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ABSTRACT
In this paper, we present M2D: a multimodal deep learning frame-
work for automatic medical condition diagnosis via transfer learn-
ing. M2D leverages acoustic and textual features extracted from
audio utterance and corresponding transcription describing a pa-
tient’s medical symptoms. Our model utilizes ResNet-34 to learn au-
dio feature via log mel-spectrogram and BioBERT language model
to learn textual feature. We conducted a comparative performance
analysis of M2D with baseline models based on textual or acoustic
feature.
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1 INTRODUCTION
Despite of recent advancements in healthcare and medical facilities,
people all around the world are still facing medical resource scarcity
and accessibility changes.

Recently various transfer learning based multimodal medical
systems that uses combination of image, text and audio modalities
has been developed. For making medical diagnosis convenient and
accessible to a larger population, we designed a multimodal- M2D.
Through M2D, we aim at providing automatic medical condition
diagnosis system by analysing a given patient’s symptoms recorded
in the form of audio and text transcription. Our model utilizes a
combined multimodal vector representation generated by the fu-
sion of acoustic(log Mel-spectrogram) and textual modality vectors
extracted via ResNet[1](a deep residual network) and BioBERT[3](a
BERT model finetuned on large biomedical corpus) model respec-
tively to classify a patient’s symptoms into 25 possible medical
condition classes.

2 METHODOLOGY
The M2D multimodal pipeline is consist of four stages. (i) au-
dio feature extraction: From raw audio log mel-spectrograms
is extracted(by librosa https://github.com/librosa) and supplied into
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ResNet model. The audio feature map(dimension = 512) was re-
trieved from the last Pooling layer of ResNet which is then passed
into a dense layer which outputs a acoustic feature vector 𝐴𝑓 with
dimension of 256. (ii) text feature extraction: The audio transcript
was tokenized(padded until max seq length = 30) and supplied into
12 attention-based encoding layers of BioBERT which finally out-
puts contextual word embeddings of size 768. This was then passed
into a dense layer to produces a textual vector representation 𝑇𝑓 of
size 256. (iii) multimodal feature fusion: The acoustic and tex-
tual feature vectors were separately passed through a self-attention
layer and then finally concatenated together to form a multimodal
vector representation 𝑀𝑓 of size 512. (iv) classification: 𝑀𝑓 was
passed through a dense layer(size=25) with softmax activation to
make prediction.

3 EXPERIMENTS AND RESULTS
We used Appen dataset1 having 6659 audio and it’s transcrip-
tion pair distributed over 25 medical diagnosis classes, divided
in 70/20/10 ratio for train, validation and test. All of the dense layer
had a RELU activation and a dropout layer(p = 0.5). Each model
was trained for 30 epochs(batch size = 4) with learning rate of
1e-4 and Adam[2] optimizer. In our experiment 1, M2D outper-
formed both acoustic and textual based unimodel with an accuracy
of 65.91% which is 15.17% and 12.71% improvement over acoustic
and textual unimodel respectively. Out of two unimodels, textual
performed slightly better(2.81%) than acoustic model. In future we
aim at extending our current work by experimenting with different
combination of deep learning models and exploring other feature
fusion techniques.

Model Accuracy Precision Recall F1
BioBERT 57.53% 58.03% 57.43% 57.73%
ResNet-34 55.91% 58.28% 55.21% 56.68%

M2D 65.91% 68.91% 63.84% 66.23%
Table 1: Models performance scores(in %)
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