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ABSTRACT

Interpretability is crucial for building safe, reliable, and controllable language
models, yet existing interpretability pipelines remain costly and difficult to scale.
Interpreting a new model typically requires costly training of model-specific
sparse autoencoders, manual or semi-automated labeling of SAE components,
and their subsequent validation. We introduce Atlas-Alignment, a framework
for transferring interpretability across language models by aligning unknown la-
tent spaces to a Concept Atlas — a labeled, human-interpretable latent space —
using only shared inputs and lightweight representational alignment techniques.
Once aligned, this enables two key capabilities in previously opaque models: (1)
semantic feature search and retrieval, and (2) steering generation along human-
interpretable atlas concepts. Through quantitative and qualitative evaluations,
we show that simple representational alignment methods enable robust seman-
tic retrieval and steerable generation without the need for labeled concept data.
Atlas-Alignment thus amortizes the cost of explainable AI and mechanistic in-
terpretability: by investing in one high-quality Concept Atlas, we can make many
new models transparent and controllable at minimal marginal cost.

1 INTRODUCTION

Large language models (LLMs) are increasingly deployed in domains where safety, reliability, and
controllability are critical. Yet, their internal representations and processes remain largely opaque to
their users, hindering verifiability and trust. Model activations capture the semantic and functional
structure of processing, but without the tools to interpret them, we cannot rigorously assess how a
model arrives at its outputs or intervene when it is behaving in unforeseen ways. Interpretability is
thus essential for both trust and reliability, as well as for practical control of model behavior.

Advances in mechanistic interpretability and explainable AI have begun to uncover these latent
structures using sparse autoencoders (SAEs) (Bricken et al., 2023) and automated feature-discovery
pipelines (Bills et al., 2023; Choi et al., 2024; Dreyer et al., 2025). These can, for instance, ex-
tract latent features that are both monosemantic and can be described in natural language through
human labeling. Such features enable analysis of reasoning processes and make controlled inter-
ventions on model activations easier. However, current interpretability methods remain costly and
difficult to scale. Each new model and layer requires training SAEs, generating feature descriptions,
and validating them individually. The need to explain each new model variant from scratch makes
comprehensive interpretability computationally expensive and often infeasible.

In this work, we pursue a complementary direction: rather than interpreting each model in isolation,
we ask whether interpretability can be transferred across models. We introduce Atlas-Alignment,
a framework for aligning the latent space of an unknown “subject model” to a well-understood,
human-labeled latent space that we refer to as Concept Atlas. Once aligned, the subject model
inherits the interpretability of the Concept Atlas: its features can be semantically queried, compared,
and steered without the need for costly SAE training or labeled concept datasets.

Atlas-Alignment builds on two complementary hypotheses. The Linear Representation Hypothe-
sis suggests that semantic concepts are often linearly encoded as directions in latent spaces (Park
et al., 2024), while the Platonic Representation Hypothesis suggests that different LLMs converge
on broadly similar latent structures (Huh et al., 2024). Together, these imply that a single, carefully
constructed Concept Atlas could serve as a universal “concept hub”. By aligning subject models
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Figure 1: Atlas-Alignment makes the latent space of a subject model interpretable by aligning it
with a Concept Atlas — a human-interpretable, labeled latent space. Left: The subject model’s hid-
den representations are mapped into the Concept Atlas, allowing each subject feature to be described
as a combination of atlas concepts. Right: Once aligned, the method enables a range of interpretabil-
ity tasks. (A) One or multiple concepts are selected from the Atlas, (B) corresponding subject model
components are identified, or (C) the subject model’s output is steered along the concept direction.

to this atlas using only shared input data and lightweight transformations, we can recover semantic
structure and enable plug-and-play interpretability across a wide range of models.

This translation unlocks several capabilities. Aligned models support semantic search and grouping
of features, cross-model and cross-layer comparison of representations, and controllable steering
of generation along human-interpretable directions, allowing us to navigate yet unexplored latent
spaces — all without training probes or SAEs, or generating synthetic datasets. Crucially, the cost
of interpretability is amortized: a single high-quality Concept Atlas can make many new models
transparent and steerable at a minimal marginal cost. Although in this work we mainly interact
with features of the MLP- and residual stream layers, due to the existence of high-quality labeled
latent spaces in these domains, we believe a promising application of our framework lies in the
translation of attention heads, which often perform specialized tasks such as context retrieval within
Transformer models (Kahardipraja et al., 2025).

Our contributions are as follows:

1. We introduce Atlas-Alignment, a simple and general framework for translating be-
tween feature spaces in language models using Concept Atlases, shared input data, and
lightweight representational alignment methods.

2. We demonstrate the practical applications of Atlas-Alignment for semantic feature search
and semantic steering without the need for labeled concept-data.

3. We provide a quantitative evaluation of how various representational alignment methods
perform in our framework, measuring their translation quality, semantic retrieval perfor-
mance, and controllability in steering.

In the following sections, we first review related work on interpretability and representational align-
ment (Section 2). We then introduce the Atlas-Alignment framework, including the construction of
Concept Atlases and the methods used for latent space translation (Section 3). Next, we present ex-
perimental results demonstrating semantic feature identification, cross-model retrieval, and concept
steering (Section 4). Finally, we discuss the implications and limitations of our approach (Sec-
tion 5).

2 RELATED WORK

Features and Concepts Neural network neurons and their linear combinations have been shown to
encode human-aligned concepts to a surprising degree Achtibat et al. (2023); Bykov et al. (2023).
Supervised methods for identifying such features typically rely on curated concept datasets to lo-
cate directions or neurons of interest (Kim et al., 2018; Bau et al., 2017). Although effective, these
methods are inherently limited to the pre-defined choice of concepts.
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Unsupervised approaches instead examine activations from large, unlabeled datasets to discover
semantic clusters. A particularly influential line of work has been the development of sparse au-
toencoders (SAEs) (Bricken et al., 2023), which decompose polysemantic features into sparse, more
monosemantic ones, which are often highly interpretable.
This progress has increased the need for methods that assign meaning to features in a scalable man-
ner. Recent work automates the generation of natural language descriptions of features (Bills et al.,
2023; Paulo et al., 2024; Templeton et al., 2024), along with evaluation methods to assess their qual-
ity (Bills et al., 2023; Kopf et al., 2024; Puri et al., 2025; Gur-Arieh et al., 2025). However, these
pipelines remain costly: each new latent space typically requires training SAEs, producing feature
descriptions, and validating them before meaningful semantic interaction becomes possible.
A complementary direction leverages existing latent spaces to interpret others. For instance, CLIP
embeddings (Radford et al., 2021) have been used to describe or query vision model features in
semantic terms (Oikarinen & Weng, 2023; Dreyer et al., 2025).
Our approach, Atlas-Alignment, extends this idea. We exploit an interpretable SAE latent space
and transfer its semantics into a subject model we wish to understand. This enables semantic inter-
pretation and steering of features without fine-grained concept datasets or costly re-interpretation of
each new latent space.

Aligned Latent Representations Since our goal is to translate concepts across latent spaces, a nat-
ural question is whether two models’ latent spaces actually represent concepts in a transferable way.
Here, the Platonic Representation Hypothesis (Huh et al., 2024) provides a theoretical motivation:
it posits that, as models scale in size, data, and task diversity, they converge on a shared model of
reality, resulting in similar latent spaces across architectures and even modalities. Complementarily,
the linear representation hypothesis (Park et al., 2024) argues that many human-aligned concepts
are encoded approximately linearly in activation space. Although these hypotheses will not hold
perfectly in practice, together they provide a theoretical basis for meaningfully transferring concepts
across the latent spaces of different models.
Building on these ideas, several works have approached cross-model alignment from a practical
perspective. Jha et al. (2025) train mappings between models and a shared latent space using an un-
supervised cycle consistency loss approach, while Thasarathan et al. (2025) propose training SAEs
that jointly decompose representations from multiple models, creating a shared backbone concept
space. However, both approaches require expensive training and can additionally suffer from high
reconstruction loss.
Closely related to our work, Huang et al. (2025) study cross-model steering by creating steering
vectors and transferring them across models using a linear mapping learned from small contrastive
datasets. While their focus lies on transferring steering directions created from labeled concept
datasets, our approach leverages the full structure of a Concept Atlas, an interpretable latent space,
to transfer concepts in an unsupervised manner. This enables not only steering without labeled data,
but also broad interpretability of features across models.

3 METHOD

Our goal is to align the latent representations of a subject model (of which we have no prior under-
standing) with a Concept Atlas, a labeled and interpretable latent space derived from a foundation
model. Once aligned, the subject model inherits the interpretability of the atlas: its features can be
queried, compared, and modified along semantically meaningful directions.

This alignment requires only shared input data: by presenting the same dataset to both models and
comparing activations, we can construct lightweight mappings that reveal the semantic structure of
otherwise uninterpretable features.

3.1 BACKGROUND AND NOTATION

Let X = {x1, . . . , xN} be a dataset, where each sample xi is a sequence of text. The subject model
fs : X → Hs, maps from data domain X into an intermediate feature space Hs, an unknown
space we aim to interpret. The foundation model ff : X → C maps from the data domain into our
Concept Atlas C, a feature space that is semantically interpretable. Forwarding the dataset through
the models and applying max-pooling over the sequence lengths, we retrieve aggregated activation
matrices As ∈ RN×ds and Ac ∈ RN×dc .

3
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3.2 CONCEPT ATLAS

The Concept Atlas is our reference space of interpretable features, where each dimension corre-
sponds to a human-understandable concept. We rely on SAEs to construct our Concept Atlas due
to their strength in producing sparse, monosemantic and human-interpretable latent spaces. Each
Concept Atlas feature ck ∈ C can be assigned a natural language description dk ∈ D via manual
or automatic labeling methods. This annotated atlas serves as a “semantic dictionary”, where every
feature corresponds to a concept humans can name and reason about. We can combine multiple fea-
tures and weight them according to the concepts we want to identify or steer. Aligning new models
to this space lets us carry over those semantics without repeating the costly process of building and
labeling SAEs from scratch.

3.3 TRANSLATING LATENT SPACES

We define a translation function that expresses subject model features of a layer in terms of the
Concept Atlas features

translate : RN×ds × RN×dc → Rds×dc , (Ac, As) 7→ Ts→c (1)

Each row of the resulting matrix Ts→c represents a subject model feature in terms of the Concept
Atlas features. This function can be instantiated with standard representational alignment methods.
As an example, we show the Orthogonal Procrustes method. All methods used in this work are
described in the Appendix A.3.

Orthogonal Procrustes Translation: Constrains the translation matrix to be orthogonal, so the
alignment is a pure rotation or reflection of the space

translate OP(As, Ac) = argmin
Ts→c

∥As −AcT
⊤
s→c∥2F s.t. Ts→cT

⊤
s→c = I (2)

After a row-wise L2-normalization of the activations, this is equivalent to minimizing the cosine
distance between activations.

3.4 USING LATENT SPACE TRANSLATIONS

Once the mapping is learned, we can use the matrix Ts→c and the knowledge encoded in the Concept
Atlas to make the subject model latent space both interpretable and controllable. This involves three
steps: Creating a Concept Query, mapping it into the subject model latent space, and applying it for
retrieval or steering. For a visualization of the approach, see Figure 1. See Figure 2 for an example.

1. Creating a Concept Query The Concept Query qc∈Rdc is a vector that represents the concept
of interest in terms of Concept Atlas features. We can construct it in several ways: Firstly, we
can directly use the feature descriptions D of the Concept Atlas and set the indices of features that
are relevant to the concept to a value of one, while setting the rest to zero. Secondly, we can use
embedding models to embed both a human query and the feature descriptions D and retrieve the
descriptions that are closest to it. We set the indices of relevant features to one (or a similarity
score), and the rest to zero. Finally, similar to how one would create a steering vector, we can also
build averaged or contrastive concept queries in the Concept Atlas, by forwarding a set of concept
related sequences through the foundation model and aggregating their latent space activations. This
flexibility allows us to use both human-guided and data-driven concept definitions.

2. Mapping to the subject model We map the concept query vector to the subject model space
using the row-normalized cosine similarity between the query vector qc and the Ts→c matrix

sc = T̂s→c
qc

∥qc∥2
where T̂s→c [k,:] =

Ts→c [k,:]

∥Ts→c [k,:]∥2
(3)

The resulting similarity vector sc∈Rds scores each subject feature by its alignment with the chosen
concept.
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Figure 2: Examples of identification and steering using Concept Atlas features. (A) A Concept
Query is constructed from Atlas features related to the topic “secrets and deception” and mapped
into subject model latent spaces. (B) In Llama-Base layer 20, the alignment reveals features that
encode similar concepts. (C) In Llama-IT, the same query is used to steer generation, shifting
outputs toward concept-related text.

3. Identification and Steering We use the similarity vector sc to identify which subject model
features encode the target concept. Each entry of sc measures how strongly a feature aligns with the
concept. Investigating the top-scoring features answers the question: “where, and to what degree,
is the concept represented in the subject model’s latent space?” In this way, the previously opaque
feature space becomes searchable and interpretable.

The same vector sc also provides a direction for intervention. By adding a scaled version of sc to
the subject model activations at inference time

a(modified) =
(
a(original) + λ sc

)
· ∥a(original)∥2
∥a(original) + λ sc∥2

(4)

we can steer the model’s behavior along the chosen concept, analogous to steering with vectors
derived from labeled datasets. Here λ is a scalar that controls the strength of the intervention.
Because sc is obtained without supervision, this provides a fast, concept-data free mechanism to
control model behavior.

4 EXPERIMENTAL RESULTS

In section 4.1 we outline the implementation details. In section 4.2 we demonstrate how Atlas-
Alignment can be used to identify relevant features and modify model outputs. In section 4.3 we
quantitatively evaluate the semantic content transfer between Concept Atlas and subject models and
in section 4.4 we quantitatively evaluate concept steering capabilities.

4.1 IMPLEMENTATION DETAILS

We use a subset of the Pile dataset (Gao et al., 2020), preprocessed as described in Appendix A.2, re-
sulting in 1 million sequences and more than 30 million tokens for the Llama 3.1 family models. We
evaluate five translation methods: covariance, correlation, linear regression, Orthogonal Procrustes
with row-wise L2-normalization, and SemanticLens. Each method is trained on 500k samples, while
a disjoint set of 500k samples is reserved for the qualitative and quantitative evaluation.

We use three subject models: the base and instruction-tuned variants of Llama 3.1 8B (Dubey et al.,
2024), and the R1 Distill version of Llama 3.1 8B Instruct (Guo et al., 2025), referred to as Llama-
Base, Llama-IT, and Llama-R1. For these models, we use features from the MLP layers as la-
tent space. As Concept Atlases, we employ the Gemma 2 2B model (Riviere et al., 2024) with
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Concept Atlas Feature 13419: ”Chess-related terminology and figures.”
Llama-Base/ L3 [4693] ”White goes for a tactical blow19.Bxh7+ Kxh7 20.Rxd5; White is threaten-

ing to play Qe4+ followed by Rh5.”
Llama-R1/ L19 [4561] ”although an invasion on the seventh should still give him promising play in

exchange for the material deficit [18.Rxc3 Ne4 19.Bxe7 Nxc3 [..]”
Llama-IT/ L25 [10656] ”Houdini 3 Pro will now support hash tables up to 256 GB.The engine eval-

uations have been carefully recalibrated so that +1.00 pawn advantage [..]”,

Concept Atlas Feature 5095: ”Dream-related phenomena and vivid experiences.”
Llama-Base/ L3 [13065] ”But, our dreams often feel real to us despite blundering through the telling

of them.”
Llama-IT/ L19 [12796] ”In the car.’ There wasn’t anyone else in the car, and I decided that this was

a hallucination, the result of tiredness and [..]”,
Llama-R1/ L25 [8319] ”I managed to drift off to sleep again, and was jolted awake by the plane

touching down in Charlotte.”

Table 1: Example of feature identification using Concept Atlas queries, mapped via Orthogonal
Procrustes. The most similar feature and its maximally activating test sample are shown.

the Gemma Scope SAE encoder head at layer 20, in both the 16k (average l0 71) and 65k (aver-
age l0 114) configurations (Lieberum et al., 2024), trained on the residual stream activations and
denoted Gemma Scope 16k and Gemma Scope 65k. Unless otherwise specified, we use labels for
the Concept Atlas generated in Puri et al. (2025) using automated interpretability methods.

4.2 RESULTS

4.2.1 IDENTIFICATION OF FEATURES

We use qualitative examples to show how the latent space translations can help us identify subject
model features by linking them to queries from our Concept Atlas. Given a Concept Query, we
compute the subject model features similarities using the Ts→c matrix. We then select the features
with the highest scores and examine their maximally activating samples.

Table 1 shows representative examples of Concept Atlas features from Gemma Scope 16k mapped
to Llama-Base, Llama-IT and Llama-R1 using the Orthogonal Procrustes method.

Features with a high similarity show highest activations on samples that are semantically close to the
queried concepts. This illustrates how a simple alignment via Atlas-Alignment makes it possible to
identify concept-relevant features across different subject models.

4.2.2 CONCEPT STEERING

We next provide qualitative results to illustrate how Atlas-Alignment enables steering across lan-
guage models — modifying subject model outputs along concept directions.

Steering vectors are constructed from translated Concept Queries and added to the subject model
activations, after which we examine the resulting generations. Steering with single directions often
produces more incoherent generations, like endless repetitions of similar tokens. We instead com-
bine several semantically related features to obtain more robust concept directions. This reflects
the inherent difficulty of steering a model through its activations, given the non-linear connection
between latent representations and output text.

In Table 2 we present examples of steering with Concept Queries from Gemma Scope 16k mapped
to Llama-IT using Orthogonal Procrustes. We use a short seed prompt, let the model generate 100
tokens, and intervene with multiple steering factors λ. We apply steering simultaneously to layers
3, 12, 19, 25 and 30. Details on the used Concept Queries can be found in Appendix A.4.

The examples show that steering with Concept Queries can meaningfully guide model outputs to-
ward the chosen concept. Although steering is not always reliable, the results demonstrate that our
framework enables subject models to inherit controllability from Concept Atlas features, turning
them into semantically interpretable steering directions.
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Prompt: ”Sure, I always have a joke ready! Here is one:”
Unmodified: ”Why did the scarecrow win an award? Because he was outstanding in his field.

Get it? Outstanding in his field? Ahh, never mind. I was [..]”
Dogs and Cats: ”Why did the cat join a band? Because it wanted to be the purr-cussionist! Get it?

Purr-cussionist? Like a percussionist, but with a cat? [..]”
Reddit Comments: ”Why comment on this post? I’m not sure I understand the joke. Is it a joke about a

joke? I’m not sure I understand the joke. [..]”
London: ”Why did the Londoner bring a ladder to the party? Because they wanted to take

things to a higher level! (get it?) I know, I know, it’s a bit of a groaner, but [..]”

Table 2: Steering Llama-IT using Concept Atlas features from Gemma Scope 16k translated with
Orthogonal Procrustes.

Layer 3 Layer 12 Layer 19 Layer 25 Layer 30

Method AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

Linear Regression 0.75 0.15 0.75 0.15 0.77 0.17 0.74 0.14 0.74 0.14
Covariance 0.81 0.23 0.79 0.19 0.82 0.24 0.78 0.18 0.78 0.16
Cross Correlation 0.81 0.22 0.79 0.19 0.82 0.24 0.78 0.18 0.78 0.16
Semantic Lens 0.77 0.19 0.73 0.13 0.78 0.19 0.74 0.14 0.71 0.11
Orthogonal Procrustes 0.83 0.43 0.82 0.39 0.86 0.49 0.83 0.44 0.83 0.40

Table 3: Translation quality measured in AUROC and AP for single-feature queries from the Gemma
Scope 16k Concept Atlas into Llama-Base at different layers. Orthogonal Procrustes achieves the
strongest performance across all methods.

4.3 EVALUATING SEMANTIC TRANSLATIONS

Having qualitatively shown that Atlas-Alignment can transfer semantic concepts across models,
we now turn to quantitative evaluation. Assessing translation quality is non-trivial, and we focus on
two complementary goals. (1) General translation quality: how well does a translation align subject
model latent spaces with the Concept Atlas? (2) Semantic retrieval: how useful is the translation for
recovering semantic information from the subject model’s latent space?

4.3.1 TRANSLATION QUALITY

To measure how faithfully a translation connects the subject model latent space to the Concept Atlas,
we evaluate how consistently it preserves feature-sample relationships. For a given Concept Atlas
feature, we rank input samples by how strongly they activate that feature. We build a query vector
containing only the atlas feature, translate it into the subject model space, and rank the samples
based on the similarity to the concept vector sc. Comparing the two rankings tells us whether the
translation preserves the semantic signal.

We quantify this with the averaged AUROC and Average Precision (AP) metrics. AUROC captures
how well the translated feature distinguishes samples that activate the Concept Atlas feature from
those that do not, while AP emphasizes precision at the top of the ranking, measuring the degree to
which the most salient concept samples remain highly ranked after translation.

We use the test split of 500k sequences from the Pile subset, generated as described in Appendix
A.2 and report averages for 100 randomly selected features from the Gemma Scope 16k Concept
Atlas. For details on the sampled features see Appendix A.6.1.

Table 3 shows results for Llama-Base across several layers. Orthogonal Procrustes consistently
achieves the strongest performance, while simpler methods like covariance and cross-correlation lag
behind. The difference is most pronounced in AP, where Orthogonal Procrustes reaches 0.40–0.49
compared to a random baseline of 0.046. Similar patterns are observed for Llama-IT and Llama-R1
(see Appendix A.5).
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Gemma Scope 16K Gemma Scope 65K

MRR MPP MRR MPP
Method mean std mean std mean std mean std

Linear Regression 0.03 0.11 0.00 0.00 0.02 0.06 0.00 0.00
Covariance 0.16 0.30 0.01 0.03 0.12 0.27 0.01 0.02
Cross Correlation 0.25 0.36 0.01 0.04 0.26 0.37 0.02 0.04
Semantic Lens 0.80 0.36 0.05 0.12 0.79 0.37 0.05 0.13
Orthogonal Procrustes 0.97 0.13 0.92 0.21 0.97 0.12 0.94 0.19

Table 4: Semantic retrieval from Llama-IT Layer 19 into Gemma Scope 16k and 65k, measured
with MRR and MPP. Random baseline scores: MRR = 0.0147, MPP = 0.0022. Orthogonal
Procrustes consistently outperforms all other methods.

4.3.2 SEMANTIC RETRIEVAL

We next evaluate how well translations enable the retrieval of specific semantic features from the
subject model. This is particularly relevant for identifying subject features tied to concrete concepts.

To test this, we use ground-truth feature annotations. For each subject model feature i, we generate
a set of concept-related input sequences X(i) that reliably activate it. Averaging their max-pooled
activations in the Concept Atlas yields a targeted Concept Query q

(i)
c . We map this query into the

subject model space via Ts→c, and obtain similarity vector s(i)c ∈ Rds .

We evaluate retrieval performance using two ranking-based metrics: The Mean Reciprocal Rank
(MRR) reflects how highly the correct feature is ranked, with 1 indicating perfect retrieval and 1/ds
corresponding to random guessing. The Mean Predicted Probability (MPP) captures the confidence
in the choice, by assigning a softmax-normalized probability to the correct feature after z-score
normalization of the similarity. For formal definitions see Appendix A.6.

We use subject model features from Llama-IT Layer 19 and feature descriptions generated in Choi
et al. (2024). We generate 20 synthetic input sequences per feature to form the ground-truth concept
sets, on the basis of which we retrieve the features. To ensure validity, we (i) only include features
with reliable descriptions, here defined as features with a harmonic mean score > 0.75 on the
activation-based FADE metrics (Puri et al., 2025) and (ii) discard features where X(i) does not
maximally activate the chosen feature in the subject model latent space. This leaves us with a set of
454 validated features. Results are reported for Gemma Scope 16k and 65k Concept Atlases.

Table 4 shows that Orthogonal Procrustes achieves near-perfect retrieval, with MRR and MPP indi-
cating the correct feature is recovered almost every time and with high confidence. Linear regression,
covariance, and cross-correlation yield much lower scores, with linear regression close to random
baselines. Semantic Lens performs well in MRR but falls behind Orthogonal Procrustes on MPP.
The retrieval evaluation shows significant differences between the various translation methods, high-
lighting the importance of the choice. It also shows that we can reliably retrieve relevant features
using the Orthogonal Procrustes translation method.

4.4 EVALUATING STEERING

Finally, we evaluate how well different translation methods enable steering a subject model toward
specific concepts using only Concept Atlas features. For an evaluation of cross-model supervised
steering vectors, we refer to Huang et al. (2025).

We construct queries from multiple semantically related Concept Atlas features and map them into
the subject model’s latent space. The resulting vectors are injected as steering directions, and we
measure how strongly they increase the expression of the targeted concept in the generated outputs.
We quantify steering effectiveness using LLM-based ratings: generated sequences are classified as
expressing the target concept class or not. Faithfulness is defined as the maximal relative increase in
concept expression over the no-steering baseline,

faithfulness = max
i

rλi − rλ0

1− rλ0

× 100 (5)

8
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Llama-Base

Method L3 L12 L19 L25 L30 Combined
f ∆a f ∆a f ∆a f ∆a f ∆a f ∆a

Random 2.92 −0.27 3.20 −0.14 3.96 0.29 2.44 −0.26 4.01 −0.04 1.88 0.88
Cov 3.39 0.27 4.63 0.22 4.60 0.21 4.40 −0.05 11.39 1.89 13.02 1.44
CrossCorr 4.46 −0.07 5.04 0.48 6.07 0.51 3.33 0.10 11.70 1.62 8.26 2.35
LinReg 3.40 −0.03 4.86 0.38 4.25 −0.37 3.39 0.06 4.28 −0.18 5.05 −0.32
SemLen 5.32 −0.29 3.61 −0.30 3.18 −0.52 2.50 0.41 10.17 1.40 9.70 0.93
OrthProc 6.77 0.10 4.24 −0.14 8.96 0.65 4.17 0.04 32.62 4.32 31.42 3.83

Llama-IT

Random 2.94 0.40 5.00 0.68 4.97 −0.02 3.27 0.37 3.15 0.06 2.72 −0.01
Cov 3.76 0.29 4.97 0.33 6.97 0.59 3.53 0.38 12.08 3.88 12.21 1.81
CrossCorr 3.81 0.49 5.40 0.51 4.85 0.54 4.79 0.39 10.22 2.68 11.26 1.40
LinReg 4.46 0.28 5.58 1.13 6.68 0.44 3.30 −0.04 3.69 0.07 2.79 −0.82
SemLen 7.50 0.23 5.88 0.66 5.70 0.46 5.80 0.19 8.97 1.70 10.65 2.02
OrthProc 6.59 0.36 6.44 0.98 4.98 0.20 5.67 0.33 30.98 6.04 41.80 6.66

Table 5: Steering results on Llama-Base and Llama-IT measured with faithfulness (f ) and mean
activation change (∆a). Random steering provides the baseline. Steering up to layer 25 shows
smaller effects, while layer 30 shows strong increases, especially for Orthogonal Procrustes.

where rλi
is the share of concept-related generations at steering factor λi, and rλ0

is the baseline
share without steering. We report the faithfulness score as a percentage, averaged across Concept
Queries. As a complementary metric, we report the mean change in the Concept Atlas feature
activations. Here we exclude layers or queries where steering has no effects.

We construct 10 Concept Queries from Gemma Scope 16k and apply them to Llama-Base and
Llama-IT. Each query is evaluated on 16 seed prompts with 100-token continuations. Steering
factors are λ ∈ [−50,−10,−1, 0, 1, 10, 50]. As a baseline, we use random steering directions.
Outputs are rated by gpt-4o-mini-2024-07-18 (OpenAI, 2024), sampled three times with
temperature 1, using the median label. Further details are provided in Appendix A.7.

Table 5 shows that steering in early and mid layers (3–25) results only in small gains over the random
baseline, with faithfulness rarely above 7–9%. In contrast, layer 30 exhibits pronounced effects: co-
variance, cross-correlation, and Semantic Lens reach 9–12%, while Orthogonal Procrustes exceeds
30% on Llama-Base and 40% on Llama-IT, with strong activation changes.

These results indicate that effective atlas-based steering is concentrated in the final layers, and that
Orthogonal Procrustes provides the most reliable path to semantically controllable interventions.

5 DISCUSSION

Limitations: While we demonstrate reliable transfer of semantic concepts between the Gemma
Scope Concept SAE and the Llama 3.1 family models, our framework relies on the assumption that
different models learn comparable concepts, as suggested by the Platonic and Linear Representation
Hypotheses. Similar to the training of SAEs, it also requires that the translation dataset contains
sufficient variety to cover the full set of atlas features and concepts. In addition, our current design
discards positional information through the max-pooling of activations. Future work could address
these limitations and further test the robustness of the framework.

Conclusion: In this work, we introduce Atlas-Alignment, a framework for transferring inter-
pretability across language models by aligning unknown latent spaces to a well-understood Concept
Atlas. We show that lightweight alignment methods, particularly Orthogonal Procrustes, enable
robust semantic transfer, reliable concept retrieval, and controllable generation based solely on Con-
cept Atlas features. We hope that this approach can serve as a starting point for future investigations
into cross-model alignment as a foundation for interpretability, and encourages the development and
evaluation of further alignment methods. More broadly, we hope to make interpretability more scal-
able and effective by allowing a single high-quality atlas to be used across many different models.
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and Kirill Bykov. Cosy: Evaluating textual explanations of neurons. In Advances in Neu-
ral Information Processing Systems 38: Annual Conference on Neural Information Processing
Systems 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/
hash/3d4c0a618d0acd7921493e4f30395c22-Abstract-Conference.html.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, Janos Kramar, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2. In Yonatan Belinkov, Najoung Kim, Jaap

11

https://doi.org/10.1038/s41586-025-09422-z
https://aclanthology.org/2025.acl-long.288/
https://aclanthology.org/2025.acl-long.288/
https://aclanthology.org/2025.acl-long.185/
https://openreview.net/forum?id=BH8TYy0r6u
https://openreview.net/forum?id=BH8TYy0r6u
https://arxiv.org/abs/2505.12540
https://arxiv.org/abs/2505.15807
https://proceedings.mlr.press/v80/kim18d.html
https://proceedings.mlr.press/v80/kim18d.html
http://papers.nips.cc/paper_files/paper/2024/hash/3d4c0a618d0acd7921493e4f30395c22-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/3d4c0a618d0acd7921493e4f30395c22-Abstract-Conference.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jumelet, Hosein Mohebbi, Aaron Mueller, and Hanjie Chen (eds.), Proceedings of the 7th Black-
boxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pp. 278–300, Miami,
Florida, US, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
blackboxnlp-1.19. URL https://aclanthology.org/2024.blackboxnlp-1.19/.

Tuomas Oikarinen and Tsui-Wei Weng. Clip-dissect: Automatic description of neuron representa-
tions in deep vision networks, 2023. URL https://arxiv.org/abs/2204.10965.

OpenAI. Gpt-4o mini: advancing cost-efficient intelligence, July 2024. URL https://openai.
com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geom-
etry of large language models. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian
Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st In-
ternational Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 39643–39666. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.
press/v235/park24c.html.
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A APPENDIX

A.1 LICENSES

Gemma-2-2b is released under a custom Gemma Terms of Use. Gemma Scope SAEs
are released under Creative Commons Attribution 4.0 International. Llama3.1-8B,
Llama3.1-8B-Instruct are released under a custom Llama 3.1 Community License. Pile Un-
copyrighted dataset and Deepseek R1-Distill-Llama-8B is released under MIT License.

A.2 DATASET GENERATION

For our experiments, we use a subset of the uncopyrighted version of the Pile dataset (Gao et al.,
2020), with all copyrighted content removed. Following the procedure outlined in Puri et al. (2025),
we sample from the test partition while preserving the relative proportions of the original data
sources. The sampled texts are further preprocessed using the NLTK sentence tokenizer (Bird et al.,
2009) to divide larger passages into smaller sequences. We then filter out sentences in the bottom
and top fifth percentiles of length, which typically corresponded to out-of-distribution cases such as
single words, isolated characters, or unusually long outliers. Next, we remove sentences consisting
only of numbers or special characters and deduplicate the resulting set.
The final dataset contains 1M sequences, averaging 120.4 characters (SD 72.5) with lengths ranging
from 2 to 391. Using the Llama 3.1 8B tokenizer, these correspond to an average of 30.1 tokens (SD
18.6). We split the data into two subsets of 500k samples each for training and evaluation.

A.3 TRANSLATION METHODS

We list here further translation methods used in this work:

• Covariance:

translate Cov(As, Ac) = Ã⊤
s Ãc with Ãi = Ai − µi (6)

where µi is the vector of column means of Ai.
• Correlation:

translateCorr(As, Ac) = D−1
s Ã⊤

s Ãc D
−1
c with Ãi = Ai − µi, Di = diag

(
σi

)
, (7)

where µi is the vector of column means of Ai and σi is the vector of column standard
deviations of Ai.

• Linear Regression: A straightforward way to translate feature spaces is by using linear
regression. It finds the translation that minimizes squared reconstruction error between
subject and atlas activations

translate OLS(As, Ac) = argmin
Ts→c

∥As −AcT
⊤
s→c∥2F (8)

• Semantic Lens: A simplified version of Semantic Lens (Dreyer et al., 2025) can similarly
be applied. It represents each subject model feature by the subset of most activating sam-
ples. Specifically, we keep the top-k activations per feature, binarize them, and average the
corresponding Concept Atlas embeddings

translate SL(As, Ac) = Ã⊤
s Ac with Ãs [ij] =

1

k
· 1

{
As [ij] ∈ TopK(As [i,:], k)

}
(9)

where TopK returns the indices of the largest k values for the feature column As[i,:], thus
selecting the most salient samples per subject model feature. This describes each subject
feature as the mean Concept Atlas embedding of its most salient samples.

A.4 QUALITATIVE STEERING QUERIES

We use queries generated from Concept Atlas features from the Gemma Scope 16k SAE in layer 20.
All features are weighted equally with a weight of 1. In table 6 we name the concept and the feature
numbers along with the used modification factor.
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Concept Features Modification Factor

reddit comments [1786, 13945, 9829, 9346, 9736, 13851, 7937, 1914, 2402,
3204, 12203, 10075, 1917, 5067]

50

dogs and cats [6772, 1089, 12082, 13747] 50
london [5218, 12614] 35

Table 6: Concepts and their corresponding features from the Gemma Scope 16k SAE used in the
qualitative steering examples.

LinReg Cov CrossCorr SemLen OrthProc

AUROCAP AUROCAP AUROCAP AUROCAP AUROCAP

Llama-Base
L3 0.75 0.15 0.81 0.23 0.81 0.22 0.77 0.19 0.83 0.43
L12 0.75 0.15 0.79 0.19 0.79 0.19 0.73 0.13 0.82 0.39
L19 0.77 0.17 0.82 0.24 0.82 0.24 0.78 0.19 0.86 0.49
L25 0.74 0.14 0.78 0.18 0.78 0.18 0.74 0.14 0.83 0.44
L30 0.74 0.14 0.78 0.16 0.78 0.16 0.71 0.11 0.83 0.40

Llama-IT
L3 0.75 0.15 0.81 0.22 0.81 0.22 0.77 0.18 0.83 0.43
L12 0.74 0.15 0.79 0.19 0.79 0.19 0.72 0.13 0.81 0.38
L19 0.77 0.17 0.82 0.23 0.82 0.23 0.77 0.18 0.86 0.49
L25 0.74 0.14 0.78 0.18 0.78 0.18 0.73 0.14 0.83 0.44
L30 0.73 0.13 0.77 0.16 0.77 0.16 0.70 0.11 0.83 0.39

Llama-R1
L3 0.73 0.14 0.80 0.21 0.79 0.21 0.76 0.17 0.82 0.40
L12 0.73 0.13 0.78 0.17 0.77 0.17 0.71 0.12 0.80 0.36
L19 0.75 0.16 0.80 0.22 0.80 0.22 0.75 0.17 0.84 0.47
L25 0.72 0.13 0.76 0.17 0.76 0.17 0.72 0.13 0.82 0.42
L30 0.73 0.13 0.76 0.15 0.76 0.15 0.70 0.10 0.81 0.37

Table 7: Full evaluation of single-feature queries from the Gemma Scope 16k Concept Atlas across
Llama-Base, Llama-IT, and Llama-R1 at different layers. Reported are AUROC and AP. Orthogonal
Procrustes consistently yields the highest scores.

A.5 EVALUATION TRANSLATION QUALITY

Full Results for models Llama-Base, Llama-IT and Llama-R1 are presented in Table 7.

A.6 SEMANTIC RETRIEVAL

The Mean Reciprocal Rank (MRR) measures how highly the correct feature is ranked relative to all
others:

MRR =
1

ds

ds∑
i=1

1

1 +
∑

k ̸=i 1
[
s
(i)
i < s

(i)
k

] . (10)

A score of 1 indicates perfect retrieval, while 1/ds corresponds to random guessing.

The Mean Predicted Probability (MPP) measures the softmax-normalized probability assigned to
the correct feature after z-score normalization:

MPP =
1

ds

ds∑
i=1

exp
(
s̃
(i)
i

)
∑ds

k=1 exp
(
s̃
(i)
k

) , (11)

where s̃(i) is the similarity vector standardized by z-score normalization.
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A.6.1 IDENTIFICATION QUERIES

We use the following 100 Concept Atlas features from the Gemma Scope 16k L20 SAE to evaluate
the strength of ranking capabilities:

[464, 470, 496, 648, 662, 708, 775, 837, 908, 1029, 1031, 1217, 1287, 1375, 1554, 1555, 1768, 1796, 1814,

1837, 2385, 2423, 2483, 2712, 2717, 2720, 2782, 2985, 3052, 3258, 4928, 5086, 5219, 5271, 5485, 5544, 5908,

5986, 5992, 6226, 6270, 6371, 6419, 6441, 6525, 6770, 6902, 6930, 7082, 7107, 7190, 7215, 7230, 7291, 7384,

7414, 7647, 7877, 8030, 8332, 8346, 8377, 8391, 8438, 8489, 8598, 8779, 9453, 9622, 9680, 9703, 9743, 9785,

10158, 10242, 10428, 10793, 10819, 10964, 11044, 11200, 11318, 11463, 11668, 11769, 12116, 12373, 12417,

12516, 12549, 12744, 13215, 13293, 13437, 13547, 13708, 13719, 14131, 14660, 14694]

A.7 STEERING EXPERIMENT

The following seed sequences are used to initialize model generations:

"Once upon a time",
"I just started",
"The candidate",
"Section 1",
"Documents",
"The capital of",
"Let me tell you a joke",
" ",
"French cuisine",
"do_sample=False",
"Would you like to know",
"It is widely used",
"\\scalebox{0.85}{$\\mathcal{L} =",
"The team struggled",
"Hallo, woher denn",
"When you say",

To automatically rate the outputs, we use the OpenAI model gpt-4o-mini-2024-07-18 Ope-
nAI (2024). The model is instructed to classify sequences according to whether a given concept
is expressed: class 0 means the concept is absent, class 2 means it is clearly present, and class 1
(vague/partial) is excluded to reduce spurious correlations. The rating prompt is:

You are given a TOPIC and a set of sequences. Score each sequence for whether the TOPIC is expressed,
counting either literal string matches or clear semantic references (either is sufficient).
Scoring: 2 = present. 1 = vague/partial. 0 = not expressed. Score independently per sequence.
Each sequence has a unique ID. Provide your ratings as a Python dictionary with sequence IDs as keys and
respective ratings as values.
Output only the dictionary - no additional text, comments, or symbols.
Below we show examples of input and outputs for three topics.

Example Input: ’Concept: Germany\n
Sequence ID 0: "German scientists unveiled a new fusion experiment."\n
Sequence ID 1: "Berlin’s Brandenburg Gate was illuminated last night."\n
Sequence ID 2: "A Munich-based automaker expanded its EV lineup."\n
Sequence ID 3: "Several European countries adjusted tax policy."\n
Sequence ID 4: "The federal republic that reunified in 1990 tightened export rules."\n
Sequence ID 5: "country = \"Deutschland\""\n
Sequence ID 6: "Mount Fuji is a popular destination for hikers."\n
Sequence ID 7: "Silicon Valley companies are racing ahead in AI."’
Example Output: ’{{\"0\": 2, \"1\": 2, \"2\": 2, \"3\": 0, \"4\": 2, \"5\": 2, \"6\": 0, \"7\": 0}}’

Example Input: ’Concept: Football\n
Sequence ID 0: "The quarterback threw a 60-yard touchdown pass."\n
Sequence ID 1: "The UEFA Champions League final kicks off on Saturday."\n
Sequence ID 2: "topic = \"football\""\n
Sequence ID 3: "#football fans filled the stadium after the derby."\n
Sequence ID 4: "The offside rule was explained by the referee."\n
Sequence ID 5: "The match ended 2-1 after extra time."\n
Sequence ID 6: "The chef prepared sushi with fresh tuna."\n
Sequence ID 7: "Quantum entanglement was demonstrated in a new experiment."’
Example Output: ’{{\"0\": 2, \"1\": 2, \"2\": 2, \"3\": 2, \"4\": 2, \"5\": 1, \"6\": 0, \"7\": 0}}’

Example Input: ’Concept: Paris\n
Sequence ID 0: ", there was a young Parisian named Hugo. He found a book filled with maps."\n
Sequence ID 1: "Paris, Texas, USA, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016..."\n
Sequence ID 2: "renowned for its cuisine, and the Parisians are proud of their heritage."\n
Sequence ID 3: "# (1)\nimport numpy as np"\n
Sequence ID 4: "to use the ‘git‘ command to get the latest version of the ‘paris‘ tool, run these steps..."\n
Sequence ID 5: "You can write ’konnichiwa’ in the title, but not the word ’Tokyo’."’
Example Output: ’{{\"0\": 2, \"1\": 2, \"2\": 2, \"3\": 0, \"4\": 2, \"5\": 0}}’
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A.7.1 EVALUATION STEERING QUERIES

We use queries generated from multiple Concept Atlas features from the Gemma Scope 16k SAE
in layer 20. All features are weighted equally with a weight of 1. In table 8 we show the broad
concepts and the feature numbers.

Concept Features

reddit comments [1786, 13945, 9829, 9346, 9736, 13851, 7937, 1914, 2402, 3204, 12203, 10075, 1917, 5067]
dreams and imagination [5095, 6195, 320, 9017, 9273, 7225, 11922, 1974, 5755, 6576, 13207, 7342, 10331, 2104, 12727, 1631, 10669, 14509, 8630]
gardening [6607, 568, 1689, 13279, 5514, 10459, 3138, 9328, 6056, 1676, 12871, 10010, 5680, 7747, 10759, 6369, 9839, 6316, 9125,

10678, 7360, 12587, 5317, 9396, 2725]
science fiction and fantasy [6020, 9273, 8850, 8544, 3088, 6139, 3120, 6561, 2942, 11922, 2777, 8877, 5267, 6990, 2212, 11512, 13710, 1659, 7995, 10004,

779, 12857, 12899, 7365, 8927, 13805, 13602]
eating [13834, 11544, 1351, 2793, 11867, 5898, 7683, 5531, 9027, 1247, 8513, 9750, 11847, 12394, 5838, 13497, 6621, 11491, 184,

8337, 8991, 668, 1538, 14334, 2480, 1632, 8771, 6657, 9125, 6847, 2247, 13567, 6643]
smart devices [6211, 11318, 257, 5110, 8672, 7105, 14663, 12058, 8356, 1341, 13177, 13000, 948, 5950, 5078, 5791, 13434, 8092, 2942, 5833,

8450, 11350, 8124, 14292, 63, 13363, 1446]
driving and cars [856, 6418, 11182, 3178, 6571, 5814, 11212, 11620, 5877, 14326, 7054, 7732, 8038, 10526, 6964, 10870, 14386, 11957, 10196,

11028, 14566, 13018, 11309, 2724, 9791, 3154, 6375, 7224, 1336, 10172, 207, 9032, 6767, 14137]
dogs and cats [6772, 1089, 12082, 13747]
video games [8877, 13641, 12839, 13962, 3016, 12805, 13317, 13596, 13064, 7522, 14643, 10390, 5864, 8026, 67, 3089, 5380, 2003, 211,

9270, 1537, 14751, 12039, 4950, 6538, 14259, 1276, 5979, 2942]
health and well-being [12413, 986, 5090, 13997, 6624, 12235, 668, 2162, 10317, 155, 11583, 12425, 9404, 2963, 11867, 7943, 2009, 1705, 2912,

10078, 13216, 12593, 1462, 10355, 49, 11043, 5522, 8521]

Table 8: Multi Query Features and the corresponding features from the Gemma Scope 16k SAE
used in the steering evaluation.

A.8 USE OF LARGE LANGUAGE MODELS

We used large language models to polish and refine the text for clarity and style.
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