
Under review as a conference paper at ICLR 2022

LEARNING DENSE NERF CORRESPONDENCE
THROUGH GENERATIVE STRUCTURAL PRIORS

Anonymous authors
Paper under double-blind review

Figure 1: Given a trained generator G(·), we have two synthesis on the first two columns. On the
first identity’s face we randomly sample two keypoints. We extract each point’s feature from G and
calculate the feature similarity between the keypoints’ features and the feature map of the second
identity. The third and fourth columns show the similarity heatmap where the highlights position
have the same semantic meaning with the keypoints, which means they are dense correspondences
to each other. In this work we leverage this prior from pretrained NeRF-based GANs to learn 3D
NeRF dense correspondence.

ABSTRACT

Neural radiance field (NeRF), a kind of 3D shape representation, has shown
promising results over building geometry and textures from images. However,
unlike mesh or signed distance function (SDF) based representation, it remains an
open problem to build correspondences across radiance fields, limiting its appli-
cation in many downstream tasks. Assumptions of prior arts on the availability
of either correspondence annotations or 3D shapes as supervision signals do not
apply to NeRF. This paper shows that by leveraging rich structural priors encap-
sulated in a pretrained NeRF generative adversarial network (GAN), we can learn
correspondence in a self-supervised manner without using any correspondence or
3D supervision. To exploit the priors, we devise a novel Bijective Deformation
Field (BDF), a way to establish a bijective shape deformation field for 3D radi-
ance fields. Our experiments demonstrate that the GAN-derived priors are dis-
criminative enough to guide the learning of accurate, smooth and robust 3D dense
correspondence. We also show that BDF can produce high-quality dense corre-
spondences across different shapes belonging to the same object category. We
further demonstrate how the accurate correspondences facilitate downstream ap-
plications such as texture transfer, segmentation transfer, and deformation transfer.
Code and models will be released.

1 INTRODUCTION

The success of neural radiance fields (NeRF) (Mildenhall et al., 2020) has led to remarkable progress
in learning 3D representations. Unlike voxel- and mesh-based methods, NeRF-based approaches
represent each 3D object as a distribution of per-point colored densities in the 3D space. And by
approximating this distribution with a continuous parametric function, they show great potential to
capture geometric scene details and render realistic novel views.

In this work, we wish to establish dense correspondence between NeRFs, a meaningful prerequisite
for many downstream applications such as non-rigid tracking, appearance transfer and shape manip-
ulation. The problem is non-trivial as existing methods are not directly applicable to our problem.
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Specifically, while point-wise correspondences are needed for NeRF-based object representations,
existing methods mainly focus on mesh-based object representations, providing only vertex-wise
and part-wise correspondences. Importantly, the training of existing methods require ground-truth
annotations as supervision signals, which are hard to obtain for NeRF-based object representations.
There are studies on finding correspondences over object representations in the form of signed dis-
tance functions (SDFs) (Zheng et al., 2021; Deng et al., 2021), which are not applicable as well due
to the reliance on SDF-specific priors, i.e., exact object surface can be defined.

We overcome the limitations above by exploiting NeRF-based generative adversarial networks
(GANs) (Chan et al., 2021; Niemeyer & Geiger; Schwarz et al., 2020). Specifically, NeRF-based
GANs treat novel views rendering like image synthesis in conventional image-based GANs but em-
ploy NeRFs as the representations. In this study, we show that such NeRF-based GANs implicitly
capture rich structural priors after learning from a massive set of 2D images. Such priors are in-
dicative to correspondences across two objects’ NeRF – corresponding points of both objects would
share similar features derived from the NeRF GAN. We demonstrate that one can naturally exploit
such cross-instance feature similarity as the geometric preservation descriptor to establish shape
correspondences.

To build dense correspondences between object NeRFs using generator features of a NeRF-based
GAN, an intuitive solution is by learning a conditional mapping that estimates per-point 3D offsets
from a source NeRF to a target NeRF, conditioned on the latent codes of these two NeRFs. However,
such a straightforward approach is less effective in practice as the objective is too challenging for
a single mapping to capture. In light of this, we propose to replace the conditional mapping with
a bijective deformation field referred to as BDF. It consists of two separate mapping functions,
namely a mapping function WF (·) that estimates per-point 3D offsets from the source NeRF to
a fixed template NeRF, and a mapping function WB(·) that estimates per-point 3D offsets from
the template NeRF to the target NeRF. Fig 2 illustrates the notion of BDF. The proposed BDF is
appealing as two separate NeRFs can be seamlessly and accurately bridged by the fixed template
NeRF in a self-supervised manner without any explicit supervision.

We contribute a careful study on the losses and regularizations to achieve self-supervised learning
in the proposed BDF framework. Specifically, we minimize the cosine distance between generator
features of estimated corresponding points as the primary objective. To make the learning more
effective, we introduce some useful regularizations, e.g., encouraging the cycle consistency of two
mappings, emphasizing points with large densities via importance sampling, and encouraging the
smoothness of pair-wise deformation. In addition, we present a curriculum training strategy to
improve the stability of BDF learning – the learning starts from using pairs of object NeRFs with
small differences and gradually includes more challenging pairs.

To our knowledge, this study is the first attempt that builds 3D dense correspondences between
two shapes represented as NeRF. Our technical contributions include the notion of exploiting prior
from NeRF-based GAN and the self-supervised objectives for learning the bijective deformation
field. BDF produces high-quality 3D dense correspondences, surpassing previous self-supervised
methods by a large margin while being on par with supervised counterparts. By conducting GAN-
Inversion and applying BDF subsequently, one can achieve several interesting downstream tasks like
texture transfer.

2 RELATED WORK

3D Shape correspondences The problem of establishing dense correspondences between 3D shapes
is of key importance to a series of downstream tasks (Loper et al., 2015; Egger et al., 2020), and
has been studied extensively in recent survey (Kaick et al., 2011; Sahillioglu, 2019). Traditional
approaches build correspondence between shapes represented by mesh or point clouds. They can be
roughly divided into registration based and similarity based methods, where the former adopts Lapla-
cian coordinate δi for vertex vi as geometric preservation descriptor after registration. Similarity-
based solutions do not change the geometry of given shapes and calculates the similarity between
vertices with learnable feature descriptors. To mitigate the complexity of point-to-point matching,
functional maps (Ovsjanikov et al., 2012) reduce shape matching from vertex-based to the spectral
space of 3D shapes. With recent advances in geometric machine learning (Wang et al., 2019; Qi
et al., 2017), researchers extend traditional framework by replacing hand-crafted descriptor such as
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SHOT (Tombari et al., 2010), with learnable feature descriptors (Litany et al., 2017). Ground truth
correspondences (Fan et al., 2019) or 3D models (Zhou et al., 2016) are usually needed during train-
ing. To mitigate these requirements, (Roufosse et al., 2019; Halimi et al., 2019; Eisenberger et al.,
2021; Groueix et al., 2018) extend 3D correspondence to unsupervised settings. However, explicit
geometry representations intrinsically suffer from deformation artifacts and require dense vertices
to recover surface details.

As a parallel class of shape representation, implicit functions represent shapes as the iso-
surface (Carr et al., 2001) of a continuous volumetric field. Recent advances in implicit func-
tions (Mescheder et al., 2019; Park et al.; Chen & Zhang, 2019) have demonstrated their excellence
when representing complicated geometry. However, building dense correspondence across shapes
represented by implicit functions are intrinsically challenging since ground truth correspondence are
impossible to acquire. Recent attempts to build correspondence over implicit representations (Zheng
et al., 2021; Deng et al., 2021) tried to bypass this requirement by defining F as the SDF values of
the deformed points and d as the marginal L1 loss as in (Park et al.). Similarly, (Liu & Liu, 2020)
(?) followed similar principles as functional maps and adopts occupancy loss as supervision, while
the basis functions are learned from data. Though dense correspondence over implicit functions
could be derived, these methods are unable to establish consistent bijective correspondence and still
require 3D supervision during training. Moreover, these methods are all constrained on synthetic
dataset (Chang et al., 2015) which limit the applications on real scenes. We emphasize that our meth-
ods is essentially different from them in three ways. First, our method builds on NeRF which are
more practical in representing realistic scenes. Second, our method is fully free of 3D annotations
like sparse correspondence labeling or 3D models. This facilitated more downstream applications
where only 2D images are available. Lastly, our method is able to build bijection correspondences
between two shapes, which provides more flexibility and scalability to deform between two shapes.

Generative models and 3D-aware image synthesis Deep generative models, especially
GANs (Goodfellow et al.; Karras et al.; Brock et al., 2019), have shown promising results in gen-
erating photorealistic images. To further extend GANs to synthesize images in a 3D-consistent
manner, many recent approaches investigated how to incorporate 3D inductive bias into generative
training. Motivated by the success of NeRF (Mildenhall et al., 2020), recently researchers resort to
the continuous power of radiance fields as the incorporated 3D inductive bias in GANs (Chan et al.,
2021; Schwarz et al., 2020; Niemeyer & Geiger). Impressive results have been achieved on both
3D-aware image synthesis and multi-view consistency. Our work employs radiance fields-based
GANs, specifically π-GAN (Chan et al., 2021), as both a robust correspondence similarity metric
and an infinite 3D shapes dataset. Beyond the study of improving the synthesis quality, few work
probes how to apply the representations learned by GANs for downstream tasks. (Bau et al., 2020;
Shen et al., 2020; Jahanian et al., 2020) interpret the semantics encoded by GANs and apply them
for image editing. (Zhang et al., 2021a; Tritrong et al., 2021; Zhang et al., 2021b) leverage the rich
semantics in GAN’s features for fine-grained annotation synthesis, few-shot segmentation as well
as multi-view data generation respectively. Concurrently (Pan et al.; Eslami et al.; Jahanian et al.,
2019; Zhang et al., 2020) show that GAN trained on 2D images can learn implicit notion of 3D
environment. But it remains less explored whether the learned GAN representations are transferable
to more challenging 3D tasks, like dense correspondence estimation.

3 METHODOLOGY

In this paper, we propose a novel framework that exploits generator features of a NeRF-based GAN
trained with unposed 2D images to build dense 3D correspondences between NeRF representations
of 3D objects. At the core of our framework is a bijection deformation field that estimates the
correspondence of a NeRF point based on its generator feature. While our framework does not
require any ground-truth 3D annotations, a key insight of our framework is that a pre-trained NeRF-
based GAN will embed the geometric details of NeRFs in the semantics of its generator features, so
that corresponding points across different NeRFs have the most similar features, as shown in Fig. ??.
In the following, we at first introduce the details of NeRF-based GANs as background knowledge,
and then briefly describe formulate the problem of 3D correspondence learning. Finally, we will
introduce our framework in detail.
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Figure 2: Demonstration of our deformation field through texture transfer. For each samples we
transfer the texture from target NeRF according to the their correspondences. This is achieved by
volume rending over deformed geometry and texture from the target NeRF. The first two rows show
the forward deformation using F (·) which map a NeRF to the template, and the last two rows show
the inverse mapping from template to the instance via B(·).

3.1 BACKGROUND ON NERF-BASED GANS

Inspired by the success of NeRF as an efficient 3D representation, NeRF-based generative adversar-
ial networks (GANs) employ NeRF as their internal representation for 3D-aware image synthesis.
We adopt π-GAN (Chan et al., 2021) in this paper. Specifically, the generator of the π-GAN con-
tains a mapping network and a multi-layer perceptron (MLP) network. Starting from a latent code
z ∼ pZ that follows the Gaussian prior distribution, the mapping network m first maps z to a set of
modulation signals (β = {βi},γ = {γi)}). In π-GAN, a NeRF is obtained by the MLP network,
which estimates the view-dependent density σ ∈ R+ and the color vector c ∈ R3 for each 3D point,
taking its coordinate x ∈ R3 and a viewing direction d ∈ S2 as input. To associate a latent code
to its corresponding NeRF, the modulation signals will be injected into the MLP network, serving
as FiLM conditions (Perez et al., 2018; Dumoulin et al., 2018) to modulate its features at different
layers as fi+1 = sin(γi · (Wifi + bi) + βi).

Image synthesis in π-GAN is achieved by sampling a latent code and a viewing direction, and
subsequently rendering an image from the corresponding NeRF. Following the volume rendering of
NeRF (Mildenhall et al., 2020), each pixel color C of the image is obtained via sampling a set of
points along the ray r(t) = o+ td and accumulating their color vectors weighted by their densities:

Ĉ(r) =

N∑
i=1

T (ti)(1− exp(−σiδ))ci, where T (t) = exp

− i=1∑
j−1

σjδj

 , (1)

where δi = ti+1 − ti is the distance between adjacent samples. Using a set of unposed 2D im-
ages, π-GAN is trained progressively with the non-saturating GAN loss and the R1 regularization
(Mescheder et al., 2018).
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3.2 PROBLEM FORMULATION

In general, the dense correspondences between two objects X and Y refer to pairs of surface points
{(x, y);x ∈ X , y ∈ Y} that have analogous geometric semantics. To conduct dense correspondence
learning between two given objects X and Y , previous attempts usually learns a deformation field
T that estimates an offset ∆ in 3D coordinate for a given surface point in X , so that corrX ,Y(x) =
x+ ∆ = y. The learning objective of this deformation field T can be summarized as

L = arg min
T

∑
x∈X

d(x, corrX ,Y(x)) + λLreg(T ), (2)

where d is a measurement that evaluates the distance between two points, each of which belongs to
a different shape, and Lreg regularizes the deformation of T to satisfy certain properties, such as
local smoothness.

In our case, since each object X is represented as a neural radiance field (NeRF) NX , we will
find correspondences for all points in NX that have non-zero densities. While previous attempts
(Liu & Liu, 2020; Deng et al., 2021; Zheng et al., 2021) for dense correspondence learning rely
on ground-truth annotations to learn their deformation fields, collecting such annotations for NeRF-
based representations is infeasible, where there are infinite points with non-zero densities, and the
object surface is not explicitly modeled.

3.3 BIJECTIVE DEFORMATION FIELD

We propose a novel method to learn dense correspondences between two object NeRFs without rely-
ing on any ground-truth annotations. The key idea of our method is to employ a pre-trained π-GAN
G(·) that plays the dual role: 1) a source of infinite object NeRFs N inf

i=1 and 2) a robust semantic
embedding function that maps corresponding points across different NeRFs into semantically simi-
lar features, as shown in Fig. ??. Specifically, points in the 3D Euclidean space are first mapped to
the semantic embedding space via the generator G. For an object NeRFNX , G will output a feature
vector fx for each point x that has non-zero density inNX , taking the latent code zX ofNX and the
coordinate of x as input. Based on such per-point generator features, the original learning objective
in equation 2 can thus be reformulated in the feature space of G, where d is implemented as the
cosine distance between two features. And there is no need to use any 3D ground-truth annotations
for learning the deformation field.

A straightforward solution to model the correspondences between NeRFs is leveraging a conditional
neural deformation field T : R3 × RzX × RzY 7→ R3 which estimates the offset for each point x
of the source NeRF NX , taking its coordinate and the latent codes zX and zY of source and target
NeRFs as input. However, since the source and target NeRFs vary in each iteration, such a solution
requires a large model capacity and fails to converge in practice.

To alleviate the computational complexity, we sample a fixed NeRF with a latent code z0 from G
as the intermediate template N0, and reformulate the deformation field T as the composition of two
separate conditional neural deformation fields, namely a forward deformation field F that estimates
the deformation from a source NeRF NX to the template N0, and a backward deformation field B
that estimates the deformation from the template N0 to a target NeRF NY . In this way, for each
point x in NX , its corresponding point y in NY can be retrieved by:

x′ = x+ F (x, zX), (3)

y = x′ +B(x′, zY ), (4)

where zX and zY are corresponding latent codes, and both F and B are implemented as a MLP
consisting of 3 fully connected layers. By decomposing the original deformation field T between
arbitrary two NeRFs into two deformation fields F and B bridged by a fixed template NeRF, the
overall learning complexity is significantly reduced. In practice, the template NeRFN0 is chosen as(
γN0

= γi, βN0
= βi

)
which can be intuitively seen as the average shape of the trained dataset.

In the following we at first introduce our novel training objective, which, as described above, are
based on generator features of a pre-trained π-GAN. Subsequently, a curriculum training strategy is
further introduced to enhance the learning efficiency.

5



Under review as a conference paper at ICLR 2022

Figure 3: Overview of the generator feature extractor f . We use multiple layers from different
channel as the final extracted feature. The generator G(·) takes in a point p ∈ R3 and a modulation
signal (β, γ) as input to to control the generated content.

3.4 TRAINING OBJECTIVE

Following equation 2, our overall training objective contains a generator feature similarity loss for
estimated correspondences and two additional regularizations for our deformable fields F and B,
namely a cycle consistency regularization and a deformation smoothness regularization.

Generator Feature Similarity Loss. Given a collection of nNeRFs {Ni}ni=1 that are sampled from
G with corresponding latent codes {zi}ni=1, each of these NeRFs will serve as a source NeRF for F
to compute its deformation to the template. For each pair of estimated corresponding points (x, y)
where x belongs to one of these sampled NeRFs and y belongs to the template, the cosine similarity
between their generator features from G will be used to measure the distance between them. Note
that we also include NeRF features after concatenating view directions in the feature extraction.
Consequently, the loss for F can be written as:

LF =

n∑
i=1

∑
x∈PNi

wx ∗ Similarity(G(x, zi), G(x+ F (x, zi), z0)), (5)

where the loss of each point x is weighted by wx = T (tx), so that F is encouraged to focus more
on points with large densities, as they are close to the object surface with rich semantics. It is
worth noting that to reduce the computational redundancy and complexity, we will sample only a
subset PNi

of points from each NeRF Ni by the sampling strategy introduced in the next section.
Similarly, each of these NeRFs will also serve as a target NeRF for B to compute the deformation
of the template to it. The loss for B is thus:

LB =

n∑
i=1

∑
y∈PN0

wy ∗ Similarity(G(y,z0), G(y +B(y,zi), zi)). (6)

In practice, instead of using a single generator feature, we adopt features of G at multiple layers and
concatenate them to better reflect the semantics of a point.

Cycle Consistency Regularization. Since the conditional deformation fields F andB are supposed
to restore the original deformation field T , when the same NeRF Ni is used as both the source and
target NeRF, they should satisfyB(x+F (x, zi), zi) = x for all valid points x. Therefore we further
apply a cycle consistency regularization for F and B:

Lcycle =

n∑
i=1

∑
x∈PNi

‖B(x+F (x, zi), zi)−x‖22+

n∑
i=1

∑
y∈PN0

‖F (B(y,zi), zi)−y‖22, Seefigure 4foraclearoverview.

(7)

Deformation Smoothness Regularization. To encourage the smoothness of deformation and re-
duce spatial distortion, a deformation smoothness regularization is also included. For each point
pair (x1, x2) in the same NeRF, it requires the distance between this pair to be the same as that of
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Figure 4: Our model contains two mapping functions: the forward mapping F (·) to map point
from a NeRF instance pN to its corresponding point on template pN0 , and vice cersa for B(·). To
regularize the mapping, we introduce cycle consistency regularisation that captures the principle that
the bijective mapping of a point should remain itself.

their corresponding points in another NeRF. Therefore it can be written as:

Lpair =

n∑
i=1

∑
x1,x2∈PNi

‖eNi(x1, x2)− eN0(x1 + F (x1, zi), x2 + F (x2, zi))‖2

+

n∑
i=1

∑
y1,y2∈PN0

‖eN0(y1, y1)− eNi(y1 +B(y1, zi), y2 +B(y2, zi))‖22,
(8)

where eNi = ‖x1, x2‖2.

The total objective is thus:
Ltotal = LF + LB + λcycleLcycle + λpairLpair, (9)

where λcycle and λpair are balancing coefficients, which are respectively set to 0.5 and 1e − 4 in
practice.

3.5 TRAINING STRATEGY

While the generatorG of a pre-trained π-GAN serves as the source of infinite training object NeRFs,
in each iteration of the training process we will sample a batch of NeRFs {Ni}ni=1 with correspond-
ing latent codes {zi}ni=1. To further sample a point set PNi

for each sampled NeRF Ni, for each
pixel within the resolution H ×W we shoot a ray r(t) = o + td where d identifies the direction
from the camera to the pixel. Subsequently, for each ray we follow (Mildenhall et al., 2020) and
conduct a hierarchical sampling to obtain a fine set of points. Finally, we take the union of all these
fine sets as PNi .

Curriculum Sampling of NeRFs. In practice, we find the variation between a sampled NeRF
and the template NeRF significantly affects the training process, which may even collapose at the
beginning stage if it gets a sampled NeRF that varies substantially from the template.

To improve training stability and efficiency, we thus adopt a curriculum sampling strategy when
obtaining NeRFs from G, which morphs the template NeRF gradually in the latent space to sample
NeRFs with growing complexity. Specifically, since in π-GAN the semantics of a sampled NeRF
is determined by the modulation signals (β,γ), we can linearly interpolate between two sets of
modulation signals to gradually morph one NeRF into another. Inspired by this property of π-
GAN, when we sample a set of n NeRFs {Ni}ni=1, we will compute their corresponding modulation
signals {(βi,γi)}ni=1 from their latent codes. Subsequently, we will adjust the learning complexity
by blending them with the template NeRF as

βi(t) = β0 + t · (βi − β0), (10)
γi(t) = γ0 + t · (γi − γ0), (11)

where (β0,γ0) are the modulation signals of the template NeRF, and t will gradually increase from
0 to 0.6 as the training process proceeds.
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(a) Texture transfer results on CelebA dataset (b) Texture transfer results on Cats dataset

Figure 5: Demonstration of our deformation field through texture transfer. For each samples we
transfer the texture from target NeRF according to the their correspondences. This is achieved by
volume rending over deformed geometry and texture from the target NeRF. The first two rows show
the forward deformation using F (·) which map a NeRF to the template, and the last two rows show
the inverse mapping from template to the instance via B(·). Best viewed with zoom

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Here we adopt π-GAN (Chan et al., 2021) as the NeRF-based Generator for dataset generation and
point feature extraction 3 and report visual results over Human Face and Cats dataset. Please see the
supplementary material for more implementation details.

4.2 RESULTS

We evaluate our methods on three pretrained NeRF-based Generator models for correspondence
learning. In Fig. 4.2, we present the dense correspondences generated by our methods between
the template NeRF and randomly sampled NeRF through texture transfer, where we transfer tex-
tures from sampled NeRF to template through F (·) and inversely, through B(·), to help check the
correspondence quality. Visually inspected, our method could establish plausible bijective dense
correspondences that indicates the semantic relationship across various NeRF despite their structure
variations. This validates that our bijective deformation network learns the underlying structural
semantics of different NeRF though no explicit an are provided.

4.3 ABLATION STUDY.

In this section we conduct ablation study to validate the efficacy of our regularisation loss terms.
To validate the effectiveness of cycle consistency loss, we conduct self-reconstruction where given
a randomly sampled instance, namely a point on a NeRF is first deformed to the template and then
deformed back to itself. Fig. 6 showed the rendered reconstructed 3D object as well as the projected
2D loss heatmap between the deformed and the original NeRF. Through the visualization we can
easily seen that bijective deformation with consistency loss leads to smaller reconstruction error, as
well as fewer distortions during deformation. Regarding point pair regularisation, we qualitatively
showed in 7 that the learned correspondences are inferior as well as distorted.
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Figure 6: Rendering from self-reconstructed point through cycle deformation. From the left is the
input image, rendered reconstructed NeRF with generative feature similarity loss only, and on the
right we add cycle-consistency loss. Note that deformation model trained with cycle-consistency
loss can perfectly reconstruct itself, which means the learned correspondence are consistent across
shapes.

Figure 7: Output from deformation network trained without and with point-pair loss. Without point-
pair regularisations, the deformation network tends output distorted visual results. We show defor-
mation results from B on the top row and F on the second row.

5 APPLICATIONS.

Texture Transfer. Using dense correspondence generated by BDF, we are able to transfer textures
from one identity to another. Texture transfer has a wide range of applications and intrinsically
requires high quality dense correspondence. Here in Fig. 8 we show the texture transfer results
across randomly sampled identities. Visual results show that the texture patterns can be preserved
and transferred to corresponding semantic areas. This is achieved by querying the density and
texture of correspondence point on target NeRF bridged by template. Please see supplementary for
the qualitative results.

6 CONCLUSIONS

In this paper, we have presented a network architectures and training strategies to establish robust
3D dense correspondence across NeRF without annotations. Lying in the core of our method is
to leverage rich structural priors encapsulated in a pretrained NeRF generative adversarial network
(GAN), in which way dense correspondences can be learned in a self-supervised manner. Our ex-
periments further demonstrate that 3D dense correspondences learned from the GAN-derived priors
are accurate, smooth and robust to support promising downstream applications. To the best of our
knowledge, this is the first method that tries to establish dense correspondence across NeRF repre-
sentation. We believe this is an inspiring direction and introduces a new solution for NeRF-based
human expression editing as well as video reenactment.
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Figure 8: Given two randomly sampled identities, we transfer the texture from the second to the first
via dense correspondence query bridged by template NeRF. We show six cases here.

A TRAINING DETAILS.

In the experiments, we set the learning rate to 1e − 5 and exponentially decay in
5000, 10000, 15000and20000 iterations. In each iteration, we randomly sample 10 latent codes
z10i=1 for training. For each synthesized NeRF from latent code zi, we randomly sample 20% rays
per image which generates about 2e17 points in a single batch. To improve sampling efficiency, we
use the integrated depth mask as sampling hint and ignore those background regions for sampling.

To train F andB simultaneously, we sample the same number of points on template NeRF. For each
sampled point we conduct positional encoding on their 3D coordinates, which we find facilitates
training. All parameters are trained end-to-end using the Adam (Kingma & Ba, 2015) optimizer.
Training takes about 8 hours on a NVIDIA V100 GPU with a batchsize of 10 NeRF and 217 samples
per NeRF.

B MODEL ARCHITECTURE.

Deformation network F and B has identical architecture. It has 3 layers ReLU-MLP with dim 256.
The model concatenates the positional-encoding points PE(p) and the corresponding conditions zi
as input and output the deformation offsets.

C 3D GENERATOR.

We adopt the officially released π-GAN pretrained checkpoint for dense correspondence learning.
To extract network features, we use the features starting from layer 4. We find the middle layer
features have more correlation with the underlying semantics of given region, while the last few
layers are more sensitive to low-level details such as the color variations, which could not provide
meaningful clues for dense correspondence learning.

D ADDITIONAL EXPERIMENT RESULTS

See 8.
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