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Abstract

Multimodal Large Language Models (MLLMs)
have shown promising progress in understanding
and analyzing video content. However, process-
ing long videos remains a significant challenge
constrained by LLM’s context size. To address
this limitation, we propose LongVU, a spatiotem-
poral adaptive compression mechanism that re-
duces the number of video tokens while preserv-
ing visual details of long videos. Our idea is
based on leveraging cross-modal query and inter-
frame dependencies to adaptively reduce tempo-
ral and spatial redundancy in videos. Specifically,
we leverage DINOv2 features to remove redun-
dant frames that exhibit high similarity. Then
we utilize text-guided cross-modal query for se-
lective frame feature reduction. Further, we per-
form spatial token reduction across frames based
on their temporal dependencies. Our adaptive
compression strategy effectively processes a large
number of frames with little visual information
loss within given context length. Our LongVU
consistently surpass existing methods across a
variety of video understanding benchmarks, es-
pecially on hour-long video understanding tasks
such as VideoMME and MLVU. Given a light-
weight LLM, our LongVU also scales effectively
into a smaller size with state-of-the-art video un-
derstanding performance.
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Figure 1. Effectiveness of our LongVU over commonly-used uni-
form sampling and dense sampling. Uniform sampling overlooks
critical frames due to its sparse nature. Dense sampling may sur-
pass the maximum context length, leading to truncation of tokens
from targeted frames. In contrast, our method can adaptively
conduct spatiotemporal compression, accommodating long video
sequences while preserving more visual details.

1. Introduction
Large Language Models (LLMs) (Brown, 2020; Ouyang
et al., 2022; OpenAI, 2022; Achiam et al., 2023; Chiang
et al., 2023; Touvron et al., 2023; Jiang et al., 2024) manifest
universal capabilities that are instrumental in our progress
towards general intelligence. Through the integration of
modality alignment and visual instruction tuning, Multi-
modal Large Language Models (MLLMs) (Alayrac et al.,
2022; Li et al., 2023b; Zhu et al., 2023; Liu et al., 2024b; Ye
et al., 2023; Bai et al., 2023; Chen et al., 2023c; Dong et al.,
2024) have demonstrated exceptional competencies in tasks
such as captioning and visual question-answering. Recent
literature has initiated explorations of extending MLLMs
for the comprehension of video content (Li et al., 2023c;
Zhang et al., 2023; Maaz et al., 2023a; Lin et al., 2023;
Wang et al., 2024; Liu et al., 2024c). Despite exhibiting po-
tentials across specific benchmarks, effectively processing
and understanding of exceedingly lengthy videos remains a
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significant challenge.

One primary reason is that it is impractical to process all
the information for hour-long videos, given that advanced
MLLMs represent a single image using hundreds of tokens.
For instance, 576 ∼ 2,880 tokens per image are used in
LLaVA-1.6 (Liu et al., 2024a) and 7,290 tokens are used
in LLaVA-OneVision (Li et al., 2024a). However, a com-
monly used and computationally manageable context length
for multimodal training is 8k, which limits processing 125
frames (2-minutes video) even at 64 tokens per frame, while
an hour-long video could require over 200k tokens. Con-
sequently, in video scenarios with an extra temporal di-
mension, it is intractable for training due to the demand of
excessive GPU memory. Various studies have attempted
to establish a balance between the number of tokens and
the frequency of frame sampling. Most of these studies (Li
et al., 2024a; Cheng et al., 2024; Zhang et al., 2024c; Chen
et al., 2024a) opt for a uniform sampling of a fixed number
of video frames as input. However, these methods naively
overlook non-uniform content, e.g., static vs dynamic scenes
within the video, as shown in Figure 1. Other approaches (Li
et al., 2023c;d; Jin et al., 2023) employ intensive resampling
modules that significantly decrease the quantity of visual
tokens, leading to a considerable loss of essential visual
information.

In this paper, we propose LongVU that aims to preserve
as much frame information as possible while accommodat-
ing lengthy videos without exceeding the context length
of commonly used LLMs. Video, by its nature, contains
significant temporal redundancy. MovieChat (Song et al.,
2024) employs a similarity-based frame-level feature selec-
tion using CLIP visual representation (Radford et al., 2021).
While we argue that DINOv2 (Oquab et al., 2023), through
self-supervised training with a feature similarity objective
on vision-centric tasks, captures subtle frame differences
and low-level visual features more effectively than vision-
language contrastive methods (Radford et al., 2021; Zhai
et al., 2023), as shown in Figure 5. Hence, (1) we apply
a temporal reduction strategy on the frame sequence by
leveraging similarity from DINOv2 (Oquab et al., 2023) fea-
tures to remove redundant video frames. In addition, (2) we
jointly capture the detailed spatial semantic and long-range
temporal context by performing selective feature reduction
via cross-modal query, where we preserve full tokens for
frames that are relevant to the given text query, while ap-
plying spatial pooling to reduce the remaining frames to
a low-resolution token representation. (3) A spatial token
reduction mechanism based on temporal dependencies is
applied for excessively long videos. As a result, our model
is capable of processing 1fps sampled video input with high
performance, which can adaptively reduce the number of
tokens per frame to 2 on average to accommodate an hour-
long video for MLLM within 8k context length.

To evaluate our method, we conduct extensive experiments
across various video understanding benchmarks, including
EgoSchema (Mangalam et al., 2024), MVBench (Li et al.,
2024b), VideoMME (Fu et al., 2024), and MLVU (Zhou
et al., 2024). Our LongVU significantly outperforms
several recent open-source video LLM models, such as
VideoChat2 (Li et al., 2024b), LongVA (Zhang et al., 2024a),
and LLaVA-OneVision (Li et al., 2024a), by a large mar-
gin. For example, our LongVU outperforms a strong open-
source baseline, LLaVA-OneVision (Li et al., 2024a) by
approximately ∼5% in average accuracy. We also observed
that our light-weight LongVU, basing Llama3.2-3B (Llama,
2024) as the language backbone, significantly improves
over previous state-of-the-art small video-LLMs, e.g., Phi-
3.5-vision-instruct-4B (Abdin et al., 2024), by 3.4% on
VideoMME Long subset. Our LongVU established new
state-of-the-art results on video understanding benchmarks
among video-language models. We believe that our pro-
posed approach marks a meaningful progression towards
long-video understanding MLLMs.

2. Related Work
2.1. Vision Language Models

Early visual language models (VLMs) such as CLIP (Rad-
ford et al., 2021), are trained with a contrastive loss to
project both vision and language embeddings to a shared
representation space. SigLIP (Zhai et al., 2023) takes a
sigmoid loss instead, allowing further scaling the training
batch size with better performance.

The development of LLMs has significantly advanced
VLMs. Kosmos-1 (Huang et al., 2023; Peng et al.,
2023) introduces an end-to-end framework that integrates
visual input with LLM in a cohesive training regime.
Flamingo (Alayrac et al., 2022) and BLIP-2 (Li et al., 2023a)
merge visual and linguistic features through cross-attention
and a Q-Former module, respectively. MiniGPT-4 (Zhu
et al., 2023) and LLaVA (Liu et al., 2024b) simplify inte-
gration by projecting visual features directly into the LLM
embedding space using an MLP.

Later studies (Chen et al., 2023b; Peng et al., 2023; Wang
et al., 2023; Chen et al., 2023a) have expanded LMM ap-
plications to broader multi-modal tasks, enhancing spatial
perception through visual grounding. Recent efforts (Liu
et al., 2024a; Zhang et al., 2024b; Dong et al., 2024) aim
to create general models that unify diverse tasks, employ-
ing sophisticated optimization techniques, high-quality mul-
titask datasets, and complex training strategies to boost
performance across extensive vision-language tasks. Cam-
brian (Tong et al., 2024) combines features from multiple
vision encoders with Spatial Vision Aggregator (SVA) for a
more capable MLLM.
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Figure 2. Architecture of LongVU. Given a densely sampled video frames, we first utilize DINOv2 (Oquab et al., 2023) prior to remove
redundant frames, and fuse the remaining frame features from both SigLIP (Zhai et al., 2023) and DINOv2 (Oquab et al., 2023), described
in Section 3.1. Then we selectively reduce visual tokens via cross-modal query, detailed in Section 3.2. Finally, as demonstrated in
Section 3.3, we conduct spatial token compression based on temporal dependencies to further meet the limited context length of LLMs.

2.2. Video Large Language Models

Recent advancements in MLLMs have broadened their appli-
cation to video understanding tasks. Video LMMs process
videos by extracting and encoding frames, then rearranging
these as final video features. Several works (Li et al., 2023c;
2024b; Cheng et al., 2024; Korbar et al., 2024), use the
Q-Former-like (Li et al., 2023a) to merge visual and text
features, while others (Lin et al., 2023; Luo et al., 2023;
Ataallah et al., 2024a) concatenate frame features directly.

When processing lengthy videos, the constraint on context
length inevitably causes a trade-off between the number
of tokens per frame and the number of frames to input.
Most existing works (Li et al., 2023c; Ataallah et al., 2024a;
Cheng et al., 2024; Zhang et al., 2024c; Li et al., 2024a)
address this challenge by uniformly sampling frames from
the video, which, however, results in a significant loss of
visual details within the video. Video-ChatGPT (Maaz et al.,
2023b) employs pooling modules to reduce data dimen-
sions, enhancing processing efficiency. Other works try to
preserve the maximum number of frames in video content.
LLaMA-VID (Li et al., 2023d) employs an additional text
decoder to embed the text query for cross-attention between
frame features and compress the context token to one to-
ken per frame, while MovieChat (Song et al., 2023) and
TimeChat (Ren et al., 2023b) develop memory modules and
timestamp-aware encoders to capture detailed video con-
tent. Golfish (Ataallah et al., 2024b) segments long videos

into shorter clips, processes each segment independently,
and retrieves the most relevant segment in response to user
queries. MA-LMM (He et al., 2024) maintains a memory
bank to aggregate long-term video without exceeding the
context length of LLMs. LongVILA (Xue et al., 2024) ex-
tends the number of video frames to 2048 by enabling 2M
context-length training.

Our work focuses on maximizing the preservation of frames
in video content (1fps) within given context length by
proposing spatiotemporal compression of video tokens.

2.3. Video Token Compression

Recent methods have explored dynamic image tokens (Ma
et al., 2023; Xu et al., 2022; Bolya et al., 2022) or video
tokens (Lee et al., 2024; Ren et al., 2023a; Choi et al.,
2024) within the Transformer (Vaswani, 2017) framework.
Chat-UniVi (Jin et al., 2023) extends dynamic tokens for
visual features in MLLMs by merging K-nearest neighbor
tokens across frame features of the video input. SlowFast-
LLaVA (Xu et al., 2024) uniformly samples 8 frames for
high-resolution tokens, while performing spatial pooling
to decrease the number of tokens in frames sampled at a
higher frame rate. In our work, we propose a spatiotemporal
adaptive token reduction strategy that leverages both cross-
modal query and inter-frame dependencies. This approach
effectively mitigates temporal redundancy in video content,
thereby enabling the accommodation of long videos within

3



LongVU: Spatiotemporal Adaptive Compression for Long Video-Language Understanding

a limited context length.

3. Method
We propose spatiotemporal adaptive compression in three
steps to effectively process long video, as shown in Fig-
ure 2. Initially, we implement a temporal reduction strategy
on the frame sequence by leveraging the prior knowledge
from DINOv2 (Oquab et al., 2023) (Section 3.1). Then, we
selectively preserve full tokens for key frames via cross-
modal query, while applying spatial pooling to reduce the
remaining frames into low-resolution token representations
(Section 3.2). Furthermore, we implement a spatial token
reduction mechanism based on inter-frame temporal depen-
dencies (Section 3.3).

3.1. Frame Feature Extractor and Temporal Reduction

DINOv2 (Oquab et al., 2023), through its self-supervised
(SSL) training with a feature similarity objective on vision-
centric tasks, can effectively capture subtle frame differ-
ences and low-level visual features. In contrast, CLIP-
based (Zhai et al., 2023; Radford et al., 2021) models are
trained with vision-language contrastive loss in the seman-
tic space, excelling at language alignment while sacrificing
low-level features as shown in Figure 5. Moreover, Cam-
brian (Tong et al., 2024) discovered that combining features
from both SigLIP (Zhai et al., 2023) and DINOv2 (Oquab
et al., 2023) leads to a significant performance boost in
vision-centric tasks. Therefore, we pioneer to leverage both
SSL-based model DINOv2 (Oquab et al., 2023) with vision-
language contrastive-based model SigLIP (Zhai et al., 2023)
as frame feature extractors for MLLM in video understand-
ing task.

Note that processing the entire long video can be com-
putationally expensive. Given a 1fps-sampled video
with N frames, denoted as I = {I1, ..., IN}, we first
use DINOv2 (Oquab et al., 2023) to extract features
from each frame, leading to a set of DINO features
{V 1

dino, . . . , V
N

dino}. We then calculate the average similar-
ity simi = 1

J−1

∑J
j=1,j ̸=i sim(V i

dino, V
j

dino) within each non-
overlapping window with J = 8 frames and reduce frames
that exhibit high similarity with other frames. This step
significantly reduces video redundancy by temporally com-
pressing the original N frames to T frames, which reduces
approximately half of the video frames, as detailed in Sec-
tion 4.6.

We then extract features of the remaining T frames using
SigLIP (Zhai et al., 2023) vision encoder, resulting in T
features {V 1

sig, ..., V
T
sig}. Subsequently, following Cam-

brian (Tong et al., 2024), we combine these two types of
visual features via Spatial Vision Aggregator (SVA) (Tong
et al., 2024) that employs learnable queries to spatially ag-

gregate visual features from multiple vision encoders. We
denote the fused frames features as V = {V 1, ..., V T }.

3.2. Selective Feature Reduction via Cross-modal Query

After temporal reduction, we obtain a set of fused frame
features from both vision encoders, denoted as V =
{V 1, ..., V T } ∈ RT×(Hh×Wh)×Dv , where Hh × Wh de-
notes the spatial dimension of the frame features, and Dv

indicates the channel dimension of the frame feature after
SVA. If the concatenated frame features exceed the limited
context length, i.e., T ×Hh ×Wh ≥ Lmax, we develop a
selective compression strategy for certain frames, in order
to capture both the detailed spatial semantic and long-range
temporal context.

To achieve this, we propose using text query to help reduce
spatial tokens of certain frames from Hh ×Wh to Hl ×
Wl. Given the LLM embedding of the text query Q ∈
RLq×Dq , where Lq is the length of text query and Dq is the
dimensionality of LLM’s embedding space, we strategically
choose Nh frames to preserve their original token resolution,
while the remaining undergoes a process of spatial pooling
to achieve a reduced resolution. The selection mechanism
is based on the cross-modal attention scores between each
frame feature and the text query. The number of frames to
keep original resolution can be formulated as,

TopNh

 1

HhWhLq

∑
h,w,l

F(V )QT

 ,

Nh = max

(
0,

Lmax − Lq − THlWl

HhWh −HlWl

)
,

(1)

where Lmax is the maximum context length, F(·) denotes
a multi-layer perceptron (MLP)-based multimodal adapter
designed to align visual features with the input space of
the LLM. Note that we omit the system prompt in the in-
struction template for Equation 1 simplification. If Nh = 0,
indicating that no frames are selected for retention at their
original resolution, we will skip the computation of atten-
tion scores and will directly perform spatial pooling across
all the frames to the lower resolution.

3.3. Spatial Token Compression

As previously discussed, there are cases where the concate-
nated visual features with low resolution tokens still exceeds
the maximum context length, i.e., T ×Hl ×Wl ≥ Lmax.
Under these circumstances, further token compression is
necessary. We partition the sequence of frame features into
non-overlapping segments with a sliding window of size
K < T , within which we conduct spatial token compres-
sion (STC). The first frame in each window retains its full
token resolution. We then compute the cosine similarity
between the first frame and subsequent frames within the
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window, conducting an element-wise comparison of spatial
tokens between the first frame and its successors. Spatial
tokens that exhibit a cosine similarity sim(·, ·) greater than
the threshold θ with the corresponding tokens of the first
frame at the same spatial location will be pruned, which can
be formulated as,

v∗i ←

{
vi(h,w) sim(v1(h,w), vi(h,w)) ≤ θ

∅ otherwise
,

∀h ∈ [1, Hl], w ∈ [1,Wl], i ∈ [2,K]

(2)

Given that videos often contain significant pixel-level redun-
dancy, particularly in static background, this method allows
spatial tokens reduction via temporal dependencies. We
chose the first frame in each sliding window for comparison,
assuming DINOv2 (Oquab et al., 2023) has effectively re-
duced video redundancy across frames, making each frame
less similar. We also tested alternative strategies, like using
the middle frame or adaptively selecting based on frame
changes (Section 4.5), but these provided similar perfor-
mance and compression rates. Therefore, we chose the
first-frame strategy in each sliding window for its simplicity
and effectiveness.

4. Experiments
4.1. Datasets

We adopt two stages of training in our experiments: image-
language pre-training and video-language finetuning. For
the image-language pre-training stage, previous meth-
ods (Chen et al., 2023b; Peng et al., 2023; Wang et al., 2023;
Chen et al., 2023a; Liu et al., 2024a; Dong et al., 2024) usu-
ally use two steps for alignment and finetuning. For simplic-
ity, we combine these two steps in one stage using Single-
Image data from LLaVA-OneVision (Li et al., 2024a). For
video-language finetuning, we utilize a large-scale video-
text pairs sourced from several publicly accessible databases.
The video training data contains a subset of VideoChat2-
IT (Li et al., 2024b), which includes TextVR (Wu et al.,
2025), Youcook2 (Zhou et al., 2018), Kinetics-710 (Kay
et al., 2017), NExTQA (Xiao et al., 2021), CLEVRER (Yi
et al., 2019), EgoQA (Fan, 2019), TGIF (Li et al., 2016),
WebVidQA (Yang et al., 2021), ShareGPT4Video (Chen
et al., 2024a), and MovieChat (Song et al., 2024) as the long
video complementary. All the training datasets are listed in
Table 6.

4.2. Benchmarks and Metrics

We evaluate our model on EgoSchema (Mangalam et al.,
2024), MVBench (Li et al., 2024b), VideoMME (Fu et al.,
2024) and MLVU (Zhou et al., 2024). VideoMME (Fu et al.,

2024) (1 min ∼ 1 hour) and MLVU (Zhou et al., 2024) (3
mins ∼ 2 hours) are long video benchmarks for assessing
long video understanding ability. For VideoMME (Fu et al.,
2024), videos are officially split based on duration, which
contains a subset of long videos ranging from 30 minutes to
1 hour. We perform standardized evaluations using greedy
decoding (num beams=1) and benchmark our results against
other open-source and proprietary models.

4.3. Implementation Details

We use SigLIP (Zhai et al., 2023) (so400m-patch14-384)
and DINOv2 (Oquab et al., 2023) as the vision encoder
while choose Qwen2-7B (Qwen, 2024) and Llama3.2-
3B (Llama, 2024) as our language foundation model. We
only compute cross-entropy loss for autoregressive text gen-
eration. We use AdamW (Loshchilov, 2017) optimizer with
a cosine schedule for all the trainings. In the image-language
pre-training stage, we train the model for one epoch with
global batch size of 128. The learning rate is set to 1e-5,
and the warmup rate is 0.03. The number of tokens per
image are set to 576. For the video-language finetuning
stage, we train the model for one epoch with global batch
size of 64. The learning rate is set to 1e-5, and the warmup
rate is 0.03. The maximum number of tokens per frame
are set to 144 (Hh = Wh = 12), while each might be
reduced by our proposed adaptive compression approach
(≤ 64, Hl = Wl = 8). The DINO threshold is set as 0.83
and the STC reduction threshold is θ = 0.75. The sliding
window size K = 8. Our model is trained on 64 NVIDIA
H100 GPUs.

4.4. Video Understanding

Quantitative Results. Table 1 presents our experimen-
tal results on multiple video understanding benchmarks.
Our results compares favorably to all the baselines across
various video understanding benchmarks. For example,
on VideoMME (Fu et al., 2024), our LongVU outper-
forms VideoChat2 (Li et al., 2024b), LLaVA-OneVision (Li
et al., 2024a) by 6.0% and 2.4% respectively. Notably, on
VideoMME Long subset (Fu et al., 2024), our model sur-
passes LLaVA-OneVision (Li et al., 2024a) by 12.8%. These
results indicate the strong video understanding capabilities
of our model. Note that our model achieves significant im-
proved performance with a much smaller training dataset,
comparing to LLaVA-OneVision (Li et al., 2024a) trained
on OneVision-1.6M (multi-image, video) that has not yet
been made publicly available1. With the same video training
dataset from VideoChat2-IT (Li et al., 2024b), our LongVU

1LLaVA-OneVision (Li et al., 2024a) only release
single-image set at the time of current submission.
https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-
Data/discussions/6
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Models Size Context Length #Frames EgoSchema MVBench MLVU
VideoMME

Overall Long
Duration 179.8 sec 16 sec 3∼120 min 1∼60 min 30∼60 min

Proprietary Models
GPT4-V (OpenAI, 2023) - - 1fps 55.6 43.7 - 60.7 56.9
GPT4-o (OpenAI, 2024) - - 1fps 72.2 - 64.6 77.2 72.1

Open-Source Video MLLMs
Video-LLaVA (Lin et al., 2023) 7B 4k 8 38.4 41.0 47.3 40.4 38.1
LLaMA-VID (Li et al., 2023d) 7B 4k 1fps 38.5 41.9 33.2 - -
Chat-UniVi (Jin et al., 2023) 7B 4k 64 - - - 45.9 41.8
ShareGPT4Video (Chen et al., 2024a) 8B 8k 16 - 51.2 46.4 43.6 37.9
LLaVA-NeXT-Video (Zhang et al., 2024c) 7B 8k 32 43.9 33.7 - 46.5 -
VideoLLaMA2 (Cheng et al., 2024) 7B 8k 32 51.7 54.6 48.5 46.6 43.8
LongVA (Zhang et al., 2024a) 7B 224k 128 - - 56.3 54.3 47.6
VideoChat2 (Li et al., 2024b) 7B 8k 16 54.4 60.4 47.9 54.6 39.2
LLaVA-OneVision (Li et al., 2024a) 7B 8k 32 60.1 56.7 64.7 58.2 46.7
LongVU (Ours) 7B 8k 1fps 67.6 66.9 65.4 60.6 59.5

Table 1. Results on comprehensive video understanding benchmarks

shows much higher performance than VideoChat2 (Li et al.,
2024b), ∼10% accuracy improvement in average.

Interestingly, we also find that our model can even beat pro-
prietary model GPT4-V (OpenAI, 2023) on MVBench (Li
et al., 2024b) with densely sampled video input and reduce
the accuracy gap compared to proprietary models on other
video benchmarks.

We also scale our LongVU with a lightweight LLM,
Llama3.2-3B (Llama, 2024), to further demonstrate the
strong video understanding capabilities. We observe a con-
sistent improvement of our light-weight LongVU over base-
lines in Table 2. Our method outperforms Phi-3.5-vision-
instruct (Abdin et al., 2024) on VideoMME (Long) by a
margin of accuracy of 3.4%. This set of experiments val-
idates the effectiveness of our method even scaling to a
smaller size.

Qualitative Results. We now provide the qualitative results
in Figure 3. Specifically, we demonstrate various video
understanding abilities in the examples, such as accurately
recognizing the orientation of moving objects in Figure 3(a),
providing detailed video descriptions in Figure 3(b), identi-
fying inserted needle frames and conducting action counting
in Figure 3(c), and responding precisely to questions about
specific frames in an hour-long video in Figure 3(d). These
results demonstrate that our model has competing video-
language understanding capabilities.

4.5. Ablation Studies

Effects of the number of tokens per frame. We ablate
the number of tokens in our uniform-sampling baselines.

Two.

In this video, how many times does the scene of 
the 'cleaning toilet' action appear in total?

…

Can you identify the direction of the yellow 
sphere's movement in the video?

The yellow sphere is moving away from the red 
cube and towards the right side of the frame.

00:00:00 00:00:05

00:00:00 00:10:53

00:00:00 00:00:20

Describe the video in detail.

The video begins with a scene featuring two animated characters in a 
fantastical setting, suggesting a narrative of adventure or conflict. The first 
character, dressed in a yellow and red martial arts uniform with a mask, is 
seen in a defensive or preparatory stance, while the second character, an older 
man with a white beard and a blue robe, appears surprised or concerned. The 
background is filled with green, leaf-like structures and a mountainous 
landscape, indicating a natural, possibly magical environment.

What type of view is provided of the tropical 
beach in the video?

The video provides an aerial view of the 
tropical beach.

…

00:00:00 01:40:08

(a) Spatial-temporal Orientation Awareness

(b) Video Detailed Description

(c) Action Counting

(d) Hour-long Video Understanding

Figure 3. Examples for various video understanding capabilities
of LongVU model. We showcase that our LongVU is able to
completing different types of video understanding tasks.
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Models EgoSchema MVBench
VideoMME

MLVU
Overall Long

InternVL2 (InternLM2-1.8B) (OpenGVLab, 2024) - 60.2 47.3 42.6 -
VideoChat2 (Phi-3-mini-4B) (Li et al., 2024b) 56.7 55.1 - - -
Phi-3.5-vision-instruct (Phi-3-mini-4B) (Abdin et al., 2024) - - 50.8 43.8 -
LongVU (Ours) (Llama3.2-3B) 59.1 60.9 51.5 47.2 55.9

Table 2. Results of small-size video language models across video understanding benchmarks.

There is a trade-off between the number of tokens per frame
and the sampling frequency of frames. Table 3 shows the
experimental results when using different number of to-
kens with different sampling. When applying uniforming
sampling, 144 tokens per frame shows better performance
than 64 tokens in an 8k context length on VideoMME (Fu
et al., 2024) and MLVU (Zhou et al., 2024) while worse on
EgoSchema (Mangalam et al., 2024). With 144 tokens per
frame, it preserves more visual details, but restricts the total
number of frames, i.e., less than 60 frames within 8k context
length. This demonstrate that adaptive tokens are needed
for better performance across different video benchmarks.

DINOv2 vs SigLIP. Our results in Table 3 verify that DI-
NOv2 (Oquab et al., 2023) features are more effective than
SigLIP (Zhai et al., 2023) features. As expected, we also
find that using DINO-based features for temporal frame
reduction outperforms uniform sampling. Therefore, DI-
NOv2 (Oquab et al., 2023) is an useful vision-centric feature
extractor to help perform temporal reduction.

Query guided selection. We apply text-guided frame se-
lection after temporal reduction, where relevant frames are
maintained at full token capacity (144 tokens), while oth-
ers are reduced to 64 tokens. This helps preserve essential
visual features and accommodates more long-range con-
text within the context length. In Table 3, we observe the
improvement with query guided frame selection across all
benchmarks. Moreover, in Table 4, the results of each sub-
task in MLVU (Zhou et al., 2024) show significant per-
formance improvements when using cross-modal queries,
particularly for frame-retrieval tasks such as counting and
needle detection.

Spatial token compression. We further apply spatial to-
ken compression after query guided selection. We find that
spatial token compression (STC) not only enhances perfor-
mance within 8k context length, but also achieve results
comparable or slightly better than 16k context length in Ta-
ble 3. We also note some improvements for most subtasks
in MLVU (Zhou et al., 2024).

Different strategies for spatial token compression. We
now ablate different strategies of our spatial token compres-
sion mechanism. This analysis explores different strate-

Methods Context Length #Tokens EgoSchema VideoMME MLVU

Uniform 8k 64 66.84 57.56 60.87
Uniform 8k 144 66.28 58.84 63.28
Uniform 16k 144 67.12 60.01 64.70
TR (DINO) 16k 144 67.34 61.25 64.83

TR (SigLIP) 8k 64 66.04 58.63 62.17
TR (DINO) 8k 64 66.20 59.90 62.54
TR (DINO) + Query 8k 64/144 67.30 60.08 65.05
TR (DINO) + Query + STC 8k dynamic 67.62 60.56 65.44

Table 3. Ablation studies of number of tokens per frame, different
context lengths, and our spatiotemporal compression components.
TR denotes temporal reduction.

gies for determining anchor frames: the first/middle one in
each sliding window, or the frame that exhibits significant
changes compared to its adjacent frames. In Table 5, our
results indicate that taking the first frame in each sliding
window gives a slightly better performance with similar
reduction rates across all strategies.

Please refer to additional ablation studies on threshold, con-
text size, and window size in Appendix F.

4.6. Spatiotemporal Compression Analysis

Compression analysis. We sampled hundreds of videos
to demonstrate the distribution of frame/token reduction
rate. Figure 4 (a) presents the number of frames before and
after temporal reduction based on the similarity of DINOv2
features across frames. We find that ∼45.9% of the frames
are maintained after temporal reduction on average. Figure 4
(b) shows the number of tokens before and after spatial
token compression (Section 3.3). We observe that ∼40.4%
tokens are reduced on average. These results demonstrate
the effective video token compression with temporal and
spatial token reduction.

Long context analysis. Recently, the Needle-in-a-Haystack
task (Hsieh et al., 2024; Kamradt., 2023) has been used to
assess the ability of Large Language Models (LLMs) to
retrieve long context information. We follow (Zhang et al.,
2024a) to conduct a video needle-in-a-haystack experiment
to demonstrate the effectiveness of our compression strategy
on identifying the needle frame within an hour-long video.
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Stratgy count ego needle order plotQA anomaly reasoning Avg

DINO 24.15 59.09 68.16 52.89 71.24 74.00 86.36 62.54
DINO+Query 28.98 55.39 78.87 56.37 72.35 75.50 87.87 65.05
DINO+Query+STC (default) 28.98 59.37 76.33 58.30 71.61 76.00 87.50 65.44

Table 4. Ablation study on each subtask in MLVU (Zhou et al., 2024).

Model Short Medium Long Overall Reduction rate

1st frame in sliding window (default) 64.7 58.2 59.5 60.9 55.47%

(K/2)th frame in sliding window 64.7 58.7 58.6 60.7 54.97%

frame with high changes 64.7 58.2 58.3 60.4 55.62%

Table 5. Different strategies for spatial token compression on VideoMME (Fu et al., 2024).

(a) (b)
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Figure 4. We randomly sample hundreds of videos to demonstrate the frames/tokens level reduction rate. (a) The number of frames
before/after temporal reduction based on DINOv2 features (Section 3.1). (b) The number of tokens before/after spatial token compression
(Section 3.3).

To facilitate this evaluation, we randomly select an one-hour-
long test video from MLVU. We then insert each image from
a set of VQA problems as a needle frame into this long video
for creating a challenging search task. We sample the video
at 1 FPS and control the frame length ranging from 200 to
3.6k frames. We also vary the needle frame insertion depth
from 0% to 100% of the total input frames.

We conduct experiments with 8k context length and com-
pare our adaptive token compression to the one without
applying query-guided selection (w/o Query) and spatial
token compression (w/o STC) after temporal reduction. Fig-
ure 6 demonstrates that our adaptive compression mech-
anism could accurately resolve the needle VQA problem
of 1k frames within 8k context length and improve score
with more frames. This demonstrates the advantage of our
method for long context video understanding.

5. Conclusion
We introduced LongVU, a MLLM that can address the
significant challenge of long video understanding within
a limited context length. To achieve this, we proposed a
spatiotemporal adaptive compression scheme of LongVU
for helping reduce video tokens without losing much vi-
sual details of long videos by leveraging cross-modal query
and inter-frame similarities. Experiments on various video
understanding benchmarks consistently validate the advan-
tages of our model. We also demonstrate that our method
helps build a quality light-weight video language under-
standing model based on Llama3.2-3B, which suggests
that LongVU has many potential applications in the vision-
language community.
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Impact Statement
Our work introduces a spatiotemporal adaptive compression
mechanism that reduces the number of video tokens while
preserving visual details of long videos. Our open-sourced
model paves the way for future research in video compres-
sion tailored for MLLM-based applications, enabling more
effective long-video, media, and streaming video under-
standing.
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LongVU: Spatiotemporal Adaptive Compression for Long Video-Language Understanding

A. Training Datasets
For the image-language training stage, previous methods (Chen et al., 2023b; Peng et al., 2023; Wang et al., 2023; Chen et al.,
2023a; Liu et al., 2024a; Dong et al., 2024) usually use two stages of alignment and finetuning. For simplicity, we combine
and alignment in one stage using single image version of LLaVA-OneVision (Li et al., 2024a) data. For video-language
training, we utilize a large-scale video-text pairs sourced from several publicly accessible databases. The video training
data is a subset of VideoChat2-IT (Li et al., 2024b), which includes TextVR (Wu et al., 2025), Youcook2 (Zhou et al.,
2018), Kinetics-710 (Kay et al., 2017), NExTQA (Xiao et al., 2021), CLEVRER (Yi et al., 2019), EgoQA (Fan, 2019),
TGIF (Li et al., 2016), WebVidQA (Yang et al., 2021), ShareGPT4Video (Chen et al., 2024a), in addition to above, we use
MovieChat (Song et al., 2024) as long video complementary. All the training data is demonstrated in Table 6.

Modality Task # Samples Dataset
Image-Text Single-Image 3.2M LLaVA-OneVision

Captioning 43K TextVR, MovieChat, YouCook2

Classification 1K Kinetics-710

VQA 424K
NExTQA, CLEVRER, EgoQA,

TGIF, WebVidQA, DiDeMo
Video-Text

Instruction 85K ShareGPT4Video

Table 6. Training data statistics.

Model Size Frames Short Medium Long Overall

Video-LLaVA (Lin et al., 2023) 7B 8 46.1 40.7 38.1 41.6

ShareGPT4Video (Chen et al., 2024a) 8B 16 53.6 39.3 37.9 43.6

Chat-Univi-v1.5 (Jin et al., 2023) 7B 64 51.2 44.6 41.8 45.9

VideoLLaMA2 (Cheng et al., 2024) 7B 16 59.4 47.6 43.8 50.3

VideoChat2 (Li et al., 2024b) 7B 16 52.8 39.4 39.2 43.8

LongVA (Zhang et al., 2024a) 7B 128 61.6 50.4 47.6 54.3

LLaVA-OneVision (Li et al., 2024a) 7B 32 69.1 53.3 46.7 58.2

LongVU (Ours) 7B 1fps 64.7 58.2 59.5 60.9

Table 7. Comparison with other video LMMs on VideoMME (Fu et al., 2024) benchmark.

B. Frame-level Position Encoding
To alleviate potential confusion arising from frame-by-frame feature concatenation, we incorporate a frame-level position
encoding to enforce the temporal boundaries across frames and capture inter-dependencies within each frame. Given that we
temporally reduce several frames, a straightforward concatenation of all frames renders the model unaware of the relative
timestep across frames. Furthermore, our dynamic token sampling strategy does not delineate clear boundaries between each
frame. To address this, we incorporate frame-level positional embeddings (FPE) that correspond to the absolute timestep of
each frame, utilizing a shared sinusoidal position encoding (Vaswani, 2017) for frames at time t, shown in Equation 3.

PE(t, 2i) = sin(t/100002i/d), PE(t, 2i+ 1) = cos(t/100002i/d) (3)

The ablation shows in Table 8 and Table 9 that adding the FPE does not affect much to the overall performance across
several benchmarks. Therefore, we decide not to include it in our default setting.
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Methods Context Length #Tokens EgoSchema VideoMME MLVU

DINO + Query 8k 64/144 67.30 60.08 65.05
DINO + Query + STC (default) 8k dynamic 67.62 60.56 65.44
DINO + Query + STC + FPE 8k dynamic 67.87 60.89 64.56

Table 8. Ablation study on with or without FPE.

Stratgy count ego needle order plotQA anomaly reasoning Avg

DINO 24.15 59.09 68.16 52.89 71.24 74.0 86.36 62.54
DINO+Query 28.98 55.39 78.87 56.37 72.35 75.5 87.87 65.05
DINO+Query+STC (default) 28.98 59.37 76.33 58.30 71.61 76.0 87.50 65.44
DINO+Query+STC+ FPE 29.46 60.79 74.08 52.12 71.79 74.5 86.74 64.56

Table 9. Strategy ablations on each subtask in MLVU (Zhou et al., 2024).

C. DINOv2 v.s. SigLIP
DINOv2 (Oquab et al., 2023), through self-supervised training with a feature similarity objective on visually-centric
tasks, captures subtle frame differences and low-level visual features more effectively than vision-language contrastive
methods (Radford et al., 2021; Zhai et al., 2023), as shown in Figure 5.

SigLIP

DINOv2

Figure 5. Similarity comparison between SigLIP (Zhai et al., 2023) and DINOv2 (Oquab et al., 2023) features. The similarity is calculated
between the first frame and the remainings. DINO concentrating on vision centric task effectively capture subtle frame differences
compared with SigLIP (Zhai et al., 2023) which is aligned on semantic space.

D. Needle-In-A-Video-Haystack
We conducted experiments using an 8k context length to evaluate our default setting, which incorporates our adaptive
compression, against configurations without spatial token compression (w/o STC) and without querying guided reduction
(w/o Query), as depicted in Figure 6. By integrating a cross-modal query to selectively retain full tokens of frames relevant
to the text query, the model significantly enhances its ability to accurately identify key frames when the total number of
video frames is fewer than 1.4k. Moreover, our adaptive token compression mechanism further boosts VQA accuracy with
increased frames.

E. Inference Time
To evaluate the computational overhead introduced by our proposed spatiotemporal compression approach, we compare it
with various baselines using input videos of the same length (20 minutes) sampled at 1 FPS. The experiments were conducted
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(a) Ours w/o STC w/o Query (b) Ours w/o STC

(c) Ours (default)

Figure 6. Needle-In-A-Video-Haystack results. Our spatiotemporal adaptive token compression scheme improves the score for locating
the needle frame.

Model GQA MMVP POPE RealWorldQA

Cambrian-1 64.04 32.67 - 58.95

LLaVA-NeXT 65.2 38.7 86.5 64.2

Ours (Before video SFT, w/o DINO) 61.9 31.3 85.6 59.5

Ours (Before video SFT) 62.26 51.33 86.65 61.06

Ours (After video SFT) 60.83 32.00 81.23 47.65

Ours (After video SFT + image SFT) 69.65 52.66 86.22 62.10

Table 10. We mainly focus on video understanding task and use video-only data for video SFT stage. We observe a decrease in performance
on image understanding after video SFT stage.

on an A100 GPU with 80 GB memory. LLaMA-VID (Li et al., 2023d) encounters a CUDA out-of-memory (OOM) issue
when processing 20-minute videos as input. To address this, we need to precompute the video features in advance and
then load the entire model for inference. Our method demonstrates faster performance compared to the token compression
approach of Chat-UniVi (Jin et al., 2023), which relies on a KNN-based strategy to merge similar tokens. Furthermore,
it is more efficient than the resampler-based method VideoChat2 (Li et al., 2023c), which compresses video inputs using
learnable queries in Q-Former. When compared to methods without compression, such as LLaVA-OneVision (Li et al.,
2024a), our approach is slightly slower, requiring 1.27x the processing time.

Models LLaMA-VID Chat-UniVi VideoLLaMA2 VideoChat2 LLaVA-OneVision Ours

Time (sec) 55.3 49.06 58.62 45.22 25.84 32.96

Table 11. Inference time comparison on 20 minutes videos. All models take frames sampled at 1fps as input, approximately 1200 frames.
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We begin by using the DINOv2 vision encoder to extract features from all frames and then reduce redundant frames based on
DINO feature similarity. After this reduction, the remaining frames are processed using SigLIP. One significant advantage of
our method is that the DINO-based frame reduction step substantially decreases the computation required for the remaining
frames in subsequent steps. As shown in the table below, the primary computation lies in frame feature extraction, which,
in real-world applications, can be preprocessed offline. Notably, our proposed compression component contributes only a
small portion to the overall inference overhead.

Component Extract all frame features DINO similarity Extract remaining feature for SigLIP Query STC

Time (sec) 22.2 1.05 4.32 0.27 0.18

Table 12. Inference time of each component.

F. Experiments
F.1. Comparison with training-free token compression methods.

Methods MVBench MLVU VideoMME

FastV (Chen et al., 2024b) 56.1 62.6 57.3
VisionZip (Yang et al., 2024) 56.9 62.5 57.8
DyCoke (Tao et al., 2024) 58.2 63.8 60.4
LongVU (Ours) 66.9 65.4 60.6

Table 13. Comparison with training-free token compression methods.

F.2. Context Length

We conducted an ablation study to compare the impact of different context lengths on our method in Table 14. By default,
we use an 8K context length, as it aligns with most baselines and is the standard for commonly used MLLMs, ensuring
a fair comparison. When reducing the context length to 6K, performance suffers due to the restricted context window.
Conversely, testing our model with extended context lengths of 12K and 16K yielded results comparable to the 8K setting.
This demonstrates that our spatiotemporal compression approach effectively minimizes redundant video tokens, maintaining
performance even with longer contexts. In addition, currently, there is a scarcity of long videos with high-quality annotations
that can support scaling our methods to longer context lengths. Most videos in our training dataset, VideoChat2-IT, are
limited to 3 minutes.

Context length EgoSchema MVBench MLVU VideoMME

6k 67.82 66.71 62.33 59.54
8k (default) 67.62 66.95 65.44 60.56
12k 67.14 66.83 63.54 60.12
16k 67.20 66.86 64.40 60.20

Table 14. Context length ablation.

F.3. DINO Threshold

We investigate the impact of DINO threshold selection on performance in Table 15. A lower DINO threshold results in fewer
frames being discarded (lower compression rate). For example, in MLVU, decreasing the threshold leads to performance
drop as more redundant frames are retained in a given context length.
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DINO threshold EgoSchema MVBench MLVU VideoMME

0.9 67.64 66.88 64.33 60.3
0.85 67.66 66.86 63.12 59.9
0.83 (default) 67.62 66.95 65.44 60.56
0.8 67.18 66.86 63.51 60.34
0.75 67.22 66.86 63.16 60.38

Table 15. DINO threshold ablation.

F.4. STC Threshold

We analyze the impact of STC threshold selection on performance and observe a trade-off with the compression rate as
shown in Table 16. Increasing the threshold, meaningly reducing the compression rate, leads to a drop in performance,
particularly on the long-video benchmarks MLVU and VideoMME. Conversely, lowering the threshold results in more
aggressive compression, which also negatively impacts performance.

STC threshold EgoSchema MVBench MLVU VideoMME

0.85 67.56 66.88 64.00 59.98
0.8 67.30 66.86 63.51 59.83
0.75 (default) 67.62 66.95 65.44 60.56
0.7 67.50 66.86 64.03 60.27
0.65 67.42 66.86 63.91 60.34

Table 16. STC threshold ablation.

F.5. Sliding Window Size K

K represents the size of the sliding window, a hyperparameter used to divide the frame sequence into chunks for spatial
token compression. We show the ablation results for different values of K in Table 17. Adjusting the sliding window size
will affect the MLVU performance, while having minimal impact for other benchmarks. In STC, each subsequent frame is
compared with a first frame as anchor within the sliding window. We assume that a larger context window can weaken the
strong temporal dependency when the subsequent frame is far from the initial frame in the window.

Sliding window K EgoSchema MVBench MLVU VideoMME

4 67.38 66.86 63.74 60.45
8 (default) 67.62 66.95 65.44 60.56
16 67.22 66.86 62.18 60.42
32 67.20 66.86 60.69 60.82

Table 17. Sliding window K ablation.

F.6. Sliding Window Size J

J represents the size of the sliding window, a minor hyperparameter used to divide the video into chunks. We present
ablation results demonstrating the effects of different values for J in Table 18. Adjusting the sliding window size has
minimal impact on the benchmarks.
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Sliding window J EgoSchema MVBench MLVU VideoMME

4 67.54 66.88 63.79 60.6
8 (default) 67.62 66.95 65.44 60.56
16 67.56 66.86 64.3 60.16
32 67.54 66.83 63.38 60.23

Table 18. Sliding window J ablation.

F.7. Effect of STC

The primary goal of STC is to reduce tokens while preserving visual information, rather than achieving a significant
performance improvement. The table below shows the retained token ratio before and after STC, demonstrating that while
the number of token is significantly reduced, the model’s performance is effectively preserved.

Methods Retained Ratio EgoSchema VideoMME MLVU

LongVU w/o STC 23.9% 67.3 60.1 65.1
LongVU 14.2% 67.6 60.6 65.4

Table 19. Sliding window J ablation.

G. Limitation
Our research is primarily concentrated on video understanding tasks, for which we employ video-only data during the
video supervised fine-tuning (SFT) stage. As evidenced in Table 10,, our image-pretrained model demonstrates good
image understanding capabilities. However, after fine-tuning on video tasks, a modality gap leads to a decline in image
performance. Interestingly, when the video SFT model is further fine-tuned on the image data from the pretraining stage, the
image performance is effectively restored. This indicates that our approach to video understanding can also enhance image
understanding capabilities. The recovered image understanding performance shown in below table is comparable to MLLM
baselines, such as Cambrian-1 (Tong et al., 2024) and LLaVA-NeXT (Liu et al., 2024a), which primarily focus on image
understanding and operate with a similar number of image tokens. A potential remedy could involve integrating a mix of
image, multi-image, and video data during training. However, due to constraints in GPU resources, we leave it as a future
work with larger datasets for stronger unified image and video models.

Our method spatiotemporally reduces video frames/tokens and concatenates tokens all together to form the overall video
representation. However, this approach does not encode the temporal location of individual frames. While we experimented
with frame-level positional embeddings to alleviate this drawback, the model still struggles with tasks like temporal
grounding, meaningly identifying the precise start and end times of events.

We think that a well-designed frame-level positional embedding could help address this issue. Alternatively, explicitly
adding <frame i> text to demonstrate the timestamp of each frame or overlaying visual text on the frames to indicate their
timestamps could also be a potential solution.
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