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Abstract

Medical decision rules play a key role in001
many clinical decision support systems (CDSS).002
However, these rules are conventionally con-003
structed by medical experts, which is expensive004
and hard to scale up. In this study, we explore005
the automatic extraction of medical decision006
rules from text, leading to a solution to con-007
struct large-scale medical decision rules. We008
adopt a formulation of medical decision rules009
as binary trees consisting of condition/decision010
nodes. Such trees are referred to as medical de-011
cision trees and we introduce several generative012
models extract them from text. The proposed013
models inherit the merit of two categories of014
successful natural language generation frame-015
works, i.e., sequence-to-sequence generation016
and autoregressive generation. To unleash the017
potential of pretrained language models, we018
design three styles of linearization (natural lan-019
guage, augmented natural language and JSON020
code), acting as the target sequence for our021
models. Our final system achieves 67% tree ac-022
curacy on a comprehensive benchmark, outper-023
forming state-of-the-art discriminative baseline024
by 12% absolute value. This demonstrates the025
effectiveness of generative models on explicitly026
modeling structural decision-making roadmaps027
and boosts the development of CDSS as well028
as explainable AI.029

1 Introduction030

Currently, the development of clinical decision sup-031

port systems (CDSS) relies heavily on manual enu-032

meration of medical decision rules (Matsumura033

et al., 1986; Grosan et al., 2011; Shortliffe and034

Sepúlveda, 2018). Although this paradigm brings035

CDSS interpretability and reliability, its request of036

extensive labor poses a challenge on scaling, given037

the huge amount of potential medical decision rules038

(Tsumoto, 1998). And the fact that some medical039

decision rules get occasionally updated make the040

challenge even worse. This motivates researchers041

Figure 1: An example of extracting tree-form medical
decision rules from clinical guidelines and textbooks.

to explore the automation of medical decision rules 042

construction. Inspired by the fact that human doc- 043

tors acquire medical decision rules from textbooks 044

and clinical guidelines, a recent study proposes to 045

imitate this process via deep learning methods (Li 046

et al., 2022). 047

There exist two typical formulations of medical 048

decision rules: first-order predicate logic formu- 049

las (Matsumura et al., 1986; Tsumoto, 1998) and 050

medical decision trees (Li et al., 2022), where the 051

latter is an extension of the former. Formally, a 052

medical decision tree is a binary tree consisting of 053

condition nodes and decision nodes. Each node is a 054

relation triple or multiple relation triples combined 055

by logical operators (“OR”, “AND”). The decision 056

nodes are leaf nodes of the tree, whereas the con- 057

dition nodes are internal nodes. And the transition 058

from one node to another represents judgment or 059

decision-making. A first-order predicate logic for- 060

mula in conjunctive normal form can be viewed 061

as a special case of a medical decision tree where 062

there is only one condition node and one decision 063

node. Hence, we adopt the tree-form formulation 064
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in this paper.065

Different from traditional information extrac-066

tion tasks, e.g., name entity recognition (Tan et al.,067

2021; He and Tang, 2022), relation triple extraction068

(Yan et al., 2021; He and Tang, 2023) and event ex-069

traction (Yang et al., 2021; He et al., 2023), where070

the target output is a set of unitary/dual/multivari-071

ate tuples, the target output of medical decision072

tree extraction is a logically combined complex of073

relation triples. The logical coherence exhibited by074

such complexes mimics that of human language.075

This motivates us to adopt generative approaches076

for medical decision tree extraction, so as to better077

model the intrinsic logical connection among the078

relation triples inside a medical decision tree.079

Reflecting on the exciting success within the080

field of natural language generation, we can ob-081

serve that two paradigms (sequence-to-sequence,082

autoregressive generation) along with the idea of083

pretraining play the crucial roles. In this work,084

we try to replicate the success of sequence-to-085

sequence/autoregressive generation on the task of086

medical decision tree extraction.087

In order to maximally elicit the potential of pre-088

trained generative language models, three designs089

of medical decision tree linearization are trialed: 1)090

natural language (NL) style of linearization, where091

the relation triples are verbalized and naturally as-092

sembled with conjunctions; 2) augmented natural093

language (AugNL) style of linearization, where094

each relation triple is represented as an augmented095

token, sharing equal status with natural language096

tokens; 3) JSON style of linearization, the most097

widely used data interchange format that represents098

data objects as key–value pairs. The linearized099

medical decision trees act as the target sequences100

during training, and are generated then parsed into101

tree structure during inference.102

The proposed sequence-to-sequence models em-103

ploy an encoder-decoder architecture with a pair of104

pretrained language encoder and decoder, as well105

as a query-based entity-relation extractor. Under106

this paradigm, relation triple extraction is treated107

as a sub-task and the models fulfill it via the entity-108

relation extractor. Whereas the proposed autore-109

gressive models are instantiated from decoder-only110

large language models (LLMs). In this discipline,111

relation triple extraction is treated as an auxiliary112

task for multi-task learning without introducing113

extra parameters.114

Benchmarking on Text2DT (Li et al., 2022), a115

comprehensive public dataset, we find that gener-116

ative models are much more capable of extracting 117

medical decision tree than state-of-the-art (SOTA) 118

discriminative models. Our experiments also show 119

that a carefully designed sequence-to-sequence 120

model is competitive to a LLM-based autoregres- 121

sive model that is 10+ times larger. 122

Our contributions are summarized as follows: 123

• We propose several generative models un- 124

der the sequence-to-sequence/autoregressive 125

paradigms to better capture the intrinsic log- 126

ical connection among the relation triples 127

within a medical decision tree and extract the 128

tree from text accurately. 129

• We design 3 styles of tree linearization to 130

represent each medical decision tree as a se- 131

quence that is suitable to be generated by dif- 132

ferent pretrained generative language models. 133

134• Experimental results demonstrate that our 135

method outperforms SOTA discriminative 136

method by 12% tree accuracy, 9% path F1 137

score on the public benchmark Text2DT. In- 138

depth analysis also uncovers the pros and cons 139

of different generative medical decision tree 140

extraction models. 141

2 Methodology 142

2.1 Medical Decision Tree Linearization 143

To linearize medical decision trees into NL or 144

AugNL style sequences as target output for training, 145

we traverse each tree in pre-order, insert transition 146

conjunctions (“if”, “else”, “then”, “otherwise”) be- 147

tween nodes according to the node position, and 148

join the relation triples within each node with log- 149

ical conjunctions (“or”, “and”). This procedure 150

is depicted in Algorithm 1. The specific differ- 151

ences between NL and AugNL styles are explained 152

in Section 2.2.4. The JSON-style linearization is 153

more straightforward, see Appendix B for the de- 154

tails. Since CPT (Shao et al., 2021), so far the best 155

Chinese language encoder-decoder is pretrained on 156

text corpora and unable to generate code, we only 157

try the JSON-style linearization on autoregressive 158

LLMs (ChatGPT and ChatGLM). 159

2.2 Sequence-to-sequence Models 160

Figure 2(a) shows the overall framework of our 161

sequence-to-sequence models, which work in 4 162

steps: 1) encodes the input text and entity/relation 163

queries with a pretrained language encoder; 2) gen- 164

erates the entity/relation set with a query-based 165
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(a)

(b)

Figure 2: An overview of the proposed generative medical decision tree extraction models. (a) A sequence-to-
sequence model that extracts relation triples within input text and translates the text along with the extracted relation
triples into a linearized medical decision tree. (b) An autoregressive model that follows task instructions to generate
a linearized medical decision tree conditioned on input text.

entity-relation extractor; 3) generates the linearized166

decision tree with a pretrained language decoder,167

conditioned on the text encoding, relation repre-168

sentation and extracted relation set; 4) parse the169

linearized decision tree. Detailed designs are intro-170

duced as follows.171

2.2.1 Query-based Entity-relation Extraction 172

The query-based entity-relation joint extractor is 173

the one proposed by He and Tang (2023), which 174

consists of a shared decoder, an entity decoder, 175

a relation decoder, a entity predictor, a relation 176

type predictor and a subject-object predictor. It 177
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takes learnable entity queries Qe ∈ RMe×d and178

relation queries Qr ∈ RMr×d as input, where d is179

model dimension, Me and Mr are the numbers of180

entity/relation queries (set as the maximum amount181

of entity/relation in a single sentence of the corpus).182

Qe, Qr are concatenated with input text X and183

processed by pretrained language encoder to get184

contextual entity/relation representation He/Hr185

along with the text encoding Hx. The shared de-186

coder, entity decoder and relation decoder further187

update He into H̃e, update Hr into H̃r, H̃h, H̃t188

via linear transform and attention mechanism.189

The predicted sets of entities Ê and relations190

R̂ are finally computed based on H̃e, H̃r, H̃h, H̃t.191

Please refer to the work by He and Tang (2023) for192

more details about this module.193

2.2.2 Relational Context194

Since a medical decision tree is essentially a com-195

bination of relation triples, leveraging the predicted196

relation set as an additional decoding context may197

help the pretrained language decoder keep aware198

of which triples are already included in the gener-199

ated sequence and which ones are not. This can200

address the problem of low triple coverage in the201

predicted decision tree. Motivated by this idea,202

three designs of relational context are attempted:203

1) Relation query context (RQC), the representa-204

tion vectors H̃r of relation queries corresponding205

to all extracted relation triples; 2) Relation-centric206

textual context (RTC), a cross-attention-based con-207

text, where text encoding Hx acts as key and value,208

relation query vectors H̃r corresponding to all ex-209

tracted relation triples act as query; 3) Harmonized210

relation context (HRC), the fusion of RQC and211

RTC through gating mechanism.212

To inject the relational context into the model,213

we concatenate text encoding Hx with the rela-214

tional context in the sequence dimension and to-215

gether they serve as the decoding context for the216

pretrained language decoder:217

hd
t−1 = Decoder(ŷ<t|[Hx; C]) (1)218

C ∈ {RQC,RTC,HRC} (2)219

P (ŷt) = LMHead(hd
t−1) ∈ R|V | (3)220

ŷt = DecodeSearch(P (ŷt), ŷ<t, R̂) (4)221

where ŷ<t is the generated tokens by time step t,222

hd
t−1 is the undated hidden state of current time223

step; LMHead is a classifier that first convert cur-224

rent hidden state into vector of size |V | that ap-225

ply SoftMax to obtain predicted probability distri-226

bution P (ŷt) over the vocabulary; DecodeSearch 227

is the decode search strategy (e.g., greedy search, 228

beam search and constrained search, the one used 229

in this paper). ŷt is the token generated for current 230

time step and will get concatenated with ŷ<t to 231

restart the process, until the terminal token </s> 232

is generated. 233

2.2.3 Constrained Decoding 234

In order to utilize apriori decision tree linearization 235

grammar (as shown in Algorithm 1) to constrain 236

the candidate space of generated target sequence 237

with the set of extracted relations, we employ a spe- 238

cially designed constrained decoding (CD) strategy 239

during generative inference. 240

Specifically, the strategy restricts the candidate 241

token vocabulary at each generation step based on 242

the generated sequence prefix using a trie. The con- 243

struction of the trie takes into account the following 244

scenarios: 1) if the sequence prefix is “if”, the can- 245

didates include the first token of all head entities; 246

2) if the sequence prefix is “else”, the candidate 247

token is only “then”; 3) if the sequence prefix is 248

“then”, the candidates include “,” and the first token 249

of each head entity; 4) if the sequence prefix is “,”, 250

the candidate token is only “if”; 5) if the sequence 251

prefix is the first half of an entity/relation name, the 252

candidates are the first token of the second half of 253

the entity/relation name; 6) if the sequence prefix 254

is a complete head entity, the candidates are the 255

first token of all relation names with that entity as 256

the head; 7) if the sequence prefix is a complete 257

relation name, the candidates include the first to- 258

ken of all tail entities; 8) if the sequence prefix is a 259

complete tail entity, the candidates include “then”, 260

“otherwise”, and “</s>”. 261

2.2.4 Augmented Natural Language 262

Augmenting natural language(Mialon et al., 2023) 263

with tokens of other modalities (e.g., vision(Zhu 264

et al., 2023; Liu et al., 2023) and knowledge 265

graph(Pan et al., 2023)) can not only provide com- 266

plementary context but also greatly enhance the 267

expression ability. Distinguish from NL style of 268

linearization(Paolini et al., 2021; Lu et al., 2022), 269

where relation triples have to get verbalized before 270

being placed in the target sequence, in AugNL style 271

of linearization relation triples are considered as ba- 272

sic tokens of high-level abstract semantics and get 273

naturally embedded in the target sequence, which 274

decreases the average length of linearized relation 275

triples by 10+ times. 276
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The technical difference between sequence-to-277

sequence models with NL-style linearization and278

AugNL-style linearization lies in the decoding279

mechanism. Models with AugNL-style lineariza-280

tion employ a pointer-based copy mechanism,281

where the relational part of generated sequence is282

made up of pointers to extracted relation triples and283

the conjunction part of generated sequence is made284

up of pointers to predefined structure tokens (i.e.,285

“or”, “and”, “if”, “then”, “otherwise”, “,”, “</s>”):286

P (ŷt) = Softmax(hd
t−1⊙ (5)287

[Emb(R̂);Emb(StructureTokens)])288

For the embeddings of extracted relation triples289

Emb(R̂), we reuse the three designs of relational290

context representation but name them differently as291

relation query embeddings (RQE), relation-centric292

textual embeddings (RTE) and harmonized relation293

embeddings (HRE) to clarify the different usage.294

2.3 Autoregressive Models295

In contrast to sequence-to-sequence models, our296

autoregressive models inherit from decoder-only297

LLMs, as shown in Figure 2(b). When properly298

prompted with examples, a LLM can handle simple299

tasks without supervision, which is known as the300

ability of in-context learning (ICL). After super-301

vised fine-tuned (SFT), a LLM will get better at302

modeling the desired output of complex tasks.303

We explore the ICL as well as SFT settings. For304

the first setting, two LLMs, ChatGPT and Chat-305

GLM are employed, and the NL, JSON styles of306

linearization are tried (note that AugNL style is in-307

applicable here). For the SFT setting, we only con-308

sider ChatGLM (for reproductivity concern) and309

the NL style linearization (since the ICL results310

suggest this style of linearization is more suitable311

for ChatGLM, see Section 3.2).312

2.3.1 Few-shot In-context Learning313

In the in-context learning (ICL) setting, autore-314

gressive models are prompted with task instruction315

for medical decision tree extraction and few-shot316

demonstration. Specifically, the prompt for autore-317

gressive models with NL-style linearization under318

the ICL setting is similar to the one in Figure 2(b),319

except that it contains a few examples of expected320

input-output. And the prompt for JSON-style lin-321

earization is shown in Appendix B.322

2.3.2 Multi-task Joint Fine-tuning 323

Different from unsupervised in-context learning, 324

supervised fine-tuning helps a LLM master com- 325

plex tasks through end-to-end training on a diverse 326

set of instruction-response pairs. In this work, we 327

propose a multi-task joint fine-tuning method for 328

our autoregressive models, where medical decision 329

tree extraction is the main task, relation triple ex- 330

traction and tree shape extraction serve as the aux- 331

iliary tasks. And a novel progressively-dynamic 332

sampling strategy help the model gradually acquire 333

easy-to-hard structural extraction abilities. 334

Prompts for these tasks are illustrated in Figure 335

2(b). The target output of medical decision tree 336

extraction is just the NL-style linearized tree. The 337

target output of relation triple extraction is all men- 338

tioned relation triples in list format (ordered by 339

textual position). The target output of tree shape 340

extraction is the skeleton of a tree, made up of con- 341

junctions and ellipses. Our progressively-dynamic 342

sampling strategy is inspired by curriculum learn- 343

ing (Wang et al., 2021). With the increase of train- 344

ing step, the sampling rate of each task changes 345

according to the assumed task difficulty: for rela- 346

tion triple extraction, the sampling rate goes from 347

0.8 to 0 linearly; for tree shape extraction, the sam- 348

pling rate goes from 0.7 to 1 linearly; for the main 349

task, the sampling rate stays as 1. 350

2.4 Data augmentation and model ensemble 351

SOTA discriminative baseline PromptRE (Jiang 352

et al., 2022) leverages R-Drop (Wu et al., 2021) 353

as a means of data augmentation, and assembles 354

the relation triples predicted by multiple models 355

after each round of relation extraction. However, 356

their practices are inapplicable to generative mod- 357

els. For a fair comparison, we devise a general 358

data augmentation method and model ensemble 359

method for medical decision tree extraction. To 360

obtain augmented samples, we randomly replace 361

entities within the train data with their synonyms. 362

For model ensemble, our system first vote on the 363

tree structures predicted by multiple models and 364

then vote on the content (logical operator and rela- 365

tion triples) of each node. 366

3 Experiments 367

3.1 Data and Evaluation Metrics 368

We experiment on a comprehensive medical deci- 369

sion tree extraction dataset, Text2DT, which is in- 370

troduced as a shared task of the 8th China Health In- 371
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Paradigm Method Triple F1(%) Node F1(%) Path F1(%) Tree Acc(%)

Discriminative
BERT-Biaffine (2022)† 90.19 74.80 52.71 37.00
PromptRE (2022)†‡ 94.39 85.31 69.27 55.00

Sequence-to-sequence

CPT (NL) 92.67±0.20 83.54±0.26 66.27±0.51 51.00±0.89
CPT (NL)† 92.96±0.33 83.68±0.41 66.55±0.64 52.50±1.01
CPT (NL)†‡ 94.08 86.45 70.63 59.00
CPT (AugNL) 93.21±0.19 85.06±0.32 68.13±0.55 55.50±1.06
CPT (AugNL)† 94.18±0.29 86.97±0.26 69.47±0.58 58.00±0.99
CPT (AugNL)†‡ 95.04 88.43 78.26 66.00

Autoregressive ICL

ChatGPT (JSON) 73.12±0.42 63.56±0.57 44.61±0.73 28.00±1.22
ChatGPT (NL) 70.60±0.61 58.59±0.74 35.08±0.98 22.00±1.30
ChatGLM (JSON) 54.56±0.45 42.86±0.52 23.25±0.66 9.00±1.07
ChatGLM (NL) 58.67±0.70 49.52±0.83 27.11±0.93 17.00±1.36

Autoregressive SFT
ChatGLM (NL) 92.26±0.37 87.70±0.42 71.51±0.67 59.00±0.98
ChatGLM (NL)† 91.60±0.34 87.59±0.39 72.41±0.60 61.50±0.93
ChatGLM (NL)†‡ 93.92 90.00 77.05 66.00

Final Ensemble†‡ 95.43 90.48 77.91 67.00

Table 1: Main Results. † and ‡ mean the application of data augmentation and model ensemble respectively.
Final Ensemble is the ensemble of CPT (AugNL)† and ChatGLM (NL)†. The highest scores are in bold and the
second-highest scores are underlined. Without further clarification, in the following sections, data augmentation and
model ensemble are applied by default. Standard errors are included when applicable.

CD RQC RTC HRC Triple F1(%) Node F1(%) Path F1(%) Tree Acc(%)

89.43 79.68 60.10 45.75
✓ 92.63 82.35 63.45 48.25
✓ ✓ 92.88 81.65 61.31 47.00
✓ ✓ 92.67 83.54 66.27 51.00
✓ ✓ 92.83 83.23 64.87 50.25

Table 2: Results of ablation experiments on sequence-to-sequence models with NL-sytle linearization. “CD”,
“RQC”, “RTC” and “HRC” are abbreviations of Constrained Decoding, Relation Query Context, Relation-centric
Textual Context and Harmonized Relation Context respectively.

formation Processing Conference (Zhu et al., 2022)372

and get included in the CBLUE benchmark (Zhang373

et al., 2022b). Built on a rich corpus of Chinese374

medical textbooks and clinical guidelines, it covers375

diagnosis and treatment knowledge of around 200376

diseases. 6 categories of relation are annotated in377

the dataset, including “symptom”, “medication”,378

“treatment”, “usage”, “caution” and “basic info”.379

See Appendix D for the statistics of the dataset.380

The performance of different medical decision381

tree extraction methods are evaluated using the382

following metrics: 1) Triple F1 Score: for each383

triple in the extracted decision tree, it is considered384

correct only if it is identical to a triple in the ground-385

truth decision tree; 2) Node F1 Score: for each386

node in the extracted decision tree, it is considered387

correct only if it is identical to a node in the ground-388

truth decision tree; 3) Path F1 Score: for each path389

(from the root node to a leaf node) in the extracted390

decision tree, it is considered correct only if all 391

nodes within are identical to those of a path in the 392

ground-truth decision tree; 4) Tree Accuracy: an 393

extracted decision tree is considered correct only if 394

its structure and all contained nodes are identical 395

to those of the ground-truth decision tree. 396

We compare with SOTA medical decision tree 397

extraction methods, BERT-Biaffine and PromptRE 398

(see Section 4.3 for an introduction). All results 399

without ensemble are averaged over 5 runs and 400

reported with standard errors. Otherwise, the re- 401

sults are recorded for the ensemble of 5 models 402

under different random seeds and it is inapplica- 403

ble to compute the standard errors. Please refer to 404

Appendix C for details on implementation. 405

3.2 Main Results 406

Overall performance of different models on 407

Text2DT are shown in Table 1. In comparison of 408
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RQC RTC HRC RQE RTE HRE Triple F1(%) Node F1(%) Path F1(%) Tree Acc(%)

✓ 92.09 82.62 65.21 49.50
✓ ✓ 92.86 83.97 62.03 52.50

✓ ✓ 93.12 84.69 67.51 54.50
✓ ✓ 93.00 84.32 66.98 54.00

✓ 92.27 82.36 64.94 48.75
✓ 92.74 83.45 66.49 51.00

✓ ✓ 93.21 85.06 68.13 55.50

Table 3: Results of ablation experiments on sequence-to-sequence models with AugNL-sytle linearization. “RQE”,
“RTE” and “HRE” are abbreviations of Relation Query Embeddings, Relation-centric Textual Embeddings and
Harmonized Relation Embeddings respectively.

RE TS PDS Triple F1 Path F1 Tree Acc
87.44 66.55 53.00

✓ 89.65 67.98 57.00
✓ 90.10 68.35 57.00

✓ ✓ 90.44 70.83 59.50
✓ ✓ ✓ 91.30 71.32 60.00

Table 4: Ablation results of autoregressive models under
the SFT setting. “RE”, “TS” mean the auxiliary Relation
Triple Extraction and Tree Shape Extraction tasks re-
spectively. “PDS” stands for the progressively-dynamic
sampling strategy. The “%” marks are ommited here.

different paradigms, sequence-to-sequence and au-409

toregressive models (under the SFT setting) exhibit410

top-2 capacity on the task, achieving tree accuracy411

of 55.5% and 59% respectively without data aug-412

mentation and model ensemble. After applying413

data augmentation and model ensemble, both mod-414

els reach 66% tree accuracy, which is 11% higher415

than that of the SOTA discriminative method. The416

tree accuracy further increases to 67% when com-417

bining these two kinds of models.418

The evaluation results of sequence-to-sequence419

models suggest AugNL-style linearization is re-420

markably better than NL style for sequence-to-421

sequence generation, boosting the tree accuracy by422

4.5%, 5.5% and 6% respectively under 3 different423

settings of data augmentation and model ensemble.424

The evaluation results of autoregressive models425

in the ICL setting demonstrate the superiority of426

ChatGPT over ChatGLM on generating JSON code427

and Chinese language. However, the gap between428

ChatGLM and ChatGPT is much smaller on Chi-429

nese language generation than on JSON code gen-430

eration. The results also show that barely relying431

on LLMs and ICL is insufficient to solve the task432

of medical decision tree extraction. Although Chat-433

GPT reaches 28% tree accuracy when prompted to434

generate JSON-style linearized decision tree, it is435

still far from satisfaction. 436

3.3 Ablation Study 437

We conduct extensive ablation experiments on the 438

proposed generative models to verify the contribu- 439

tions of different components and determine the 440

optimal design choice among alternative compo- 441

nent designs. The results are shown in Table 2-4. 442

Table 2 presents the results for sequence-to- 443

sequence models with NL-sytle linearization. By 444

applying constrained decoding, the tree accuracy 445

improves from 45.75% to 48.25%, validating 446

the necessity of constrained decoding. Besides, 447

relation-centric textual context works better than 448

relation query context or harmonized relation con- 449

text, boosting tree accuracy by 2.75%. This indi- 450

cates a higher acceptance of relation-centric textual 451

context by the pretrained decoder, compared to the 452

relation query representations output by the relation 453

set generator. The reason may lie in the semantic 454

space consistency between relation-centric textual 455

context and natural language, making it more con- 456

ducive to natural language generation. 457

For sequence-to-sequence models with AugNL- 458

style linearization, the combination of relation- 459

centric textual context and harmonized relation 460

embeddings works the best compared to other al- 461

ternatives, as shown in Table 3. This is expected, 462

as harmonized relation embeddings are designed 463

to bridge the relational context and textual context. 464

For autoregressive models under the SFT set- 465

ting, the auxiliary relation triple extraction and 466

tree shape extraction tasks contribute equally to 467

model performance, leading to 4% absolute tree 468

accuracy increment respectively. When the two 469

auxiliary tasks are applied together, tree accuracy 470

increases from 53% to 59.5%. By incorporating 471

progressively-dynamic sampling, tree accuracy fur- 472

ther increases by 0.5% and reaches 60%. 473
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Figure 3: Error distribution of different generative models.

3.4 Error Analysis474

We analyze the errors produced by our top-475

performing models to discover the performance476

bottleneck of this task and facilitate future research.477

The distribution of errors is visualized in Figure 3,478

from which we can observe that: 1) The amount of479

Logical operator errors is the least, while relation480

triple errors occur most frequently, especially for481

generative models with NL-style linearization. 2)482

Sequence-to-sequence models with NL-style lin-483

earization have difficulty in correctly predicting484

the tree structures. 3) Assembling CPT (AugNL)485

and ChatGLM (NL) reduces relation triple errors486

but not the logical operator errors or tree structure487

errors. 4) Compared to sequence-to-sequence mod-488

els, autoregressive models produces much more489

subject/object entity errors, which means they are490

weak at identifying entity boundaries.491

4 Related Work492

4.1 Sequence-to-sequence Generation493

The idea of sequence-to-sequence generation was494

first introduced by Sutskever et al. (2014), where495

a pair of RNNs are employed to map a source se-496

quence of one domain to a target sequence of an-497

other. The idea then dominated the field of neural498

machine translation (Wu et al., 2016; Zhang et al.,499

2019) with the help of Transformer (Vaswani et al.,500

2017). There also exist many neural language mod-501

els with the encoder-decoder framework, e.g. T5502

(Raffel et al., 2019), BART (Lewis et al., 2019) and503

CPT (Shao et al., 2021), that are pretrained with504

sequence-to-sequence learning tasks.505

4.2 Autoregressive Generation506

Different from sequence-to-sequence generation,507

the autoregressive generation paradigm employs508

a single decoder network to generate an output509

sequence by iteratively predicting the next token510

conditioned on the current prefix, without the use 511

of an encoder network. Despite its simplicity, 512

this paradigm is shown to generalize better under 513

the zero-shot and few-shot settings (Zhang et al., 514

2022a; Wang et al., 2022). Besides, it is more effi- 515

cient and easier to scale up, leading to LLMs, e.g., 516

GPT-4 (Bubeck et al., 2023), LLaMA (Touvron 517

et al., 2023) and ChatGLM (Du et al., 2022). 518

4.3 Medical Decision Tree Extraction 519

Existing medical decision tree extraction methods 520

(Wu, 2022; Jiang et al., 2022) rely on discrimina- 521

tive models. A standard practice is to combine a 522

pretrained encoder (Devlin et al., 2019; Cui et al., 523

2021) with a Biaffine model (Dozat and Manning, 524

2016) to extract the relation triples as well as clas- 525

sify the logical connection between triples, and 526

then compose the tree (Wu, 2022). SOTA method, 527

PromptRE (Jiang et al., 2022), formulates medical 528

tree extraction as a multi-round conditional relation 529

extraction problem, where each parent node serves 530

as a condition for extracting relation triples of its 531

left/right child nodes from the text. 532

5 Conclusion 533

In this study, we present several generative mod- 534

els to extract medical decision trees, which are 535

valuable for CDSS but costly to acquire manually. 536

The proposed models inherit two mainstream text 537

generation paradigms, i.e. sequence-to-sequence 538

generation and autoregressive generation, which 539

bring advantage in modeling both source text and 540

the intrinsic logical connection among tree compo- 541

nents. Experiments show that our method wins the 542

SOTA discriminative method by a large margin, es- 543

tablishing new SOTA with 67% tree accuracy and 544

78% path F1 score. Besides, an analysis of error 545

distribution reveals the pros and cons of different 546

models, suggesting directions for future research 547

on this area. 548
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6 Limitations549

In this section, we summarize the limitations of our550

work as follows:551

• Although the proposed method is applicable552

to languages like English, we only experiment553

on a public Chinese dataset, since there are no554

available datasets in other languages.555

• Entity normalization is not covered in this556

work, which means the extracted rules are557

not readily compatible with existing biomedi-558

cal knowledge bases like UMLS. Future work559

should include entity normalization a step of560

post processing, or enhance the formulation561

and models to support entity normalization.562

• We only look into the extraction of medical de-563

cision rules in this study, but not decision rules564

on other knowledge-intensive domains, such565

as mineral exploration (Duda et al., 1981) and566

mathematics (Beeson, 1989). However, the567

proposed method is in fact domain-agnostic568

and we believe there is no barrier to extend569

our method to other domains.570
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A NL/AugNL-style Linearization798

Algorithm 1 illustrates the concrete procedure of799

linearizing a medical decision tree into NL/AugNL-800

style sequence.801

B JSON-style Linearization802

To linearize a medical decision tree in JSON style,803

we only need to pack the tree nodes along with their804

content as nested key-value pairs in pre-order. An805

example of the utilized JSON template is included806

in Figure 4.807

C Implementation details808

Our sequence-to-sequence models is initialized809

with CPT-large(Shao et al., 2021), which has 20-810

layer encoder and 4-layer decoder. The numbers811

of entity queries and relation queries are set as 30,812

25 respectively. We train the models in 2 stages: in813

the first stage (70 epochs), the pretrained language814

decoder are frozen and the encoder, entity-relation815

Algorithm 1 NL/AugNL-style Linearization

Require: tree (a medical decision tree)
1: seq ⇐ “”
2: while tree.preorderNext() do
3: node = tree.preorderNext()
4: if isCondition(node) then
5: if isLeft(node) then
6: seq += “if”
7: else
8: seq += “else, if”
9: end if

10: else
11: if isLeft(node) then
12: seq += “then”
13: else
14: seq += “otherwise”
15: end if
16: end if
17: if isOrLogic(node) then
18: seq += “or”.join(node.triples())
19: else
20: seq += “and”.join(node.triples())
21: end if
22: end while
23: return seq

extractor are optimized with the entity-relation ex- 816

traction loss; in the second stage (100 epochs), all 817

modules are jointly optimized. The learning rate of 818

the encoder and decoder are set as 3e-5 and 4e-5 819

respectively. An AdamW(Loshchilov and Hutter, 820

2017) optimizer with linear warm-up is employed. 821

For ICL, the autoregressive models are two plug- 822

and-play commercial natural language assistant: 823

1) ChatGPT (gpt-3.5-turbo version); 2) ChatGLM 824

(chatglm_pro version). We invoke them via API. 825

The default temperature is applied and the num- 826

ber of examples within each prompt is set as 5. 827

For SFT, the autoregressive models are initialized 828

with ChatGLM-6B and tuned with LoRA(Hu et al., 829

2021). The LoRA rank, learning rate, batch size 830

and number of training sets is set as 8, 2e-4, 8 and 831

2000 respectively. 832

The number of parameters of our sequence-to- 833

sequence models is less than 1B. Whereas the num- 834

ber of parameters of our autoregressive models 835

based on ChatGLM is 6B. All experiments are con- 836

ducted on an NVIDIA A100 server, and the com- 837

putational budget for training each model does not 838

exceed 4 GPU hours. 839
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Figure 4: Prompt for generating the JSON-style linearized medical decision tree (utilized by autoregreesive large
language models under the ICL setting).

Figure 5: Comparison of different generative models on extracting trees of different depths. Results here are
recorded for 5-model ensembles and it is inapplicable to include error bars. Trees of depth=5 only exist in the
training data but not the evaluation data, so there is not result for depth=5.

12



Figure 6: Diversity of trees generated by different models and its correlation with the performance gain after
ensemble.

Item Count

Sentences 500
Train/Dev/Test Splits 300/100/100
Avg. Sentence Length 66.5
Relation Classes 6
Relations per Sentence 6.39

Relation Name Count (Proportion)

Symptom 1374 (42.51%)
Medication 910 (28.15%)
Treatment 561 (17.36%)
Usage 222 (6.87%)
Caution 83 (2.57%)
Basic Info 82 (2.54%)

Tree Structure (Pre-order) Count (Proportion)

CDD 134 (26.80%)
CDCDD 253 (50.60%)
CCDDD 47 (9.40%)
CDCDCDD 45 (9.00%)
CCDCDDD 17 (3.40%)
CCDDCDD 2 (0.40%)
CDCDCDCDD 2 (0.40%)

Table 5: Statistics of the Text2DT Dataset (“C”/“D”
represents a “condition”/“decision” node)

D Dataset Statistics840

Detailed statistics of the Text2DT dataset are listed841

in Table 5.842

E Performance on Generating Trees of843

Different Depths844

There are 7 types of tree structures in the dataset845

and the depth of annotated decision trees ranges846

from 2 to 5, as illustrated in Table 5. To analyze the 847

difference between generative models on extracting 848

trees of different complexity, we split the test set 849

according to tree depth and evaluate the model 850

performance on each split respectively. The results 851

are illustrated in Figure 5, from which we can draw 852

the following conclusions: 853

• Deeper trees are more difficult to be correctly 854

generated than shallower ones. 855

• For sequence-to-sequence models, the perfor- 856

mance gap between NL and AngNL styles of 857

linearization lies on extracting deeper trees. 858

• In the ICL setting, ChatGPT with JSON-style 859

linearization gains most of its points from 860

trees of depth 2. Under other circumstances, 861

both ChatGPT and ChatGLM perform quite 862

poorly, regardless of the linearization style. 863

• Supervised fine-tuned ChatGLM outperforms 864

sequence-to-sequence models with AngNL 865

linearization on generating trees of depth 4, 866

but is sub-optimal on generating trees of depth 867

2 or 3. 868

• Assembling CPT (AugNL) and ChatGLM 869

(NL, SFT) leads to the most balanced perfor- 870

mance on extracting trees of different depths. 871

F Diversity of Trees Generated by 872

Different models and Its Influence 873

The performance gains after ensemble vary with 874

different paradigms of models, as observed in Ta- 875

ble 1. We suspect this is due to the difference in the 876

“diversity" of trees generated by different models. 877

To verify that, we measures the similarity between 878

13



medical decision trees using edit distance. The edit879

distance for medical decision trees is the minimum880

number of tree edit operations (i.e., inserting or881

deleting a node, changing a node role, inserting or882

deleting a triplet and modifying a logical operator)883

required to transform one tree into another. For a884

group of trees, the average edit distance between885

each pair of trees is denoted as the “diversity". Fig-886

ure 6 shows the diversity of trees generated by887

various models. It is observed that the diversity888

of trees by sequence-to-sequence models is much889

stronger than that of autoregressive models, and890

that the diversity is the strongest when integrating891

these two paradigms of models.892

In Figure 6, a scatter plot with a (least square)893

fitted line depicts the correlation between tree di-894

versity and performance increment after ensemble.895

It certifies that the tree diversity has a weak positive896

correlation with the increment of Triple/Node F1897

after ensemble, and a strong positive correlation898

with the increment of Path F1 and Tree Acc after899

ensemble.900
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