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Abstract

This paper explores cost-efficient methods001
to adapt pretrained Large Language Models002
(LLMs) to new lower-resource languages, with003
a specific focus on Estonian. Leveraging the004
Llama 2 model, we investigate the impact005
of combining cross-lingual instruction-tuning006
with additional monolingual pretraining. Our007
results demonstrate that even a relatively small008
amount of additional monolingual pretraining009
followed by cross-lingual instruction-tuning010
significantly enhances results on Estonian. Fur-011
thermore, we showcase cross-lingual knowl-012
edge transfer from high-quality English instruc-013
tions to Estonian, resulting in improvements014
in commonsense reasoning and multi-turn con-015
versation capabilities. Our best model, named016
LLAMMAS, represents the first open-source017
instruction-following LLM for Estonian. Ad-018
ditionally, we publish Alpaca-est, the first gen-019
eral task instruction dataset for Estonia. These020
contributions mark the initial progress in the021
direction of developing open-source LLMs for022
Estonian.023

1 Introduction024

Instruction-tuning is a method for aligning large025

language models (LLMs) with human preferences026

(Ouyang et al., 2022; Mishra et al., 2022; Wei et al.,027

2021). However, the majority of instruction-tuning028

datasets and advancements focus on English. More-029

over, to benefit from instruction tuning, a strong030

foundation model is needed but due to the exten-031

sive training training data required, such models032

are available only for a few languages.033

To overcome the lack of a strong foundation034

model in the target language, one could try to elicit035

non-English abilities from English-centric LLMs036

through cross-lingual instruction-tuning. In this037

setup, instructions are given in both English and the038

target language, often including a translation task039

to directly stimulate the alignment (Ranaldi et al.,040

2023; Ranaldi and Pucci, 2023; Zhu et al., 2023).041

While empirical evidence indicates benefits from 042

incorporating translation-following demonstrations 043

into the training dataset, the best training strategy 044

and its effectiveness with monolingual finetuning 045

remain unclear. 046

In this paper, we investigate these aspects in the 047

context of creating an instruction-following model 048

for Estonian. We focus on a low-resource scenario 049

where only a relatively small amount of monolin- 050

gual data is available. By utilizing a novel general 051

task instruction dataset, Alpaca-est, we examine the 052

impact of combining monolingual pretraining with 053

cross-lingual instruction-tuning using both general 054

and translation task instructions. Our experiments 055

with Llama 2 (Touvron et al., 2023b) demonstrate 056

the benefits of translation task instructions when 057

no monolingual data is available for additional pre- 058

training. However, monolingual pretraining greatly 059

diminishes the importance of the translation task. 060

Furthermore, we showcase that supplementing 061

our instruction-tuning dataset consisting of Alpaca 062

(Taori et al., 2023) and Alpaca-est with high-quality 063

English instructions and English conversations fur- 064

ther enhances results on Estonian through cross- 065

lingual knowledge transfer. This is reflected in 066

improved commonsense reasoning and the ability 067

to engage in multi-turn conversations despite no 068

Estonian conversations used during training. As 069

a result, we present LLAMMAS - the first open- 070

source instruction-following conversational LLM 071

for Estonian that achieves competitive zero-shot 072

performance on multiple tasks. 073

2 Related Work 074

2.1 Instruction Tuning 075

Instruction-tuning is a method for guiding pre- 076

trained LLMs to follow natural language instruc- 077

tions (Ouyang et al., 2022; Mishra et al., 2022; 078

Wei et al., 2021; Sanh et al., 2021; Chung et al., 079

2022; Wang et al., 2022b). For that purpose, both 080
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human-written and synthetic instructions generated081

with LLMs have been shown to work remarkably082

well (Wang et al., 2022b, 2023b). One of the pre-083

requisites for instruction-tuning is the availability084

of a strong pretrained language model which due085

to high training costs is the major limiting fac-086

tor for many to contribute to the development of087

LLMs. Fortunately, over the last year, a few foun-088

dation models (Workshop et al., 2022; Touvron089

et al., 2023a,b; Jiang et al., 2023) have been pub-090

licly released which somewhat mitigates the issue.091

However, the models are mostly trained on English092

and perform poorly on other languages.093

A common method of acquiring instruction data094

is using strong proprietary models such as GPT-095

4 for generating instructions (Taori et al., 2023;096

Chiang et al., 2023; Wang et al., 2022a). However,097

Gudibande et al. (2023) have shown that models098

trained on these generated datasets learn to imitate099

the style of strong LLMs but not necessarily the100

factuality.101

2.2 Cross-lingual Instruction Tuning102

Cross-lingual instruction tuning is a training103

method where the model is simultaneously104

instruction-tuned on instructions in multiple lan-105

guages. Its goal is to strengthen cross-lingual se-106

mantic alignment in LLMs to make them under-107

stand and generate texts in a selected target lan-108

guage. In practice, it is one of the most cost-109

efficient ways to create instruction-following mod-110

els for languages where data-heavy pretraining is111

not possible.112

The approach has been explored, for example,113

by Zhu et al. (2023) and Ranaldi et al. (2023) who114

both use original and translated versions of Alpaca115

(Taori et al., 2023) dataset. Moreover, they both116

report additional benefits from supplementing the117

general task instruction datasets with translation118

task instructions. However, their approaches dif-119

fer in the size of translation datasets. Zhu et al.120

(2023) use datasets that sometimes contain around121

10 times more translation task instructions than gen-122

eral task instructions. Ranaldi et al. (2023) employ123

a translation task instruction dataset that contains124

only 20K instructions. Additionally, while Zhu125

et al. (2023) report benefits from using English to126

target language translations, Ranaldi et al. (2023)127

demonstrated that using both translation directions128

together is better than translating to only one direc-129

tion.130

Zhang et al. (2023a) propose to combine the task131

of strengthening cross-lingual semantic alignment 132

and instruction-tuning via a multi-turn translation 133

task. Zhang et al. (2023b) utilize the capabilities of 134

LLMs to comprehend and execute instructions in a 135

high-resource language by using that high-resource 136

language as a pivot language during response gen- 137

eration for the target language. 138

2.3 Monolingual Pretraining 139

Another way to improve the ability of English- 140

centric pretrained LLMs to understand and gen- 141

erate content in a target language is via continued 142

pretraining on data in the target language. For 143

example, Cui et al. (2023) continue pre-training 144

LLaMA family models on a large-scale monolin- 145

gual Chinese corpus before the instruction-tuning. 146

Xu et al. (2023) show that continued pre-training 147

with even a relatively small monolingual dataset 148

can significantly improve the results of the trans- 149

lation instruction task. Moreover, they show that 150

after continued pre-training only a small amount 151

of high-quality parallel data is required to reach 152

competent translation. Their analysis even discour- 153

ages training with larger amounts as it leads to the 154

dilution of the model’s intrinsic knowledge. 155

3 Training Data 156

3.1 General Task Instructions 157

3.1.1 Alpacas 158

We combine the original Stanford Alpaca dataset 159

(Taori et al., 2023) with an Estonian version of 160

it which we create by ourselves. We refer to the 161

combination of these two datasets as Alpacas. 162

Stanford Alpaca (Taori et al., 2023) A general 163

task instruction dataset generated with Self-Instruct 164

framework (Wang et al., 2023b). In our experi- 165

ments we use the cleaned version1 that consists of 166

filtered Alpaca (Taori et al., 2023) instructions and 167

GPT-4-LLM (Peng et al., 2023). 168

Alpaca-est Due to a lack of general task in- 169

struction data in Estonian, we generate an Esto- 170

nian version of Alpaca. Following Taori et al. 171

(2023), we first randomly sample from a set of 172

Estonian seed instructions and use an LLM to gen- 173

erate new instructions based on the examples. Us- 174

ing gpt-3.5-turbo-06132, we generate a total of 175

52,006 instructions for Estonian. The seed instruc- 176

tion set consists of 90 translated examples from 177

1https://github.com/gururise/AlpacaDataCleaned
2https://platform.openai.com/docs/models
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the original Alpaca seed set and 17 new instruc-178

tions written by the authors. We make Alpaca-est179

publicly available3.180

3.1.2 High-Quality General Task Instructions181

We supplement Alpacas with high-quality English182

instructions that are not obtained with synthetic183

data generation using OpenAI models. In our184

dataset creation, we take inspiration from (Wang185

et al., 2023a; Ivison et al., 2023). We use Open186

Assistant 1 (Köpf et al., 2023) top-scoring English-187

only path from each conversation tree. We also188

take 10,000 examples of both CoT and FLAN-2189

(Chung et al., 2022) mixtures used in (Ivison et al.,190

2023). We refer to this high-quality mixture of data191

in short as HQI.192

3.2 Translation Task Instructions193

We create translation task instructions from rela-194

tively low-quality translation bitexts: CCMatrix195

(Schwenk et al., 2021b), WikiMatrix (Schwenk196

et al., 2021a), OpenSubtitles (Lison and Tiede-197

mann, 2016), and Europarl (Tiedemann, 2012). We198

filter the data with OpusFilter (Aulamo et al., 2020)199

using long word, sentence length, source-target200

length-ratio, character score, language-ID, termi-201

nal punctuation, and non-zero numerals filters.202

We use a setup in which 75% of instructions203

prompt translation from English to Estonian, and204

25% prompt translation in the opposite direction.205

The goal of including a small amount of Estonian-206

English is to maintain the quality of English gener-207

ation. We refer to this translation task instructions208

dataset as TRTASK.209

We supplement the relatively low-quality TR-210

TASK dataset with high-quality parallel data from211

WMT18 dev set (Bojar et al., 2018) and MTee (Tät-212

tar et al., 2022) held-out validation dataset. We re-213

fer to it as HQTRTASK. In HQTRTASK WMT18214

dev set is given in a document-level format with215

documents exceeding 900 tokens split into multi-216

ple parts. To convert the translation examples to217

instructions we utilize 32 English and 13 Estonian218

prompt templates as Sanh et al. (2021) has demon-219

strated the importance of using a diverse set of220

prompts.221

3.3 Pretraining Data222

For pretraining, we use a subset of Estonian and223

English data from CulturaX (Nguyen et al., 2023)224

3https://anonymous.4open.science/r/alpaca-est

to make the base model more familiar with Esto- 225

nian but not forget English. Although the data in 226

CulturaX has already gone through an extensive 227

cleaning pipeline, we expand it by only allowing 228

Estonian data that comes from websites ending 229

with either .ee, .org, or .net. The pretraining is 230

done with up to 5B tokens, 75% of which are Es- 231

tonian and the rest are English, to prevent English 232

knowledge forgetting. 233

4 Experimental Setup 234

4.1 Base Model 235

To obtain the base model, we continue pretraining 236

Llama-2-7B (Touvron et al., 2023b) with the addi- 237

tional 5B tokens of pretraining data described in 238

Section 3.3. We call the base model LLAMMAS- 239

BASE. We use packing for pretraining which means 240

that the training examples are concatenated to fill 241

the model context. The training setup and param- 242

eters are outlined in Appendix A. We publish our 243

training code4. 244

4.2 Instruction-tuned Models 245

Models instruction-tuned only with Alpacas or 246

translation task instructions use the Alpaca prompt- 247

ing format (Taori et al., 2023). The models relying 248

on high-quality instructions (HQI or HQTRTASK) 249

are trained as conversational models with conver- 250

sation format following Wang et al. (2023a, see 251

Table 12). 252

During the training, we mask the user prompts, 253

including the whole user input in the conversa- 254

tional format (including multi-turn). The models 255

are trained for 3 epochs. We picked the best epoch 256

according to the validation loss, which was always 257

the first epoch in our experiments. See Appendix A 258

for other training details. 259

4.3 Evaluation Datasets 260

Following Ranaldi et al. (2023); Zhu et al. (2023), 261

we use EstQA (Käver, 2021), an Estonian version 262

of SQUAD (Rajpurkar et al., 2016) as one of the 263

evaluation datasets. Since the original EstQA does 264

not include a validation split, we create one our- 265

selves by separating a small subset of training data 266

for that purpose. 267

We also evaluate our models on Estonian com- 268

monsense reasoning (CSR) and grammatical error 269

correction (GEC) tasks. For commonsense rea- 270

soning, we use EstCOPA (Kuulmets et al., 2022), 271

4https://anonymous.4open.science/r/llammas
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which is an Estonian version of the COPA task272

(Roemmele et al., 2011). EstCOPA includes both273

machine-translated and manually post-edited ver-274

sions of COPA. We use the latter for our evalua-275

tions. Grammatical error correction is evaluated276

with EstGEC-L2 dataset5.277

Finally, results for English-Estonian and278

Estonian-English translation (MT) tasks are re-279

ported using FLORES-200 devtest (NLLB Team,280

2022). It is important to note that, depending on the281

model, the translation task may be included into282

the training process, while the models are never283

exposed to any other evaluation tasks.284

4.4 Perfomance on English285

Ideally, our model should also perform reason-286

ably well in English. If that was not the case it287

would mean that we might have washed out the pre-288

existing knowledge from the models. That could289

happen, for example, with overly extensive training290

on task-specific datasets. Naturally, it would be an291

indication that the model is not using its knowledge292

in English to generate answers in Estonian. To ver-293

ify that our models can still understand English, we294

evaluate our best models on COPA, on an English295

subset of XQuAD (Artetxe et al., 2020), and an296

English grammatical error correction task using the297

W&I+LOCNESS test set (Bryant et al., 2019).298

4.5 Evaluation Metrics299

To evaluate commonsense reasoning and question-300

answering we use the assessments of GPT-4301

Turbo2. More precisely, we employ LLM-as-a-302

Judge (Zheng et al., 2023) with reference-guided303

grading where the model is asked to assess the cor-304

rectness of the predicted answer given the reference305

answer and the task itself. We modified the evalua-306

tion prompt from Zheng et al. (2023) to align with307

our tasks. We chose GPT-4 Turbo as the evaluator308

over ChatGPT2 to ensure the reliability of the re-309

sults, as it demonstrated a significant improvement310

in assessment quality (specifically, a reduction in311

false positives) in our preliminary experiments. To312

reduce API usage costs, we base our QA accuracy313

report on 100 randomly chosen samples from the314

corresponding datasets and splits. When evaluat-315

ing the commonsense reasoning task, we feed to316

GPT-4 Turbo only answers that we were not able317

to classify with a simple string comparison.318

We also report standard metrics for most of319

5https://github.com/tlu-dt-nlp/EstGEC-L2-Corpus

the tasks. For question answering and grammati- 320

cal error correction we report F1 and M2 scorer6 321

(Dahlmeier and Ng, 2012) or ERRANT (Bryant 322

et al., 2017) F0.5, respectively. For translation 323

tasks we calculate BLEU7 (Papineni et al., 2002) 324

and chrF++8 (Popović, 2017) using sacreBLEU 325

(Post, 2018), and COMET (Rei et al., 2020) scores 326

using the unbabel-wmt22-comet-da model (Rei 327

et al., 2022). 328

4.6 Evaluation Prompts 329

During the development phase, the performance on 330

EstCOPA, EstQA, and their English equivalents is 331

measured with 8 different prompts. The English 332

prompts are from Wei et al. (2021), while prompts 333

for Estonian tasks are written by the authors. On de- 334

velopment datasets, we report the best score across 335

the 8 prompts, while on test datasets, we only report 336

the scores obtained with the best prompt according 337

to the development datasets. For machine trans- 338

lation and grammatical error correction tasks, we 339

use the same single prompt during the development 340

and test phases (see Table 10). 341

5 Experiments and Results 342

Our experiments are divided into two main sections. 343

In the first section, we pretrain Llama-2-7B on dif- 344

ferent amounts of pretraining data and investigate 345

the effect of it on cross-lingual instruction-tuning 346

that is done with translation task and general task 347

instructions (Alpacas). 348

In the second section, we study the influence of 349

supplementing Alpacas with high-quality English 350

instructions, translations, and conversations to the 351

results on Estonian. 352

5.1 Continued Pretraining of Llama 2 353

We compare three base models. First, Llama-2- 354

7B without any additional pretraining. Second, 355

the checkpoint of LLAMMAS-BASE that has seen 356

1B tokens of pretraining data. Third, LLAMMAS- 357

BASE trained on the entire pretraining dataset of 358

5B tokens. We instruction-tune all three models 359

on Alpacas that consisting of Estonian and English 360

general task instructions. The results of the three 361

models are compared in Figure 1. We observe 362

6https://github.com/TartuNLP/estgec/tree/main/M2_scorer_est
7sacreBLEU signature:

nrefs:1|case:mixed|eff:no|tok:13a|
smooth:exp|version:2.3.1

8sacreBLEU signature: nrefs:1|case:mixed|
eff:yes|nc:6|nw:2|space:no|version:2.3.1
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Figure 1: Results on Estonian tasks after fine-
tuning Llama-2-7B with cross-lingual instruction-tuning
dataset Alpacas. The colors of the bars indicate the size
of the pretraining dataset.

performance gains on all Estonian tasks as the size363

of the pretraining dataset increases.364

In our preliminary experiment (included into the365

ablation study, Section 6.1) we observed that af-366

ter additional pretraining of Llama-2-7B with 1B367

tokens the benefits of using translation task dur-368

ing fine-tuning diminished. To assess whether369

this trend persists with even larger pretraining, we370

instruction-tune the base models with a dataset that371

consists of both translation and general task in-372

structions, i.e., TRTASK and Alpacas. We adopt373

sequential training based on our preliminary exper-374

iment (Section 6.1), which indicated that this setup375

has a milder negative impact on performance in376

zero-shot tasks.377

Figure 2 shows the performance gained or lost378

for each task and base model with the translation379

task used as the first step during instruction-tuning.380

We can see that without additional pretraining, the381

translation task significantly improves the results382

for QA, machine translation, and GEC. However,383

the benefit diminishes greatly when the pretrain-384

ing step is introduced. For QA and commonsense385

reasoning, omitting the translation task after pre-386

training tends to produce stronger results compared387

to models where pretraining is followed by the388

translation task.389

5.2 Beyond Alpacas: Knowledge Transfer via390

High-Quality English Instructions391

Instruction-tuning datasets generated with Self-392

Instruct (Wang et al., 2023b) might suffer from393

various issues that lower the overall quality of the394

dataset1. Meanwhile, it has been shown that it395

is possible to achieve remarkably strong perfor-396

mance with just 1,000 high-quality training exam-397

CSR QA MTEN-ET MTET-EN GEC
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Figure 2: Performance gained or lost on Estonian tasks
after fine-tuning Llama-2-7B first on translation task
and then on Alpacas compared to when translation task
is omitted (Figure 1). The colors of the bars indicate the
size of the pretraining dataset.

ples (Zhou et al., 2023). In light of this, we hypoth- 398

esize that supplementing the Alpacas dataset with 399

a set of high-quality instructions could improve 400

the models. However, as there are no high-quality 401

instruction datasets available for Estonian, we use 402

only high-quality English instructions (HQI). For 403

comparison, we train a model where high-quality 404

English instructions are supplemented with high- 405

quality translation task instructions (HQTRTASK). 406

The results are shown in Table 1. Compared to 407

the baseline model (1) that is trained on just Al- 408

pacas, we observe a somewhat surprising increase 409

in all scores when Alpacas is supplemented with 410

high-quality English instructions (model (3)). This 411

suggests that there is a positive cross-lingual knowl- 412

edge transfer from the added high-quality English 413

instructions into Estonian. Moreover, combining 414

high-quality English instructions with high-quality 415

translation tasks further enhances the knowledge 416

transfer (model (4)). We call this model LLAM- 417

MAS. However, we observe that the best results 418

for EN→ET, ET→EN, and GEC are obtained with 419

a model that is trained sequentially, with HQTR- 420

TASK as the first step of fine-tuning (model (5)). 421

We call this model LLAMMAS-TRANSLATE. 422

Models (3) – (5) are trained with the data in 423

chat format (see Table 12), since HQI contains En- 424

glish conversational data from Open Assistant 1. 425

Through manual evaluation with 5 conversations 426

(up to 6 turns), we determine that model (4) 427

(LLAMMAS) can adequately engage in multi-turn 428

conversations. It can recall content from previ- 429

ous turns and respond to user requests fairly well. 430

However, we also see that the model sometimes 431

makes grammatical mistakes and uses words or 432

5



Model CSR QA MTET-EN MTEN-ET GEC

acc. F1 acc. BLEU BLEU F0.5

LLAMMAS-BASE fine-tuned:

(1) Alpacas 63.6 46.53 81 22.5 32.3 56.6
(2) 1) TRTASK 2) Alpacas 59.2 46.15 73 25.0 34.5 59.4

(3) Alpacas + HQI 66.4 52.86 82 23.1 32.4 59.4
(4) Alpacas + HQI + HQTRTASK 66.4 54.75 84 22.6 34.6 60.3
(5) 1) TRTASK 2) (4) 62.2 43.46 76 26.9 36.9 61.2

Commercial baselines:

GPT3.5 86.0 34.17 93 37.5 26.0 63.4
GPT4 98.4 35.14 97 37.7 28.5 67.4

Table 1: Fine-tuning LLAMMAS-BASE on different cross-lingual instruction datasets. We call (4) LLAMMAS and (5)
LLAMMAS-TRANSLATE.

phrases that a native Estonian speaker would not433

use. Many of these phrases sound like translations434

from English. An example conversation can be435

seen in Table 13. The model’s conversational abil-436

ity suggests that the model has learned to hold a437

multi-turn conversation in Estonian through cross-438

lingual transfer, however, more experiments would439

be needed to confirm that.440

5.3 Results on Translation Task441

Conventional neural machine translation (NMT)442

models leverage tens of millions of parallel sen-443

tences along with the use of monolingual corpora.444

In contrast, LLAMMAS-TRANSLATE uses a modest445

1 million sentence pairs from relatively low-quality446

parallel data sources and a small number of sen-447

tences from high-quality sources. In combination448

with general task instructions, this results in a com-449

petitive translation model, as presented in Table 2.450

We can see that LLAMMAS-TRANSLATE outper-451

forms LLAMMAS although, in terms of COMET,452

which is more highly correlated with human judg-453

ments (Freitag et al., 2022), LLAMMAS still seems454

competitive.455

When comparing LLAMAS-TRANSLATE to the456

open-source encoder-decoder models MTee and457

NLLB-MoE, LLAMAS-TRANSLATE achieves bet-458

ter scores on COMET and similar scores on BLEU459

and chrF++. On ET→EN LLAMMAS-TRANSLATE460

is outperformed by NLLB-MoE, however, it out-461

performs MTee on COMET and achieves a similar462

score in chrF++. We can also see that LLAMMAS-463

TRANSLATE is competitive with GPT-3.5-turbo,464

however it is outperformed by GPT-4-turbo9.465

9Prompt used for OpenAI models: "Translate
the following {src_lang} text into
{tgt_lang}:\n{sentence}"

5.4 Results on Grammatical Error Correction 466

LLMs are good at text correction, yet they fre- 467

quently make extensive edits that diverge from tra- 468

ditional GEC metrics, known for preferring mini- 469

mal modifications (Coyne et al., 2023). This ten- 470

dency is apparent in English, where the models 471

exhibit higher recall than precision (see Table 3). 472

For Estonian, in contrast, the models show higher 473

precision but reduced recall, indicating a differ- 474

ent correction pattern from Estonian. We leave 475

further exploration of that phenomenon for future 476

work. Finally, we can see that translation task in- 477

structions (TRTASK, used for training LLAMMAS- 478

TRANSLATE) enhance performance in Estonian 479

which is in accordance with our earlier experi- 480

ments. 481

5.5 Results on XQUAD and COPA 482

The results on English QA and commonsense rea- 483

soning tasks are shown in Table 4. On the QA 484

task, LLAMMAS achieves similar accuracy in En- 485

glish and Estonian (83% vs 84%). However, we 486

observed that LLAMMAS is more chatty in English, 487

resulting in longer answers and therefore lower 488

F1 score when compared to Estonian. Finally, we 489

observe that LLAMMAS solves commonsense rea- 490

soning problems significantly better in English than 491

in Estonian (80.6% vs 66.4%) This indicates that 492

LLAMMAS is still not able to utilize all the reason- 493

ing capabilities it has in English when the input is 494

given in Estonian.10 495

10Hence the name LLAMMAS, as in Estonian, the word
lammas means sheep.
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Model Param. ET→EN EN→ET

BLEU chrfF++ COMET BLEU chrfF++ COMET

MTee (Tättar et al., 2022) 227M 36.7 61.3 88.48 27.6 56.9 89.18
NLLB-MoE (NLLB Team, 2022) 54.5B 38.8 62.6 89.25 27.1 56.1 91.44

GPT-3.5-turbo - 37.5 63.0 89.52 26.0 56.3 91.67
GPT-4-turbo - 37.7 63.8 89.74 28.5 58.4 92.55

LLAMMAS (ours) 7B 34.6 59.2 89.00 22.6 51.8 91.00
LLAMMAS-TRANSLATE (ours) 7B 36.9 61.2 89.09 26.9 56.4 91.92

Table 2: Translation metric scores on FLORES-200 devtest (NLLB Team, 2022).

Model ET EN

P R F0.5 P R F0.5

GPT-3.5-turbo 69.58 46.66 63.36 53.63 70.13 56.28
GPT-4 74.31 49.21 67.43 56.68 71.57 59.14

LLAMMAS (ours) 67.6 42.2 60.3 58.01 59.45 58.29
LLAMMAS-TRANSLATE (ours) 68.0 43.6 61.2 55.94 59.34 56.59

Table 3: GEC scores on EstGEC-L2 and W&I+LOCNESS test sets.

5.6 Robustness on Diverse Prompts496

We look into the distribution of metric scores on497

8 development prompts (Table 1) to assess the ro-498

bustness of our models when encountering various499

input prompts.500

EstCOPA shows an increase in robustness and501

average scores with various prompts when high-502

quality English instructions are used (see Figure 3).503

This is even further increased by the addition of504

high-quality translation instructions. While having505

lower scores than the models without a translation506

step, Llammas-translate still displays good robust-507

ness. On EstQA, however, we don’t see the same508

trend. There is an increase in the median of the509

metric score, yet the robustness does not increase.510

For models involving the use of high-quality data,511

the lowest-scoring prompts still achieve higher F1512

scores than the median of the model fine-tuned on513

Alpacas.514

6 Ablation study515

6.1 Instruction-Tuning: Sequentially or with516

a Combined Dataset?517

Previous research has explored approaches that518

combine translation and general task instructions519

for cross-lingual instruction-tuning (Ranaldi and520

Pucci, 2023; Ranaldi et al., 2023; Zhu et al., 2023).521

However, these approaches combine both types of522

instructions into a single dataset for model fine-523

tuning. We hypothesize that such setup, especially524

when a significantly larger translation task dataset525

is used (e.g. by Zhu et al., 2023), may diminish the 526

contribution of general task instructions during the 527

training, adversely impacting the model’s ability to 528

generalize to new tasks. 529

To test the hypothesis we compare fine-tuning 530

Llama-2-7B on a combined dataset to fine-tuning 531

it with sequential training. The latter involves first 532

training the model on the translation task and then 533

on general task instructions. We replicate the exper- 534

iment with Llama-2-7B further pretrained on 1B to- 535

kens, to validate the consistency of results when the 536

pretraining step is included. We use context size of 537

224 and, following Zhu et al. (2023), only English 538

to target language translations (TRTASKEN→ET). 539

We compare the results with baselines where trans- 540

lation task data is entirely omitted. 541

The results in Table 9 show that fine-tuning 542

Llama-2-7B on translation task improves most re- 543

sults (except commonsense reasoning). Combined 544

training is particularly beneficial for EN→ET and 545

grammatical error correction. The latter aligns with 546

the improvement in EN→ET as MT and GEC are 547

similar tasks and often approached in a similar way 548

(Junczys-Dowmunt et al., 2018). However, QA 549

and ET→EN gain more from sequential training. 550

It is especially notable for ET→EN where general 551

task instructions recover the performance after the 552

initial degradation. 553

However, we observe that when pretraining 554

Llama-2-7B on 1B tokens is included, the per- 555

formance generally suffers when translation task 556

instructions are used. Exceptions are English- 557
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Figure 3: EstCOPA development set accuracy and Es-
tQA development set F1-score of 8 prompts on models
fine-tuned from LLAMMAS-BASE (see Table 1).

Estonian and grammatical error correction that nat-558

urally benefit from the translation task.559

Finally, we can see that EN→ET is rather weak560

on pretrained Llama-2-7B after fine-tuning on just561

Alpacas. However, including the task drastically562

hurts the performance of ET→EN translation task.563

6.2 Translation Data: The Impact of Quality564

and Quantity565

In Section 6.1 we found that language-specific pre-566

training of Llama-2-7B followed by fine-tuning on567

just Alpacas outperforms the same base model fine-568

tuned on both translation and general task instruc-569

tions. Combining the datasets (TRTASKEN→ET570

+ Alpacas) yielded weaker scores than sequential571

training (1) TRTASKEN→ET 2) Alpacas). To ad-572

dress the potential negative influence from the im-573

balanced dataset, where translation instructions out-574

number general task instructions by about 10 times,575

we conduct an experiment with a balanced dataset.576

We fine-tune the base model with a dataset com-577

bining general task instructions with 100K trans-578

lation task instructions (similar in size to Alpacas)579

from the data mix described in Section 3.2. Table 580

8 shows that the model does not outperform the 581

Alpacas baseline. 582

Model CSR QA
acc. F1 acc.

Alpacas 63.4 30.43 85
1) TrTask 2) Alpacas 70.2 29.48 81

Alpacas + HQI 78.6 33.30 87
LLAMMAS 80.6 40.96 83
LLAMMAS-TRANSLATE 73.6 31.35 82

GPT3.5 95.2 30.67 95
GPT4 99.8 33.16 96

Table 4: Results on English commonsense reasoning
and question answering.

Additionally, we train the base model with a 583

dataset combining general task instructions with 584

a small set of high-quality translation task instruc- 585

tions from MTee held-out validation sets (Tättar 586

et al., 2022) and WMT18 development set (Bojar 587

et al., 2018). This model also does not outperform 588

the baseline model, except in GEC which seems to 589

benefit from high-quality translation task. 590

6.3 Translation Data: Single Translation 591

Direction or Both? 592

We investigate the effect of EN→ET : ET→EN 593

translation direction proportion in our data. From 594

Table 7, we can see that for all tasks, having only 595

EN→ET direction is not optimal when transla- 596

tion data is used. For MTET→EN and GEC 25% 597

ET→EN seems to offer the best scores, while for 598

other tasks 50% offers the highest scores. For CSR, 599

having no translation data at all offers the highest 600

accuracy. 601

7 Conclusion 602

We successfully adapt Llama 2 to Estonian by creat- 603

ing LLAMMAS - an instruction-following model for 604

Estonian. Additionally, we release Alpaca-est, an 605

Alpaca-style general task instruction dataset for Es- 606

tonian. Our work has shown competitive results for 607

tasks such as question-answering, machine trans- 608

lation, and grammatical error correction in Esto- 609

nian while keeping solid results for English. We 610

have also identified signs of cross-lingual transfer 611

from English to Estonian and investigated the ef- 612

fects of translation bitexts in the fine-tuning process. 613

This work marks the first step towards open-source 614

LLMs for Estonian. 615

8



Limitations616

The key limitation of this work is the dependence617

on data generated with OpenAI’s proprietary LLMs.618

As Gudibande et al. (2023) have found, these gen-619

erated datasets result in the imitation of the pro-620

prietary LLM’s style but not necessarily factuality.621

Secondly, due to the limited number of benchmarks622

for Estonian, our evaluation is limited to a rather623

small number of NLP tasks. Because of the early624

stages of the research on capabilities and harm-625

lessness, the model will be limited to research pur-626

poses.627

Ethics628

We believe that extending open-source large lan-629

guage models to previously uncovered languages630

poses a net positive impact as it allows more peo-631

ple access to them. However, the currently re-632

leased model lacks safety evaluation, meaning that633

it should be used only for research purposes. Fur-634

thermore, the self-instruct style generated instruc-635

tions have not been manually checked, increasing636

the risks (for example bias) even more. Further637

research into evaluating the harmlessness and help-638

fulness of LLMs for Estonian is needed, as this has639

not been done for proprietary LLMs that support640

Estonian either.641
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A Training Parameters982

The context length in our training experiments is983

1024 tokens with the overlapping examples trun-984

cated. The models are trained with bf16 precision985

using DeepSpeed. A learning rate of 2e-5 is used986

and is linearly decayed to 2e-6. During pretraining987

a batch size of 256 is used and during instruction-988

tuning the batch size is 128. We train our models989

on 4 AMD MI250x GPUs (acting as 8 GPUs) on990

the LUMI supercomputer.991

The pretraining on 5B tokens took 1184 GPU-992

hours (LLAMMAS-BASE). Instruction-tuning993

of LLAMMAS took 80 GPU-hours (3 epochs).994

Instruction-tuning on translation data (TRTASK)995

for LLAMMAS-TRANSLATE took 190 GPU-hours996

(3 epochs), in addition to the instruction-tuning997

on the general instructions (i.e, fine-tuning LLAM-998

MAS).999

B Sizes of Datasets1000

Validation Test

Question Answering

EstQA (Käver, 2021) 85 603
XQuAD (Artetxe et al., 2020) 1190 -

Commonsense Reasoning

EstCOPA (Kuulmets et al., 2022) 100 500
COPA (Roemmele et al., 2011) 100 500

Grammatical Error Correction

EstGEC-L25 879 2029
W&I+LOCNESS (Bryant et al., 2019) 4385 4477

Machine Translation

FLORES-200 (NLLB Team, 2022) 997 1012

Table 5: Sizes of evaluation and test datasets (number
of examples). The entire XQUaD was used for both
validation and testing.

C Ablation Study Tables1001

D Evaluation prompts1002

General instructions

Alpaca-cleaned (Taori et al., 2023) 52,000
AlpacEst (ours) 52,006

HQI

CoT (Chung et al., 2022; Ivison et al., 2023) 10,000
FlanV2 (Chung et al., 2022; Ivison et al., 2023) 10,000
Open Assistant 1 (Köpf et al., 2023) 2,363

Translation instructions

TRTASK

CCMatrix (Schwenk et al., 2021b) 500,000
WikiMatrix (Schwenk et al., 2021a) 400,000
Europarl (Tiedemann, 2012) 50,000
OpenSubtitles (Lison and Tiedemann, 2016) 50,000

HQTRTASK

WMT18 dev (doc. level) (Bojar et al., 2018) 245
MTee valid held-out (general) (Tättar et al., 2022) 1528

Additional HQ translation data

MTee valid held-out (all) (Tättar et al., 2022) 4353
WMT18 dev (sent. level) (Bojar et al., 2018) 2000

Table 6: Sizes of instruction datasets (number of exam-
ples).
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Model TrTask CSR QA MTEN→ET MTET→EN GEC
ET→EN acc. acc. BLEU BLEU F0.5

TrTask100k + Alpacas 50% 59 76.47 20.4 32.7 56.2
TrTask100k + Alpacas 25% 55 74.12 21.2 32.6 58.1
TrTask100k + Alpacas 0% 56 71.76 21.1 1.6 56.2

Alpacas - 66 74.12 20.8 32.4 50.0

Table 7: Fine-tuning Llama-2-7B further pretrained on 1B token. Translation task ET→EN direction proportion is
modified. 0% means that all of TrTask data is in EN→ET direction. The amount of translation task data is fixed at
100k sentence-pairs. Results are reported on development datasets.

Model TrTask CSR QA MTEN→ET MTET→EN GEC
size acc. acc. BLEU BLEU F0.5

TrTaskEN→ET + Alpacas 1M 53 63.53 24.4 1.50 57.5
TrTaskEN→ET + Alpacas 100K 56 71.76 21.1 1.60 56.2
TrTaskHigh quality EN→ET + Alpacas 6K 57 69.41 22.2 3.60 57.5

Alpacas - 66 74.12 20.8 32.40 50.5

Table 8: Quantity vs quality: examining the impact of translation task dataset composition. Results are reported on
development datasets.

CSR QA GEC MTEN→ET MTET→EN
acc. acc. F0.5 BLEU BLEU

Llama-2-7B

TRTASKEN→ET + Alpacas 0.58 0.61 0.55 24.6 1.50
1) TRTASKEN→ET 2) Alpacas 0.58 0.65 0.51 24.5 27.40

Alpacas 0.61 0.52 0.34 13.9 24.80

Llama-2-7B pretrained on 1B tokens of Estonian-centric data

TRTASKEN→ET + Alpacas 0.53 0.64 0.57 24.4 1.50
1) TRTASKEN→ET 2) Alpacas 0.55 0.71 0.56 25.7 23.00

Alpacas 0.66 0.74 0.50 20.8 32.40

Table 9: Comparison of cross-lingual training strategies across two different base models. Results are reported on
development datasets.
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MT EVALUATION PROMPT:

Translate the following {source language} text into {target language}.

GEC EVALUATION PROMPT:

Reply with a corrected version of the input sentence in {language} with all grammatical and spelling errors fixed.
If there are no errors, reply with a copy of the original sentence.

ESTCOPA EVALUATION PROMPT (the best on development set):

Olgu eelduseks lause "{premise}"

Mis on selles lauses kirjeldatud olukorra {question}?

VALIKUD:
- {choice1}
- {choice2}

COPA EVALUATION PROMPT (the best on development set):

{premise}

What is the {question} of the preceding sentence?

OPTIONS:
- {choice1}
- {choice2}

ESTQA EVALUATION PROMPT (the best on development set):

Tekst: {paragraph}

Küsimus: {question}

XQUAD EVALUATION PROMPT (the best on development set):

Here is a question about this article: {paragraph}
What is the answer to this question: {question}

Table 10: Instruction prompts for evaluating LLAMMAS. The prompts will be integrated into Alpaca-style formatting
(see Table 11). In the case of conversational model, the Alpaca-formated prompts will be inserted into the chat
format (see Table 12).

Below is an instruction that describes
a task, paired with an input that provides
further context. Write a response that
appropriately completes the request.

Instruction:
{instruction}

Input:
{input}

Response:

Table 11: Alpaca instruction format (Taori et al., 2023)

<|user|>
Tere!
<|assistant|>
Tere! Kas saaksin teid kuidagi aidata?</s>
<|user|>
Kuidas alustada kirja kirjutamist?
<|assistant|>

Table 12: Chat format following (Wang et al., 2023a).
After <|assistant|> the model generates the response.
</s> is the end-of-string token.
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User:
Tere! Kuidas läheb?

Assistant:
Tänan küsimast, täitsa hästi. Kuidas sinul läheb?

User:
Hästi, kuigi viimased päevad on olnud väsitavad.

Assistant:
Mis teid väsinuna tunneb? Kas teil on midagi konkreetset, mis seda põhjustab? Võite jagada
oma muret ja ma aitan leida lahendusi.

User:
Keeruline öelda. Võimalik, et asi on selles, et olen liiga vähe puhanud.

Assistant:
Võib-olla peaksime proovima erinevaid stressileevendamise meetodeid nagu meditatsioon või
lõdvestusharjutused. Samuti võiksime planeerida rohkem aega endale ning luua struktuurse
rutiini, et tagada piisav uni ja puhkus. Räägime sellest veelgi edasi, kui see on vajalik.

User:
Paku mulle üks stressileevendusmeetod

Assistant:
Proovi regulaarselt praktiseerida joogat, mis aitab sul rahus ja harmoonias olla. Sellel on
mitmeid tervistavaid efekte, sealhulgas parem kehaline painduvus, suurenenud energia ja vaimne
selgus. Jooga sobib ideaalselt igapäevaselt harjumuseks muutmisena, aidates sul stressirohke
elustiiliga toime tulla. Alusta tasakaaluharjutuste, venituste ja hingamisharjutustega ning avasta
joogamaailmas uued võimalused endaga paremini kontaktis olemiseks. Leia sobiv stiil ja õpetaja
ning alusta oma joogateekonda juba täna.

User:
Tahaks midagi lihtsamat.

Assistant:
Kirjuta endale märkmikusse positiivsed eneseütlemised, näiteks "olen tugev" või "olen nutikas".
Lugege neid regulaarselt ja visualiseerige end heade omadustega inimesena. See aitab teil end
motiveerida ja uskuda iseendasse. Lisage ka motivatsiooni tsitaate, nagu "Elu pole mitte ainult
selle kohta, millistes asjaoludes meie juhtumeid saame, vaid ka selles, kuidas me reageerime."
- Walt Disney. Tegele ka füüsiliselt aktiivsema eluga, näiteks treeningu või jalutuskäikudega
värskes õhus. Need meetmed aitavad teil stressi maandada ja enda eest hoolitseda. Ärge unustage
naeratada ja leida huumorit igapäevaelus. Naeratused levitavad head energiat ja loovad positiivse
atmosfääri.

User:
Tänan!

Assistant:
Olete teretulnud! Ma olen siin, et sind toetada ja aidata. Palun anna mulle teada, kui sul on
mingeid muid küsimusi või abisoove. Soovin sulle imelisi hetki ja palju edu!

Table 13: An Example conversation with the LLAMMAS model. Generated using sampling with top-p of 0.9,
temperature of 0.6, repetition penalty of 1.2, and beam size of 1 (no beam search)
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