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Abstract

A Hybrid Interpretable Model involves the cooperation of an interpretable model and a
complex black box. At inference, any input of the model is assigned to either its inter-
pretable or complex component based on a gating mechanism. The ratio of data samples
send to the interpretable component is referred to as the model transparency. Despite
their high potential, Hybrid Interpretable Models remain under-studied in the interpretabil-
ity/explainability literature. In this paper, we remedy this fact by presenting a thorough
investigation of such models from three perspectives: Theory, Taxonomy, and Methods.
First, we highlight the potential generalization benefits of sending samples to an inter-
pretable component by deriving a Probably-Approximately-Correct (PAC) generalization
bound. This guarantee indicates a sweet spot for optimal transparency, which suggests that
redirecting inputs to an interpretable model can act as regularization. Secondly, we provide
a general taxonomy for the different ways of training such models: the Post-Black-Box and
Pre-Black-Box paradigms. These approaches differ in the order in which the interpretable
and complex components are trained. We show where the state-of-the-art Hybrid-Rule-Set
and Companion-Rule-List fall in this taxonomy. Thirdly, we implement the two paradigms
in a single method: HybridCORELS, which extends the CORELS algorithm to Hybrid In-
terpretable Modeling. By leveraging CORELS, HybridCORELS provides a certificate of
optimality of its interpretable component and precise control over transparency. We finally
show empirically that HybridCORELS is competitive with existing approaches and performs
just as well as a standalone black box (or even better) while being partly transparent.

1 Introduction

The ever-increasing integration of machine learning models in high-stakes decision-making contexts such as
healthcare, justice, or finance (e.g., kidney exchange (Aziz et al., 2021), recidivism prediction (Angwin et al.,
2016) or credit scoring (Aniceto et al., 2020)) has fostered a growing demand for transparency in recent years.
Current workhorses to address transparency concerns in machine learning include black-box explanation and
transparent design techniques (Guidotti et al., 2018). Black-box explanation techniques aim at explaining
complex machine learning models in a post-hoc fashion with global explanations such as Trepan (Craven &
Shavlik, 1995) and BETA (Lakkaraju et al., 2017) or local explanations such as LIME (Ribeiro et al., 2016)
and SHAP (Lundberg & Lee, 2017). On the other hand, transparent design concerns the development of
inherently interpretable models such as rule lists (Rivest, 1987; Angelino et al., 2017), rule sets (Rijnbeek &
Kors, 2010), decision trees (Breiman, 2017), and scoring systems (Ustun & Rudin, 2016).

However, both black-box explanations and transparent design face performance and trustworthiness chal-
lenges that can prevent their wide adoption. On the one hand, while inherently interpretable models can be
more easily understood and adopted by non-domain experts, their out-of-the-box performance can be worse
than non-transparent models. Moreover, training such models to optimality is often NP-hard due to their
discrete nature. On the other hand, black boxes can effortlessly attain high performance but their decision
mechanisms are opaque and hard to understand by both experts and non-experts. Also, post-hoc explana-
tions of these complex models have been shown to be unreliable and highly manipulable by ill-intentioned
entities (Aïvodji et al., 2019; Slack et al., 2020; Dimanov et al., 2020; Aïvodji et al., 2021; Laberge et al.,
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Figure 1: Overview of Hybrid Interpretable Modeling. (a) General schematic of a Hybrid Interpretable Model
where, at inference time, a gating mechanism determines whether to send the instance to the interpretable
component hs or to the complex one hc. (b) Letting transparency be the ratio of samples sent to the
interpretable component hs, the trade-off between accuracy and transparency can be measured and compared
across different Hybrid Interpretable Models.

2022). This conundrum between black-box or transparent designs is colloquially referred to as the “accuracy-
transparency trade-off”, that is, one has to choose between transparent models with lower performance or
opaque models that perform well but whose explanations are not trustworthy. Still, this trade-off is not a
quantitative measure but rather a part of the collective imagination of researchers in interpretable machine
learning. For this reason, the accuracy-transparency trade-off has been heavily criticized and even labeled a
myth (Rudin, 2019). But the question remains, does such a trade-off exist? And if it does, is there a way to
quantitatively measure it? Or even optimize it?

To explore such questions, we will not treat black-box and transparent designs as dichotomies. Rather, we
will embrace both and explore the continuum between the two philosophies. More specifically, we will study
Hybrid Interpretable Models (Wang, 2019; Pan et al., 2020; Wang & Lin, 2021), which are systems that
involve the cooperation of an interpretable model and a complex black box. At inference time, any input is
assigned to either its interpretable or complex component based on a gating mechanism, see Figure 1 (a).
The intuition behind this type of modeling is that not all examples in a dataset are hard to classify.

In line with the literature (Wang, 2019; Pan et al., 2020; Wang & Lin, 2021), we define the system’s trans-
parency as the ratio of samples that are sent to the interpretable part. The higher the transparency, the
more model predictions can be understood and certified. However, the interpretable component could make
more errors on average meaning that the overall system suffers a performance loss. Therefore, an integral
part of Hybrid Interpretable Models is to empirically explore the accuracy-transparency trade-off and find
the best compromises, see Figure 1 (b). Note that the accuracy-transparency trade-off becomes something
we measure and optimize.

Still, despite their high potential, Hybrid Interpretable Models remain under-studied in the interpretabil-
ity/explainability literature. One of the reasons could be that learning interpretable models is very hard
(often NP-Hard), and fitting a Hybrid Interpretable Model on top can only be harder. To address this issue,
past studies have optimized such models using simulated annealing heuristics (Wang, 2019; Pan et al., 2020).
More specifically, they employed a rule-set/rule-list as the interpretable component and trained it by ran-
domly adding/removing/permuting rules for a fixed number of steps. Nevertheless, we show empirically that
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the stochasticity of these simulated annealing heuristic hinders the ability of practitioners to consistently
attain a target level of transparency.

Given the recent development of highly efficient libraries for training interpretable models to optimality
(e.g., CORELS for rule-lists (Angelino et al., 2017), GOSDT for decision trees (Hu et al., 2019)), it may
now be possible to train Hybrid Interpretable Models to optimality, even when adding a hard constraint on
transparency level.

To encourage additional research, we offer a fundamental investigation of such models from three perspec-
tives: Theory, Taxonomy, and Methods, focusing on binary classification for the Theory and Methods parts.
From the theory point of view, we explore Probably-Approximately-Correct (PAC) generalization bound of
Hybrid Interpretable Models. The aim of this guarantee is not to provide tight bounds directly relevant
to practitioners, but rather to highlight the potential generalization benefits of sharing samples between a
complex and simple model. This is evidenced by a sweet spot of the bound’s tightness w.r.t the model trans-
parency. Secondly, we provide a general taxonomy for the different ways of training Hybrid Interpretable
Models: the Post-Black-Box and Pre-Black-Box paradigms. These approaches differ in the order in which
the interpretable and complex components are trained. We show where state-of-the-art Hybrid Interpretable
Models fall in this taxonomy. Thirdly, we implement the two paradigms in a single method: HybridCORELS,
which extends the library CORELS. By leveraging CORELS, HybridCORELS provides a certificate of op-
timality of its interpretable component and precise control over transparency. We finally show empirically
that HybridCORELS is competitive with existing Hybrid Interpretable Models, and performs just as well as
a standalone black box (or even better) while being partly transparent. To resume, our contributions are:

• We theoretically study Hybrid Interpretable Models under the PAC-Learning framework and derive
a generalization bound. We show that said bound depends on the amount of data classified by each
component of the Hybrid Interpretable Model and that an optimal transparency value exists.

• We introduce a taxonomy of Hybrid Interpretable Models’ learning methods, identifying two main
families: the Pre-Black-Box paradigm and the Post-Black-Box paradigm. We instantiate the pro-
posed Pre-Black-Box paradigm using a notion of black-box specialization via re-weighting. In a
nutshell, within the Pre-Black-Box paradigm, input regions handled by the black-box are known be-
fore it is trained. Thus, one can specialize the black-box on said regions by assigning larger weights
to the appropriate training samples.

• We review state-of-the-art methods for learning rule-based Hybrid Interpretable Models, and show
that they all fall into the Post-Black-Box category.

• We extend the CORELS algorithm for learning optimal rule lists into HybridCORELSPost and
HybridCORELSPre, which learn rule-based Hybrid Interpretable Models within the Post-Black-Box
and Pre-Black-Box paradigms respectively. Both implementations provide optimality guarantees in
terms of training accuracy and explicit control of the model transparency.

• We empirically compare HybridCORELSPre and HybridCORELSPost with state-of-the-art methods
for learning rule-based Hybrid Interpretable Models. Both methods offer competitive trade-offs
between accuracy and transparency.
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(a) Example of a region Ω (shown as a thick square) where
a complex model hc ∈ Hc (with |Hc| = 236) is overly
complex.

(b) The complex model hc can be replaced by a simpler
one hs ∈ Hs (with |Hs| = 24). The Hybrid Interpretable
Model has size |Hyb| = 224.

Figure 2: Toy example with X = [0, 1]× [0, 1]. Here the complex models Hc are all the ways to color the 36
width-1 squares. The simpler models Hs are all the ways to color the 4 width-2 squares in the middle.

2 Hybrid Interpretable Models: a Theoretical Analysis

This section formally introduce Hybrid Interpretable Models and analyzes them under the PAC-Learning
framework. A generalization bound is derived and the potential benefit of sharing samples between models
is highlighted.

2.1 Definitions

Let X be the input space and let Hc,Hs be two sets of binary classifiers h : X → {0, 1}. We shall impose that
|Hs| < |Hc| <∞ so that Hs represents a simple set of models while Hc represents a complex set of models.
Finally, we let P be a set of subsets of X (for instance, P may be the power set of X , or the set of linear half-
spaces). The intuition behind Hybrid Interpretable Modeling is that there may exist a region Ω ∈ P where
a complex model hc ∈ Hc is overkill and could be replaced by a simpler model hs ∈ Hs without significant
drop in performance. Formally, a Hybrid Interpretable Model is a triplet ⟨hc, hs, Ω⟩ ∈ Hyb := Hc ×Hs × P
that instantiates a function of the form

∀x ∈ X , ⟨hc, hs, Ω⟩(x) =
{

hs(x) if x ∈ Ω,

hc(x) otherwise.

Figure 2 presents an informal argument favoring this modeling choice. We will additionally assume that
the smaller hypothesis space Hs involves models that are interpretable such as rule lists, sparse decision
trees, scoring systems, etc. This assumption will not affect the theoretical analysis, which will just rely
on |Hs| being small, but it will specify the desiderata of the Hybrid Interpretable Models. Indeed, if hs is
interpretable, then we would like the region Ω on which it operates to be as big as possible without hindering
performance. The size of Ω is called the transparency.

Definition 1 (Transparency) Letting D be a distribution over X × {0, 1} representing the binary classi-
fication task and DX be its marginal over X , the transparency

CΩ := P
x∼DX

[x ∈ Ω] (1)

is the ratio of samples sent to the interpretable component. In opposition, the opacity CΩ := Px∼DX [x ∈ Ω]
is the ratio sent to the black-box.

The rest of this section is structured as follows: in Section 2.2 we prove that finite Hybrid Interpretable
Models (i.e., |Hyb| <∞) are PAC-Learnable. That is, if we fit them using a finite dataset with sufficiently
many examples, then generalization to unseen samples is guaranteed. Afterward, Section 2.3 studies the
impact of transparency on the bound, and a “sweet spot” for transparency is highlighted.
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2.2 PAC-Learnability

The PAC-Learnability framework requires the Realizability Assumption (Shalev-Shwartz & Ben-David, 2014,
Definition 2.1).

Assumption 1 (Realizability) There exists a model ⟨h⋆
c , h⋆

s, Ω⋆⟩ ∈ Hyb that makes perfect predictions on
the distribution D over X × {0, 1}:

LD(⟨h⋆
c , h⋆

s, Ω⋆⟩) := P
(x,y)∼D

[⟨h⋆
c , h⋆

s, Ω⋆⟩(x) ̸= y] = 0. (2)

Intuitively, the predictions of the optimal Hybrid Interpretable Model ⟨h⋆
c , h⋆

s, Ω⋆⟩ match the true label y for
any possible input x.

To learn such a model, we can employ the Empirical Risk Minimization (ERM) principle, which consists of
sampling a dataset of M iid examples S := {(x(i), y(i))}M

i=1 ∼ DM , defining the empirical risk

L̂S(⟨hc, hs, Ω⟩) :=
M∑

i=1
1[⟨hc, hs, Ω⟩(x(i)) ̸= y(i)], (3)

and minimizing it across Hyb

⟨hc, hs, Ω⟩S := ERMHyb(S) = arg min
⟨hc,hs,Ω⟩∈Hyb

L̂S(⟨hc, hs, Ω⟩).

Notice that we do not scale the empirical risk by a factor 1
M seeing as multiplication by a constant factor

does not affect ERM. Solving Equation 2.2 is difficult because it requires fitting two models hs, hc as well
as the partition over which they operate. Yet, if the optimal partition Ω⋆ is known in advance, it could be
treated as fixed so that ERM only focuses on fitting hs and hc.

Assumption 2 (Oracle Region) Given Hyb and a distribution D that respect Assumption 1, one has
oracle access to the optimal region Ω⋆. Consequently, ERM sets Ω = Ω⋆ and focuses on fitting hs and hc.

Theorem 2 Given |Hyb| < ∞ and some ϵ > 0, for any distribution D where Assumption 1 holds, the
following is true for any training set size M :

P
S∼DM

[LD(⟨hc, hs, Ω⟩S) > ϵ] ≤
∑
Ω∈P

B(ϵ, CΩ,Hc,Hs, M),

with

B(ϵ, CΩ,Hc,Hs, M) := (1−|Hc|−|Hs|e−ϵM )CM
Ω +(1−|Hs|−|Hc|e−ϵM )CM

Ω +|Hc|(CΩe−ϵ+CΩ)M +|Hs|(CΩe−ϵ+CΩ)M .

Additionally, if Assumption 2 holds, the bound tightens

P
S∼DM

[LD(⟨hc, hs, Ω⟩S) > ϵ] ≤ B(ϵ, CΩ⋆ ,Hc,Hs, M). (4)

Proof The complete proof is provided in Appendix A.
This generalization bound involves several key quantities: the amount of data M , the transparency CΩ
and opacity CΩ as well as the complexities of the hypothesis spaces |Hs| and |Hc|. The coming subsection
presents how these various parameters impact the bound.

These theoretical bounds have several limitations. First, taking CΩ = 0 leads to a trivial bound of 1. The
same thing occurs when setting CΩ = 1. Basically, the bound is trivial unless input samples are shared
between the complex and simple models. Secondly, the bound requires the knowledge of transparency
CΩ = Px∼D[x ∈ Ω] which cannot be computed exactly in practice since the data-generating distribution D
is unknown. The only way to practically estimate this quantity is to count how many data instances land
in the region Ω. Thirdly, the bound can be loose as its computation relies on applying the union bound
repeatedly over P, Hc, and Hs. Still, for CΩ ∈]0, 1[, and any ϵ ∈]0, 1] the bound decreases as M increases
which implies that learning Hybrid Interpretable Models is possible in theory.
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(a) Region Ω1 (b) Region Ω2 (c) Region Ω3 (d) Region Ω4

Figure 3: Four Hybrid Interpretable Models that are functionally equivalent but have different regions Ω.

2.3 Fine-Tuning the Transparency

A particular property of Hybrid Interpretable Models is that the optimal model ⟨h⋆
c , h⋆

s, Ω⋆⟩ from Equation
(2) need not be unique. Indeed, given the flexibility of choosing the region Ω on which the simple model is
applied, we could have two models with the same functional output. Figure 3 presents a toy example of four
Hybrid Interpretable Models that are all functionally equivalent but with different regions Ω.

Consequently, the Assumption 2 that grants oracle access to Ω⋆ could be generalized to give access to a set
of optimal regions {Ωi}R

i=1. Which region should then be returned by the learning algorithm? Using the
empirical error as a criterion would not work, since any ERM fitted using these optimal regions would return
an error of 0. A more principled approach is to select the region based on the generalization bound. Fixing
some region Ωi for the ERM algorithm, Equation 16 provides an upper bound B(ϵ, CΩi

,Hc,Hs, M) on the
probability of exceeding the error ϵ. To render the analysis independent of the choice of a specific threshold
ϵ, we can investigate the Average Bound

B(CΩ,Hc,Hs, M) :=
∫ 1

0
min

{
1,B(ϵ, CΩ,Hc,Hs, M)

}
dϵ (5)

as a function of the transparency CΩ. The minimum between 1 and the bound is taken to avoid trivial
bounds for probabilities. Note that B(CΩ,Hc,Hs, M) takes values in [0, 1] and is smaller than 1 if and only
if there exists an error ϵ that occurs with probability PS∼DM [LD(⟨hc, hs, Ω⟩S) > ϵ] < 1.

Example Let Hs as the set of all binary depth-3 decision trees (7 internal nodes and 8 leaves with binary
outcomes) fitted on 20 binary features (X = {0, 1}20). This hypothesis space has a size |Hs| = 28×20×192×
184 ≈ 1.94× 1011. Let Hc be any hypothesis space that is larger than Hs by some factor |Hc| = N × |Hs|.
Figure 4 (a)&(b) presents the Average Bound as a function of transparency. Given Hc, Hs, and M , there is
a “sweet spot” where the Average Bound is smallest

C⋆
Ω = arg min

CΩ∈[0,1]
B(CΩ,Hc,Hs, M). (6)

Looking more specifically at Figure 4 (a), increasing N reduces the optimal transparency. Simply put, the
more complex Hc, the more input samples must be sent to hc to avoid overfitting. According to Figure 4 (b),
the optimal transparency does not seem to vary with M , at least when N = 100. Figure 4 (c) illustrates
the generalization bound as a function of ϵ when fixing the transparency to its optimal value. We note that
the bound is informative since it tells us that the true risk is unlikely to exceed 10%, 20%, 40% in various
settings.

We conclude this example by emphasizing that Figure 4 is mostly of theoretical interest, so practitioners
must take it with a grain of salt. More precisely, the exact values of the “sweet spot” for transparency are not
indicative of the values one would obtain in real-life experiments. This is because our analysis is performed
on an upper bound, which we hope still captures the generalization dynamics of Hybrid Interpretable Models.
In real-life applications, the existence of an optimal transparency must be assessed experimentally.
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(a) Varying N with M = 400.

0.3 0.4 0.5 0.6 0.7
Transparency CΩ

0.0

0.2

0.4

0.6

0.8

A
ve

ra
ge

B
ou

nd
B(
C

Ω
,.
..

)

M=200

M=500

M=1000

(b) Varying M with N = 100.

0.0 0.2 0.4 0.6 0.8 1.0
Error ε

0.0

0.2

0.4

0.6

0.8

1.0

B
ou

nd
B(
ε,
C
? Ω
..
.)

M=400, N=10

M=400, N=1K

M=400, N=100K

M=200, N=100

M=500, N=100

M=1000, N=100

(c) Varying M and N .

Figure 4: (a)&(b) Average Bound B as a function of transparency CΩ. We observe a “sweet spot” with min-
imal Average Bound, which depends on N (ratio of the hypothesis spaces’ sizes |Hc|

|Hs| ). (c) The corresponding
generalization bounds when fixing C⋆

Ω to its optimal value. Note that the bound is informative and tells us
that the true risk unlikely exceeds 10%, 20%, 40% in various settings.

2.4 Takeaways & Improvements

Although the bound makes strong assumptions that may not hold in practical applications, our theoretical
analysis leads to fundamental insights:

1. Training Hybrid Interpretable Models is theoretically possible given enough data.

2. Important parameters that influence generalization are the complexities |Hs| and |Hc|, the trans-
parency CΩ, and the number of data points M .

3. There exists a “sweet spot” of the bound in terms of transparency, suggesting that sharing inputs
between a simple and complex model can improve generalization. Later in the manuscript, this will
be demonstrated empirically on the COMPAS dataset, see Figure 12 (c).

There are many ways to improve our generalization bound, which we leave as future work.

First, the bound should be extended to account for infinite hypothesis spaces Hc and Hs (e.g. linear
models with few and many coefficients) whose complexity can be characterized with the VC Dimension or
Rademacher Complexity (Mohri et al., 2018). This extension is not trivial because bounds based on the VC
Dimension employ Sauer’s Lemma ((Shalev-Shwartz & Ben-David, 2014, Lemma 6.10), which only holds
when M is larger than the VC Dimension. However, bounds for Hybrid Interpretable Models must account
for the possibility of sending very few samples to either hs of hc. We envision leveraging Binomial tail
inequalities to bound the probability of these undesirable events.

Second, the Realizability Assumption (Assumption 1) should be removed, allowing for imperfect optimal
models LD(⟨h⋆

c , h⋆
s, Ω⋆⟩) > 0. In that case, the Agnostic-PAC-Learnability framework (Shalev-Shwartz &

Ben-David, 2014, Definition 3.3) should be used to bound the probability of failure PS∼DM [LD(⟨hc, hs, Ω⟩S) >
LD(⟨h⋆

c , h⋆
s, Ω⋆⟩) + ϵ]. Such guarantees would be obtained by leveraging uniform convergence bounds based

on the VC Dimension or Rademacher Complexity.

Third, PAC-Bayes guarantees (Alquier et al., 2024) could tighten the union bound over all regions
∑

Ω∈P
by specifying a prior probability distribution over P favoring high transparency regions. This would allow
us to get rid of Assumption 2. Additionally, PAC-Bayes offer an alternative characterization of infinite Hc

and Hs.
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3 Learning Hybrid Interpretable Models: Taxonomy and Methods

We now introduce our proposed taxonomy of Hybrid Interpretable Models learning frameworks. We then
show how rule-based classifiers can be used to implement Hybrid Interpretable Models. Finally, we position
state-of-the-art methods within the proposed taxonomy.

3.1 Taxonomy of Hybrid Interpretable Models Learning Frameworks

A major challenge in training Hybrid Interpretable Models is that two models must be trained instead of
one. Given the proliferation of out-of-the-box implementations of complex model hc, such as Scikit-Learn
and XGBoost classifiers, it would be simpler to rely on them via their pre-existing fit and predict methods.
Henceforth, we encourage Hybrid Interpretable Model training procedures to be agnostic to the type of black
box hc.

W now leverage the previous PAC generalization bound to derive a learning objective. As a reminder, we
defined in the previous section the data-generating distribution D, the training set S := {(x(i), y(i))}M

i=1 ∼
DM , training inputs SX := {x(i)}M

i=1 and the transparency CΩ := Px∼DX [x ∈ Ω] ≈ |SX ∩ Ω|/|SX |. It was
also demonstrated that two important quantities influencing generalization are the complexity of the simple
hypothesis space Hs and the transparency CΩ. Since “smaller is better” in any learning objective, we should
actually minimize the opacity CΩ ≈ |SX ∩ Ω|/|SX |. The learning objective would then be

obj(⟨hc, hs, Ω⟩, S) = L̂S(⟨hc, hs, Ω⟩)
|S|

+ λ ·KHs + β · |SX ∩ Ω|
|SX |

, (7)

where KHs
is a complexity measure of Hs and λ, β ≥ 0 are regularization hyperparameters that control the

complexity of Hs and the opacity CΩ. Equation (7) presents the learning of Hybrid Interpretable Models in
its most abstract form and we shall make it more specific shortly. We first present several ways to minimize
the objective over the space Hyb = Hc ×Hs × P that differ on the order in which hs and hc are trained.

3.1.1 The Post-Black-Box Paradigm: Wrapping an Interpretable Model around the Complex One

The Post-Black-Box paradigm consists of training the black-box first and then fitting the interpretable model
and regions on top. The interpretable components hs and Ω can thus be seen as a simplification of hc in
regions where it is overkill. A key advantage of this paradigm is that users owning a pre-trained black box
with high performance can easily wrap an interpretable model on top of it to get an increase of transparency.
Furthermore, because it is fitted after the black-box, the interpretable model hs can be trained with the
knowledge of the black-box mistakes, and specifically try to capture the corresponding examples and classify
them correctly. In such a case, it effectively corrects these misclassifications from the perspective of the
overall Hybrid Interpretable Model. We illustrate the Post-Black-Box paradigm in Figure 5 (Top).

3.1.2 The Pre-Black-Box Paradigm: black box Specialization by Reweighting

In the Pre-Black-Box paradigm, the simple model hs and region Ω are fitted first, and the black-box is
trained on the remaining examples. To avoid overfitting when training the black-box on few samples (since
the number of examples left to the black-box can be arbitrarily small), we propose to leverage a weighted
training set with higher weights to instances x(i) ∈ Ω and a smaller (but non-zero) weights to instances
x(i) ∈ Ω

∀i ∈ {1, 2, . . . , M}, wi = eα1[x(i)∈Ω ]∑M
j=1 eα1[x(j)∈Ω ]

, (8)

The non-uniform weights rely on a specialization coefficient α ≥ 0: the higher α, the more hc focuses
on data in Ω. The hyperparameter α is fine-tuned in practice. Figure 5 (Bottom) illustrates the Pre-Black-
Box paradigm pipeline. We note that many classifiers in the Scikit-Learn and XGBoost packages support
non-uniform data weights in their training procedure. Hence, the Pre-Black-Box paradigm is also black
box-agnostic.
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Dataset S

Train hs

and Ω Fit hc with
weights wi

Train hc

Fit hs and
Ω on top

Figure 5: Two paradigms for learning Hybrid Interpretable Models. (Top) In the Post-Black-Box paradigm,
a black box is first trained on the whole dataset. Then, the interpretable components are fitted on top of
the black box to simplify it in regions where it is overkill. (Bottom) In the Pre-Black-Box paradigm, the
interpretable part of the model is trained to identify a region where the task is simple. Afterward, the black
box model is fitted on the data with specialization weights wi to encourage high performance on instances
outside Ω. Here, the weights are visualized as the markers’ size.

3.2 Rule-Based Modeling

One of the important design choices of a Hybrid Interpretable Model is the space P of possible subsets
Ω where the interpretable model will operate. An example from previous work is to model these sets via
hyperplanes (Wang & Lin, 2021). An alternative is to employ a rule-based model r (e.g., a rule list or a rule
set) and define Ωr as

Ωr := {x ∈ X : cover(r, x) = 1},

where cover(r, x) = 1 if x respects the condition in at least one of the rules in r. The advantage of using
rule-based models to partition the input space is that they are interpretable by design, hence they can also
serve as the simple hypothesis space Hs. That is, we can assign a label to an input depending on which rule
captures it.

if 18 ≤ Age ≤ 22 and gender=male then
return y = 1

else if Prior-Crimes > 3 then
return y = 1

else
return hc(x)

Since a rule-based model encodes both the region Ω and the simple function hs on this region, we can think
of rule-based Hybrid Interpretable Models as a tuple ⟨hc, r⟩ ∈ Hc ×Hs instead of a triplet ⟨hc, hs, Ω⟩. The
learning objective on the training set S becomes

obj(⟨hc, r⟩, S) = L̂S(⟨hc, r⟩)
|S|

+ λ · |r|+ β · |SX ∩ Ωr|
|SX |

, (9)

where we measure the complexity of r by its length |r|.
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(a) COMPAS dataset
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(b) UCI Adult Income dataset

Figure 7: Instability of the transparency of HyRS for different random seeds. A very small jitter was applied
to the points to remove juxtapositions.

3.3 Rule-Based Post-Black-Box Hybrid Interpretable Models

Now that we have introduced several learning paradigms as well as a rule-based Hybrid Interpretable Models,
we describe two methods from the literature that apply the Post-Black-Box paradigm with rule-sets and
rule-lists.

3.3.1 Hybrid Rule-Set (HyRS)

if cover(r+, x) then
return 1

else if cover(r−, x) then
return 0

else
return hc(x)

Figure 6: Hybrid Rule-Set.

This model has been introduced by Wang (2019) and considers a
rule set r = r+ ∪ r− that combines a set of positive rules r+ and a
set of negative rules r−. The resulting tuple ⟨hc, r⟩ takes the form
of Figure 6.

The complexity of the interpretable model is the total number of
rules |r| and so the learning objective of Equation 9 is used. The
minimization of this combinatorial problem is tackled by a simu-
lated annealing search algorithm where neighborhoods are defined
as random perturbations of the rule-sets r+ and r−.

One of the drawbacks of HyRS is that the user does not have precise
control over the transparency CΩ. There are two design choices in HyRS that lead to this issue. First, the
only way to control the desired transparency is to increase the hyperparameter β to incentivize larger rule
coverage. Still, because a soft constraint is used, one has to conduct a line search over β to get the desired
transparency. Secondly, since the local search algorithm employed to find the rules is inherently stochastic,
several runs of the training procedure with the same hyperparameters can lead to very different models
and, by extension, different transparencies. Figure 7 shows different reruns of HyRS on two datasets for 20
different values of β that span four orders of magnitude. We see that the relation between transparency and
β is hardly monotonic because of the variance between reruns. Moreover, the transparency does not vary
smoothly w.r.t β as seen in the UCI Adult Income dataset, where the transparency jumps from 0 to 0.5 at
around β = 10−2. TODO

3.3.2 Companion Rule-List (CRL)

An alternative method called Companion-Rule-List (CRL) has later been developed in order to address
previous limitations (Pan et al., 2020). Notably, CLR streamlines the accuracy-transparency tradeoff by
returning multiple Hybrid Interpretable Models with increasing transparency. To see how, given a rule list,

10
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(c) HybridCORELS on COMPAS
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(d) HybridCORELS on Adult Income

Figure 8: Comparison between the test set transparencies attainable by CRL and HybridCORELS. (a)&(b)
The transparencies yielded by CRL runs with various random seeds, each indicated by a different color.
(c)%(d) Test set accuracies and transparencies resulting from many runs of HybridCORELS with various
transparency constraints Cmin ∈ [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9].

one can insert the black box at any level of the else-if statements. For instance, Figure 9 presents three
tuples ⟨hc, r⟩ that are derived from the same list of three rules r = [r1, r2, r3].

if cover(r1, x) then
return 1

else
return hc(x)

if cover(r1, x) then
return 1

else if cover(r2, x) then
return 0

else
return hc(x)

if cover(r1, x) then
return 1

else if cover(r2, x) then
return 0

else if cover(r3, x) then
return 1

else
return hc(x)

Figure 9: A rule list r = [r1, r2, r3] encodes three Hybrid Interpretable Models ⟨hc, r⟩ with increasing
transparency (from left to right).

Returning multiple Hybrid Interpretable Models allows users to decide what Hybrid Interpretable Model to
use based on their desired transparency. The training objective of CRL is no longer the accuracy but rather
the Area-Under-the-Curve (AUC) of the accuracy-transparency curve of the different Hybrid Interpretable
Models. A regularization λ · |r| is used to avoid long rule-lists. Similarly to HyRS, CRL is trained with

11
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a simulated annealing search algorithm where neighborhoods are defined as random perturbations of the
rule-list r. Although CRL offers more possibilities for transparency, we find that the inherent stochasticity
of the learning procedure still hinders the ability to consistently reach target transparency. Figure 8 (a)&(b)
present experiments conducted on the COMPAS and UCI Adult Income where a CRL model was fitted for
10 different random seeds. The different levels of transparency attained by each run are presented as colored
lines. For the COMPAS dataset, if a user wishes for a transparency of at least 0.5, then on half of the runs,
they would need to go up to about 0.75 transparency. For Adult Income, if an end-user requires transparency
of at least 0.25, then on half of the runs, they would need to go up to 0.5 transparency.

The coming section will introduce HybridCORELS, an alternative framework for fitting Hybrid Interpretable
Models where desired transparencies are imposed via a hard constraint

|SX ∩ Ωr|
|SX |

≥ Cmin (10)

rather than a soft one. As presented in Figure 8 (c)&(d), if a user targets transparency Cmin ∈
[0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], the resulting test set transparency remains close to constraint Cmin. Unlike
Figure 7 (b) and Figure 8 (b), we do not observe a transparency jump from 0 to 0.5 on the Adult Income
dataset.

4 HybridCORELS: Learning Optimal Hybrid Interpretable Models

We now present our algorithm learning optimal Hybrid Interpretable Models. First, we introduce the
CORELS algorithm, initially proposed, to learn optimal rule lists. Then, we describe the integration of
a hard constraint on transparency. Finally, we propose HybridCORELSPost (resp. HybridCORELSPre),
a modified version of CORELS to learn optimal Hybrid Interpretable Models within the Post-Black-Box
(respectively, Pre-Black-Box) framework.

4.1 Learning Optimal Rule Lists: the CORELS Algorithm

Rule lists are interpretable classifiers formed by an ordered list of if-then rules r, followed by a default
prediction q0 (Rivest, 1987). The set of ordered rules preceding the default prediction is called a prefix.
One can observe that any rule list d = (r, q0) represents a classification function, while any prefix r defines
a partial classification function, defined within its support Ωr (examples matching at least one of the rules
within r) .

To learn Certifiable Optimal RulE ListS, Angelino et al. (2017) proposed CORELS, a branch-and-bound
algorithm. It represents the search space of rule lists using a prefix tree, in which each node corresponds to
a prefix r. Adding a default prediction q0 to r allows the building of a rule list d = (r, q0). In CORELS’
prefix tree, the children nodes of r correspond to prefixes formed by adding exactly one rule at the end of
r. Thus, the r-rooted sub-tree corresponds to all possible extensions of r. CORELS’ objective function for
rule list d = (r, q0) on dataset S is a weighted sum of classification error and sparsity:

obj(d, S) = L̂S(d)
|S|

+ λ · |r| (11)

where L̂S(d) measures the number of errors (incorrect classifications) made by d on S (as defined in (3)),
and |r| is the length (number of rules) of rule list d’s prefix r.

Let Sr := S ∩ (Ωr × {0, 1}) be the subset of S captured by some prefix r. Just like any branch-and-bound
algorithm, CORELS uses an objective lower bound to prune the prefix tree, and eventually guide the search
in a best-first search fashion. For each node of the prefix tree (corresponding to a prefix r), it measures
the best objective function value that may be reached by extending prefix r. If this value is worse than the
best solution known so far, then the r-rooted sub-tree can be pruned safely. Let L̂Sr

(r) count the number
of mistakes made by prefix r (measured on its support set Sr), and incons(S) denote the minimum number
of examples of S that can never be classified correctly, because they have the exact same features vectors as

12
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some other examples, but with a different label. CORELS’ objective lower bound for prefix r on dataset S
is then computed as follows:

lb(r, S) = L̂Sr
(r) + incons(S \ Sr)

|S|
+ (|r|+ 1) · λ (12)

Intuitively, L̂Sr
(r)+ incons(S \Sr) corresponds to the minimum number of errors that any extension of r can

make, given the errors made by r and the errors that can not be avoided due to data inconsistency. CORELS
uses several efficient data structures to speed up the computation by breaking down symmetries (Angelino
et al., 2017). For instance, a prefix permutation map ensures that only the most accurate permutation of
every set of rules is kept. The CORELS pseudo-code is presented as Algorithm 1 in Appendix B.2.

Because it performs global optimization, CORELS builds state-of the-art rule lists in terms of predictive
accuracy. On the contrary, exact methods which do not require rules pre-mining do not scale well, and
greedy approaches - which are very popular for learning decision trees - usually produce badly performing
rule lists. Sections 4.3 and 4.4 will describe how the objective function (11) and its lower bound (12) can be
modified to learn Hybrid Interpretable Models within the Post-Black-Box and Pre-Black-Box paradigms.

4.2 Ensuring a User-Defined Transparency Level

As seen in Section 3.3.1&3.3.2, employing a hard constraint on transparency

|Sr|
|S|
≥ Cmin (13)

rather than a soft one (i.e., through a regularization coefficient) like HyRS/CRL allows for more precise
control over the test set transparency. To enforce constraint (13) using the CORELS branch-and-bound
algorithm, we modify the best solution update subroutine, to only perform the update operation if the
candidate prefix satisfies the transparency requirement. This guarantees that any returned solution will
satisfy (13) while maintaining optimality as the exploration and bounds are not modified.

Even if constraint (13) ensures the strict respect of a user-defined transparency level, we also integrate
transparency using a regularization term β · |S \Sr|/|S|. This allows to break ties: if two models exhibit the
same accuracy and sparsity levels, then this regularization term will favor the one with higher transparency.
In practice, we set the associated regularization coefficient β to a value small enough to only break ties :
β < 1

|S| ≤ λ.

4.3 Post-Black-Box framework: HybridCORELSPost

We now introduce HybridCORELSPost, a modified version of CORELS producing optimal Hybrid Inter-
pretable Models within the Post-Black-Box paradigm. More precisely, HybridCORELSPost first trains a
black-box model (or takes as input a pre-trained black-box model). Then, given a minimum transparency
constraint (13), it builds a prefix optimizing the overall model’s accuracy and sparsity.

Objective Given a black-box hc’s training set predictions, HybridCORELSPost builds a prefix r capturing
at least a proportion of Cmin of the training data (transparency constraint (13)), and minimizing the following
objective function:

objpost(r, S) := L̂S(⟨hc, r⟩)
|S|

+ λ · |r|+ β · |S \ Sr|
|S|

=
L̂Sr (r) + L̂S\Sr

(hc)
|S|

+ λ · |r|+ β · |S \ Sr|
|S|

.

(14)

Objective lower bound CORELS’ original objective lower bound (12) is still valid and tight in this setup,
so we do not need to modify it. Indeed, the error term lower bound L̂Sr

(r) + incons(S \Sr) is unchanged, as
all remaining black-box errors L̂S\Sr

(hc) may potentially be corrected by extending r, but the errors already
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made by prefix r and those related to remaining inconsistencies can not be avoided. Then, the transparency
regularization term can not be used within the objective lower bound, as this term can always reach 0 by
sufficiently extending prefix r. Finally, the lower bound over the sparsity regularization term still holds: any
extension of prefix r must have at least |r|+ 1 rules.

Finally, HybridCORELSPost is an exact method: it provably returns a prefix r for which objpost(r, S) (14) is
the smallest among those satisfying the transparency constraint (13). This means that, given fixed black-box
predictions and desired transparency level, it produces an optimal Hybrid Interpretable Model in terms of
accuracy/sparsity. We provide the HybridCORELSPost pseudo-code as Algorithm 2 in the Appendix B.3.

4.4 Pre-Black-Box framework: HybridCORELSPre

HybridCORELSPre is the first algorithm to implement our proposed Pre-Black-Box paradigm. It first builds
a prefix optimizing accuracy and sparsity, given a minimum transparency constraint (13). Then, it trains
the black-box part by specializing it on the uncaptured examples, using the weighting scheme (8). As
aforementioned in Section 3.1.2, the Pre-Black-Box paradigm intrinsically limits the possible collaboration
between both parts of tuple ⟨hc, r⟩, as it is not possible for the black-box part to correct the mistakes made
by the interpretable part. However, it is possible to consider the inconsistencies left to the black-box part
while training the interpretable part, which implements a form of collaboration.

Objective HybridCORELSPre builds a prefix r capturing at least Cmin of the training data (transparency
constraint (13)), and minimizing the overall classification error lower bound (based on both prefix r’s errors
and the inconsistencies let to the black-box part) and sparsity:

objpre(r, S) = L̂Sr (r) + incons(S \ Sr)
|S|

+ λ · |r|+ β · |S \ Sr|
|S|

(15)

where the error term L̂Sr (r) + incons(S \ Sr)) counts the errors of ⟨hc, r⟩ assuming the black-box performs
perfectly. It hence provides a tight bound L̂Sr

(r) + incons(S \ Sr) ≤ arg minhc∈Hc
L̂S(⟨hc, r⟩).

Objective lower bound CORELS’ original objective lower bound lb(r, S) (12) (leveraging both the pre-
fix’s errors and the inconsistent examples among the uncaptured ones) is still valid and tight in this setup, so
we do not need to modify it. Indeed, the error term is tight: it is not possible for any extension of r to avoid
the errors already made by r nor the inconsistencies within the remaining examples. The sparsity term is
also tight as any extension of r must have a length of at least |r|+1. As for HybridCORELSPost, the opacity
term can not be used within the objective lower bound, as it can always reach 0. An interesting observation
is that lb(r, S) > objpre(r, S) for any prefix r (since β < λ as indicated in Section 4.2). This means that,
for any prefix r satisfying the transparency constraint (13)) will not be extended since this can only worsen
its objective. So, prefix extensions are only performed in order to meet the transparency constraint (13).

Finally, HybridCORELSPre is an exact method: it provably returns a prefix r for which objpre(r, S) (15)
is the smallest among those satisfying the transparency constraint (13). This means that, given desired
transparency level, it produces an optimal prefix (interpretable part of the final model) in terms of ⟨hc, r⟩
accuracy upper bound and sparsity. If the black-box performs perfectly, then the overall model is certifiably
optimal. We provide the HybridCORELSPre pseudo-code as Algorithm 3 in the Appendix B.3.

We additionally introduce in the Appendix C another possible implementation of the Pre-Black-Box
paradigm based on the CORELS algorithm but optimizing an objective function different from that of
HybridCORELSPre. This new variant HybridCORELSPre,NoCollab learns a prefix by maximizing its accu-
racy on the subset Sr, without accounting for the task left to the black-box part. Appendix C.1 provides
a description of this algorithm and Appendix C.2 empirically compares it with HybridCORELSPre. The
experiments confirm that HybridCORELSPre,NoCollab is not competitive with HybridCORELSPre in medium
to high transparency regimes, due to the lack of collaboration between both parts of the ⟨hc, r⟩ tuple.
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5 Experiments

In this section, we empirically evaluate our proposed algorithms. We first introduce our experimental setup.
Then, we use HybridCORELSPre to show that the Pre-Black-Box paradigm is suitable to learn Hybrid
Interpretable Models exhibiting interesting trade-offs between accuracy and transparency. We explore the
parameters of this paradigm, such as the specialization coefficient, to assess their effect and utility. Afterward,
we compare HybridCORELSPre and HybridCORELSPost with two state-of-the-art methods: Hybrid-Rule-
Set (HyRS) and Companion-Rule-List (CRL).

5.1 Setup

Datasets In our experiments, we consider several datasets with various prediction tasks and sizes:

• The COMPAS dataset1(analyzed by Angwin et al. (2016)) contains 6,150 records from criminal
offenders in the Broward County of Florida collected from 2013 and 2014. The corresponding binary
classification task is to predict whether a person will re-offend within two years.

• The UCI Adult Income dataset (Dua & Graff, 2017) stores demographic attributes of 48,842
individuals from the 1994 U.S. census. Its binary classification task is to predict whether or not a
particular person makes more than 50K USD per year.

• The ACS Employment dataset (Ding et al., 2021) is an extension of the UCI Adult Income
dataset that includes more recent Census data (2014-2018). The goal is to predict if a person is em-
ployed/unemployed based on 10 socioeconomic factors. The specific dataset contained information
on 203,358 constituents of the Texas state in 2018.

Rules mining To ensure a fair comparison between Hybrid Interpretable Models, we pre-mined a set
of rules Υ for each dataset. The prefixes were then restricted to select rules r ∈ Υ so any difference in
performance is solely attributable to the learning algorithms and not the quality of the rules. To mine
the rules, the datasets were first binarized using quantile for numerical features and one-hot encoding for
categorical features. Then, the FP-Growth algorithm (Han et al., 2000) was applied to identify rules of
cardinality 1-2 and support of at least 1%. To these sets of rules, we also added the negation of each rule in
the original binarized dataset. Finally, the 300 rules with the largest support were kept to generate Υ. We
ended up with |Υ| = 230 rules on COMPAS and |Υ| = 300 on the UCI Adult Income and ACS Employment
datasets.

Black-boxes In all experiments we used the following Scikit-learn (Pedregosa et al., 2011) classifiers as
black-boxes: a RandomForestClassifier, an AdaBoostClassifier, and a GradientBoostingClassifier.
Such black-boxes are in line with the setup considered in the literature (Wang, 2019). We further detail the
hyper-parameters tuning of these models in sections 5.2 and 5.3. We note that the Hybrid Interpretable
Models studied (HyRS, CRL, and HybridCORELS) are not tied to any specific black-box, nor to a specific
implementation. Indeed, they are black-box-agnostic by design.

Implementation details Our algorithms HybridCORELSPost and HybridCORELSPre (as well as its
HybridCORELSPre,NoCollab variant discussed in the Appendix C) are integrated into a user-friendly Python
module, provided in the supplementary material. They build upon the original CORELS (Angelino et al.,
2017) C++ implementation2 and its Python wrapper3. All experiments are run on a computing grid over a
set of homogeneous nodes using Intel Platinum 8260 Cascade Lake @2.4Ghz CPU.

HybridCORELS transparency regularization coefficient β setting In all our experiments us-
ing HybridCORELSPre or HybridCORELSPost, we set the transparency regularization coefficient β =
min( 1

2·|S| ,
λ
2 ) to only break ties but ensure that no accuracy nor sparsity will be traded-off for transparency.

1https://raw.githubusercontent.com/propublica/compas-analysis/master/compas-scores-two-years.csv
2https://github.com/corels/corels
3https://github.com/corels/pycorels
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5.2 Exploring the Pre-Black-Box Paradigm

Objective The objective of this subsection is to assess the appropriateness of the proposed Pre-Black-Box
paradigm for learning accurate tuples ⟨hc, r⟩. To this end, we use our proposed algorithm implementing this
framework: HybridCORELSPre, depicted in Section 4.4. More precisely, we aim to explore the effect of the
specialization coefficient on the performances of the produced models.

Setup For the three datasets presented in Section 5.1, experiments are run for five different train/test
splits, with 80% of the data used for training and the remaining 20% for testing. We use HybridCORELSPre
to produce ⟨hc, r⟩ for several transparency levels: low (0.25), medium (0.5), high (0.75, 0.85) and very high
(0.95). For the prefix building part, we optimize the hyperparameters of HybridCORELSPre using grid search
over the following values: λ ∈ {10−2, 10−3, 10−4}, minsupport ∈ {0.01, 0.05, 0.10}, and the objective-guided,
lower-bound-guided, and BFS search policies. For each experiment, the prefix yielding the best (training)
accuracy upper-bound (considering the prefix’s errors as well as the inconsistencies left to the black-box part,
as depicted in (15)) is retained. Indeed, as discussed, this upper-bound precisely quantifies the accuracy of
⟨hc, r⟩ if hc makes no mistakes. The Scikit-learn (Pedregosa et al., 2011) black-boxes are chosen to
be either an AdaBoostClassifier with default parameters, a GradientBoostingClassifier with default
parameters and a RandomForestClassifier with min_samples_split = 10 and max_depth = 10. The
black-boxes are finally trained using different values for the specialization coefficient α, ranging from 0 (no
specialization) to 10 (highly specialized).

Results The train and test performances of the learned prefixes are presented in Figure 10. As expected,
when the enforced transparency level increases, the number of errors made by the interpretable part in-
creases, and so does objective (15) which lower bounds the overall error minhc∈Hc

L̂S(⟨hc, r⟩). We note
that the prefix transparencies on the training set are very close to the enforced constraint, with very small
standard deviations. This illustrates the conflict between accuracy and transparency. Indeed, if a prefix
with very high accuracy and transparency were available, the learning algorithm would systematically select
it irrespective of the transparency constraint. However, the fact that transparencies are very close to their
enforced constraint means that increasing the coverage of the prefix hinders the performance. This empirical
observation meets the theoretical discussion of Section 4.4 (Objective lower bound paragraph). We also
observe that transparency generalizes: the test set transparency levels are very close to the training set ones.
Again, the standard deviation across dataset splits is very small.

We report results for the AdaBoostClassifier black-box in Figure 11 for the three datasets. Results for the
two other black-boxes and all transparency levels are provided in the supplementary material4 and show the
same trends. We focus on three different transparency levels: low (0.25), medium (0.50) and very high (0.95),
since the trends observed for high and very high values (0.75, 0.85 and 0.95) are the same. As expected,
higher values of the specialization coefficient α lead to higher training accuracy of the black-box part. Indeed,
the black-box component is evaluated on the subset of the data that is not captured by the interpretable
part. Hence, specializing it on this subset encourages the model building to focus on these samples since
the cost of misclassifying them is higher. Note that small variations exist, which can be explained by the
heuristic nature of the black-box training algorithms.

Overall, a reasonable specialization is usually beneficial. For low transparency values, the improvements
brought by specialization are relatively modest (check the y-axis scales). In such contexts, the black-box
already operates on most of the dataset. For very high transparency values, Ω is relatively small and an
excessive specialization may not always pay off due to overfitting (as is the case with the UCI Adult Income
experiment). For medium to high transparency values, specialization (with carefully chosen specialization
coefficient α) is always beneficial in these experiments. Here, specialization allows for black-box test accuracy
absolute improvements up to 2.27 pps (experiment using the ACS Employment dataset, with minimum
transparency 0.95). To quantify whether increasing α is worth it in practice, we define the improvement
rate as the proportion of runs (out of all our performed experiments) for which using a given value of the
specialization coefficient α led to an improvement (compared to no specialization at all) of the test accuracy of
the learnt black-box (on the subset of examples it classifies) - hence resulting in an improvement of the overall

4HybridCORELS-code/paper/paper_5.2_results.zip
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(a) ACS Employment dataset.
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(b) UCI Adult Income dataset.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Min. Transparency Constraint

0.685

0.690

0.695

0.700

0.705

0.710

Ov
er

al
l A

cc
ur

ac
y 

Up
pe

r B
ou

nd

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
tu

al
 P

re
fix

 C
ov

er
ag

e

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Min. Transparency Constraint

0.69

0.70

0.71

0.72

0.73

0.74

0.75

0.76

Ov
er

al
l A

cc
ur

ac
y 

Up
pe

r B
ou

nd

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
tu

al
 P

re
fix

 C
ov

er
ag

e

(c) COMPAS dataset.

Overall Accuracy Upper Bound (train)
Actual Prefix Coverage (train)

Overall Accuracy Upper Bound (test)
Actual Prefix Coverage (test)

Figure 10: Training and test performances of the prefixes learned using HybridCORELSPre. We report
the transparency and overall accuracy upper bound (considering both the prefix’s errors and the remain-
ing inconsistencies) - which corresponds to the accuracy L̂S(⟨hc, r⟩) if the black-box classifies correctly all
consistent examples. The plots show both average values and standard deviation (across the five runs with
different random seeds).
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(a) ACS Employment dataset.
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(b) UCI Adult Income dataset.
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Figure 11: Training and test performances of the black-box hc (AdaBoostClassifier), learned using
HybridCORELSPre on different datasets, for different transparency levels. The plots show both average
values and standard deviation.
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Hybrid Interpretable Model test accuracy, since the prefix part is fixed. Considering all the experiments run
with the AdaBoostClassifier black-box, this improvement rate is the highest for α = 2, with a 93.33%
improvement rate. For the same set of experiments, the improvement rate is 73.33% for α = 5, and only
66.6% for α = 8 - which suggests that overfitting progressively occurs for too large values of alpha, making
specialization less effective. Considering all the run experiments (including runs for the three datasets and
the different transparency levels), the improvement rate values are the highest for α ∈ {1, 2}. This confirms
the usefulness of specialization but highlights the need to use reasonable specialization coefficient values α.
Observe that, when α = 1, misclassifying an example belonging to the (training) black-box subset costs
e1

e0 ≈ 2.72 times more than misclassifying a training example outside this set (in the optimized loss function).
When α = 2, it costs e2

e0 ≈ 7.39 times more.

The effect of the specialization coefficient α depends on many factors - such as the transparency level (related
to the size of the subset of examples the black-box should actually focus on) or how the examples handled by
the black-box are actually more difficult to classify. In any case, because the black-box training algorithms
we use do not come up with optimality guarantees, there is no guarantee on the amount of improvement
that α will bring on the training or test accuracy on the subset of examples handled by the black-box part.

5.3 Tradeoffs and Comparison with the State-of-the-Art

Objective The aim of this subsection is to explore the trade-offs between the accuracy and transparency of
several Hybrid Interpretable Models : the state-of-the-art HyRS and CRL methods, as well as our proposed
HybridCORELSPost and HybridCORELSPre algorithms. These experiments serve the secondary purpose of
advertising the considerable amounts of transparency that can be attained while maintaining high perfor-
mance.

Setup For these experiments, each dataset was split into training (60%), validation (20%), and test (20%)
sets. We randomly generate five such splits and average the results over them. More precisely, for each
split, the training set is used to train the models (both the black-box and the interpretable parts). The
models’ hyperparameters are optimized using the validation set. Finally, the resulting Hybrid Interpretable
Models are evaluated on the test set. Note that while we hereafter focus on such test performances, the
training and validation curves show similar trends, and the associated results are all provided within the
supplementary material5. We, we detail the training and hyper-parameters optimization procedures for both
the black-boxes and

Pre-Black-Box method setup The experiments using the HybridCORELSPre algorithm are divided into
two phases. First, for each dataset (out of 3) and each random split (out of 5), we learn prefixes on the training
set with 12 different minimum transparency constraints (Cmin ∈ [0.1, 0.2, 0.3, . . . , 0.8, 0.9, 0.925, 0.95, 0.975]).
The following hyperparameters values are tried : λ ∈ {10−2, 10−3, 10−4}, minsupport ∈ {0.01, 0.05, 0.10},
and the objective-guided, lower-bound-guided, and BFS search policies for HybridCORELSPre. Each
prefix learning is limited to a maximum CPU time of 1 hour and a maximum memory use of 8
GB. For each experiment (dataset - random split - minimum transparency), the prefix yielding the
best validation accuracy upper bound is kept. In a second phase, for each retained prefix, we try
three different Scikit-learn (Pedregosa et al., 2011) black-boxes: a RandomForestClassifier, an
AdaBoostClassifier, and a GradientBoostingClassifier. The black-box hyperparameters are tuned
using the Hyperopt (Bergstra et al., 2013) Python library and its Tree of Parzen Estimators (TPE) algo-
rithm, with 100 iterations. Just like the prefixes in the first phase, the black-boxes are trained using the
training split (60%) and the hyperparameters are selected based on the validation split (20%) performances.
Note that, as for the training set, the validation set loss is weighted to encourage the black-box to accurately
classify the examples belonging to Ω. Based on the observations from Section 5.2, we set the specialization
coefficient α = 1, which corresponds to a moderate black-box specialization. Note that optimizing the value
of α using the separate validation set (as is done for the other hyperparameters) would be possible, and
would likely improve the results, since sticking to one configuration does not allow adapting to the different

5HybridCORELS-code/paper/results_part_4.zip
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scenarios. We chose to not do so and let the choice of α as an interesting research avenue, in order to keep
the size of the hyperparameters’ grid comparable among the different methods.

Post-Black-Box methods setup Three methods correspond to the Post-Black-Box paradigm:
HybridCORELSPost, HyRS (Wang, 2019), and CRL (Pan et al., 2020). The experiments using these meth-
ods are divided into two phases. First, for each dataset (out of 3) and each random split (out of 5), we
train three different Scikit-learn (Pedregosa et al., 2011) black-boxes: a RandomForestClassifier, an
AdaBoostClassifier, and a GradientBoostingClassifier. The black-box hyperparameters are tuned us-
ing the Hyperopt (Bergstra et al., 2013) Python library and its Tree of Parzen Estimators (TPE) algorithm,
with 100 iterations. The black-boxes are trained using the training split (60%) and their hyperparameters
are selected based on the validation split (20%) performances.

In the second phase of the experiments, we train the interpretable parts ⟨hc, r⟩ for the three com-
pared methods, using the hc learned in the previous phase. The prefix training is performed on
the training split (60%), while the hyperparameters values are selected based on the validation split
(20%) performances. For HybridCORELSPost, we consider 12 different minimum transparency con-
straints (Cmin ∈ [0.1, 0.2, 0.3, . . . , 0.8, 0.9, 0.925, 0.95, 0.975]), and the following hyperparameters values:
λ ∈ {10−2, 10−3, 10−4}, minsupport ∈ {0.01, 0.05, 0.10}, and the objective-guided, lower-bound-guided, and
BFS search policies. For the HyRS method, similarly to Wang (2019), we use 10 different values for its λ
hyperparameter (ranging logarithmically from 10−3 to 10−2) and 10 different values for its β hyperparameter
(ranging logarithmically from 10−3 to 100). For CRL, we consider 10 different values for its temperature
hyperparameter (ranging linearly from 10−3 to 10−2) and 10 different values for its λ hyperparameter (rang-
ing logarithmically between 10−3 and 10−1). For all three methods HybridCORELSPost, HyRS, and CRL,
the hyperparameter grid is roughly of size 100. As in the HybridCORELSPre experiments, prefix building is
limited to a maximum CPU time of 1 hour and a maximum memory use of 8 GB.

Final results computation After trying out all hyperparameters, we are left with a Pareto front repre-
senting the Hybrid Interpretable Models that are not dominated in terms of both validations set accuracy
and transparency. Still, since the black box and its prefix were fine-tuned on the validation set, we argue
that this Pareto front is an over-optimistic description of the true generalization of ⟨hc, r⟩. For this reason,
we decided to take the Pareto-optimal models on validation, and compute their accuracy and transparency
on the test set, which has not been used yet in this experiment. Hence, we can obtain unbiased measures of
the accuracy and transparency for these models. These final measures of accuracy/transparency are used to
compare the different approaches and assess whether increasing transparency can lead to equivalent/better
generalization.

Results The test set accuracy/transparency trade-offs of the different Hybrid Interpretable Models are
shown in Figure 12 for each dataset and black-box type. We highlight three main insights from these results.

First, on almost all datasets and black-box types, the methods HybridCORELSPre and HybridCORELSPost
are better or equivalent to HyRS and CRL. The only exception is HybridCORELSPre in high transparency
regimes (0.85-1.0) on the ACS Employment dataset. HybridCORELS offers competitive trade-offs because,
given a transparency constraint, it builds the prefix that provably maximizes accuracy, exploring the whole
search space of prefixes through a global optimization method. In Figure 13, we show an example tuple
⟨hc, r⟩ for each of the four methods fitted on the same data split (train/validation/test) of the ACS Em-
ployment dataset with an AdaBoost black-box. These models were selected on the basis of having the
highest test accuracies for a test transparency between 0.6 and 0.8. We note that HybridCORELSPre and
HybridCORELSPost are competitive with CRL and even employ similar rules, for example, ["age_high" and
"Female"], ["Reference person" and "No disability"], and ["age_high" and "Native"]. HyRS on the
other hand, performs worst than the other three since it has a lesser accuracy and transparency.

Second, using HybridCORELS on the ACS Employment and UCI Adult Income datasets, one can reach
high transparency values (0.7) while retaining the same performance as the black-box (0.0 transparency).
This observation is consistent across all black-box types, which suggests that complex models are often
overkill in certain regions of the input space and can safely be replaced by a simpler model on those inputs.
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(a) ACS Employment dataset.
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(b) UCI Adult Income dataset.
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(c) COMPAS dataset.

CRL HyRS HybridCORELSPost HybridCORELSPre

Figure 12: Test set accuracy/transparency trade-offs for various Hybrid Interpretable Models and datasets.
The Pareto front for each method is represented as a line and the filled bands encode the std across the
five data splits. Results are provided for several black-boxes: (Left) AdaBoost, (Middle) Random Forests,
(Right) Gradient Boosted Trees.
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i f [ " age_medium " and " No Cognitive difficulty " ] then 1
else i f [ " age_high " ] then 0
else

AdaBoost ( )

(a) HyRS: Test Accuracy 72.8%, Transparency 64.3%

i f [ " age_high " and " Female " ] then 0
else i f [ " age_high " and " Native " ] then 0
else i f [ " Reference person " and " No disability " ] then 1
else i f [ " Husband / wife " and " No disability " ] then 1
else i f [ " Cognitive difficulty " and " not own child of householder " ] then 0
else

AdaBoost ( )

(b) CRL: Test Accuracy 73.7%, Transparency 75.8%.

i f [ " Disability " and " age_high " ] then 0
else i f [ " Husband / wife " and " Male " ] then 1
else i f [ " age_high " and " Native " ] then 0
else i f [ " age_high " and " Female " ] then 0
else i f [ " Reference person " and " No disability " ] then 1
else i f [ " Bachelor degree " ] then 1
else

AdaBoost ( )

(c) HybridCORELSPre: Test Accuracy 74.0%, Transparency 70.1%.

i f [ " age_high " and " Female " ] then 0
else i f [ " Husband / wife " and " No disability " ] then 1
else i f [ " age_high " and " Native " ] then 0
else i f [ " Reference person " and " No disability " ] then 1
else

AdaBoost ( )

(d) HybridCORELSPost : Test Accuracy 73.7%, Transparency 73.0%.

Figure 13: Example of Hybrid Interpretable Models obtained by the different methods on the same data
split of the ACS Employment dataset with a AdaBoost black-box.

i f [ " Prior - Crimes =0 " and " Age >=30 " ] then 0
else i f [ " Prior - Crimes >5 " and " Age =24 -30 " ] then 1
else i f [ " Prior - Crimes =1 -3 " and " Age >=30 " ] then 0
else

RandomForest ( )

(a) HybridCORELSPre: Test Accuracy 68.1%, Transparency 42.7%

Figure 14: Example Hybrid Interpretable Model obtained by HybridCORELSPre on the COMPAS dataset
with a Random Forest black-box. Consistent with Figure 12, this model generalizes better than the black-
box alone.

From the point of view of certification/maintenance of a machine learning model, being able to assign a
majority of inputs to an interpretable component is a tremendous step forward. For instance, since rule lists
are interpretable, one might be able to certify that the prefix works properly/safely on the region Ωr that
will contain the majority of examples seen in deployment. For the minority of instances that fall outside
the region, certification might require the verification of the opaque decisions by a committee of domain
experts. Such verification might be time-consuming but, the higher the transparency, the fewer examples
this committee would need to verify regularly.
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Third, when studying HybridCORELSPre fitted on COMPAS, one can consistently observe a “sweet spot”
for transparency where the generalization is maximal and even better than the standalone black-box. The
existence of such a “sweet spot”, highlights the regularization effect of sharing inputs between a complex and
simple model. This generalization improvement is mainly observed with the HybridCORELSPre method,
which constitutes an argument in favor of the Pre-Black-Box paradigm. We report in Figure 14 an example
model learned with HybridCORELSPre on COMPAS, which generalizes better than a standalone black-
box. As we observe, just adding three simple rules before the black-box model allows for test accuracy
improvements. Note that keeping the same performance while increasing transparency is also desirable (as
was the case with the ACS Employment and UCI Adult Income datasets).

6 Conclusion

In this paper, we laid the foundations for a promising line of work that was initiated some years ago:
hybridizing interpretable and black-box models to “take the best of both worlds" (Wang, 2019; Pan et al.,
2020; Wang & Lin, 2021). More precisely, we first provided theoretical evidence that such models have
generalization advantages, while also being easier to certify and understand. We then proposed a taxonomy
of learning algorithms aimed at producing such models, along with a generic framework implementing the
(new) Pre-Black-Box paradigm. We introduced algorithms belonging to two identified paradigms, namely
Pre-Black-Box and Post-Black-Box. Compared to state-of-the-art methods, our proposed approaches, coined
HybridCORELSPre and HybridCORELSPost, certify the optimality of the learned models and provide direct
control over the desired transparency level. Our experiments demonstrated the ability of the proposed Pre-
Black-Box paradigm and the high competitivity of our algorithms with the state-of-the-art. Furthermore,
empirical findings suggest that this new paradigm may lead to better-generalizing models. Investigating the
reasons for this observation is an interesting future work.

Adapting other optimal search-based learning algorithms (as was done with CORELS in this work) - for
instance those producing optimal sparse decision trees - to produce new forms of Hybrid Interpretable Models
(beyond rule-based ones) is also a promising research avenue. While the value of the specialization coefficient
α can be optimized as any other hyper-parameter, efficiently computing a good value for it is an important
research direction. For instance one could take into account the enforced transparency level, to make sure the
black-box training overall focuses (at least) as much on its assigned subset as on the remaining examples.
Also, beyond the Post-Black-Box and Pre-Black-Box frameworks, one could envision a third end-to-end
paradigm where the black-box and simple models are trained simultaneously. While this approach could
provide global optimality guarantees, it is also very challenging because two models must be optimized within
a unique framework.

7 Broader Impact Statement

Hybrid Interpretable Models explore the accuracy-transparency trade-offs, but they do not address the lack
of explainability of black-box models. As a result, Hybrid Interpretable Models are not adequate for critical
systems where explanations are required for any model decision. This is because the few decisions relayed to
the black-box cannot be faithfully explained. Rather, Hybrid Interpretable Models are potentially useful for
tasks where imperfect explanations are sometimes acceptable. In such settings, the interpretable component
can be used to get the “big picture” of the model behavior, while post-hoc methods can be used to get
imperfect explanations of the black-box on “edge cases”.

Moreover, a rule-based model is only as good as its premined rules. A poor collection of rules can cause
performance degradation but also discrimination. Indeed, as evidenced by Figure 13, rule-based models can
discriminate based on protected attributes such as gender and ethnicity. Consequently, we caution against
the premature use of our work and advocate that practitioners exclude protected attributes from their rules
before applying HybridCORELS.
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A Proof of Theorem 1

Theorem 1 Given |Hyb| < ∞ and some ϵ > 0, for any distribution D where Assumption 1 holds, the
following is true for any training set size M :

P
S∼DM

[LD(⟨hc, hs, Ω⟩S) > ϵ] ≤
∑
Ω∈P

B(ϵ, CΩ,Hc,Hs, M),

with

B(ϵ, CΩ,Hc,Hs, M) := (1−|Hc|−|Hs|e−ϵM )CM
Ω +(1−|Hs|−|Hc|e−ϵM )CM

Ω +|Hc|(CΩe−ϵ+CΩ)M +|Hs|(CΩe−ϵ+CΩ)M .

Additionally, if Assumption 2 holds, the bound tightens

P
S∼DM

[LD(⟨hc, hs, Ω⟩S) > ϵ] ≤ B(ϵ, CΩ⋆ ,Hc,Hs, M). (16)

Proof The distribution D is fixed apriori and our only assumption about it is that a perfect triplet
⟨h⋆

c , h⋆
s, Ω⋆⟩ ∈ Hyb exists. Consequently, we must have L̂S(⟨hc, hs, Ω⟩S) = 0. Given ϵ > 0, our main

objective is to upper bound the probability PS∼DM [LD(⟨hc, hs, Ω⟩S) > ϵ] which corresponds to the proba-
bility of “failure” by the ERM model. Letting Hybϵ := {⟨hc, hs, Ω⟩ ∈ Hyb : LD(⟨hc, hs, Ω⟩) > ϵ} be the set
of all “failing” models, we have that

P
S∼DM

[LD(⟨hc, hs, Ω⟩S) > ϵ] ≤ P
S∼DM

[∃⟨hc, hs, Ω⟩ ∈ Hybϵ with L̂S(⟨hc, hs, Ω⟩) = 0]

≤
∑
Ω∈P

P
S∼DM

[∃⟨hc, hs, Ω⟩ ∈ Hybϵ with L̂S(⟨hc, hs, Ω⟩) = 0], (17)

where we have used the union bound over all Ω ∈ P. From this point on, we will assume that the domain Ω
is fixed. Consequently, the distribution D can be seen as a mixture of two distributions Dc,Ds with disjoint
supports Ω and Ω. Formally, we have D = CΩDc +CΩDs. The edge cases supp(D) ⊂ Ω and supp(D) ⊂ Ω are
covered by setting CΩ =1, CΩ =0 and CΩ =0, CΩ =1 respectively. Sampling from such a mixture distribution
D is a two-step process. First, one chooses a number of instances m ∼ Bin(CΩ, M) from a binomial law of
M trials and probability CΩ of success. Then one samples m simple examples Ss ∼ Dm

s , and samples M −m
hard examples Sc ∼ DM−m

c . This leads to

P
S∼DM

[∃⟨hc, hs, Ω⟩ ∈ Hybϵ with L̂S(⟨hc, hs, Ω⟩) = 0]

= P
m∼Bin(CΩ,M)

Ss∼Dm
s

Sc∼DM−m
c

[∃⟨hc, hs, Ω⟩ ∈ Hybϵ with L̂Sc∪Ss
(⟨hc, hs, Ω⟩) = 0]

=
M∑

m=0
b(m; CΩ, M) P

Ss∼Dm
s

Sc∼DM−m
c

[∃⟨hc, hs, Ω⟩ ∈ Hybϵ with L̂Sc∪Ss
(⟨hc, hs, Ω⟩) = 0],

(18)

where b(m; CΩ, M) :=
(

M
m

)
Cm

Ω (1− CΩ)M−m are the binomial coefficients. This formula has two edges cases
m = 0 and m = M that occur with probability CM

Ω and CM
Ω . The issue here is that one must bound the

population loss of the whole Hybrid Interpretable Model while only one of its sub-models is evaluated on
empirical data. This is solved by using trivial bounds

P
Sc∼DM

c

[∃⟨hc, hs, Ω⟩ ∈ Hybϵ with L̂Sc(hc) = 0] ≤ 1

P
Ss∼DM

s

[∃⟨hc, hs, Ω⟩ ∈ Hybϵ with L̂Ss
(hs) = 0] ≤ 1.

(19)

Assuming CΩ ∈]0, 1[, the probability of these edge cases occurring goes to zero as M →∞, and the triviality
of Equation 19 becomes irrelevant.
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Case 0 < m < M Since the expected loss can be rewritten

LD(⟨hc, hs, Ω⟩) = CΩLDc(hc) + CΩLDs(hs),

we have that
LDc

(hc) ≤ ϵ and LDs
(hs) ≤ ϵ⇒ LD(⟨hc, hs, Ω⟩) ≤ ϵ,

which implies
⟨hc, hs, Ω⟩ ∈ Hybϵ ⇒ hc ∈ Hc,ϵ or hs ∈ Hs,ϵ, (20)

where Hc,ϵ := {hc ∈ Hc : LDc(hc) > ϵ} and Hs,ϵ := {hs ∈ Hs : LDs(hs) > ϵ} are the sets of complex and
simple models “failing” on the distributions Dc and Ds. Note that the “or" in (20) is not exclusive and both
parts of the model may fail simultaneously. Therefore the following holds

P
Ss∼Dm

s

Sc∼DM−m
c

[∃⟨hc, hs, Ω⟩ ∈ Hybϵ with L̂Sc∪Ss
(⟨hc, hs, Ω⟩) = 0]

≤ P
Ss∼Dm

s

Sc∼DM−m
c

[{∃hc ∈ Hc,ϵ s.t. L̂Sc
(hc) = 0} or {∃hs ∈ Hs,ϵ s.t. L̂Ss

(hs) = 0}]

≤ P
S∼DM−m

c

[∃hc ∈ Hc,ϵ s.t. L̂S(hc) = 0] + P
S∼Dm

s

[∃hs ∈ Hs,ϵ s.t. L̂S(hs) = 0]

≤ |Hc|e−ϵ(M−m) + |Hs|e−ϵm,

where we have used the inequality PS∼Dm
s

[∃hs ∈ Hs,ϵ s.t. L̂S(hs) = 0] ≤ |Hs|e−ϵm (Equation 2.9 of Shalev-
Shwartz & Ben-David (2014)), and a similar one for Hc. Going back to Equation (18), we get

P
S∼DM

[∃⟨hc, hs, Ω⟩ ∈ Hybϵ with L̂S(⟨hc, hs, Ω⟩) = 0]

=
M∑

m=0
b(m; CΩ, M) P

Ss∼Dm
s

Sc∼DM−m
c

[∃⟨hc, hs, Ω⟩ ∈ Hybϵ with L̂Sc∪Ss
(⟨hc, hs, Ω⟩) = 0]

≤ CM
Ω + CM

Ω +
M−1∑
m=1

b(m; CΩ, M)
(
|Hc|e−ϵ(M−m) + |Hs|e−ϵm

)
= CM

Ω + CM
Ω + |Hc|

M−1∑
m=1

b(m; CΩ, M)e−ϵ(M−m) + |Hs|
M−1∑
m=1

b(m; CΩ, M)e−ϵm

= CM
Ω + CM

Ω + |Hc|
M−1∑
m=1

b(m; CΩ, M)e−ϵm + |Hs|
M−1∑
m=1

b(m; CΩ, M)e−ϵm

= (1− |Hc| − |Hs|e−ϵM )CM
Ω + (1− |Hs| − |Hc|e−ϵM )CM

Ω +

|Hc|
M∑

m=0
b(m; CΩ, M)e−ϵm + |Hs|

M∑
m=0

b(m; CΩ, M)e−ϵm

= (1− |Hc| − |Hs|e−ϵM )CM
Ω + (1− |Hs| − |Hc|e−ϵM )CM

Ω +
|Hc|(CΩe−ϵ + CΩ)M + |Hs|(CΩe−ϵ + CΩ)M := B(ϵ, CΩ,Hc,Hs, M).

In the last step, the following identity was used identity
M∑

m=0
b(m; CΩ, M)e−ϵm = (CΩe−ϵ + CΩ)M .

Finally, combining this with Equation (17) leads to the desired result

P
S∼DM

[LD(⟨hc, hs, Ω⟩S) > ϵ] ≤
∑
Ω∈P

B(ϵ, CΩ,Hc,Hs, M).
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Under Assumption 2 stating that the optimal region Ω⋆ is known in advance, the proof is the same except
that no union bound over Ω ∈ P is required because ERM is guaranteed to return the region Ω⋆.

B Pseudo-Codes of the HybridCORELS algorithms

While the CORELS algorithm and our proposed HybridCORELS variants were already introduced in Sec-
tion 4, we describe them in more detail in this appendix section. We first introduce some necessary notation
that we later use to provide a detailed pseudo-code and description of the CORELS algorithm. We then
depict our proposed variants HybridCORELSPost and HybridCORELSPre for learning Hybrid Interpretable
Models.

B.1 Notations

To formally describe the pseudo-code of the CORELS algorithm and those of our modified HybridCORELS
variants, we first need to introduce some more detailed notation. As mentioned in Section 4.1, a rule list
d consists in an ordered set of rules r, called a prefix, followed by a default decision q0. Then, we note:
d = (r, q0). Each individual rule ri involved within prefix r consists of an antecedent ai (“if" part of the
rule, consisting in a Boolean assertion over the features’ values) and a consequent qi (“then" part of the rule,
consisting in a prediction). We note: ri = ai → qi, and r = (r1, r2, . . . , r|r|) with |r| the length of prefix r.

B.2 CORELS

The pseudo-code of the CORELS algorithm is provided within Algorithm 1. As mentioned in Section 4.1,
CORELS is a branch-and-bound algorithm exploring a prefix tree, in which each node corresponds to a prefix
r and its children are prefixes formed by extending r. At each step of the exploration, the nodes belonging
to the exploration frontier are sorted within a priority queue Q, ordered according to a given search policy.
CORELS implements several such policies, including Breadth First Search, Depth First Search, and several
Best First Searches. While these policies define the order in which the nodes of the prefix tree are ordered
(and may affect the convergence speed), note that they do not affect optimality, and must all lead to the
same optimal objective function value given sufficient time and memory. At each step of the exploration, the
most promising prefix r is popped from the priority queue Q (line 4). If its lower bound is greater than the
best objective found so far (i.e., r can not lead to a rule list improving the current best objective function),
it is discarded. Otherwise, it is used to build a rule list by appending a default prediction q0 (line 6). If
the resulting rule list d has a better objective function than the best one reached so far, the current best
solution is updated at line 9. Finally, each possible extension of r formed by adding a new rule at the end
of r gives a new node which is pushed into the priority queue at line 12. The exploration is completed (and
optimality is proved) once the priority queue is empty. Note that efficient data structures are used to cut
the prefix tree symmetries: for instance, a prefix permutation map ensures that only the best permutation
of every set of rules is kept.

B.3 HybridCORELS

A key difference between our proposed HybridCORELS algorithms and the original CORELS is that our
methods aim at learning prefixes (expressing partial classification functions) while CORELS’ purpose is to
learn rule lists (classification functions). Both HybridCORELSPost and HybridCORELSPre return prefixes
(and not rule lists) and take as input an initial best known prefix r0 satisfying the transparency constraint
(while the original CORELS takes as input an initial rule list d0). A simple choice for the initial prefix
r0 satisfying the transparency constraint is a constant majority prediction: r0 ← [(True → q0)] (whose
transparency is 1.0). In practice, we use such trivial initial solution for all our experiments.

The pseudo-code of HybridCORELSPost is provided in Algorithm 2. Key modifications include the use of
a different objective function (14) at line 6, aimed at evaluating the overall Hybrid Interpretable Model’s
performances. One can note that the computation of the new objective function objpost(r, S) requires access
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Algorithm 1 CORELS
Input: Training data S with set of pre-mined antecedents Υ; initial best known rule list d0 such that
obj(d0, S) = z0

Output: (d∗, z∗) in which d∗ is a rule list with the minimum objective function value z∗

1: (dc, zc)← (d0, z0)
2: Q← queue(()) ▷ Initially the queue contains the empty prefix ()
3: while Q not empty do ▷ Stop when the queue is empty
4: r ← Q.pop()
5: if lb(r, S) < zc then
6: d← (r, q0) ▷ Set default prediction q0 to minimize training error
7: z ← obj(d, S) = L̂S(d)

|S| + λ · |r| ▷ Compute objective obj(d, S)
8: if z < zc then
9: (dc, zc)← (d, z) ▷ Update best rule list and objective

10: for a in Υ \ {ai | ∃ri ∈ r, ri = ai → qi} do ▷ Antecedent a not involved in r
11: rnew ← (a→ q) ▷ Set a’s consequent q to minimize training error
12: Q.push(r ∪ rnew) ▷ Enqueue extension of r with new rule rnew

13: (d∗, z∗)← (dc, zc)

Algorithm 2 HybridCORELSPost
Input: Training data S with set of pre-mined antecedents Υ; minimum transparency value Cmin; initial
prefix r0 such that |Sr0 |

|S| ≥ Cmin; pre-trained black-box model hc

Output: (r∗, z∗) in which r∗ is a prefix with the minimum objective function value z∗

1: (rc, zc)← (r0, z0)
2: Q← queue(()) ▷ Initially the queue contains the empty prefix ()
3: while Q not empty do ▷ Stop when the queue is empty
4: r ← Q.pop()
5: if lb(r, S) < zc then
6: z ← L̂Sr (r)+L̂S\Sr (hc)

|S| + λ · |r|+ β · |S\Sr|
|S| ▷ Compute objective objpost(r, S)

7: if z < zc and |Sr|
|S| ≥ Cmin then

8: (rc, zc)← (r, z) ▷ Update best prefix and objective
9: for a in Υ \ {ai | ∃ri ∈ r, ri = ai → qi} do ▷ Antecedent a not involved in r

10: rnew ← (a→ q) ▷ Set a’s consequent q to minimize training error
11: Q.push(r ∪ rnew) ▷ Enqueue extension of r with new rule rnew

12: (r∗, z∗)← (rc, zc)

to the pre-trained black-box hc, which is part of the algorithm’s inputs. The original CORELS’ lower bound
is valid and tight for our new objective (as discussed in Section 4.3) so we keep this computation unchanged
at line 5. Finally, to ensure that the built prefix satisfies a given transparency constraint (13), this condition
is verified at line 7 before updating the current best solution at line 8.

The pseudo-code of HybridCORELSPre is provided in Algorithm 3. Again, the objective function computa-
tion is modified at line 6 to use our proposed objpre(r, S) objective (15). As before, the original lower bound is
still valid (as discussed in Section 4.4) so we leave it unchanged at line 5. Just like for HybridCORELSPost,
the transparency constraint (13) is checked line 7, right before the current best solution update (line 8).
Once the optimal prefix r∗ is known, the black-box part can be trained (which is not represented in the
pseudo-code) using our proposed specialization scheme as described in Section 3.1.2.

Finally, both our proposed approaches are anytime: the user can specify any desired running time and
memory limits, and the algorithm returns the current best solution and objective value (rc, zc) if one of the
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Algorithm 3 HybridCORELSPre
Input: Training data S with set of pre-mined antecedents Υ; minimum transparency value Cmin; initial
prefix r0 such that |Sr0 |

|S| ≥ Cmin

Output: (r∗, z∗) in which r∗ is a prefix with the minimum objective function value z∗

1: (rc, zc)← (r0, z0)
2: Q← queue(()) ▷ Initially the queue contains the empty prefix ()
3: while Q not empty do ▷ Stop when the queue is empty
4: r ← Q.pop()
5: if lb(r, S) < zc then
6: z ← L̂Sr (r)+incons(S\Sr)

|S| + λ · |r|+ β · |S\Sr|
|S| ▷ Compute objective objpre(r, S)

7: if z < zc and |Sr|
|S| ≥ Cmin then

8: (rc, zc)← (r, z) ▷ Update best prefix and objective
9: for a in Υ \ {ai | ∃ri ∈ r, ri = ai → qi} do ▷ Antecedent a not involved in r

10: rnew ← (a→ q) ▷ Set a’s consequent q to minimize training error
11: Q.push(r ∪ rnew) ▷ Enqueue extension of r with new rule rnew

12: (r∗, z∗)← (rc, zc)

limits is hit and the priority queue is not empty. Even if optimality is not guaranteed in such case, the ability
to precisely bound running times and memory footprints is a very practical feature for real-life applications.

C Another Pre-Black-Box Implementation for HybridCORELS

In this appendix section, we describe another possible implementation of the Pre-Black-Box paradigm based
on the CORELS algorithm but optimizing a different objective function. We discuss the theoretical differ-
ences with the HybridCORELSPre algorithm introduced in Section 4.4 and empirically compare the two
methods.

C.1 HybridCORELSPre,NoCollab: Theoretical Presentation

We now introduce another possible variant of CORELS implementing the Pre-Black-Box paradigm. We
coin it HybridCORELSPre,NoCollab, because contrary to the HybridCORELSPre algorithm introduced in
Section 4.4, the prefix learning phase of HybridCORELSPre,NoCollab does not account for the task left
to the black-box part. Instead, the prefix is learned to maximize its own accuracy, which results in the
remaining examples (that will be handled by the black-box model) being the hardest ones to classify. While
black-box specialization could be helpful to deal with such difficult tasks, we observe that, in practice, it has
to deal with many inconsistent examples, which considerably lowers its performances.

Objective HybridCORELSPre,NoCollab builds a prefix r capturing at least a proportion of Cmin of the
training data (transparency constraint (13)), and minimizing the weighted sum of r’s classification error and
sparsity:

objpre,nocollab(r, S) = L̂Sr
(r)
|Sr|

+ λ · |r|+ β · |S \ Sr|
|S|

(21)

Objective lower bound CORELS’ original lower bound (12) does not hold for objective function (21).
Indeed, the difficulty here is that objpre,nocollab quantifies a prefix’s error only on the subset of examples
that it classifies (Sr), hence it is not possible to directly consider the inconsistent examples incons(S \ Sr)
as in lb (12): an extension of r may not capture them at all. To obtain a tight lower bound lbpre,nocollab,
one needs to consider simultaneously the support Sr and errors L̂Sr

(r) of prefix r, as well as the labels
cardinalities among each group of inconsistent examples (also called set of equivalent points in the context of
CORELS (Angelino et al., 2017)). A pre-processing step computes a list G of inconsistent groups of examples.
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Each group g ∈ G, g ⊂ S is defined by its number of minority examples ming (those with the least frequent
label among group g), and its number of majority examples majg. In fact, our previously introduced count
of unavoidable errors uses such groups for its computation: incons(S) =

∑
g∈G (ming). For each group g ∈ G

not captured by prefix r (g ̸⊂ Sr), we verify whether capturing its examples could lower the current prefix’s

error rate: cp,g = 1

[
ming

ming+majg
≤ L̂Sr (r)

|Sr|

]
. Then:

lbpre,nocollab(r, S) =
L̂Sr

(r) +
∑

g∈G,g ̸⊂Sr
cp,g ·ming

|Sr|+
∑

g∈G,g ̸⊂Sr
cp,g · (ming + majg)

+ (Kr + 1) · λ (22)

Finally, lbpre,nocollab precisely quantifies the best objective function that can be reached based on prefix r, by
only capturing inconsistent groups of examples that improve the objective function (lowering the error rate).
The definition of cp,g uses a less or equal operator because in case the error rate is unchanged after capturing
an additional group of inconsistent examples, the operation should be performed as it would increase the
coverage (and the associated regularisation term). There exists a (partial) classification function whose error
rate is exactly the one computed in lbpre,nocollab, so this bound is tight.

Finally, HybridCORELSPre,NoCollab is an exact method: it provably returns a prefix r for which
objpre,nocollab(r, S) (21) is the smallest among those satisfying the transparency constraint (13). This
means that, given desired transparency level, it produces an optimal prefix (interpretable part of the fi-
nal model) in terms of accuracy/sparsity. The pseudo-code of HybridCORELSPre,NoCollab is similar to that
of HybridCORELSPre presented in Algorithm 3, except that the objective function objpre(r, S) and lower
bound lb(r, S) on lines 6 and 5 are replaced by objpre,nocollab(r, S) and lbpre,nocollab(r, S), as introduced in
equations (21) and (22).

Again, note that within this proposed implementation, the prefix learning phase does not consider the
difficulty of the task let to the black-box learning part. For datasets containing inconsistent examples, this
could result in sub-optimal overall accuracy in regimes of medium to high transparency, when collaboration
between both parts of the Hybrid Interpretable Model is required.

C.2 HybridCORELSPre,NoCollab: Empirical Evaluation

We ran the experiments of Section 5.3 using HybridCORELSPre,NoCollab (with the same setup
as HybridCORELSPre), and provide a comparison with HybridCORELSPre within Figure 15. The results
show that for very low transparency values, HybridCORELSPre,NoCollab and HybridCORELSPre have very
close performances. Indeed, in such regimes, most of the classification task is handled by the black-box part
of the model and the absence of collaboration with the interpretable part does not really matter. We observe
the same phenomenon in regimes of very high transparency, where most of the examples are classified by
the interpretable part. However, in regimes of medium to high transparency, we observe a significant drop
of HybridCORELSPre,NoCollab’s performances. This trend is particularly visible with the ACS Employment
dataset. It can be explained by the absence of collaboration between both parts of the model: the prefix
learning sacrifices the black-box performances (sending it most of the inconsistent examples) to obtain the
most accurate prefix possible. While this policy leads to slightly more accurate interpretable parts com-
pared to the prefixes learned by HybridCORELSPre, it also harms the overall model accuracy considerably,
and the obtained trade-offs are not competitive with those produced by HybridCORELSPre. As observed
in Section 5.3 with HybridCORELSPre, on the COMPAS dataset, Hybrid Interpretable Models with in-
termediate transparency values exhibit better test accuracies than the standalone black-box, due to better
generalization. Again, this constitutes an argument in favor of the Pre-Black-Box paradigm, as this trend
was not observed with the other Post-Black-Box methods.

We provide in Figure 16 examples of Hybrid Interpretable Models found with HybridCORELSPre
and HybridCORELSPre,NoCollab on the same data splits of the ACS Employment dataset and
transparencies roughly 80%. We observe, as aforementioned, that the black-boxes trained after
the HybridCORELSPre,NoCollab prefixes exhibit considerably lower performances. On the other hand, the
prefix and black-box parts of the models trained using HybridCORELSPre have comparable classification
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performances, as the former was trained while accounting for the inconsistent samples that would be left for
the later to classify.
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(a) ACS Employment dataset.
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(b) UCI Adult Income dataset.
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(c) COMPAS dataset.

HybridCORELSPre HybridCORELSPreNoCollab

Figure 15: Test set accuracy/transparency trade-offs for our two Pre-Black-Box variants of HybridCORELS.
The Pareto front for each method is represented as a line and the filled bands encode the std across the five
data split reruns. Results are provided for several black-boxes: (Left) AdaBoost, (Middle) Random Forests,
(Right) Gradient Boosted Trees.
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i f [ " age_high " and " Female " ] then 0 ( acc 71.3%)
else i f [ " Husband / wife " and " No disability " ] then 1 ( acc 71.9%)
else i f [ " age_high " and " Native " ] then 0 ( acc 64.5%)
else i f [ " Bachelor ’s degree " and " No disability " ] then 1 ( acc 84.8%)
else i f [ " Reference person " and " No disability " ] then 1 ( acc 82.3%)
else i f [ " high school diploma " and " No disability " ] then ( acc 60.0%)
else

AdaBoost ( ) ( acc 71.9%)

(a) HybridCORELSPre: Test Accuracy 73.7%, Transparency 80.2%.

i f [ " age_low " and " Reference person " ] then 1 ( acc 82.2%)
else i f [ " Disability " ] then 0 ( acc 77.7%)
else i f [ " age_medium " ] then 1 ( acc 79.2%)
else i f [ " age_low " and " Married " ] then 1 ( acc 69.1%)
else i f [ " Husband / wife " and " Female " ] then 0 ( acc 68.6%)
else i f [ " age_low " and " not own child of householder " ] then ( acc 59.0%)
else

AdaBoost ( ) ( acc 60.4%)

(b) HybridCORELSPre,NoCollab : Test Accuracy 71.7%, Transparency 80.3%.

Figure 16: Examples of Hybrid Interpretable Models obtained on the ACS Employment dataset with Ad-
aBoost black-boxes and the same train/validation/test split. The models with transparency closest to
80% were selected. We note that the black-box has worst performance in HybridCORELSPre,NoCollab than
HybridCORELSPre seeing as the prefix sent it the inconsistent examples.
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