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Leveraging Invariant Principle for Heterophilic Graph Structure
Distribution Shifts

Anonymous Author(s)

Abstract
Heterophilic Graph Neural Networks (HGNNs) have shown promis-

ing results for semi-supervised learning tasks on graphs. Notably,

most real-world heterophilic graphs are composed of a mixture

of nodes with different neighbor patterns, exhibiting local node-

level homophilic and heterophilic structures. However, existing

works are only devoted to designing better unified HGNN back-

bones for node classification tasks on heterophilic and homophilic

graph benchmarks simultaneously, and their analyses of HGNN

performance concerning nodes are only based on the determined

data distribution without exploring the effect caused by the dif-

ference of structural pattern between training and testing nodes.

How to learn invariant node representations on heterophilic graphs

to handle this structure difference or distribution shifts remains

unexplored. In this paper, we first discuss the limitations of pre-

vious graph-based invariant learning methods in addressing the

heterophilic graph structure distribution shifts from the perspective

of data augmentation. Then, we proposeHEI, a framework capable

of generating invariant node representations through incorporat-

ingHeterophily information, node’s estimated neighbor pattern, to

infer latent Environments without augmentation, which are then

used for Invariant prediction. We provide detailed theoretical guar-

antees to clarify the reasonability of HEI. Extensive experiments

on various benchmarks and backbones can also demonstrate the

effectiveness and robustness of our method compared with existing

state-of-the-art baselines. Our codes can be accessed through HEI.

Keywords
Graph Representation Learning, Node Classification, Invariant Learn-

ing, Distribution Shifts, Heterophily and Homophily
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1 Introduction
Graph Neural Networks (GNNs) have emerged as prominent ap-

proaches for learning graph-structured representations through the

aggregation mechanism that effectively combines feature informa-

tion from neighboring nodes [41]. Previous GNNs primarily dealt
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with homophilic graphs, where connected nodes tend to share simi-

lar features and labels [42]. However, growing empirical evidence

suggests that these GNNs’ performance significantly deteriorates

when dealing with heterophilic graphs, where most nodes connect

with others from different classes, even worse than the traditional

neural networks [19]. An appealing way to address this issue is

to tailor the heterophily property to GNNs, extending the range

of neighborhood aggregation and reorganizing architecture [41],

known as the heterophilic GNNs (HGNNs).

Heterophilic Graph Structure distribution Shift (HGSS): A novel
data distribution shift perspective to reconsider existing HGNNs works.
Despite promising, most previous HGNNs assume the nodes share

the determined data distribution [18, 19], we argue that there is data

distribution disparity among nodes with different neighbor patterns.

As illustrated in Figure 1(a1), heterophilic graphs are composed of

a mixture of nodes that exhibit local homophilic and heterophilic

structures, i.e, the nodes have different neighbor patterns [41]. The
node’s neighbor pattern can be measured by node homophily, rep-

resenting homophily level by comparing the label between the

node and its neighbors. Here, we identify their varying neighbor

patterns between train and test nodes as the Heterophilic Graph

Structure distribution Shift (Figure 1(a2)). This kind of shift was

neglected by previous works but truly affected GNN’s performance.

As shown in Figure 1(a3), we visualize the HGSS between train-

ing and testing nodes on the Squirrel dataset. Compared with test

nodes, the train nodes are more prone to be categorized into groups

with high homophily, which may yield a test performance degrada-

tion. More statistical results on other heterophilic graph datasets

can be shown in Figure 5. Notably, though some recent work [27]

also discusses homophilic and heterophilic structural patterns, un-

til now they haven’t provided a clear technique solution for this

problem. Compared with traditional HGNN works that focus on

backbone designs, it’s extremely urgent to seek solutions from a

data distribution perspective to address the HGSS issue.

Existing graph-based invariant learning methods perform badly
for HGSS due to the augmentation-based environment construction
strategy. In the context of general distribution shifts, the technique

of invariant learning [30] is increasingly recognized for its efficacy

in mitigating these shifts. The foundational approach involves learn-

ing node representations to facilitate invariant predictor learning

across various constructed environments (Figure 1(b1)), adhering to

the Risk Extrapolation (REx) principle [9, 24, 37]. Unfortunately, pre-

vious graph-based invariant learning methods may not effectively

address the HGSS issue, primarily due to explicit environments that

may be ineffective for invariant learning. As illustrated in Figure

1(c1), within HGSS settings, altering the original structure does not

consistently affect the node’s neighbor patterns. In essence, obtain-

ing optimal and varied environments pertinent to neighbor patterns

is challenging. Our observation (Figure 1(c2)) reveals that EERM

[37], a pioneering invariant learning approach utilizing environ-

ment augmentation to tackle graph distribution shifts in node-level
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(a1) Heterophilic Graph (a2) HGSS (a3) Dataset Statistics

Heterophilic Graph structure Distribution Shiftsa

(b1)  Previous Augmentation based Methods (b2)  Our Approach

Environment Construction Strategy Comparisonb

Homophilybefore-augmentation =  Homophilyafter-augmentation

Perforamnce Comparsionc

Drop Edge

Add Edge

(c1)  Why previous methods 
cann’t work well ?

(c2)  Performance Comparsion

Different environments Labeled Nodes Unlabeled Nodes ∆𝑺𝑺 Distribution Shift Edge Mask

Environment 1 Environment k

Figure 1: (a) illustrates the heterophilic graph structure distribution shifts (HGSS), where the figure and histogram show the
HGSS and neighbor pattern (measured by node homophily) difference between train and test nodes on the Squirrel dataset;
(b) displays the comparison of different environment construction strategies between previous invariant learning works and
ours from augmentation; (c) shows that the environment construction of previous methods may be ineffective in addressing
the HGSS due to the unchanged neighbor pattern distribution. The experimental results between traditional and graph-based
invariant learning methods can support our analysis and verify the superiority of our proposed HEI.

tasks, does not perform well under HGSS settings. At times, its

enhancements are less effective than simply employing the orig-

inal V-Rex [16], which involves randomly distributing the train

nodes across various environmental groups. We attribute this phe-

nomenon to the irrational environment construction. According to

our analysis, EERM is essentially a node environment-augmented

version of V-Rex, i.e., the disparity in their performance is solely

influenced by the differing strategies in environmental construc-

tion. Besides, from the perspective of theory assumption, V-Rex is

initially employed to aid model training by calculating the variance

of risks introduced by different environments as a form of regular-

ization. The significant improvements by V-Rex also reveal that the

nodes of a single input heterophilic graph may reside in distinct

environments, considering the variation in neighbor patterns, thus

contradicting EERM’s prior assumption that all nodes in a graph

share the same environment [37]. Based on this insight, our goal is

to break away from previous explicit environment augmentation

to learn the latent environment partition, which empowers the

invariant learning to address the HGSS better.

HEI: Heterophily-Guided Environment Inference for Invariant Learn-
ing. Recent studies explore the effect of prior knowledge on the

environment partition [20, 33] and subsequently strengthen the

importance of the environment inference and extrapolation for

model generalization [36, 39]. Therefore, our initial step should

be to quantify the nodes’ neighbor pattern properties related to

the HGSS, which are central to the issue at hand. Consequently, a

critical question emerges: During the training phase, how can we

identify an appropriate metric to estimate the node’s neighbor pat-

tern and leverage it to deduce latent environments to manage this

HGSS issue? As previously mentioned, node homophily can assess

the node’s neighbor patterns [19]. Unfortunately, this requires the

actual labels of the node and its neighbors, rendering it inapplica-

ble during the training stage due to the potential unlabeled status

of neighbor nodes. To cope with this problem, several evaluation

metrics pertinent to nodes’ neighbor patterns, including local simi-

larity [7], post-aggregation similarity [26], and SimRank [22], have

been introduced. These metrics aim to facilitate node representa-

tion learning on heterophilic graphs during the training phase. But

these studies primarily concentrate on employing these metrics to

help select proper neighbors for improved HGNN architectures,

while we aim to introduce a novel invariant learning framework-

agnostic backbones to separate the spurious features from selected

neighbors, tackling the structure distribution shifts. Therefore, we

propose HEI, a framework capable of generating invariant node

representations through incorporating heterophily information to

infer latent environments, as shown in Figure 1 (b2), which are

then used for downstream invariant prediction, under heterophilic

graph structure distribution shifts. Extensive experiments on vari-

ous backbones and benchmarks can verify the effectiveness of our

proposed method in addressing this neglected HGSS issue.

Our Contributions: (i) We highlight an important yet often

neglected form of heterophilic graph structure distribution shift,

which is orthogonal to most HGNN works that focus on backbone

designs; (ii) We propose HEI, a novel graph-based invariant learn-

ing framework to tackle the HGSS issue. Unlike previous efforts,

our method emphasizes leveraging a node’s inherent heterophily

information to deduce latent environments without augmentation,

thereby significantly improving the generalization and performance

of HGNNs; (iii) We demonstrate the effectiveness of HEI on several

benchmarks and backbones compared with existing methods.

2
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2 Preliminaries
Notations. Given an input graph 𝐺 = (𝑉 ,𝑋,𝐴), we denote 𝑉 ∈
{𝑣1, ..., 𝑣𝑁 } as the nodes set, 𝑋 ∈ 𝑅𝑁×𝐷

as node features and 𝐴 ∈
{0, 1}𝑁×𝑁

as an adjacency matrix representing whether the nodes

connect, where the 𝑁 and 𝐷 denote the number of nodes and fea-

tures, respectively. The node labels can be defined as𝑌 ∈ {0, 1}𝑁×𝐶
,

where C represents the number of classes. For each node 𝑣 , we use

𝐴𝑣 and 𝑋𝑣 to represent its adjacency matrix and node feature.

Problem Formulation. We first provide the formulation for the

general optimized object of node-level OOD (Out of Distribution)

problem on graphs, then reclarify the formulation of previous works

to help distinguish our work in the next section. From the perspec-

tive of data generation, we can get train data (𝐺𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛) from
train distribution 𝑝 (G,Y) |e = 𝑒), the model should handle the test

data (𝐺𝑡𝑒𝑠𝑡 , 𝑌𝑡𝑒𝑠𝑡 ) from a different distribution 𝑝 (G,Y) |e = 𝑒′),
varying in different environments e. Thus, the optimized object of

node-level OOD problem on graphs can be formulated as follows:

min

𝜔,Φ
max

𝑒∈E
E𝐺

1

𝑁

∑︁
𝑣∈𝑉

E𝑦∼𝑝 (y|Av=𝐴𝑣 ,Xv=𝑋𝑣 ,e=𝑒 ) 𝑙 (𝑓𝜔 (𝑓Φ (𝐴𝑣, 𝑋𝑣 ) ) , 𝑦𝑣 ) (1)

where the E represents the support of environments 𝑒 , the 𝑓𝜔
and 𝑓Φ refer to GNN’s classifier and feature extractor respectively

and 𝑙 (·) is a loss function (e.g. cross entropy). The Eq 1 aims to learn

a robust model that minimizes loss across environments as much as

possible. Only in this way, can the trained model be likely to adapt

to unknown target test distribution well. However, environmental

labels for nodes are usually unavailable during the training stage,

which inspires many works to seek methods to make use of envi-

ronmental information to help model training.

Previous Graph-based Invariant Learning. To approximate the

optimized object of Eq. 1, previous works [9, 24, 37] mainly con-

struct diverse environments by adopting the masking strategy as

Figure 1(b1). Thus, we conclude previous works from the masking

strategy (𝑀𝑎𝑠𝑘𝜂 (·) parameterized with 𝜂). Given an input single

graph, we can obtain K augmented graphs as Eq. 2, where each

graph corresponds to an environment. The K is a pre-defined num-

ber of training environments and 𝑋𝑚 ,𝐴𝑚 , and 𝑉𝑚 are correspond-

ing mask versions of feature, adjacency matrix, and node sets.

𝐺𝑒=𝑘 = 𝑀𝑎𝑠𝑘𝑒=𝑘𝜂 (𝐺 ) = (𝑋𝑚, 𝐴𝑚,𝑉𝑚 )𝑒=𝑘 , 𝑘 = 1, 2..., 𝐾 (2)

Then, assisted by these augmented graphs with environment

label, the GNN 𝑓 (·) parameterized by (𝜔,Φ) can be trained consider-
ing environmental information. We can define the ERM (Empirical

Risk Minimization) loss in the 𝑘-th environment as the Eq.3, which

only calculates the loss on the corresponding augmented 𝐺𝑒=𝑘 .

𝑅𝑒=𝑘 (𝜔,Φ) = 1

𝑁

∑︁
𝑣∈𝑉𝑚

𝑙 (𝑓𝜔 (𝑓Φ (𝐴𝑣, 𝑋𝑣 ) , 𝑦𝑣 ) (3)

Following the principle of Variance Risk Extrapolation (V-Rex)

to reduce the risks from different environments, the final training

framework can be defined as Eq. 4. Where the 𝜆 controls the effect

between reducing the average risk and promoting equality of risks.

min

𝜔,Φ
max

𝜂
𝐿 (Φ, 𝜔, 𝜂 ) =∑︁𝐾

𝑘=1
𝑅𝑒=𝑘 (𝜔,Φ) + 𝜆𝑉𝑎𝑟 (𝑅𝑒=1 (𝜔,Φ), · · · , 𝑅𝑒=𝐾 (𝜔,Φ) ) (4)

The maximization means that we should optimize the masking

strategy (parameter 𝜂) to construct sufficient and diverse environ-

ments, while the minimization aims to reduce the training loss for

the model (parameter 𝜔 and Φ).

Discussions. Exactly, previous graph-based invariant learning

methods introduce extra augmented graphs to construct nodes’

environments while our work only infers nodes’ environments on

a single input graph. Specifically, there exists a latent assumption

for previous works that nodes on a single graph belong to the same

environment so we need to construct diverse environments by data

augmentation. This assumption arises from the insight that nodes

on an input graph come from the same outer domain-related en-
vironments (e.g. Financial graphs or Molecular graphs) [37]. But

considering themessage-passingmechanism on heterophilic graphs

(the ideal aggregation target should be nodes with the same label),

the nodes should exist exactly in inner structure-related environ-
ments. To cope with this issue, as shown in Figure 1(c1), directly

utilizing data augmentation may be ineffective in changing the node’s
neighbor pattern distribution to construct diverse environments for

invariant prediction. At the same time, the neighbor pattern differ-

ence between train and test has verified that even on a single graph,

the nodes may belong to different structure-related environments.

These simultaneously inspire us to directly infer node environments

on a single graph assisted by the node’s neighbor pattern, rather

than constructing environments from different augmented graphs,

for addressing heterophilic graph structure distribution shift.

3 Methodology
In this section, we present the details of the proposed HEI. Firstly,

on heterophilic graphs, we verify that the similarity can serve as

a neighbor pattern indicator and then review existing similarity-

based metrics to estimate the neighbor patterns during training

stages. Then, we elaborate the framework to jointly learn environ-

ment partition and invariant node representation on heterophilic

graphs without augmentation, assisted by the estimated neighbor

patterns. Finally, we clarify the overall training process of the algo-

rithm and discuss its complexity. Moreover, we provide a detailed

theoretical analysis in Appendix A.2 to clarify the details of HEI.

3.1 Neighbor Patterns Estimation
The node homophily is commonly used to evaluate the node’s neigh-

bor patterns, representing the node’s structural pattern distribution

[19]. Unfortunately, it needs the true labels of the node and its

neighbors, which means they can not be used in the training stage

because the neighbor nodes may be just the test nodes without

labels for node classification tasks when given an input graph. To

cope with it, we aim to utilize the similarity between node features

to estimate the node’s neighbor pattern.

Similarity: An Indicator of Neighbor Patterns. Previous works
have shown there exists some relationship between similarity and

homophily from the experimental analysis [7], it can not be guar-

anteed to work well without a theory foundation. Thus, we further

investigate its effectiveness from the node cluster view and verify

3
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Figure 2: Illustrations of our framework HEI. (a) The neighbor pattern for each train node can be estimated by similarity first
and then used for inferring environments without augmentation; (b) Based on the train nodes belonging to different inferred
environments, we can train a set of environment-independent GNN classifiers with the shared encoder compared with the base
GNN. The shared encoder outputs the representations of nodes in each environment and then forwards them to the base GNN
classifier and the environment-independent classifier respectively. By calculating the loss gap between these two different
classifiers, an invariance penalty is introduced to improve model generalization.

the similarity between nodes can be exploited to approximate the

neighbor pattern without the involvement of label information.

For simplicity, we take K-Means as the cluster algorithm. For

two nodes 𝑣 and𝑢, let 𝑣 belong to the cluster centroid 𝑐1 and denote

the square of the distance between 𝑣 and 𝑢 as 𝛿 = ∥𝑢 − 𝑣 ∥2, we
can get 𝑐1 = argmin ∥𝑣 − 𝑐𝑖 ∥2, where 𝑐𝑖 represent the 𝑖-th cluster

centroid. Then the distance between 𝑢 and cluster centroid 𝑐1 can

be acquired as the Eq. 5. Exactly, the neighbor pattern describes

the label relationship between the node and its neighbors. From

the Eq 5, we can find the smaller 𝛿 , the more likely the 𝑣 and 𝑢

belong to the same cluster and own the same label. Therefore, the

similarity between nodes can be exploited to serve as a neighbor

pattern indicator without using label information.

∥𝑢 − 𝑐1 ∥2 = ∥ (𝑢 − 𝑣) + (𝑣 − 𝑐1 ) ∥2
= ∥ (𝑢 − 𝑣) ∥2 + 2 ∥𝑢 − 𝑣 ∥ ∥𝑣 − 𝑐1 ∥ + ∥𝑣 − 𝑐1 ∥2
= 𝛿 + 2

√
𝛿 ∥𝑣 − 𝑐1 ∥ + ∥𝑣 − 𝑐1 ∥2

=

(
∥𝑣 − 𝑐1 ∥ +

√
𝛿

)
2

≥ 𝛿

(5)

Existing Similarity-basedMetrics. Existing similarity-basedmet-

rics on heterophilic graphs can be shown as Eq.6.

Similarity(𝑢, 𝑣) =


Sim(𝑋𝑣, 𝑋𝑢 ) Local Sim

Sim(𝐴𝑣𝑋𝑣, 𝐴𝑢𝑋𝑢 ) Agg Sim

𝑐
|𝑁𝑆 (𝑢) | |𝑁𝑆 (𝑣) |

∑
𝑢′∈𝑁𝑆 (𝑢)
𝑣′∈𝑁𝑆 (𝑣)

Sim(𝑋𝑢′ , 𝑋𝑣′ ) SimRank

(6)

where the 𝑐 ∈ (0, 1) is a decay factor empirically set to 0.6, the

𝑁𝑆 (𝑣) denotes 𝑣 ’s neighbor set including the nodes connected to 𝑣

,the𝐴𝑣 denotes the aggregation operation on the node 𝑣 and the 𝑆𝑖𝑚

denote the similarity calculation between two objects.. We can ob-

serve that the local similarity (Local Sim [7]) and post-aggregation

similarity (Agg-Sim [26]) respectively calculate the similarity of the

original and post-aggregation embedding between two nodes. In

contrast, the SimRank [22] calculates the similarity between their

respective neighbor nodes.

EstimatedNode’s Neighbor Pattern. Thus, as Eq.7, we can obtain
the estimated neighbor patterns 𝑧𝑣 for the node 𝑣 during the training

stage by averaging the node’s similarity with neighbors.

𝑧𝑣 =
1

|𝑁𝑆 (𝑣) |
∑︁

𝑢∈𝑁𝑆 (𝑣)
𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑢, 𝑣) (7)

Notably, we further strengthen our object of using similarity

metrics is indeed different from previous HGNN works that uti-

lize the similarity metrics[7, 22, 26] to design backbones. From the

perspective of causal analysis shown in Figure 4, when given the

neighbors, we aim to separate and weaken the effect of spurious fea-

tures from full neighbor features by utilizing the estimated neighbor

pattern to infer the node’s environment for invariant prediction.

However, previous HGNNworks mainly aim to help the node select

proper neighbors and then directly utilize full neighbor features as

aggregation targets for better HGNN backbone designs. Our work

is exactly orthogonal to previous HGNN works.

4
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3.2 HEI: Heterophily-Guided Environment
Inference for Invariant Learning

We aim to utilize the estimated neighbor patterns 𝑍 ∈ 𝑅𝐺𝑧 , which
represent the node’s heterophily information, as an auxiliary instru-

ment to jointly learn nodes’ environment partition and invariant

node representation without augmentation. Similar techniques can

be also shown in [3, 20] for image classification tasks. Specifically,

assisted by the estimated neighbor patterns for nodes, we can train

an environment classifier 𝜌 (·) : 𝑅𝐺𝑧 −→ 𝑅𝐾 that softly assigns the

train nodes to 𝐾 environments. The 𝐾 is a pre-defined number, 𝜌

is a two-layer MLP and the 𝜌 (𝑘 ) (·) is denoted as the 𝑘-th entry of

𝜌 (·), with 𝜌 (𝑍 ) ∈ [0, 1]𝐾 and

∑
𝑘 𝜌

(𝑘 ) (𝑍 ) = 1. Denote the ERM

loss calculated on all train nodes as 𝑅(𝜔,Φ). Then, as shown in Eq.

8, the ERM loss in the 𝑘-th inferred environment can be defined as

𝑅𝜌 (𝑘 ) (𝜔,Φ), which only calculates the loss on the nodes belonging

to the 𝑘-th environment.

Overal Framework: Based on the above analysis, the training

framework of HEI can be defined as follows:

𝑅
𝜌 (𝑘 ) (𝜔,Φ) =

1

𝑁

∑︁
𝑣∈𝑉

𝜌 (𝑘 ) (𝑧𝑣 )𝑙 (𝑓𝜔 (𝑓Φ (𝐴𝑣, 𝑋𝑣 ) , 𝑦𝑣 ) (8)

min

𝜔,Φ
max

𝜌,{𝜔1,· · · ,𝜔𝐾 }
𝐿 (Φ, 𝜔,𝜔1, · · · , 𝜔𝐾 , 𝜌 ) =

𝑅 (𝜔,Φ) + 𝜆
∑︁𝐾

𝑘=1

[
𝑅
𝜌 (𝑘 ) (𝜔,Φ) − 𝑅𝜌 (𝑘 ) (𝜔𝑘 ,Φ)

]︸                                             ︷︷                                             ︸
invariance penalty

(9)

Compared with previous graph-based invarinat learning meth-

ods shown in Eq. 3 and Eq. 4, our framework mainly differs in the

maximization process. Thus, we clarify the effectiveness and rea-

sonability of our framework from two aspects: (i) The invariance

penalty learning that introduces a set of environment-dependent

GNN classifiers {𝑓𝜔𝑘 }𝐾𝑘=1, which are only trained on the data be-

longing to the inferred environments; (ii) The adaptive environment

construction through optimizing the environmental classifier 𝜌 (·).

Invariance Penalty Learning. As shown by Eq.1, the ideal GNN

classifier 𝑓𝜔 is expected to be optimal across all environments. Af-

ter the environment classifier 𝜌 (𝑘 ) (·) assigns the train nodes into

k inferred environments, we can adopt the following criterion to

check if 𝑓𝜔 is already optimal in all inferred environments: Take

the 𝑘-th environment as an example, we can additionally train an

environment-dependent classifier 𝑓𝜔𝑘 on the train nodes belonging

to the 𝑘-th environment. If 𝑓𝜔𝑘 achieves a smaller loss, it indicates

that 𝑓𝜔 is not optimal in this environment. Moreover, we can fur-

ther train a set of classifiers {𝑓𝜔𝑘 }𝐾𝑘=1, each one with a respective

individual environment, to assess whether 𝑓𝜔 is simultaneously

optimal in all environments. Notably, all these classifiers share the

same encoder 𝑓Φ, if 𝑓Φ extracts spurious features that are unstable

across the inferred environments, 𝑅𝜌 (𝑘 ) (𝜔,Φ) will be larger than
𝑅𝜌 (𝑘 ) (𝜔𝑘 ,Φ), resulting in a non-zero invariance penalty, influenc-

ing model optimization towards achieving optimality across all

environments. In other words, as long as the encoder extracts the

invariant feature, the GNN classifier 𝑓𝜔 and its related environment-

dependent classifier {𝑓𝜔𝑘 }𝐾𝑘=1 will have the same prediction across

Algorithm 1 HEI: Heterophily-Guided Environment Inference for

Invariant Learning

1: Require: Graph data 𝐺 and label 𝑌 ; Environment classifier

𝜌 ; GNN feature encoder 𝑓Φ; GNN classifier 𝑓𝜔 ; Number of

training environments: 𝐾 ; a set of Environment-independent

GNN classifiers {𝑓𝜔𝑘 }𝐾𝑘=1;
2: Estimate neighbor pattern 𝑧 for each node by Eq. 7;

3: while Not converged or maximum epochs not reached do
4: Divide the nodes into 𝐾 environments by 𝜌 (𝑘) (𝑧) and ob-

tain corresponding split graphs {𝐺𝑒 = 𝑘}𝐾𝑘=1;
5: for 𝑘 = 1, · · · , 𝐾 do
6: Calculate the GNN’s loss on the train nodes belonging to

the 𝑘-th environment, 𝑅𝜌 (𝑘 ) (𝜔,Φ), via Eq. 8;
7: Train an additional environment-independent GNN clas-

sifier 𝑓𝜔𝑘 with the shared GNN feature encoder 𝑓Φ on the

train nodes belonging to the 𝑘-th inferred environment,

calculate its loss 𝑅𝜌 (𝑘 ) (𝜔𝑘 ,Φ);
8: end for
9: Calculate invariance penalty and the total loss via Eq. 9;

10: Update 𝜌 via maximizing the invariance penalty;

11: Update 𝑓Φ, 𝑓𝜔 via minimizing the total loss;

12: end while

different environments.

Adaptive Environment Construction. As shown in Figure 1(c),

the effectiveness of previous methods is only influenced by envi-

ronmental construction strategy. A natural question arises: What is

the ideal environment partition for invariant learning to deal with

the HGSS? We investigate it from the optimization of environment

classifier 𝜌 (·). Specifically, a good environment partition should

construct environments where the spurious features exhibit insta-

bility, incurring a large penalty if 𝑓Φ extracts spurious features. In

this case, we should maximize the invariance penalty to optimize

the partition function 𝜌 (·) to generate better environments, which

is also consistent with the proposed strategy. Though previous

works [9, 24, 37] also adopt the maximization process to construct

diverse environments, they just focus on directly optimizing the

masking strategy to get augmentation graphs. During the optimiza-

tion process, these methods lack guidance brought by auxiliary

information 𝑍 related to environments, ideal or effective environ-

ments are often unavailable in this case. That’s why we propose to

introduce the environment classifier to infer environments without

augmentation, assisted by the 𝑍 . Exactly, to make sure the guidance

of 𝑍 has a positive impact on constructing diverse and effective

environments for the invariant node representation learning, there

are also two conditions for 𝑍 from the causal perspective. We will

further clarify it in Appendix A.2.

3.3 Training Process and Complexity Analysis
Training Process: As shown by Algorithm 1: Given a heterophilic

graph input, we first estimate the neighbor patterns for each train

node by Eq. 7. Then, based on Eq. 8 and Eq. 9, we aim to learn

environment partition and invariant node representation, assisted

by the estimated neighbor patterns through a min-max alternative
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optimization. Specifically, maximizing the invariance penalty is

devoted to optimizing the environmental classifier to construct as

diverse environments as possible to enlarge the loss gap between

the base GNN feature encoder and additionally introduced GNN

feature encoders. In contrast, the minimization of total loss aims to

promote the base GNN to learn invariant representation agnostic

neighbor patterns to address the HGSS issues.

Complexity Analysis: Given a graph with 𝑁 nodes, the average

degree is 𝑑 . GNN with 𝑙 layers calculate embeddings in time and

space O(𝑁𝑙𝑑2). HEI assigns N nodes into 𝑘 inferred environments

𝑁𝑒=1 + · · · + 𝑁𝑒=𝑘 = 𝑁 and executes 𝑘 + 1 classifier computations,

where the 𝑘 corresponds to the 𝑘 environment-independent clas-

sifiers, and 1 refers to the basic GNN classifier. Denote 𝑁 ′
as the

average number of nodes belonging to an inferred environment,

the overall time complexity is O(𝑁𝑙𝑑2 + 𝑘𝑁 ′𝑙𝑑2), which is linear

to the scale of the graph. More detailed efficiency studies compared

with previous methods can be shown in Experiments.

4 Experiments
In this section, we investigate the effectiveness of HEI to answer

the following questions.

• RQ1: Does HEI outperform state-of-art methods to address

the HGSS issue?

• RQ2: How robust is the proposed method? Can HEI solve

the problem that exists in severe distribution shifts?

• RQ3: How do different similarity-based metrics influence

the neighbor pattern estimation, so as to further influence

the effect of HEI?

• RQ4: What is the sensitivity of HEI concerning the pre-

defined number of training environments?

• RQ5: How efficient is the proposed HEI compared with

previous methods?

4.1 Experimental Setup
Datasets. We adopt six commonly used heterophilic graph datasets

(chameleon, Squirrel, Actor, Penn94, arxiv-year, and twitch-gamer)

and three homophilic graph datasets (Cora, CiteSeer and PubMed)

to verify the effectiveness of HEI [19, 28]. To make sure the eval-

uation is stable and reasonable, we utilize the filtered versions of

existing datasets to avoid data leakage [29]. Notably, considering

that we should further split the test datasets to construct different

evaluation settings. Those excessive small-scale heterophilic graph

datasets, such as Texa, Cornell, and Wisconsin [28], are not fit and

chosen for evaluation due to their unstable outcomes. Moreover,

considering the nodes on homophilic graphs means there exists

a mere structure difference between train and test nodes. We just

provide experiments and discussions in the Appendix A.3.

Settings. Based on previous dataset splits, we construct two differ-

ent settings to evaluate the effectiveness and robustness of HEI: (i)
Standard Settings:We sort the test nodes based on their nodes’

homophily values and acquire the median. The part that is higher

than the median is defined as the High Hom Test, while the rest is

defined as the Low Hom Test. The model is trained on the previous

train dataset and evaluated on more fine-grained test groups; (ii)

Simulation Settings where exists severe distribution shifts.:
We sort and split the train and test nodes simultaneously adopting

the same strategy of (i). The model is trained on the Low/High Hom

Train and evaluated on the High/Low Hom Test.

Backbones. To further verify our framework is orthogonal to pre-

vious HGNN works that focus on backbone designs, we adapt HEI

to two existing SOTA and scalable backbones with different founda-

tions, LINKX (MLP-based) [19] and GloGNN++ (GNN-based) [18].

In this way, our improvements can be attributed to the design that

deals with the neglected heterophilic structure distribution shifts.

Baselines. Denote the results of the backbone itself as ERM. Our

comparable baselines can be categorized into: (i) Reweight-based

methods considering structure information: Renode [4] and StruRW-

Mixup [23]; (ii) Invariant Learning methods involving environment

inference for node-level distribution shift: SRGNN [43], EERM [37],

BAGNN [9], FLOOD [24], CaNet [36] and IENE [39] ; (iii) Prototype-

based methods for structural distribution shift on the special do-

main(e.g. graph anomaly detection): GDN [11]. Notably, though we

can utilize estimated neighbor patterns as auxiliary information to

infer environments related to HGSS, the true environment label is

still unavailable. So we don’t compare with those traditional invari-

ant learning methods that rely on the explicit environment labels,

e.g. IRM [2], V-Rex [16] and GroupDRO [31].

4.2 Experimental Results and Analysis
Handling Distribution Shifts under Standard Settings (RQ1).
We first evaluate the effectiveness of HEI under standard settings,

where we follow the previous dataset splits and further evaluate

the model on more fine-grained test groups with low and high

homophily, respectively. The results can be shown in Table 1 and

Table 2. We have the following observations.

On the one hand, the impact brought by the HGSS is still apparent
though we adopted the existing SOTA HGNN backbones.As shown by
the results of ERM in Table 1 and Table 2, for most datasets, there

are significant performance gaps between the High Hom Test and

Low Hom Test, ranging from 5 to 30 scores. These results further

verify the necessity to seek methods from the perspective of data

distribution rather than backbone designs to deal with this problem.

On the other hand, HEI can outperform previous methods in most
circumstances. Specifically, compared with invariant learning meth-

ods, though HEI does not augment the training environments, uti-

lizing the estimated neighbor patterns to directly infer latent en-

vironments still benefits invariant prediction and improves model

generalization on different test distributions related to homophily.

In contrast, directly adopting a reweight strategy (Renode and

StruRW) or evaluating the difference between the training domain

and target domain (SRGNN) without environment augmentation

can’t acquire superior results than invariant learning methods. This

is because these methods need accurate domain knowledge or struc-

ture information in advance to help model training. However, for

the HGSS issue, the nodes’ environments on heterophily graphs

are unknown and difficult to split into the invariant and spuri-

ous domains, like the GOOD dataset [12] which has clear domain

and distribution splits. Simultaneously, the neighbor pattern dis-

tribution represents more fine-grained label relationships between

6
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Table 1: Performance comparison on small-scall heterophilic graph datasets under Standard Settings. The reported scores denote the classifica-
tion accuracy (%) and error bar (±) over 10 trials. We highlight the best score on each dataset in bold and the second score with underline.

Backbones Methods Chamelon-filter Squirrel-filter Actor

Full Test High Hom Test Low Hom Test Full Test High Hom Test Low Hom Test Full Test High Hom Test Low Hom Test

LINKX

ERM 23.74 ± 3.27 29.24 ± 3.87 16.81 ± 3.21 37.11 ± 1.68 45.11 ± 1.68 28.17 ± 1.54 35.83 ± 1.40 38.21 ± 1.76 33.42 ± 1.94

ReNode 24.14 ± 3.51 29.64 ± 3.42 17.24 ± 3.25 37.91 ± 1.84 45.81 ± 1.58 28.97 ± 1.24 28.62 ± 1.79 33.92 ± 3.67 23.25 ± 1.54

StruRW-Mixup 24.19 ± 3.81 29.84 ± 3.58 17.46 ± 3.27 37.98 ± 1.57 45.88 ± 1.81 29.27 ± 1.24 28.62 ± 1.79 33.92 ± 3.67 23.25 ± 1.54

SRGNN 24.42 ± 3.57 29.94 ± 3.59 17.96 ± 3.12 38.11 ± 1.67 45.98 ± 1.82 29.57 ± 1.23 29.57 ± 1.81 34.45 ± 3.51 24.67 ± 1.34

EERM 24.54 ± 3.61 30.12 ± 3.71 18.22 ± 3.42 38.57 ± 1.77 46.24 ± 1.82 29.57 ± 1.23 29.62 ± 1.94 36.50 ± 3.21 22.66 ± 1.26

BAGNN 24.64 ± 3.71 30.17 ± 3.61 18.29 ± 3.54 38.61 ± 1.72 46.14 ± 1.93 29.87 ± 1.15 36.10 ± 2.01 38.46 ± 2.16 33.49 ± 1.86

FLOOD 24.64 ± 3.62 30.15 ± 3.62 18.25 ± 3.82 38.59 ± 1.81 46.33 ± 1.52 29.64 ± 1.13 36.40 ± 2.31 38.72 ± 2.17 33.98 ± 1.76

CaNet 24.71 ± 3.55 30.28 ± 3.28 18.45 ± 3.78 38.75 ± 1.85 46.45 ± 1.55 29.74 ± 1.34 36.58 ± 2.31 38.92 ± 2.44 34.12 ± 1.48

IENE 24.74 ± 3.58 30.30 ± 3.62 18.85 ± 3.82 38.81 ± 1.86 46.43 ± 1.59 29.84 ± 1.75 36.65 ± 2.31 38.99 ± 2.35 34.13 ± 1.96

GDN 24.65 ± 3.52 30.31 ± 3.62 18.15 ± 3.82 38.89 ± 1.81 46.58 ± 1.57 29.94 ± 1.87 36.38 ± 2.25 38.52 ± 2.17 34.08 ± 1.76

HEI(Ours) 25.78 ± 2.23 31.35 ± 2.56 20.21 ± 4.21 40.92 ± 1.31 48.82 ± 2.88 31.21 ± 2.79 37.41 ± 1.17 39.31 ± 1.45 35.42 ± 1.54

GloGNN++

ERM 25.90 ± 3.58 31.40 ± 3.63 20.10 ± 2.51 35.11 ± 1.24 41.25 ± 1.88 27.61 ± 1.54 37.70± 1.40 40.96 ± 1.52 34.37 ± 1.61

ReNode 25.99 ± 3.88 31.50 ± 3.83 20.20 ± 2.32 35.54 ± 1.12 41.54 ± 1.78 28.21 ± 1.59 29.82 ± 1.79 35.42 ± 2.75 25.24 ± 2.18

StruRW-Mixup 26.12 ± 3.58 31.70 ± 3.53 20.30 ± 2.12 35.64 ± 1.18 41.70 ± 1.58 28.31 ± 1.56 29.87 ± 1.81 35.45 ± 2.79 25.34 ± 2.51

SRGNN 26.72 ± 3.68 32.20 ± 3.43 21.00 ± 2.52 36.34 ± 1.28 42.30 ± 1.58 28.75 ± 1.54 30.87 ± 1.79 35.62 ± 2.75 25.64 ± 2.54

EERM 26.99 ± 3.58 32.51 ± 3.73 21.22 ± 2.41 36.54 ± 1.38 42.70 ± 1.48 29.45 ± 1.55 32.75 ± 2.41 39.34 ± 3.21 26.98 ± 2.87

BAGNN 27.12 ± 3.48 32.61 ± 3.83 21.42 ± 2.71 36.64 ± 1.52 42.89 ± 1.49 29.55 ± 1.61 38.05 ± 1.29 41.26 ± 1.52 34.87 ± 1.87

FLOOD 27.17 ± 3.58 32.81 ± 3.63 21.82 ± 2.61 36.84 ± 1.42 42.97 ± 1.58 29.85 ± 1.57 38.35 ± 1.59 41.54 ± 1.34 34.99 ± 2.11

CaNet 27.37 ± 3.27 32.99 ± 3.87 22.08 ± 2.51 36.99 ± 1.51 43.17 ± 1.66 30.15 ± 1.44 38.37 ± 1.61 41.58 ± 1.32 35.01± 2.10

IENE 27.75 ± 3.31 33.35 ± 3.97 22.62 ± 2.49 37.15 ± 1.66 43.37 ± 1.66 30.38 ± 1.64 38.38 ± 1.66 41.58 ± 1.37 35.08 ± 2.12

GDN 27.21 ± 3.68 32.91 ± 3.52 21.84 ± 2.21 36.66 ± 1.42 43.12 ± 1.57 29.65 ± 1.58 38.39 ± 1.69 41.59 ± 1.74 35.12 ± 2.51

HEI(Ours) 29.31 ± 3.68 34.35 ± 3.52 24.25± 2.71 39.42 ± 1.51 45.19 ± 1.57 31.45 ± 1.68 39.41 ± 1.51 42.25 ± 1.59 36.12 ± 1.85

Table 2: Performance comparison on large-scall heterophilic graph datasets under Standard Settings. The reported scores denote the classification
accuracy (%) and error bar (±) over 5 trials. We highlight the best score on each dataset in bold and the second score with underline.

Backbones Methods Penn94 arxiv-year twitch-gamer

Full Test High Hom Test Low Hom Test Full Test High Hom Test Low Hom Test Full Test High Hom Test Low Hom Test

LINKX

ERM 84.67 ± 0.50 87.95 ± 0.73 81.07 ± 0.50 54.44 ± 0.20 64.74 ± 0.42 48.39 ± 0.62 66.02 ± 0.20 85.47 ± 0.66 46.38 ± 0.67

ReNode 84.91 ± 0.41 88.02 ± 0.79 81.53 ± 0.88 54.46 ± 0.21 64.80 ± 0.37 48.37 ± 0.55 66.13 ± 0.14 84.25 ± 0.48 47.84 ± 0.43

StruRW-Mixup 84.96 ± 0.43 88.11 ± 0.56 81.91 ± 0.78 54.35 ± 0.21 64.78 ± 0.32 48.31 ± 0.81 66.10 ± 0.12 84.29 ± 0.47 47.89 ± 0.58

SRGNN 84.98 ± 0.37 87.92 ± 0.79 81.83 ± 0.78 54.42 ± 0.20 64.80 ± 0.37 48.38 ± 0.54 66.15 ± 0.09 84.45 ± 0.48 48.01 ± 0.43

EERM 85.01 ± 0.55 87.81 ± 0.79 82.08 ± 0.71 54.82 ± 0.32 68.06 ± 0.61 46.46 ± 0.61 66.02 ± 0.18 83.27 ± 0.40 48.39 ± 0.34

BAGNN 85.02 ± 0.37 88.21 ± 0.68 82.02 ± 0.59 54.65 ± 0.30 66.46 ± 0.57 47.56 ± 0.58 66.17 ± 0.12 83.77 ± 0.40 48.56 ± 0.59

FLOOD 85.07 ± 0.32 88.25 ± 0.59 82.11 ± 0.61 54.77 ± 0.29 66.81 ± 0.59 47.88 ± 0.56 66.18 ± 0.14 83.85 ± 0.42 48.71 ± 0.61

CaNet 85.10 ± 0.28 88.33 ± 0.54 82.15 ± 0.61 54.78 ± 0.29 66.88 ± 0.57 47.91 ± 0.66 66.20 ± 0.15 83.95 ± 0.42 48.78 ± 0.61

IENE 85.15 ± 0.32 88.25 ± 0.59 82.20 ± 0.60 54.80 ± 0.33 66.85 ± 0.61 48.01 ± 0.59 66.21 ± 0.12 84.45 ± 0.47 48.81 ± 0.61

GDN 85.19 ± 0.37 88.31 ± 0.68 82.32 ± 0.59 54.75 ± 0.30 66.96 ± 0.61 47.86 ± 0.58 66.12 ± 0.12 83.77 ± 0.40 48.56 ± 0.59

HEI(Ours) 86.22 ± 0.28 89.24 ± 0.28 83.22 ± 0.59 56.05 ± 0.22 66.53 ± 0.41 49.33 ± 0.32 66.79 ± 0.14 85.53 ± 0.25 49.21 ± 0.57

GloGNN++

ERM 85.81 ± 0.43 89.51 ± 0.82 81.75 ± 0.58 54.72 ± 0.27 65.78 ± 0.41 48.12 ± 0.72 66.29 ± 0.20 84.25 ± 1.06 48.13 ± 1.06

Renode 85.81 ± 0.42 89.53 ± 0.81 81.75 ± 0.57 54.76 ± 0.25 65.91 ± 0.54 48.12 ± 0.75 66.32 ± 0.16 84.01 ± 0.56 48.44 ± 0.67

StruRW-Mixup 85.92 ± 0.37 89.83 ± 0.81 81.81 ± 0.47 54.81 ± 0.35 65.98 ± 0.64 48.52 ± 0.65 66.29 ± 0.15 84.21 ± 0.56 48.54 ± 0.67

SRGNN 85.89 ± 0.42 89.63 ± 0.81 82.01 ± 0.57 54.69 ± 0.25 65.87 ± 0.44 48.39 ± 0.85 66.25 ± 0.16 84.31 ± 0.56 48.34 ± 0.57

EERM 85.86 ± 0.33 89.41 ± 0.74 81.97 ± 0.50 53.11 ± 0.19 61.03 ± 0.54 48.54 ± 0.43 66.20 ± 0.30 83.97 ± 1.18 48.25 ± 0.96

BAGNN 85.95 ± 0.27 89.61 ± 0.74 81.92 ± 0.40 54.81 ± 0.17 66.07 ± 0.44 48.39 ± 0.33 66.22 ± 0.25 83.77 ± 0.85 48.64 ± 0.59

FLOOD 85.99 ± 0.31 89.64 ± 0.67 82.05 ± 0.51 54.89 ± 0.22 66.22 ± 0.42 48.55 ± 0.31 66.24 ± 0.22 83.81 ± 0.79 48.50 ± 0.54

CaNet 86.02 ± 0.35 89.69 ± 0.70 82.11 ± 0.57 54.91 ± 0.33 66.28 ± 0.42 48.68 ± 0.33 66.28 ± 0.27 83.89 ± 0.78 48.62 ± 0.59

IENE 86.11 ± 0.30 89.64 ± 0.68 82.18 ± 0.47 54.86 ± 0.19 66.21 ± 0.44 48.65 ± 0.33 66.35 ± 0.25 84.11 ± 0.78 48.79 ± 0.44

GDN 85.92 ± 0.41 89.53 ± 0.67 81.75 ± 0.51 54.76 ± 0.17 66.24 ± 0.44 48.15 ± 0.53 66.21 ± 0.27 83.78 ± 0.89 48.42 ± 0.51

HEI(Ours) 87.18 ± 0.28 89.99 ± 0.65 83.59 ± 0.39 55.71 ± 0.24 66.29 ± 1.14 49.52 ± 0.75 66.99 ± 0.17 84.37 ± 0.68 50.40 ± 0.52

nodes and their neighbors, which means it’s more complex and

challenging compared to previous long-tail degree or label prob-

lems depending on directly counting class types and numbers of

neighbors. Moreover, the great performance from GDN verifies the

necessity of learning node representation close to its class prototype

through regularization, mitigating the effect of neighbor patterns

during aggregation. However, HEI can still outperform GDN due to

the more fine-grained causal feature separation depending on the

constructed environments related to the node’s neighbor patterns,

further verifying the effectiveness of HEI.

HandlingDistribution Shifts under Simulation Settingswhere
exists severe distribution shifts (RQ2).As shown in Figure 3 and
Figure 6 in Appendix A.3, for each dataset, we mainly report results

under severe distribution shifts between training and testing nodes,

which include 𝑇𝑟𝑎𝑖𝑛𝐻𝑖𝑔ℎ on 𝑇𝑒𝑠𝑡𝐿𝑜𝑤 and 𝑇𝑟𝑎𝑖𝑛𝐿𝑜𝑤 on 𝑇𝑒𝑠𝑡𝐻𝑖𝑔ℎ .

From the results, we can observe that HEI achieves better perfor-

mance than other baselines apparently, with up to 5 ∼ 10 scores on

average. In contrast, previous methods with environment augmen-

tation achieved similar improvements. This is because all of them

succeed in the augmentation-based environmental construction

strategy on the ego-graph of train nodes to help the model adapt

to diverse distribution, which may be ineffective under the HGSS

scenarios, especially when there exists a huge structural pattern

gap between train and test nodes. These results can further verify

the robustness and effectiveness of the proposed HEI for handling

the HGSS issues.
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Figure 3: Comparison experiments under Simulation Settings where exists severe distribution shift between train and test,
including 𝑇𝑟𝑎𝑖𝑛𝐻𝑖𝑔ℎ on 𝑇𝑒𝑠𝑡𝐿𝑜𝑤 and 𝑇𝑟𝑎𝑖𝑛𝐿𝑜𝑤 on 𝑇𝑒𝑠𝑡𝐻𝑖𝑔ℎ . We adopt the LINKX as the backbone there.

Table 3: Comparison experiments on small-scale datasets when we respectively adopt local similarity(Local Sim), post-aggregation similarity
(Agg Sim), and SimRank as indicators to estimate nodes’ neighbor patterns so as to infer latent environments under Standard settings.

Backbones Methods Chamelon-filter Squirrel-filter Actor

Full Test High Hom Test Low Hom Test Full Test High Hom Test Low Hom Test Full Test High Hom Test Low Hom Test

LINKX

HEI (Local Sim) 24.91 ± 3.68 30.84 ± 3.52 18.95 ± 3.77 38.99 ± 1.85 46.81 ± 1.87 30.15 ± 1.95 36.84 ± 1.75 38.99 ± 2.44 34.51 ± 1.88

HEI (Agg Sim) 25.11 ± 3.81 30.99 ± 3.92 19.17 ± 3.99 39.15 ± 1.99 47.15 ± 1.97 30.85 ± 2.11 36.87 ± 1.54 39.11 ± 2.48 34.68 ± 1.74

HEI (SimRank) 25.78 ± 2.23 31.35 ± 2.56 20.21 ± 4.21 40.92 ± 1.31 48.82 ± 2.88 31.21 ± 2.79 37.41 ± 1.17 39.31 ± 1.45 35.42 ± 1.54

GloGNN++

HEI (Local Sim) 27.78 ± 3.51 33.25 ± 3.41 22.51 ± 2.17 37.55 ± 1.55 44.11 ± 1.41 30.11 ± 1.28 38.57 ± 1.59 41.84 ± 1.44 35.41 ± 2.41

HEI (Agg Sim) 28.24 ± 3.27 33.74 ± 3.11 22.94 ± 2.27 37.99 ± 1.25 44.54 ± 1.28 30.66 ± 1.51 38.81 ± 1.64 41.95 ± 1.55 35.81 ± 2.23

HEI (SimRank) 29.31 ± 3.68 34.35 ± 3.52 24.25± 2.71 39.42 ± 1.51 45.19 ± 1.57 31.45 ± 1.68 39.41 ± 1.51 42.25 ± 1.59 36.12 ± 1.85

The effect of different similarity metrics as neighbor pattern
indicators for HEI (RQ3). As depicted in Table 3 and Table 7

in the Appendix, we can draw two conclusions: (i) Applying any

similarity-based metrics can outperform the previous SOTA strat-

egy. This verifies the flexibility and effectiveness of HEI and helps

distinguish HEI from previous HGNN works that also utilize the

similarity for backbone designs; (ii) Applying SimRank to HEI can

acquire consistently better performance than other metrics. This

can be explained by previous HGNN backbone designs [7, 22, 26],

which have verified that SimRank has a better ability to distinguish

neighbors patterns compared with Local Sim and Agg-Sim, so as

to design a better HGNN backbone, SIMGA[22]. Moreover, from

the perspective of definitions as Eq. 6, the SimRank is specifically

designed considering structural information, which is more related

to our problem considering structure-related distribution shifts.

Sensitivity Analysis of HEI concerning the pre-defined envi-
ronmental numbers 𝐾 (RQ4). As shown in Figure 7 in Appendix

A.3, we vary the hyper-parameter environment numbers 𝑘 in Eq.

9 within the range of [2, 12], and keep all other configurations un-

changed to explore its impact. We can observe that 𝐾 has a stable

effect on the HEI, especially when 𝑘 ≥ 6, which can further verify

its effectiveness in addressing HGSS issues.

Efficiency Studies (RQ5). As shown in Table 5 in Appendix A.3,

we provide the time to train the model until converges that keep the

stable accuracy score on the validation set. Experiments of these

large-scale datasets are conducted on a single Tesla V100 GPU

with 32G memory and use AdamW as the optimizer following [18].

From the results, we can conclude that the extra time cost can be

acceptable compared with the backbone itself and other baselines.

5 Conclusion
In this paper, we emphasize an overlooked yet important variety of

graph structure distribution shifts that exist on heterophilic graphs.

We verify that previous node-level invariant learning solutions

with environment augmentation are ineffective due to the irra-

tionality of constructing environments. To mitigate the effect of

this distribution shift, we propose HEI, a framework capable of

generating invariant node representations by incorporating the es-

timated neighbor pattern information to infer latent environments

without augmentation, which are then used for downstream invari-

ant learning. Experiments on several benchmarks and backbones

demonstrate the effectiveness of our method to cope with this graph

structure distribution shift. Finally, we hope this study can draw

attention to the structural distribution shift of heterophilic graphs.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina

Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. 2019. Mixhop:

Higher-order graph convolutional architectures via sparsified neighborhood

mixing. In international conference on machine learning. PMLR, 21–29.

[2] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. 2019.

Invariant risk minimization. arXiv preprint arXiv:1907.02893 (2019).
[3] Shiyu Chang, Yang Zhang, Mo Yu, and Tommi Jaakkola. 2020. Invariant ratio-

nalization. In International Conference on Machine Learning. PMLR, 1448–1458.

[4] Deli Chen, Yankai Lin, Guangxiang Zhao, Xuancheng Ren, Peng Li, Jie Zhou,

and Xu Sun. 2021. Topology-imbalance learning for semi-supervised node

classification. Advances in Neural Information Processing Systems 34 (2021),

29885–29897.

[5] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.

Simple and deep graph convolutional networks. In International conference on
machine learning. PMLR, 1725–1735.

[6] Yongqiang Chen, Yatao Bian, Kaiwen Zhou, Binghui Xie, Bo Han, and James

Cheng. 2023. Does Invariant Graph Learning via Environment Augmentation

Learn Invariance? arXiv preprint arXiv:2310.19035 (2023).
[7] Yuhan Chen, Yihong Luo, Jing Tang, Liang Yang, Siya Qiu, Chuan Wang, and

Xiaochun Cao. 2023. LSGNN: Towards General Graph Neural Network in Node

Classification by Local Similarity. arXiv preprint arXiv:2305.04225 (2023).
[8] Yongqiang Chen, Yonggang Zhang, Yatao Bian, Han Yang, MA Kaili, Binghui

Xie, Tongliang Liu, Bo Han, and James Cheng. 2022. Learning causally invariant

representations for out-of-distribution generalization on graphs. Advances in
Neural Information Processing Systems 35 (2022), 22131–22148.

[9] Zhengyu Chen, Teng Xiao, and Kun Kuang. 2022. Ba-gnn: On learning bias-

aware graph neural network. In 2022 IEEE 38th International Conference on Data
Engineering (ICDE). IEEE, 3012–3024.

[10] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2020. Adaptive universal

generalized pagerank graph neural network. arXiv preprint arXiv:2006.07988
(2020).

[11] Yuan Gao, Xiang Wang, Xiangnan He, Zhenguang Liu, Huamin Feng, and Yong-

dong Zhang. 2023. Alleviating structural distribution shift in graph anomaly

detection. In Proceedings of the sixteenth ACM international conference on web
search and data mining. 357–365.

[12] Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. 2022. Good: A graph out-of-

distribution benchmark. Advances in Neural Information Processing Systems 35
(2022), 2059–2073.

[13] Dongxiao He, Chundong Liang, Huixin Liu, Mingxiang Wen, Pengfei Jiao, and

Zhiyong Feng. 2022. Block modeling-guided graph convolutional neural net-

works. In Proceedings of the AAAI conference on artificial intelligence, Vol. 36.
4022–4029.

[14] Di Jin, Zhizhi Yu, Cuiying Huo, Rui Wang, Xiao Wang, Dongxiao He, and Ji-

awei Han. 2021. Universal graph convolutional networks. Advances in Neural
Information Processing Systems 34 (2021), 10654–10664.

[15] Wei Jin, Tyler Derr, Yiqi Wang, Yao Ma, Zitao Liu, and Jiliang Tang. 2021. Node

similarity preserving graph convolutional networks. In Proceedings of the 14th
ACM international conference on web search and data mining. 148–156.

[16] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan

Binas, Dinghuai Zhang, Remi Le Priol, and Aaron Courville. 2021. Out-of-

distribution generalization via risk extrapolation (rex). In International Conference
on Machine Learning. PMLR, 5815–5826.

[17] Haoyang Li, Ziwei Zhang, Xin Wang, and Wenwu Zhu. 2022. Learning invariant

graph representations for out-of-distribution generalization. Advances in Neural
Information Processing Systems 35 (2022), 11828–11841.

[18] Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and

Weining Qian. 2022. Finding global homophily in graph neural networks when

meeting heterophily. In International Conference on Machine Learning. PMLR,

13242–13256.

[19] Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar

Bhalerao, and Ser Nam Lim. 2021. Large scale learning on non-homophilous

graphs: New benchmarks and strong simple methods. Advances in Neural Infor-
mation Processing Systems 34 (2021), 20887–20902.

[20] Yong Lin, Shengyu Zhu, Lu Tan, and PengCui. 2022. ZIN:When andHow to Learn

Invariance Without Environment Partition? Advances in Neural Information
Processing Systems 35 (2022), 24529–24542.

[21] Gang Liu, Tong Zhao, Jiaxin Xu, Tengfei Luo, and Meng Jiang. 2022. Graph

rationalization with environment-based augmentations. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 1069–
1078.

[22] Haoyu Liu, Ningyi Liao, and Siqiang Luo. 2023. SIMGA: A Simple and Effective

Heterophilous Graph Neural Network with Efficient Global Aggregation. arXiv
preprint arXiv:2305.09958 (2023).

[23] Shikun Liu, Tianchun Li, Yongbin Feng, Nhan Tran, Han Zhao, Qiang Qiu, and

Pan Li. 2023. Structural re-weighting improves graph domain adaptation. In

International Conference on Machine Learning. PMLR, 21778–21793.

[24] Yang Liu, Xiang Ao, Fuli Feng, Yunshan Ma, Kuan Li, Tat-Seng Chua, and Qing

He. 2023. FLOOD: A flexible invariant learning framework for out-of-distribution

generalization on graphs. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 1548–1558.

[25] Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan

Zhang, Xiao-Wen Chang, and Doina Precup. 2021. Is heterophily a real night-

mare for graph neural networks to do node classification? arXiv preprint
arXiv:2109.05641 (2021).

[26] Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan

Zhang, Xiao-Wen Chang, and Doina Precup. 2022. Revisiting heterophily for

graph neural networks. Advances in neural information processing systems 35
(2022), 1362–1375.

[27] Haitao Mao, Zhikai Chen, Wei Jin, Haoyu Han, Yao Ma, Tong Zhao, Neil Shah,

and Jiliang Tang. 2023. Demystifying Structural Disparity in Graph Neural

Networks: Can One Size Fit All? arXiv preprint arXiv:2306.01323 (2023).
[28] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang.

2020. Geom-gcn: Geometric graph convolutional networks. arXiv preprint
arXiv:2002.05287 (2020).

[29] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila

Prokhorenkova. 2023. A critical look at the evaluation of GNNs under heterophily:

Are we really making progress? arXiv preprint arXiv:2302.11640 (2023).
[30] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2019. Dropedge:

Towards deep graph convolutional networks on node classification. arXiv preprint
arXiv:1907.10903 (2019).

[31] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. 2019.

Distributionally robust neural networks for group shifts: On the importance

of regularization for worst-case generalization. arXiv preprint arXiv:1911.08731
(2019).

[32] Susheel Suresh, Vinith Budde, Jennifer Neville, Pan Li, and Jianzhu Ma. 2021.

Breaking the limit of graph neural networks by improving the assortativity

of graphs with local mixing patterns. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining. 1541–1551.

[33] Xiaoyu Tan, Lin Yong, Shengyu Zhu, Chao Qu, Xihe Qiu, Xu Yinghui, Peng Cui,

and Yuan Qi. 2023. Provably invariant learning without domain information. In

International Conference on Machine Learning. PMLR, 33563–33580.

[34] Tao Wang, Di Jin, Rui Wang, Dongxiao He, and Yuxiao Huang. 2022. Power-

ful graph convolutional networks with adaptive propagation mechanism for

homophily and heterophily. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 36. 4210–4218.

[35] Yu Wang and Tyler Derr. 2021. Tree decomposed graph neural network. In

Proceedings of the 30th ACM international conference on information & knowledge
management. 2040–2049.

[36] Qitian Wu, Fan Nie, Chenxiao Yang, Tianyi Bao, and Junchi Yan. 2024. Graph

out-of-distribution generalization via causal intervention. In Proceedings of the
ACM on Web Conference 2024. 850–860.

[37] Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. 2022. Handling distribu-

tion shifts on graphs: An invariance perspective. arXiv preprint arXiv:2202.02466
(2022).

[38] Ying-Xin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. 2022.

Discovering invariant rationales for graph neural networks. arXiv preprint
arXiv:2201.12872 (2022).

[39] Haoran Yang, Xiaobing Pei, and Kai Yuan. 2024. IENE: Identifying and Extrapo-

lating the Node Environment for Out-of-Distribution Generalization on Graphs.

arXiv preprint arXiv:2406.00764 (2024).
[40] Ruihao Zhang, Zhengyu Chen, Teng Xiao, Yueyang Wang, and Kun Kuang. 2024.

Discovering Invariant Neighborhood Patterns for Heterophilic Graphs. arXiv
preprint arXiv:2403.10572 (2024).

[41] Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, and Philip S Yu. 2022.

Graph neural networks for graphs with heterophily: A survey. arXiv preprint
arXiv:2202.07082 (2022).

[42] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai

Koutra. 2020. Beyond homophily in graph neural networks: Current limitations

and effective designs. Advances in neural information processing systems 33 (2020),
7793–7804.

[43] Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. 2021. Shift-robust

gnns: Overcoming the limitations of localized graph training data. Advances in
Neural Information Processing Systems 34 (2021), 27965–27977.

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A Appendix
In this appendix, we provide the details omitted in the main text due

to the page limit, offering additional experimental results, analyses,

proofs, and discussions.

• A.1: We provide a detailed literature review related to our

work and further distinguish our work with these works to

clarify our contribution.

• A.2:We provide detailed theoretical analysis from the causal

perspective to clarify the reasonability of HEI: Why we can

utilize the estimated neighbor pattern to infer environments

to address the HGSS issue?

• A.3: We provide the full experimental results on small and

large-scale datasets adopting LINKX and GloGNN as back-

bones ( 4.2 of the main paper).

• A.4: We provide detailed implementation details to repro-

duce our experiments.

A.1 Related Work
Graph Neural Networks with Heterophily. Existing strategies

for mitigating graph heterophily issues can be categorized into two

groups [41]: (i) Non-Local Neighbor Extension, aimed at identi-

fying suitable neighbors through mixing High-order information

[1, 14, 42] or discovering potential neighbors assisted by various

similarity-based metrics [13–15, 22, 34, 35]; (ii) GNN Architecture

Refinement, focusing on harnessing information derived from the

identified neighbors, through selectively aggregating distinguish-

able and discriminative node representations, including adapting ag-

gregation scheme [18, 25, 32], separating Ego-neighbor [25, 32, 42]

and combining inter-layer [5, 10, 42].

However, these efforts share the common objective of designing

better unified HGNN backbones for node classification tasks on

heterophilic and homophilic graph benchmarks simultaneously.

Moreover, we also found a recent arxiv paper called INPL [40] that

coincides with our work. Though it also mentions the distribution

shifts of neighborhood patterns, it still focuses on proposing an

adaptive Neighborhood Propagation (ANP) module to optimize the
HGNN backbone or architecture without a thorough analysis of pre-
vious graph-based invariant-learning methods. Different from these

works, we instead consider from an identifiable neighbor pattern

distribution perspective and propose a novel invariant learning

framework that can be integrated with most HGNN backbones to

further enhance their performance and generalization.

Generalization on GNNs. Many efforts have been devoted to

exploring the generalization ability of GNNs. (i) For graph-level
tasks, it assumes that every graph can be treated as an instance

for prediction tasks [37]. Many works propose to identify invari-

ant sub-graphs that decide the label Y and spurious sub-graphs

related to environments, such as CIGA [8] , GIL [17], GREA [21],

DIR [38] and GALA [6] (ii) However, for node-level tasks that
we focus on in this paper, the nodes are interconnected in a

graph as instances in a non-iid data generation way, it is not feasi-

ble to transfer graph-level strategies directly. To address this issue,

EERM [37] proposes to regard the node’s ego-graph with corre-

sponding labels as instances and assume that all nodes in a graph

often share the same environment, so it should construct different

environments by data augmentation, e.g., DropEdge [30]. Based

on these findings, BA-GNN [9], FLOOD [24] and IENE [39] inherit

this assumption to improve model generalization. Apart from these

environments-augmentation methods, the SR-GNN [43] and GDN

[11] are two works that address distribution shifts on node-level

tasks from the domain adaption and prototype learning perspec-

tives respectively. Moreover, Renode [4] and StruRW-Mixup [23]

are two reweight-based methods that explore the effect brought by

the structure difference between nodes for node classification tasks.

We also compare them in experiments.

Unlike these works, we highlight a special variety of structure-

related distribution shifts for node classification tasks on heterophilic

graphs and propose a novel invariant learning framework adapted

to heterophilic graphs without dealing with graph augmentation

to address this problem.

A.2 Theoretical Analysis
To help understand our framework well, we first provide the com-

parison between our work and previous graph-based invarinat

learning works as shown in Figure 4. Specifically, the definitions

of random variables can be defined as follows: We define G as a

random variable of the input graph, A as a random variable of

node’s neighbor information, X as a random variable of node’s fea-

tures, and Y as a random variable of node’s label vectors. Both node

features X and node neighbor information A consist of invariant

predictive information that determines the label Y and the spurious

information influenced by latent environments e. In this case, we

can denote X =
[
X𝐼 ,X𝑆

]
and A =

[
A𝐼 ,A𝑆

]
.

Then, we provide a more detailed theoretical analysis of our

framework from a casual perspective to identify invariant features.

Casual conditions of 𝑍 . From the casual perspective, some

conditions are also needed for 𝑍 to make sure our framework to

address the heterophilic graph structure distribution shifts well [20].

Denote the 𝐻 (𝑌 |𝑋,𝐴) as the expected loss of an optimal classifier

over (𝑋 , 𝐴, and 𝑌 ), we can clarify the reasonability of utilizing the

estimated neighbor patterns as 𝑍 auxiliary information to infer

environments for invariant prediction based on the following two

conditions.

Condition 1 (Invariance Preserving Condition). Given in-
variant feature (𝑋 𝐼 and 𝐴𝐼 ) and any function 𝜌 (·), it holds that

𝐻 (𝑌 | (𝑋 𝐼 , 𝐴𝐼 ), 𝜌 (𝑍 )) = 𝐻 (𝑌 | (𝑋 𝐼 , 𝐴𝐼 )). (10)

Condition 2 (Non-invariance Distinguishing Condition).

For any feature 𝑋𝑆𝑘 ∈ 𝑋𝑆 or 𝐴𝑆𝑘 ∈ 𝐴𝑆 ,there exists a function 𝜌 (·)
and a constant 𝐶 > 0 satisfy:

𝐻 (𝑌 | (𝑋𝑆𝑘 , 𝐴𝑆𝑘 )) − 𝐻 (𝑌 | (𝑋𝑆𝑘 , 𝐴𝑆𝑘 ), 𝜌 (𝑍 )) ≥ 𝐶. (11)

Condition 1 requires that invariant features 𝑋 𝐼 and 𝐴𝐼 should

keep invariant under any environment split obtained by 𝜌 (𝑍 ).
Otherwise, if there exists a split where an invariant feature be-

comes non-invariant, then this feature would introduce a positive

penalty as shown in Eq. 9 to further promote the learning of invari-

ant node representation. Exactly, Condition 1 can be met only if

𝐻 (𝑌 | (𝑋 𝐼 , 𝐴𝐼 ), 𝑍 ) = 𝐻 (𝑌 | (𝑋 𝐼 , 𝐴𝐼 )), which means the auxiliary vari-

able 𝑍 should be d-separated by invariant feature 𝑋 𝐼 and 𝐴𝐼 . We

provide a detailed proof in the appendix A.2. Exactly, the estimated

10
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Figure 4: Comparisons between our work and previous graph-based invariant learning works from the causal perspective.
Notably, the basic HGNN directly aggregates the selected neighbors’ full features without further separating like the above two
types of invariant learning methods.

neighbor pattern just describes the similarity between the node and

its neighbors as Eq. 7, while the label𝑌 only has the direct causal re-

lationship with 𝑋 𝐼 and 𝐴𝐼 from the causal perspective. This means

the Condition 1 can be met by adopting the estimated neighbor

pattern as auxiliary information 𝑍 to construct environments.

Condition 2 reveals that for each spurious feature 𝑋𝑆 and 𝐴𝑆 ,

there exists at least one environment split where this feature demon-

strates non-invariance within the split environment. If a spurious

feature doesn’t cause invariance penalties in all environment splits,

it can’t be distinguished from true invariant features. As shown

in Figure 1(c2), the results of V-Rex are better than ERM, which

means even randomly split environments with seeds can have a

positive effect on making spurious features produce effective invari-

ance penalty, further promoting the learning of invariant features.

It’s more likely to construct comparable or better environments

than random seeds under the guidance of the estimated neighbor

patterns 𝑍 . Thus, Condition 2 can also be guaranteed under our

defined heterophilic graph structure distribution shit.

Proof of Meeting Condition 1. We show that for all 𝜌 (·), if
𝐻 (𝑌 | (𝑋 𝐼 , 𝐴𝐼 ), 𝑍 ) = 𝐻 (𝑌 | (𝑋 𝐼 , 𝐴𝐼 )) holds, then there will exist that

𝐻 (𝑌 | (𝑋 𝐼 , 𝐴𝐼 ), 𝜌 (𝑍 )) = 𝐻 (𝑌 | (𝑋 𝐼 , 𝐴𝐼 )).

Proof. On one hand, because 𝜌 (𝑍 ) contains less information

than 𝑍 , we have

𝐻 (𝑌 | (𝑋 𝐼 , 𝐴𝐼 ), 𝜌 (𝑍 )) ≥ 𝐻 (𝑌 | (𝑋 𝐼 , 𝐴𝐼 ), 𝑍 ) = 𝐻 (𝑌 | (𝑋 𝐼 , 𝐴𝐼 )) .

On the other hand, (𝑋 𝐼 , 𝐴𝐼 ) and 𝜌 (𝑍 ) contain more information

than (𝑋 𝐼 , 𝐴𝐼 ), so we can get

𝐻 (𝑌 | (𝑋 𝐼 , 𝐴𝐼 ), 𝜌 (𝑍 )) ≤ 𝐻 (𝑌 | (𝑋 𝐼 , 𝐴𝐼 )) .

Thus, we conclude 𝐻 (𝑌 | (𝑋 𝐼 , 𝐴𝐼 ), 𝜌 (𝑍 )) = 𝐻 (𝑌 | (𝑋 𝐼 , 𝐴𝐼 )).

Assumptions and Theorem to Identify Invariant Features.
In particular, our assumption is consistent with previous invari-

ant learning [20]. So we provide the previous version to support

our framework, where 𝑋 = [𝑋𝑣 ;𝑋𝑠 ], where the 𝑋𝑣 refers to the

invariant feature and the 𝑋𝑠 refers to the spurious feature.

Assumption 1. For a given featuremaskΦ and any constant 𝜖 > 0,
there exists 𝑓 ∈ 𝐹 such that 𝐸 [𝑙 (𝑓 (Φ(𝑋 )), 𝑌 )] ≤ 𝐻 (𝑌 |Φ(𝑋 )) + 𝜖.

Assumption 2. If a feature violates the invariance constraint,
adding another feature would not make the penalty vanish, i.e., there
exists a constant 𝑑𝑒𝑙𝑡𝑎 > 0 so that for spurious feature 𝑋1 ⊂ 𝑋𝑠 and
any feature 𝑋2 ⊂ 𝑋 ,
𝐻 (𝑌 |𝑋1, 𝑋2)−𝐻 (𝑌 |𝜌 (𝑍 ), 𝑋1, 𝑋2) ≥ 𝛿 (𝐻 (𝑌 |𝑋1) − 𝐻 (𝑌 |𝜌 (𝑍 ), 𝑋1)).

Assumption 3. For any distinct features 𝑋1, 𝑋2, 𝐻 (𝑌 |𝑋1, 𝑋2) ≤
𝐻 (𝑌 |𝑋1) − 𝛾 with fixed 𝛾 > 0.

Exactly, Assumption 1 is a common assumption that requires

the function space 𝐹 be rich enough such that, given Φ, there exists
𝑓 ∈ 𝐹 that can fit 𝑃 (𝑌 |Φ(𝑋 )) well. Assumption 2 aims to ensure a

sufficient positive penalty if a spurious feature is included. Assump-

tion 3 indicates that any feature contains some useful information

w.r.t.𝑌 , which cannot be explained by other features. Otherwise, we

can simply remove such a feature, as it does not affect prediction.

The theorem to identify invariant features can be defined:

Theorem 1. Depending on the Assumptions 1-3 and Conditions
1-2, if 𝜖 <

𝐶𝛾𝛿

4𝛾+2𝐶𝛿𝐻 (𝑌 ) and 𝜆 ∈ [𝐻 (𝑌 )+1/2𝛿𝐶
𝛿𝐶−4𝜖 − 1

2
,
𝛾
4𝜖 − 1

2
], then

we will have �̂�(Φ𝑣) < �̂�(Φ) for all Φ ≠ Φ𝑣 , where 𝐻 (𝑌 ) denotes the
entropy of 𝑌 .

A.3 More Experimental Results
We provide more experimental results to further show the effective-

ness of the proposed HEI in addressing heterophilic graph structure

distribution shifts.

RQ2: Additional Experiments on Simulation Settings us-
ing GloGNN++ as backbone.We also conduct experiments under

severe distribution shifts using GloGNN++ as the backbone. As

shown in Figure 6, our proposed method can acquire superior or

comparable results than previous methods to handle graph struc-

ture distribution shifts, which further verifies the effectiveness and

robustness of our design.
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Table 4: Statistics for our used heterophilic graph datasets.

Dataset Chameleon Squirrel Actor Penn94 arXiv-year twitch-gamer

Nodes 2277 5201 7600 41554 169343 168114

Edges 36101 216933 29926 1362229 1166243 6797557

Feat 2325 2089 931 5 128 7

Class 5 5 5 2 5 2

Edge hom. 0.23 0.22 0.22 0.47 0.222 0.545

RQ3: Effect of different similarity matrices as neighbor
pattern indicators for HEI. We provide large-scale graph experi-

ments as shown in Table 7 to clarify the details of HEI.

RQ4: Sensitive analysis. We provide the experimental results

about RQ4 there as shown in Figure 7.

RQ5: Efficiency Studies. As shown in Table 5, referring to

[18], we provide the time(seconds) to train the model until it con-

verges which keeps the stable accuracy score on the validation set.

From the results, we can conclude that the extra time cost can be

acceptable compared with the backbone itself.

Experiments on Homophilic Graph Datasets. Considering
the fact that in real-world settings, we can’t know whether the

input graph is homophilic or heterophilic in advance. Thus, we also

provide comparison experiments and discussions for homophilic

graphs. As shown in Table 6, from the results, we observe that our

method can achieve consistent comparable performance to other

baselines. But exactly, the improvements by these methods are

all minor compared with the results of ERM. That’s because the

homophilic graph is not related to our settings. After all, homophilic

graph datasets mean the neighbor pattern distribution between the

train and test are nearly the same, which is not suitable to clarify

our defined distribution shifts. The performance gap between the

low home test and the high home test can support our analysis.

Table 5: Efficiency studies of HEI, where the report scores show the
time (seconds) to train themodel until converge that keeps the stable
accuracy score on the validation set. Referring to [18], we adopt the
GloGNN++ as the backbone there.

Methods Penn94 arxiv-year twitch-gamer

ERM 22.3 7.2 40.5

Renode 23.5 8.5 41.2

SRGNN 24.9 9.1 41.0

EERM 24.7 8.8 41.5

BAGNN 24.8 9.1 42.1

FLOOD 24.5 8.8 41.8

StruRW 23.8 9.8 41.5

GDN 24.7 9.6 42.2

CaNet 25.9 10.8 42.2

IENE 25.4 10.6 42.8

HEI(Ours) 26.8 11.5 44.9
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Figure 5: Statistic of homophily ratio for train and test nodes
following previous dataset splits. The nodes are categorized
into four groups according to the node-level homophily. Com-
pared with test nodes, the train nodes are more prone to be
categorized into groups with high homophily. In other words,
in the range with high homophily(from 0.2 to 0.3 and from
0.3 to 1), the sub-train ratio in all train nodes is higher than
the sub-test in all test nodes. But in the range with low ho-
mophily, there exists a contrary phenomenon.

A.4 Implementation Details
We provide detailed implementation details for our experiments.

ERM, It corresponds to the results of the backbone itself [18, 19]

under our constructed settings.

SRGNN[43], Shift-Robust GNN is a framework inspired by do-

main adaption, which means it needs prior knowledge from the

target domain. Specifically, it strives to adapt a biased sample of

labeled nodes to more closely conform to the distributional charac-

teristics present in an IID sample of the graph. In our experiments,

we utilize the estimated neighbor distribution information to evalu-

ate the distribution of the source domain and target domain. Apart

from this, we entirely follow this work to address graph structure

distribution shifts on heterophilic graphs.

Renode[4], in our experiments, it is an extension of the origi-

nal Renode, which is a model-agnostic training weight schedule

mechanism to cope with topology-imbalance problems for semi-

supervised node classification. Specifically, they devise a cosine

annealing mechanism for the training node weights based on their

Totoro values. The Totoro values involve topology information

and can also integrate with quantity-imbalanced methods as the

paper shown. Therefore, this method can also be seen as a baseline

which can copy with agnostic distribution shifts. We adopt the same

reweight strategy as the paper stated, and the Totoro values can

also describe the neighbor pattern to a certain extent.

EERM[37], Explore-to-Extrapolate Risk Minimization (EERM)

is an invariant learning approach that facilitates graph neural net-

works to leverage invariance principles for prediction. As stated

in the paper, EERM resorts to multiple context explorers that are

adversarially trained to construct diverse environments with aug-

mentation. Then, following the principle of variance of risks, it

12



1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Table 6: Performance comparison on homophilic graph datasets under Standard Settings. The reported scores denote the classification accuracy
(%) and error bar (±) over 10 trials. We highlight the best score on each dataset in bold and the second score with underline.

Backbones Methods CiteSeer PubMed Cora

Full Test High Hom Test Low Hom Test Full Test High Hom Test Low Hom Test Full Test High Hom Test Low Hom Test

LINKX

ERM 73.19 ± 0.99 73.89 ± 1.51 72.79 ± 1.47 87.86 ± 0.77 88.49 ± 1.37 87.19 ± 1.51 84.64 ± 1.13 85.13 ± 1.83 83.85 ± 1.99

ReNode 73.25 ± 0.89 74.00 ± 1.21 72.89 ± 1.87 87.91 ± 0.72 88.58 ± 1.42 87.21 ± 1.71 84.70 ± 1.23 85.28 ± 1.99 84.24 ± 2.13

SRGNN 73.27 ± 0.99 74.03 ± 1.11 72.85 ± 1.87 87.96 ± 0.81 88.68 ± 1.72 87.31 ± 1.51 84.71 ± 1.25 85.22 ± 1.87 84.34 ± 2.03

StruRW-Mixup 73.29 ± 0.91 73.93 ± 1.25 72.99 ± 1.91 88.12 ± 0.51 88.71 ± 1.44 87.58 ± 1.59 84.67 ± 1.54 85.33 ± 1.91 84.34 ± 2.43

EERM 73.17 ± 0.79 73.81 ± 1.45 73.09 ± 1.65 87.96 ± 0.84 88.59 ± 1.32 87.29 ± 1.63 84.62 ± 1.37 85.14 ± 1.63 83.87 ± 2.03

BAGNN 73.33 ± 0.88 73.99 ± 1.61 73.19 ± 1.63 88.01 ± 0.94 88.78 ± 1.57 87.69 ± 1.39 84.60 ± 1.28 85.24 ± 1.83 83.84 ± 2.41

FLOOD 73.34 ± 0.91 73.95 ± 1.55 73.22 ± 1.67 88.05 ± 0.95 88.84 ± 1.62 87.81 ± 1.59 84.72 ± 1.41 85.35 ± 1.63 83.99 ± 2.51

CaNet 73.38 ± 0.95 74.08 ± 1.54 73.31 ± 1.55 88.11 ± 0.98 88.89 ± 1.67 87.91 ± 1.54 84.81 ± 1.31 85.39 ± 1.57 84.11 ± 2.58

IENE 73.43 ± 0.97 74.15 ± 1.58 73.32 ± 1.87 88.12 ± 0.94 88.90 ± 1.65 87.90 ± 1.66 84.92 ± 1.45 85.41 ± 1.68 84.45 ± 2.81

GDN 73.31 ± 0.81 73.99 ± 1.61 73.21 ± 1.68 88.14 ± 0.94 88.91 ± 1.64 87.92 ± 1.41 84.64 ± 1.33 85.27 ± 1.69 83.91 ± 2.78

HEI(Ours) 73.51 ± 0.81 74.18 ± 1.25 73.42 ± 1.85 88.50 ± 0.97 89.01 ± 1.24 87.99 ± 1.92 85.17 ± 1.53 85.44 ± 1.83 84.84 ± 1.97

GloGNN++

ERM 77.22 ± 1.78 78.15 ± 2.55 76.79 ± 2.54 89.24 ± 0.39 90.62 ± 0.99 88.75 ± 1.28 88.33 ± 1.09 90.06 ± 1.52 87.37 ± 1.64

ReNode 77.31 ± 1.69 78.27 ± 2.48 76.90 ± 2.39 89.25 ± 0.35 90.64 ± 0.87 88.79 ± 1.24 88.39 ± 1.21 90.11 ± 1.49 87.45 ± 1.57

SRGNN 77.33 ± 1.65 78.24 ± 2.75 76.91 ± 2.77 89.33 ± 0.51 90.81 ± 1.21 88.99 ± 1.57 88.53 ± 1.09 90.46 ± 1.53 87.58 ± 1.54

StruRW-Mixup 77.35 ± 1.57 78.27 ± 2.11 76.90 ± 2.42 89.48 ± 0.44 90.81 ± 0.97 89.17 ± 1.33 88.39 ± 1.44 90.15 ± 1.69 87.85 ± 1.77

EERM 77.35 ± 1.81 78.27 ± 2.45 76.89 ± 2.81 89.34 ± 0.39 90.82 ± 1.09 88.95 ± 1.38 88.39 ± 1.21 90.36 ± 1.42 87.47 ± 1.74

BAGNN 77.42 ± 1.81 78.35 ± 2.81 76.89 ± 2.42 89.37 ± 0.45 90.87 ± 1.29 88.99 ± 1.58 88.49 ± 1.31 90.39 ± 1.47 87.81 ± 1.64

FLOOD 77.43 ± 1.79 78.39 ± 2.51 76.95 ± 2.37 89.41 ± 0.51 90.91 ± 1.29 89.08 ± 1.58 88.51 ± 1.27 90.40 ± 1.51 87.88 ± 1.69

CaNet 77.42 ± 1.81 78.32 ± 2.54 76.75 ± 2.87 89.51 ± 0.58 90.97 ± 1.29 89.19 ± 1.61 88.54 ± 1.33 90.51 ± 1.61 88.11 ± 1.58

IENE 77.43 ± 1.79 78.39 ± 2.51 76.96 ± 2.58 89.52 ± 0.57 91.00 ± 1.44 89.22 ± 1.62 88.78 ± 1.37 90.79 ± 1.47 88.28 ± 1.49

GDN 77.44 ± 1.51 78.65 ± 3.75 76.97 ± 2.53 89.39 ± 0.51 90.97 ± 1.01 88.99 ± 1.21 88.29 ± 1.34 90.44 ± 1.91 87.89 ± 1.22

HEI(Ours) 77.85 ± 1.89 79.11 ± 2.59 77.30 ± 2.85 89.99 ± 0.39 91.52 ± 0.99 89.48 ± 1.33 88.93 ± 1.19 90.97 ± 1.39 88.47 ± 1.74
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Figure 6: Comparison experiments under Simulation Settings where exists severe distribution shift between train and test,
including 𝑇𝑟𝑎𝑖𝑛𝐻𝑖𝑔ℎ on 𝑇𝑒𝑠𝑡𝐿𝑜𝑤 and 𝑇𝑟𝑎𝑖𝑛𝐿𝑜𝑤 on 𝑇𝑒𝑠𝑡𝐻𝑖𝑔ℎ . We adopt the GloGNN++ as the backbone there.

Table 7: Comparison experiments on large-scale datasets when we respectively adopt local similarity(Local Sim), post-aggregation similarity
(Agg Sim), and SimRank as indicators to estimate nodes’ neighbor patterns so as to infer latent environments under Standard settings.

Backbones Methods Penn94 arxiv-year twitch-gamer

Full Test High Hom Test Low Hom Test Full Test High Hom Test Low Hom Test Full Test High Hom Test Low Hom Test

LINKX

HEI (Local Sim) 85.12 ± 0.21 88.28 ± 0.33 82.15 ± 0.59 54.41 ± 0.21 64.23 ± 0.47 48.29 ± 0.22 66.18 ± 0.12 83.75 ± 0.34 48.12 ± 0.47

HEI (Agg Sim) 85.21 ± 0.17 88.29 ± 0.38 82.22 ± 0.54 54.45 ± 0.23 64.33 ± 0.49 48.33 ± 0.32 66.21 ± 0.15 83..85 ± 0.39 48.45 ± 0.57

HEI (SimRank) 86.22 ± 0.28 89.24 ± 0.28 83.22 ± 0.59 56.05 ± 0.22 66.53 ± 0.41 49.33 ± 0.32 66.79 ± 0.14 85.33 ± 0.25 49.21 ± 0.57

GloGNN++

HEI (Local Sim) 86.08 ± 0.24 89.70 ± 0.64 82.18 ± 0.37 54.42 ± 0.24 64.48 ± 1.54 48.55 ± 0.64 66.30 ± 0.18 83.21 ± 0.68 49.00 ± 0.67

HEI (Agg Sim) 86.15 ± 0.25 89.70 ± 0.69 82.43 ± 0.38 54.44 ± 0.25 64.51 ± 1.54 48.69 ± 0.81 66.34 ± 0.21 83.19 ± 0.78 49.14 ± 0.57

HEI (SimRank) 87.18 ± 0.28 89.99 ± 0.65 83.59 ± 0.39 55.71 ± 0.24 66.29 ± 1.14 49.52 ± 0.75 66.99 ± 0.17 84.37 ± 0.68 50.40 ± 0.52
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Figure 7: Parameter Sensitivity of environmental numbers 𝑘 under Standard Settings.

utilizes the variance from multiple virtual environments as regu-

larization to help model training. We entirely follow this work to

address graph structure distribution shifts on heterophilic graphs.

BAGNN[9], Bias-aware(BA) GNN is also a method that deals

with agnostic distribution shifts on graphs from the perspective

of invariant learning. Specifically, it can be summarized into two

steps: the environment clustering module assigns nodes to envi-

ronments with minimization loss, and the invariant graph learning

module learns invariant representation across environments with

minimization loss. During the process of environment clustering, it

adopts the masking strategy with graph augmentation. We entirely

follow this work to address graph structure distribution shifts on

heterophilic graphs.

FLOOD[24], it is also a a flexible invariant learning framework

for OOD generalization on graphs. Specifically, it includes two

key modules, invariant learning, and bootstrapped learning. The

invariant learning modules construct multiple environments from

graph data augmentation and learn invariant representation under

risk extrapolation. Besides, the bootstrapped learning component is

inspired by test time adaptation, which proposes to train a shared

graph encoder with the invariant learning part according to the

test distribution. We entirely follow this work to address graph

structure distribution shifts on heterophilic graphs.

CaNet[36], it is a recently proposed invariant learning frame-

work that integrates an environment estimator with a mixture-

of-expert GNN predictor. , aiming to train robust GNNs under

node-level distribution shifts. Exactly, it holds the findings that the

crux of GNNs’ failure in OOD generalization lies in the latent con-

founding bias from the environment and proposes to estimate the

pseudo environments for each layer of the GNN network, assisted

causal inference. Their defined environments are different from the

environment we clarify in the paper, which is just stated from the

perspective of feature separation. We entirely follow this work to

address graph structure distribution shifts on heterophilic graphs.

IENE[39], it is also a recently proposed invariant learning frame-

work that identifies and extrapolates the node environment for

Out-of-Distribution Generalization on graphs. However, for extrap-

olating topological environments, they still adopt graph augmenta-

tion techniques to identify structural invariance, which is indeed

different from our strategy for inferring environments. We entirely

follow this work to address graph structure distribution shifts on

heterophilic graphs.

StruRW[23], it is a structure-reweighting method originally

designed for a new type of conditional structure shift (CSS), which

the current Graph domain adaptation approaches are provably sub-

optimal to deal with. We entirely follow this work to address graph

structure distribution shifts on heterophilic graphs.

GDN[36], it is a prototype learning method originally designed

for Graph Anomaly Detection. It teases out the anomaly features

and mitigates the effect of heterophilic neighbors by devising a

dynamically optimized prototype vector to guide the node rep-

resentation learning under graph structure distribution shift. We

entirely follow this work to address graph structure distribution

shifts on heterophilic graphs.

HEI (Ours), our training process can be concluded as follows:

Given a heterophilic graph input, we first calculate the SimRank

for each node in advance. Then, based on Eq. 9, we collectively

learn environment partition and invariant representation on het-

erophilic graphs, assisted by SimRank, to address graph structure

distribution shifts on heterophilic graphs. Therefore, we save the

processed SimRank values on nodes on the graph in advance and

transfer them into tensors for the training. For training details,

we should warm up for some epochs to avoid the learned envi-

ronments in the initial stage that are not effective, which may

influence the optimization of models. So at the beginning warm-

up stage, we adopt the ERM strategy. After that, we adopt our

proposed framework to learn an invariance penalty to improve

model performance. For the range of parameters, we first execute

experiments using basic backbones to get the best parameters of

num-layers and hidden channels on different datasets. Then, we

fix the num-layers and hidden channels to adjust other parameters,

penalty weight𝜆) from {1𝑒−, 1𝑒 − 2, 1𝑒 − 1, 1, 10, 100}, learning rate
from {1𝑒 − 2, 5𝑒 − 3, 1𝑒 − 3, 5𝑒 − 4, 1𝑒 − 4} and weight decay from

{1𝑒 − 2, 5𝑒 − 3, 1𝑒 − 3}. We also provide parameter sensitivity of

environment number 𝑘 in the paper. Moreover, the 𝜌 is a two-layer

MLP with the hidden channel from {16, 32, 64}, and its learning

rate should be lower than the backbone in our experiments, within

the range from {5𝑒 − 3, 1𝑒 − 3, 5𝑒 − 4, 1𝑒 − 4}.
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