PERPLEXITY SELECTION ILLUSTRATION

Figure 8 uses token-level sparsity as the x-axis, channel-level sparsity as the y-axis, and 10-perplexity
values as the z-axis, where higher bars indicate better performance. A sudden shift in perplexity is
observed as the sparsity level goes beyond 1/16.

Figure 8: Perplexity of models at different token-sparsity and channel-sparsity levels. Notably, the
red bars, representing a sparsity level of 1/16 for both token and channel, show that the model’s
performance remains largely consistent with the original model at this level.

D LLAMA2 LONGBENCH EVALUATION

We also used Llama-2-7B-chat to evaluate the performance of Double Sparsity across multiple long
context benchmarks at various levels of sparsity as shown in Figure 9.

Figure 9: Performance of different techniques across various sparsity levels for Llama-2-7B. ‘DS’ and
‘DS-O’ refer to Double Sparsity and Double Sparsity-Offloading. ‘Stream’ refers to Streaming-LLM.

18


	Introduction
	Background
	Preliminaries on Self-Attention and Notations
	Post-training Sparse Attention

	Challenges in Post-Training Sparse Attention
	Retrieval Accuracy
	Bandwidth Friendliness
	Memory Footprint

	Double Sparsity
	Offline Calibration
	Forwarding with Label Cache

	Reducing GPU Memory Usage with Double Sparsity-Offload
	Prefetching Tokens with Double Buffer
	Empirical Analysis: Embedding Similarity Between Layers
	Complexity Analysis

	Experiment
	Accuracy Evaluation
	Wiki-2 Perplexity
	Long Context Benchmarks
	Key-Value Retrieval

	Speedup Evaluation
	Setups
	Attention Operator Speedup
	End-to-End Inference Speedup


	Related Work
	Future Directions and Conclusion
	Offline Calibration Illustration
	Forward without Label Cache
	Perplexity Selection Illustration
	Llama2 Longbench Evaluation

