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ABSTRACT

We introduce a software-hardware co-design approach to reduce memory traffic
and footprint during training with BFloat16 or FP32, in order to boost energy
efficiency and execution time performance. Our methods dynamically adjust the
size and format of the floating-point containers used to store activations and weights
during training. The different value distributions lead us to different approaches
for exponents and mantissas. Gecko exploits the favourable exponent distribution
with a lossless delta encoding approach to reduce the total exponent footprint by
up to 58% in comparison to the FP32 baseline. To contend with the noisy mantissa
distributions, we present two lossy methods to eliminate as many as possible least
significant bits without affecting accuracy. Quantum Mantissa is a machine learning
mantissa compression method that taps onto the gradient descent algorithm to learn
the minimal mantissa bitlengths on a per-layer granularity, and obtain up to 92%
reduction in total mantissa footprint. Alternatively, BitChop observes changes
in the loss function during training to adjust mantissa bitlength network-wide,
yielding a reduction of 81% in footprint. Schrödinger’s FP implements hardware
encoders/decoders that, guided by Gecko/Quantum Mantissa or Gecko/BitChop,
transparently encode/decode values when transferring to/from off-chip memory,
boosting energy efficiency and reducing execution time.

1 INTRODUCTION

Training most state-of-the-art neural networks has become an exascale class task (Venkataramani
et al., 2017; Amodei et al., 2018) requiring many graphics processors (NVidia, 2017) or specialized
accelerators, e.g., (Jouppi et al., 2017; Hab, 2019; Liao et al., 2019; Cer, 2019). While training is
both computationally and data demanding, it is the memory transfers to off-chip DRAM for stashing
(i.e., saving and much later recovering) activation and weight tensors that dominate overall execution
time and energy (Jain et al., 2018) (see Fig. 1). The per batch data volume easily surpasses on-chip
memory capacities, necessitating off-chip DRAM accesses which are up to two orders of magnitude
slower and more energy expensive. It’s no wonder that reducing this overhead has been receiving
attention throughout the software/hardware stack.

Chen et al. (2016) and Zheng et al. (2020) recompute rather than stash activations, whereas micro-
batching strives to keep activations on chip (Huang et al., 2018). Encoding methods target specific
value patterns such as zeros (Rhu et al., 2018) or redundant spatial information (Evans et al., 2020), or
exploit underlying properties of training for certain tensors, e.g., the outputs of ReLU or Pooling (Jain
et al., 2018). These lossless and lossy encodings use fewer bits for stashed tensor content to reduce
tensor volume. This also boosts the effective capacity of each node’s main memory, which further
reduces traffic during distributed training. All aforementioned methods either shift significant costs
to compute or target only some values and offer only limited relief.

The most direct way to reduce tensor volume is to use a more compact datatype. Initially, with the
goal to demonstrate that neural networks can tackle challenging problems, training relied on single
precision 32b floating-point (FP32), which still remains the datatype of choice when achieving the
best accuracy is the priority. Recently, we have seen some success in training with more compact
datatypes such as half-precision FP16, BFloat16 (Kalamkar et al., 2019), dynamic floating-point (Das
et al., 2018), and flexpoint (Köster et al., 2017) and even with using combinations with other datatypes
such as fixed-point (Das et al., 2018; Micikevicius et al., 2018; NVIDIA; Drumond et al., 2018). IBM
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Figure 1: Training process and its memory transfers. Blue - Activations that are typically saved to
off-chip memory during forward pass and retrieved during backward pass, Red - Weights that are
typically stored and loaded once from off-chip memory, Gray - Updates and Gradients – through
mini-batching during the backward pass they can often fit on-chip

managed to push the datatype to 8b (Wang et al., 2018b) and 4b (Sun et al., 2020) extremes for some
cases. As Moore’s law and Dennard scaling for semiconductors have come to an end, using more
efficient datatypes during training is getting wider attention – even major hardware manufacturers
are investigating how to use 8b floating point with different mantissa/exponent ratios according to
perceived needs of tensors (Micikevicius et al., 2022). These methods require careful trial-and-error
investigation of where, when, and which narrow datatypes to use. This is especially true because
different tensors, tasks, architectures, or layers require different datatypes. Consequently, there is no
guarantee of success. The methods require trial-and-error full training runs as whether the choice of
datatypes is viable can only be evaluated post mortem. Moreover, since the datatypes are statically
chosen they offer no opportunity to amend the choice if accuracy suffers (e.g., significant drop with
deeper networks identified by IBM (Sun et al., 2020)).

Obviously, knowing in advance which compact datatypes to use during training would be the best.
However, given that this goal still eludes us, our work asks whether we can harness the training
process itself to automatically learn them. Ideally, such a method would automatically tailor datatypes
to meet the demands of each tensor, layer, and network. Furthermore, it could continuously adjust
datatype selection as training progresses, adapting to the changing needs. In addition to accelerating
training, methods such as ours can further inform efforts for selecting more efficient datatypes for
inference such as those by (Micikevicius et al., 2022) or (Sun et al., 2020).

A similar idea has successfully targeted fixed-point inference by using reinforcement learning (Wang
et al., 2018a), clever differentiable datatype definitions (Nikolić et al., 2020), architecture search (Wu
et al., 2018), and profiling (Nikolić et al., 2018), etc. However, all of these are too expensive for
training and their overheads would overshadow the benefits of a more compact training datatype.

Given that floating point remains the datatype of choice, we focus on floating-point datatype selection.
We explore the possibility to dynamically and continuously adjust the mantissa bitlength (fractional
bits) and the container (overall bits) for floating-point values (activations and/or weights) for stashed
tensors, and to do so transparently at no additional burden to the user. Our solution is Schrödinger’s
FP, a family of methods that dynamically adjust the floating-point encoding and complement the
aforementioned training acceleration methods. Our approach is end-to-end fully-automated, requiring
no input, guessing, or advanced knowledge from the operator. Schrödinger’s FP can be used to
reduce memory overheads and boost computation throughput. In this work, we limit our attention
to boosting energy efficiency and performance by using Schrödinger’s FP to transparently encode
values as they are being stashed to off-chip memory, and decode them to their original format as they
are being read back. This application can be used as a plug-in over any hardware without changing
the existing on-chip memory hierarchy and compute units. Similarly, Schrödinger’s FP will generally
work in conjunction with methods that can improve accuracy for a preselected datatype, partition,
distribute, or reschedule the training work to improve energy efficiency and performance.

Schrödinger’s FP uses tailored approaches for the mantissa and exponent. It dynamically adjusts
mantissa bitlengths in order to store and read fewer bits per number in off-chip memory. This work
explores two such methods. The first, Quantum Mantissa, harnesses the training algorithm itself to
learn on-the-fly the mantissa bitlengths that are needed per tensor/layer and continuously adapts those
bitlengths per batch. Quantum Mantissa introduces a single learning parameter per tensor and a loss
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function that includes the effects of the mantissa bitlength. Learning the bitlength incurs a negligible
overhead compared to saving from the resulting reduction in off-chip traffic. The Quantum Mantissa
experiments show that: 1) it reduces the mantissa bitlengths considerably, and 2) the reductions are
achieved fairly soon in the training process and remain stable till the end. However, the bitlengths
vary per tensor and fluctuate throughout, capturing benefits that wouldn’t be possible with a static
network-wide choice of datatype.

Motivated by the success of Quantum Mantissa, we explore the second mantissa adjustment method,
BitChop, which requires no additional loss function and parameters. BitChop interface only needs
to be notified of the per-batch updates to the loss. Using an exponential moving average of these
changes, BitChop adjusts mantissa bitlength for the whole network. As long as the network seems
to be improving, BitChop will attempt to use a shorter mantissa; otherwise, it will increase it.
The method proves effective, albeit with lower reductions compared to Quantum Mantissa. This
is expected since 1) Quantum Mantissa harnesses the training process to continuously learn the
optimal bitlengths, and 2) Quantum Mantissa adjusts bitlengths per layer whereas BitChop uses a
network-wide one.

Most of the exponents during training exhibit a heavily biased distribution (Awad et al., 2021).
Accordingly, Schrödinger’s FP uses a value-based approach that stores exponents using only as many
bits as necessary to represent their magnitude and sign. Metadata encodes the number of bits used.
To reduce the metadata overhead, Schrödinger’s FP encodes exponents in groups.

To maximize benefits, we present a hardware-assisted implementation of Schrödinger’s FP. The
inclusion of specialized hardware units is now commonplace among all hardware vendors as the
method of choice for further improving compute performance. Appendix A presents efficient
hardware (de)compressors that operate on groups of otherwise unmodified floating-point values,
be it FP32 or BFloat16. The compressors accept an external mantissa length signal and pack the
group of values using the aforementioned compression methods for the mantissas and exponents.
The decompressors expand such compressed blocks back into the original floating-point format.
We demonstrate that Schrödinger’s FP greatly improves energy efficiency and execution time.
Our compression methods also serve as motivation for pursuing, as future work, a software-only
implementation that would require low-level changes in the closed-source tensor operation kernels.

We highlight the following experimental findings:

• Schrödinger’s FP compression techniques find the necessary mantissa and exponent
bitlengths to reduce overall memory footprint without noticeable loss of accuracy: our Quan-
tum Mantissa-based method reduces the tested models down to 20.8% on average (range:
14.7%− 24.9%) and our BitChop-based one to 24.6% on average (range: 19.4%− 28.9%)

• Schrödinger’s FP compressor/decompressor exploit the reduced footprint to obtain 2.94×
and 2.64× performance improvement for SFPQM and SFPBC (Schrödinger’s FP with
Quantum Mantissa or BitChop, see Section 2.1.4 for details), respectively. In fact, we hit
a hard performance boundary, since all layers are shifted from memory bound to compute
bound, which completely flips the workload paradigm.

• Crucially, Schrödinger’s FP excels at squeezing out energy savings with on average, 3.38×
and 2.96× better energy efficiency for SFPQM and SFPBC .

2 ADJUSTING VALUE CONTAINERS DURING TRAINING

Generally, maintaining accuracy on most real-world tasks requires training with a floating-point
approach. Floating-point formats comprise three segments: a mantissa, an exponent, and a sign bit.
Mantissas and exponents are differently distributed, necessitating different approaches. The greatest
challenge is compressing mantissas since they are uniformly distributed across the domain, whereas
compression exploits non-uniformity. We will present two methods to compress mantissas, a machine
learning approach (Section 2.1) and a hardware-design-inspired approach (Section 2.2). In contrast,
exponents can be compressed with fairly simple hardware techniques (Section 2.3).

We study Schrödinger’s FP with ResNet18 and ResNet50 (He et al., 2015), and MobileNet
V3 (Howard et al., 2019) trained on ImageNet (Russakovsky et al., 2014), DLRM (Naumov et al.,
2019) trained on Kaggle Criteo, BERT (Devlin et al., 2018) finetuned on MRPC (Dolan & Brockett,
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2005) and GTP–2 (Radford et al., 2019) finetuned on Wikitext 2 (Merity et al., 2016). For clarity, we
report detailed results with ResNet18 with BFloat16 throughout the paper, concluding with overall
performance and energy efficiency measurements for all models.

2.1 MANTISSA: Quantum Mantissa

Quantum Mantissa involves procedures for both the forward and backward pass of training. We
begin by defining a conventional quantization scheme for integer mantissa bitlengths in the forward
pass, and then expand it to the non-integer domain, and describe how this interpretation allows
bitlengths to be learned using gradient descent. Subsequently, we introduce a parameterizable loss
function, which enables Quantum Mantissa to penalize larger bitlengths. We then briefly touch on the
compute overhead of our method and the plan for final selection of mantissa bitlengths. Ultimately,
we demonstrate the benefits of Quantum Mantissa on memory footprint during ImageNet training.

2.1.1 QUANTIZATION

The greatest challenge for learning bitlengths is that they represent discrete values with no obvious
differentiation. To overcome this, we define a quantization method on non-integer bitlengths. We
start with an integer quantization of the mantissa M with n bits by zeroing out all but the top n bits:

Q(M,n) = M ∧ (2n − 1) << (m− n) (1)

where Q(M,n) is the quantized mantissa with bitlength n, m is the maximum number of bits and ∧
represents bitwise AND.

Throughout training, we represent the integer quantization as Q(M,n). This scheme does not allow
the learning of bitlengths with gradient descent due to its discontinuous and non-differentiable nature.
To expand the definition to real-valued n = ⌊n⌋+ {n}, the values used in inference during training
are stochastically selected between the nearest two integers with probabilities {n} and 1− {n}:

Q(M,n) =

{
Q(M, ⌊n⌋), with probability 1− {n}
Q(M, ⌊n⌋+ 1), with probability {n} (2)

where ⌊n⌋ and {n} are floor and fractional parts of n, respectively. The scheme can be, and in this
work is, applied to activations and weights separately. Since the minimum bitlength per value is 0, n
is clipped at 0. This presents a reasonable extension of the meaning of bitlength in continuous space
and allows for the loss to be differentiable with respect to bitlength.

During the forward pass, the formulae above are applied to both activations and weights. The
quantized values are saved and used in the backward pass. During the backward pass, we use the
straight-through estimator (Bengio et al., 2013; Hubara et al., 2016) to prevent propagating zero
gradients that result from the discontinuity’s discreteness; however, we use the quantized mantissas
for all calculations. This efficient quantization during the forward pass reduces the footprint of the
whole process.

2.1.2 LOSS FUNCTION

On top of finding the optimal weights, the modified loss function penalizes mantissa bitlengths by
adding a weighted average (with weights λi, not to be confused with the model’s weights) of the bits
mi required for mantissas of weights and activations. We define total loss L as:

L = Ll + γ

i∑
(λi × ni) (3)

where Ll is the original loss function, γ is the regularization coefficient used for selecting how
aggressive the quantization should be, λi is the weight corresponding to the importance of the ith

group of values (one per tensor), and ni is the bitlength of the activations or weights in that tensor.

This loss function can be used to target any quantifiable criteria by a suitable selection of the λi

parameters. Since our goal is to minimize the total footprint of a training run, we weigh each layer’s
tensors according to their memory footprint.
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(a) (b) (c)
Figure 2: Quantum Mantissa on ResNet18/ImageNet: (a) Validation accuracy throughout training,
(b) Weighted mantissa bitlengths with their spread throughout training, and (c) Mantissa bitlengths
for each layer at the end of each epoch. Darker dots represent the latter epochs.

2.1.3 COMPUTATIONAL AND MEMORY OVERHEADS

Quantum Mantissa adds minimal computational and memory overhead to the forward and backward
passes. In the forward pass, random numbers need to be created at a chosen granularity to determine
the quantized values. Our experiments show that per tensor/layer is sufficient and is a negligible cost.

To update the bitlength parameters in the backward pass, we need to compute their gradients. These
are a function of the weight values and gradients, which are calculated during the regular backward
pass. The extra calculations for each bitlength are proportional to the number of values quantized to
that bitlength. This overhead is negligible in comparison to the total number of computations. For our
experiments, the overhead is less than 2% and 0.5% for MobileNet V3 and ResNet18, respectively.

On the memory side, the only extra parameters that need to be saved are the bitlengths, two floats per
layer (bitlength for weights and activations), again negligible in comparison with the total footprint.
All other values are consumed as they are produced without need for off-chip stashing.

2.1.4 BITLENGTH SELECTION

Quantum Mantissa will produce non-integer bitlengths and requires non-deterministic inference. We
prefer the deployed network not to have this requirement. For this reason, we round up the bitlengths
and fix them for some training time to fine-tune the network to this state. While our experiments
show that bitlengths converge quickly and final ones can be determined within a couple of epochs,
avoiding the small overhead for most of the training, we delay this action so that bitlengths have the
ability to increase if needed during training. Our experiments show that this is unnecessary for the
models studied; however, the overhead is so small that we leave it on as a safety mechanism. We
round up the bitlengths for the last 10 epochs to let the network regain any accuracy that might have
been lost due to Quantum Mantissa. Quantum Mantissa still reduces traffic during these epochs.

Evaluation: BitLengths and Accuracy We report measurements for per-layer weights and activa-
tions quantized separately using a loss function weighted to minimize total memory footprint. We
train ResNet18 on the ImageNet dataset over 90 epochs, with regularizer strength of 0.1, learning
rate of 0.1, 0.01 and 0.001 respectively at epochs 0, 30, and 60 and weight decay of 0.0001.

Quantum Mantissa excels at minimizing the memory footprint whilst not introducing accuracy
loss. Figure 2a shows that throughout training, Quantum Mantissa introduces minimal changes in
validation accuracy. In the end, we converge to a solution within 0.4% of the FP32 baseline.

Figure 2b shows how Quantum Mantissa quickly (within a couple of epochs) reduces the required
mantissas for activations and weights down to 1− 2 bits on average. Throughout training, the total
cumulative memory footprint is reduced to 7.8% and 25.5% of the FP32 and BFloat16 mantissa
footprint, respectively. The figure further shows that there is a large spread across different layers, in-
dicating that a granular, per-layer, approach is the right choice to maximize benefits. Via the weighted
loss function, Quantum Mantissa generally targets the activation bitlengths more aggressively than
the weights because the activations are responsible for the majority of the memory footprint.

The spread of mantissa bitlengths across the network and time is shown in Figure 2c. While most
layers quickly settle at 1 or 2 bits, there are exceptions that require more (up to 4b). Consequently, a
network-scale datatype would have to use the largest one and leave a lot of the potential untapped.
For ResNet18, the maximum bitlength is over 2× larger than the weighted average.
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(a) (b) (c)
Figure 3: BitChop on ResNet18/ImageNet: (a) Validation accuracy throughout BFloat16 training, (b)
Average mantissa bitlengths per epoch throughout training, on BFloat16 and FP32, (c) Distribution
of BitChop’s mantissa bitlengths throughout the 5005 batches of epoch 45 over BFloat16.

2.2 MANTISSA: BitChop

While Quantum Mantissa leverages training itself to greatly reduce mantissa lengths, having a method
that does not require introducing an additional loss function and parameters is appealing. BitChop is
a run-time, heuristic method to reduce the number of mantissa bits for the forward and backward
passes. At a high-level, BitChop monitors how training progresses adjusting the mantissa length
accordingly: as long as the training seems to be improving the network, BitChop will attempt to use
a shorter mantissa; otherwise, it will try to increase its bitlength. BitChop conceptually splits the
training process into periods, where a period is defined as processing N batches. BitChop adjusts the
mantissa at the end of each period using information on network progress.

The ideal scenario for BitChop is one where past observation periods are good indicators of forth-
coming behavior. Macroscopically, accuracy improves during training which appears to be a good
fit. Microscopically, however, training is a noisy process. Fortunately, training is a relatively long
process based on “trial-and-error” which may be forgiving for momentary lapses in judgement.

There are three major design decisions that impact how successful BitChop can be: 1) what infor-
mation to use as a proxy for network progress, 2) how long the period should be, and 3) at what
granularity to adjust mantissa lengths. The resulting method should strike a balance between capturing
as much as possible the opportunity to reduce bitlength, and avoiding over-clipping as this can hurt
learning progress and ultimately the final accuracy that would be achieved.

We have experimented with several options and arrived at the following choices: 1) Using an
exponential moving average of the loss as a proxy for network progress, and 2) using a short period
where N = 1, that is a single batch. Additionally, rather than attempting to adjust mantissas at the
tensor/layer level, BitChop uses the same mantissa for the whole model. Specifically, to monitor
network progress, BitChop uses the loss which is calculated per batch as part of the regular training
process. While the loss improves over time, when observed over short periods of time, it exhibits
non-monotonic behavior which is sometimes erratic. To compensate for this volatility, BitChop uses
an exponential moving average Mavg which it updates at the end of each period:

Mavg = Mavg + α ∗ (Li −Mavg) (4)

where Li is the loss during the last period and α is an exponential decay factor which can be adjusted
to assign more or less significance to older loss values. This smooths the loss over time while giving
importance to the most recent periods. At the end of each period i, BitChop adjusts the mantissa
bitlength (unchanged, lower, or higher) by comparing Li with Mavg within a dynamically updated
threshold T .

Evaluation: Bitlengths and Accuracy We report BitChop’s effect on activation footprint and
accuracy during full training sessions of ResNet18 as before. Figure 3a shows that the network
achieves the same validation accuracy as with the baseline training. For clarity, the figure shows
results for BFloat16 only (results with FP32 were similar and accuracy was unaffected). Throughout
the training process, validation accuracy under BitChop exhibits more pronounced swings compared
to the baseline and to Quantum Mantissa. However, in absolute terms, these swings are small.

Figure 3b shows that BitChop reduces mantissa bitlengths to 4 - 5 bits on average when used over
BFloat16 and to 12 bits on average when used over FP32. However, mantissa bitlengths vary per batch
depending on the loss as illustrated in the histogram (Figure 3c) of the bitlengths used throughout
a sample epoch (epoch 45) for the BFloat16 run. This shows that the training process sometimes
requires the entire range of Bfloat16 whereas other times it only requires 2 bits. All across the training
process, BitChop reduces the total mantissa footprint of the BFloat16 baseline to 64.3%. Over
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(a) (b)
Figure 4: Gecko on ResNet18/ImageNet: (a) Cumulative distribution of exponent values. (b) Post-
encoding cumulative distribution of exponent bitlength

FP32 BitChop reduces mantissa footprint to 52.3%. While BitChop might miss potential bitlength
reductions, it is non-intrusive and has virtually no overhead.

2.3 EXPONENT: Gecko

The exponents of BFloat16 and FP32 are 8b biased integers. Except for a few early batches, we find
that during training, the exponent values exhibit a heavily biased distribution centered around 128
which represents 0. This is illustrated in Figure 8a which reports the exponent distribution throughout
training of ResNet18 after epoch 10. We omit gradients which are even more biased as those can
be kept on-chip. Taking advantage of the relatively small magnitude of most exponents, we adopt
a variable length lossless exponent encoding. The encoding uses only as many bits as necessary
to represent the specific exponent magnitude rather than using 8b irrespective of the value. Due
to our variable-sized exponents, a 3b metadata field specifies the number of bits used. Having a
dedicated bitlength per value would negate any benefits or worse, become an overhead. To amortize
this cost, multiple exponents share a common bitlength that is long enough to accommodate the
largest one within the group. We further observe that, especially for weights, the values exhibit spatial
correlation (values that are close by have similar magnitude). Encoding differences in value skews
the distribution closer to zero, benefiting our approach.

The specific encoding scheme Gecko used is as follows: Given a tensor, Gecko first groups the values
in groups of 64 (padding as needed) which it treats conceptually as an 8x8 matrix. Every column
of 8 exponents is a group which shares a common base exponent. The base exponent per column
is the exponent that appears in the first row of incoming data. The base exponent is stored in 8b.
The remaining 7 exponents are stored as deltas from the base exponent. The deltas are stored as
[magnitude, sign] format and using a bitlength to accommodate the highest magnitude among those
per row. A leading 1 detector determines how many bits are needed. The bitlength is stored using 3b
and the remaining exponents are stored using the bitlength chosen.

Evaluation: BitLength We measure how many bits are needed to encode the exponents using Gecko
for the duration of training of ResNet18 as described previously. As representative measurements,
Figure 8b reports the cumulative distributions of exponent bitlength for one batch across 1) all layers,
and 2) for a single layer, separately for weights and activations. After delta encoding, almost 90%
of the exponents are lower than 16, and 20% of the weight exponents and 40% of the activation
exponents need only 1 bit. Across the whole training process, the overall compression ratio for the
weight exponents is 0.56 and 0.52 for the activation exponents. The ratio is calculated as (M + C)/O
where M the bits used by the per group bitlength fields, C the bits used to encode the exponent
magnitudes after compression, and O the bits used to encode exponents in the original format.

3 EVALUATION – PUTTING ALL TOGETHER

We study the following two Schrödinger’s FP variants: Gecko with Quantum Mantissa (SFPQM ) and
Gecko with BitChop (SFPBC ) which are combinations of our exponent and mantissa compression
methods and the interaction with GIST++ (Jain et al., 2018). GIST++ is a slightly modified version of
Gist that uses sparsity encoding only for those tensors where doing so reduces the footprint, avoiding
the increase in traffic that would occur otherwise. For instance, this is useful for MobileNet V3,
BERT and GPT-2 which do not use ReLU, and as a result, exhibit very little sparsity.

We perform full training for ResNet18, ResNet50 and MobileNet V3 Small on ImageNet, DLRM
on Kaggle Criteo as well as finetuning BERT on MRCP and GPT-2 on Wikitext 2, using an
RTX3090/24GB with PyTorch v1.10. We implement Quantum Mantissa by modifying the loss
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Table 1: SFPBC , SFPQM , BF16: Val. Accuracy/Perplexity and total memory reduction vs. FP32.

FP32 BF16 SFPQM SFPBC

Network Task Metric Score Footprint Footprint Score Footprint Score Footprint
ResNet18 Classification Accuracy 69.94 100% 50% 69.54 14.7% 69.95 23.7%
ResNet50 Classification Accuracy 76.06 100% 50% 75.58 20.6% 75.72 21.7%
MobileNet V3 S Classification Accuracy 65.60 100% 50% 65.26 24.9% 65.21 27.2%
BERT Text classification Accuracy 84.56 100% 50% 84.31 17.9% 84.42 19.4%
GPT-2 Language Modeling Perplexity 20.95 100% 50% 20.96 23.5% 20.95 28.9%
DLRM Recommendation Accuracy 79.42 100% 50% 79.45 23.1% 79.44 26.9%

function and adding the gradient calculations for the per tensor/layer parameters. We simulate
BitChop in software. For both methods, we faithfully emulate mantissa bitlength arithmetic effects
by truncating the mantissa bits at the boundary of each layer using PyTorch hooks and custom layers.
We also measure Gecko’s effects in software via PyTorch hooks. The above enhancements allow us
to measure the effects our methods have on traffic and model accuracy.

3.1 MEMORY FOOTPRINT REDUCTION

First we report activation and weight footprint reduction on ResNet18. Table 1 shows the cumulative
total memory reduction and validation accuracies in comparison with FP32 and BFloat16 baselines.
Combined, our compression techniques excel at reducing footprint, with little affect on accuracy.

SFPQM : Figure 5a shows the relative footprint of each part of the datatype with SFPQM in
comparison with the FP32 and Bfloat16 baseline. Even though our methods are very effective at
reducing the weight footprint (91% for mantissas and 54% for exponents), this effect is negligible in
the grand scheme of things due to the fact that weights are a very small part of all three footprints.
For the same reason, the reductions in activation footprint (92% for mantissas, 63% for exponents
and 98% for sign) have a far greater effect. Because of the effectiveness of Quantum Mantissa,
the mantissas are reduced from the top contributor in FP32 (70%), to a minor contributor (38%).
While exponents are significantly reduced too, they start to dominate with 59% of the footprint in
comparison with FP32 at 24%. Similar conclusions are reached when comparing with Bfloat16
except for the fact that mantissas and exponents start with similar footprint.

SFPBC : Figure 5a also shows the relative footprint of the datatype components under SFPBC when
compared to the FP32 and Bfloat16 baselines. While BitChop does reduce mantissa bitlength for the
network’s weights, this does not have a great effect in the total memory footprint reduction due to
the small size of weights when compared to activations. Although mantissa weight footprint is not
reduced, weight exponent footprint is by 56%. This is why the focus on the activations’ mantissa
bitlengths yields a significant total memory footprint reduction when compared to FP32 (mantissa
footprint is reduced by 81%, exponent footprint by 63% and sign by 98% in activations), and a
smaller but still significant reduction when compared with Bfloat16 (36% for mantissa and 63% for
exponents). The reductions are not as great as with Quantum Mantissa due to the network-wise
limitation of the method and activation mantissas stay as the major contributor of footprint.

3.2 RELATIVE COMPRESSION AND COMPARISON WITH OTHER METHODS

Finally, we compare Schrödinger’s FP compression against Bfloat16, GIST++ and JS, a simple
sparse Bfloat16 zero-compression method in Figure 5b. JS uses an extra bit per value to avoid storing
zeros. We limit attention to activations since weights represent a small fraction of the overall footprint
and traffic. All methods benefit from using 16b. On ResNet18, JS and GIST++ benefit from the
30% reduction due to high sparsity induced by ReLu. GIST++ benefits even further because of
its efficient compression of maximum pooling. SFPBC does even better just by finding a smaller
datatype outperforming all of them, whereas SFPQM proves even better by adjusting the datatype per
layer. However, SFPBC and SFPQM only target the reduced datatype and there is an opportunity to
build on it with the same ideas that power JS and GIST++. When combined, this further improves
compression ratios to 10× and 8× for modified SFPQM and SFPBC .

MobileNet V3 Small poses a bigger challenge since it sparsely uses ReLu and uses no max pooling.
Accordingly, there is little potential for JS and GIST++ to exploit. SFPQM and SFPBC still get
another 2× compression over Bfloat16, JS, and GIST++. Application of ideas from JS and GIST++
to Schrödinger’s FP compression offers only marginal gains. BERT and GPT-2 will exhibit similar
results due to not using ReLu.
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(a) (b)
Figure 5: Schrödinger’s FP: a) Relative training footprint ResNet18/ImageNet w/ FP32, BF16,
SFPBC and SFPQM , and b) Cumulative activation footprint w/ BF16, sparsity only and GIST++.

Table 2: Performance and Energy Efficiency gains in comparison w/ FP32
Performance Energy Efficiency

Network Bfloat 16 SFPQM SFPBC Bfloat 16 SFPQM SFPBC

ResNet18 1.53× 2.30× 2.09× 2.00× 6.12× 4.22×
ResNet50 1.64× 2.53× 2.45× 1.98× 4.56× 4.48×
MobileNet V3 S 1.72× 2.37× 2.14× 2.00× 3.95× 3.60×
BERT 1.88× 3.77× 3.54× 1.36× 1.78× 1.73×
GPT-2 2.13× 4.48× 3.42× 1.34× 1.70× 1.58×
DLRM 1.60× 2.19× 2.22× 1.58× 2.14× 2.17×

3.3 PERFORMANCE AND ENERGY EFFICIENCY

We evaluate the execution time and energy efficiency by incorporating Gecko hardware units into
a hardware accelerator representative of state-of-the-art designs. We model an accelerator with 8K
units (each capable of performing 4 MACs per cycle), and a 500MHz clock for a peak computer
bandwidth of 16TFLOPS. We consider two baseline configurations using respectively FP32 and
BFloat16. Both have 8 channels of LPDDR4-3200 DRAM memory and 32MB of on-chip buffers.
Appendix B details the evaluation methodology. Area overhead of the compressor and decompressor
is 0.67% of accelerator area, excluding on-chip memory, which is negligible.

Table 2 reports execution time improvements of Bfloat16, SFPQM , and SFPBC over the FP32
baseline. On average, SFPQM and SFPBC are 2.9× and 2.6× faster respectively, compared to
1.8× with Bfloat16. Both SFPQM and SFPBC significantly outperform both the FP32 baseline and
Bfloat16. However, performance does not scale linearly even though SFPQM and SFPBC reduce the
memory footprint to 20.8% and 24.6% respectively: some layers that were previously memory bound
during the training process become compute bound because of the reduction in memory footprint.
This is the reason why even though Bfloat16 reduces the datatype to half, it does not achieve 2×
speedup. This transition of most layers from memory bound to compute bound also affects the
improvements in performance that SFPQM can offer, as even though it consistently achieves a lower
footprint than SFPBC , this only offers an advantage for performance in the few layers that remain
memory bound. SFPQM may offer bigger performance benefits if coupled with higher computational
performance hardware. Regardless, while a reduction in traffic may not yield a direct improvement in
performance, it does improve energy efficiency.

Table 2 also shows energy efficiency improvement with Bfloat16, SFPQM and SFPBC over the
FP32 baseline. SFPQM and SFPBC excel at improving energy efficiency by significantly reducing
DRAM traffic. Since the energy consumption of DRAM accesses greatly exceeds that of computation,
and some layers are or become compute bound, SFPQM and SFPBC improve energy efficiency
more than performance, achieving an average of 3.4× and 3.0× energy efficiency respectively. The
dominance of DRAM access energy consumption over computation can also be seen in Bfloat16,
where the reduction to half the footprint, the use of 16-bit compute units, and the compute layers
being no longer a limiting factor gives Bfloat16 a 1.7× energy efficiency.

4 CONCLUSION

We explored methods that dynamically adapt the bitlengths and containers used for floating-point
values during training. The different distributions of the exponents and mantissas led us to tailored
approaches for each. We target the largest contributors to off-chip traffic during training for both
activations and weights. There are several directions for improvements and further exploration
including expanding the methods to also target the gradients and refining the underlying policies they
use to adapt mantissa lengths. Regardless, this work has demonstrated that the methods are effective.
The key advantages of our methods are: 1) they are dynamic and adaptive, 2) they do not modify the
training algorithm, and 3) they take advantage of value content for the exponents.
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5 REPRODUCIBILITY STATEMENT

We will release our full code with all the necessary instructions on how to re-run our experiments by
the camera-ready deadline at the latest.
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A OUR HARDWARE APPROACH

This section presents the Schrödinger’s FP hardware encoder/decoder units that efficiently exploit
the potential created by our quantization schemes. Without the loss of generality we describe
compressors/decompressors that process groups of 64 FP32 values.

Compressor: Figure 6a shows that the compressor contains 8 packer units (Figure 6c). The
compressor accepts one row (8 numbers) per cycle, for a total of 8 cycles to consume the whole group.
Each column is treated as a subgroup whose exponents are to be encoded using the first element’s
exponent as the base and the rest as deltas. Accordingly, the exponents of the first row are stored
as-is via the packers. For the every subsequent row, the compressor first calculates deltas prior to
passing them to the packers.

The length of the mantissa is the same for all values and is provided by the mantissa quantizer method
be it Quantum Mantissa or BitChop. Each row uses a container whose bitlength is the sum of the
mantissa bitlength (provided externally) plus the bitlength needed to store the highest exponent
magnitude cross the row. To avoid wide crossbars when packing/unpacking, values remain within
the confines of their original format bit positions as per the method proposed in Proteus (Judd et al.,
2016). In contrast to Proteus, however, here every row uses a different bitlength, the values are
floating-point, the bitlengths vary during runtime and per row, and we target training. The exponent
lengths need to be stored as metadata per row. These are stored separately necessitating two write
streams per tensor both however are sequential thus DRAM-friendly. The mantissa lengths are either
tensor/layer- or network-wide and are stored along with the other metadata for the model.

Each packer (Figure 6c) takes a single FP32 number in [exponent, sign, mantissa] format, masks
out unused exponent and mantissa bits, and rotates the remain bits to position to fill in the output
row. The mask is created based on the exp width and man width inputs. The rotation counter register
provides the rotation count which is updated to (exp width+man width+1) every cycle. The (L,R)
register pair, is used to tightly pack the encoded values into successive rows. There are needed since a
value may now be split across two memory rows. When either register, its 32b (or 16b for BFloat16)
are drained to memory. This arrangement effectively packs the values belonging to this column
tightly within a column of 32b in memory. Since each rows the same total bitlength, the 8 packers
operate in tandem filling their respective outputs at exactly the same rate. As a result, the compressor
produces 8x32b at a time. The rate at which the outputs are produced depends on the compression
rate achieved, the higher the compression, the lower the rate.

Decompressor: As Figure 6b shows, the decompressor mirrors the compressor. It takes 8 3-bit
exponent widths and a mantissa length from the system, and 8x32 bits of data per cycle. Every
column of 32b is fed into a dedicated unpacker per column. The unpacker (Figure 6d reads the
exponent length for this row and the global mantissa length, takes the correct number of bits, and
extends the data to [exponent, sign, mantissa] format.

Each unpacker handles one column of 32b from the incoming compressed stream. The combine-and-
shift will combine the input data and previous data in register then shift to the left. The number of
shifted bits is determined by the exponent and mantissa lengths of this row. The 32-bit data on the
left of the register are taken out and shifted to the right (zero extending the exponent). Finally, the
unpacker reinserts the mantissa bits that were trimmed during compression. Since each row of data
uses the same total bitlength, the unpackers operate in tandem consuming data at the same rate. The
net effect is that external memory see wide accesses on both sides.

B HARDWARE EVALUATION METHODOLOGY

Best practices for the evaluation of custom hardware architectures necessitates exploration and
validation first via analytical modelling or via cycle-accurate simulation. Since training these networks
takes several days on actual hardware, cycle-accurate simulation of the full process is impractical. To
estimate performance and energy, we use the best practice approach by analytically modelling the
time and energy used per layer per pass of a baseline accelerator. To do so, we use traffic and compute
counts collected during the aforementioned full training runs. We record these counts each time a layer
is invoked using PyTorch hooks. We model time and energy for memory accesses via DRAMSIM3 (Li
et al., 2020). For modeling on-chip structures we use CACTI (HewlettPackard) for the buffers and
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(a) Compressor

(b) Decompressor

(c) Packer (d) Unpacker

Figure 6: Schrödinger’s FP Compressors/Decompressors

15



Under review as a conference paper at ICLR 2023

module area per unit (um2) unit number total area (mm2)
compressor 40682.88 16 0.651

decompressor 46481.40 16 0.744
accelerator 38533.68 8000 308.27

Table 3: Hardware Area Overhead

layout measurements for the compute units and the Gecko compressors/decompressors. We use a
commercial 65nm process to model the processing units and Gecko hardware. We implement the
units in Verilog and perform synthesis via the Synopsys Design Compiler and layout using Cadence
Innovus with a target frequency of 500MHz. Synthesis uses Synopsys’ commercial Building Block
IP library for the target tech node. We estimate power via Innovus using traces over a representative
input sample to model properly signal activity. We used nominal operating conditions to model power
and latency. There are two Gecko compressor/decompressor units per channel.

Due to the complexity and time cost of cycle-accurate hardware simulation, we have opted for an
estimated time and energy consumption analytical model based on the proposed hardware description
and the compressor-decompressor architecture. To compute the analytical model, we first analyze the
network and retrieve its structure (layer input and output sizes, kernel sizes for convolutional layers,
stride, bias and padding). We then calculate the compute operations that will happen for the general
batch size (N) in both the forward and backward pass, as well as the number of parameters that must
be stored in memory for activations, weights and gradients.

To take advantage of data reuse where possible we perform the forward pass in a layer-first order per
batch. This allows us to read the weights per layer only once per batch. For the backward pass, we
utilize the on-chip buffers for mini-batching with a layer-first order over a mini-batch of samples.
Mini-batching reduces overall traffic by processing as many samples as possible in a layer-first order
avoiding either having to spill gradients or reading and writing weights per sample per layer. The
number of samples that can fit in a mini-batch depends on the layer dimensions and the size of the
on-chip buffer.

Both SFPQM and SFPBC sample bitlengths per batch to a log file for both mantissas and exponents.
These bitlengths are used to compute the number of mini-batches that can fit at every training step per
layer on chip. Based on the number of sampled mini-batches (K) we compute the memory footprint
generated on the forward pass for each method. After this, we calculate the footprint that stays
on-chip and can be loaded from on-chip for the backward pass, and the footprint that goes to off-chip
and has to be loaded to on-chip again for it. Based on these memory accesses, we use DRAMsim
to simulate the number of compute-cycles that take the memory accesses to finish and we use the
maximum cycles between compute and memory as the time constraint to calculate total computation
time in the proposed hardware.

To calculate energy consumption and efficiency, we use the information gathered in terms of on-chip
memory access cycles, off-chip memory access cycles and compute cycles. We estimate energy
consumption for all components including the compressors and decompressors. We use the following
equations to estimate energy consumption for our methods (all symbols are defined in table 5):

E forward = E compute fwd + E offchip in actmem+

E offchipwgtmem + E offchip out actmem + E onchip in actmem+

E onchipwgtmem + E onchip out actmem + E read opsmem+

E decompact + E decompwgt + E compact

(5)

E backward = E compute bck + E offchip in actmem+

E offchipwgtmem + E onchip in actmem+

E onchipwgtmem + E read opsmem+

E decompact + E decompwgt

(6)

where,
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Compression ratio Compressor power (mW) Decompressor power (mW)
0.143 - 0.263 10.87 13.84
0.264 - 0.388 12.18 14.72
0.389 - 0.513 12.65 15.97
0.514 - 0.638 13.44 15.76
0.639 - 0.763 14.98 15.42

Table 4: P () terms: Power consumption as a function compression ratio.

E offchip in actmem =
MemCh× PDRAM

Freqcompute
× Cycles offchip in act (7)

E offchipwgtmem =
MemCh× PDRAM

Freqcompute
× (Cycles offchipwgt + Cycles offchipwgt grad) (8)

E offchip out actmem =
MemCh× PDRAM

Freqcompute
× Cycles offchip out act (9)

E onchip in actmem = Cycles onchip in actwrite × P onchipwrite (10)

E onchipwgtmem = Cycles onchipwgt read × P onchip read (11)

E onchip out actmem = Cycles onchip out act read × P onchip read+

Cycles onchip out actwrite × P onchipwrite
(12)

E decomp = P decomp (comp ratio) ×
Cycles comp to decomp

Freqcompute
(13)

E comp = P comp (comp ratio) ×
Cycles decomp to comp

Freqcompute
(14)

E decompact = E decompact(comp ratio) (15)

E decompwgt = E decompwgt(comp ratio) (16)

E compact = E compact(comp ratio) (17)

17



Under review as a conference paper at ICLR 2023

Symbol Definition

E compute fwd
Energy consumption of the compute module for

the entirety of the computations in the forward pass

E compute bck
Energy consumption of the compute module for

the entirety of the computations in the backward pass

E offchip in actmem
Energy consumption of the offchip memory transfers

for the network input activations

E offchipwgtmem
Energy consumption of the offchip memory transfers

for the network weights

E offchip out actmem
Energy consumption of the offchip memory transfers

for the network output activations

E onchip in actmem
Energy consumption of the onchip memory transfers

for the network input activations

E onchipwgtmem
Energy consumption of the onchip memory transfers

for the network weights

E onchip out actmem
Energy consumption of the onchip memory transfers

for the network output activations

E read opsmem
Energy consumption of loading

operations from memory

E decompact
Energy consumption of decompressing

activations in the decompressor

E decompwgt
Energy consumption of decompressing

weights in the decompressor

E compact
Energy consumption of compressing

activations in the compressor

P decomp (comp ratio)
Power consumption by the decompressor when loading data

from offchip memory at a specific compression ratio (see Table 4)

P comp (comp ratio)
Power consumption by the compressor when writing data

to offchip memory at a specific compression ratio (see Table 4)
MemCh Number of available memory channels
PDRAM Power consumption of offchip DRAM

Freqcompute Clock frequency of the hardware accelerator
Cycles offchip in act Compute cycles taken to read input activations from offchip memory
Cycles offchipwgt Compute cycles taken to read weights from offchip memory

Cycles offchipwgt grad Compute cycles taken to read weight gradients from offchip memory
Cycles offchip out act Compute cycles taken to read output activations from offchip memory

Cycles onchip in actwrite Compute cycles taken to read input activations from onchip memory
Cycles onchipwgt read Compute cycles taken to read weights from onchip memory

Cycles onchip out act read Compute cycles taken to read output activations from onchip memory
Cycles onchip out actwrite Compute cycles taken to write output activations to onchip memory

P onchipwrite Power consumption of a word write to onchip memory
P onchip read Power consumption of a word read from onchip memory

Cycles comp to decomp Compute cycles taken to decompress compressed data
Cycles decomp to comp Compute cycles taken to compress data

Table 5: Symbols definition table

C QUANTUM MANTISSA – MORE DATA

In this section, we expand the discussion of the effects of Quantum Mantissa on the training process.
We first analyze the effects in detail on ImageNet, and then follow up with other tasks.

C.1 IMAGENET

We show the effects of changing the regularization parameter, multiple training runs with the same
proposed regularization parameter (γ = 0.1), stopping early, as well as the choice of whether to
simply chop off the removed bits or round them to the least significant remaining bit. These effects
are summarized in Table 6.
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C.1.1 EFFECT OF THE γ HYPERPARAMETER

In order to demonstrate the effect of the newly introduced hyperparameter γ, we run three full training
runs with varying γ ∈ {0.01, 0.1, 1.0}. All other hyperparameters are the same. Figure 7 shows that
all runs are able to follow the baseline accuracy and provide significant memory footprint reductions.
The cumulative training memory footprint and final validation accuracies are reported in Table 6. The
most aggressive version (γ = 1.0) achieves 40× memory footprint reduction and reduces most layers
activations to 0 bits (only exponent bits remain). However, there is a noticeable accuracy degradation
of 1.7%. The less aggressive version (γ = 0.01) greatly reduces memory albeit, as expected, to a
lesser degree compared to γ = 1.0. Our selected value (γ = 0.1) avoids both of these pitfalls, it
matches the baseline accuracy and provides 9× compression ratio.

The γ parameter is another hyperparameter that needs tuning. However, in our experience a good one
is easy to guess since γ = 0.1 seems to work really well across different models and tasks. Its broad
applicability and usefulness is confirmed by the discussion above, other models in Section 3.1 and
Section C.2. In fact, all results presented in the main-body of the paper (Section 3.1) use γ = 0.1.

(a) (b)
Figure 7: Quantum Mantissa γ effects on ResNet18/ImageNet: (a) TOP-1 validation accuracy during
training. (b) Weighted average mantissa length during training.

C.1.2 CONSISTENCY ACROSS TRAINING RUNS

To demonstrate the consistency of results across different runs we trained ResNet18 3 times with
the same hyperparameters, specifically γ = 0.1. Figure 8 shows that all runs consistently follow the
baseline accuracy and exhibit consistent memory footprint reduction. Ultimately, the final accuracy is
consistent (standard deviation of 0.13%) and exactly matches the baseline with the mean of 69.94%
across all the Quantum Mantissa runs (Table 6).

(a) (b)
Figure 8: Quantum Mantissa consistency on ResNet18/ImageNet with γ = 0.1: (a) TOP-1 validation
accuracy during training. (b) Weighted average mantissa length during training.

C.1.3 CHOICE OF THE BIT REMOVAL METHOD

In addition, we discuss the way of removing the bits selected for removal. Accuracy and memory
footprint can be improved by rounding. The rounding version, denoted by R, rounds the least
significant remaining bit instead of just ignoring the removed bits. This modification allows Quantum
Mantissa to be even more aggressive by reducing the footprint by an additional 35% to achieve a
footprint reduction of 93%, without noticeable loss of accuracy (Table 6). Since the rounded version
provides the best accuracy and footprint trade-off, we present it as the Quantum Mantissa approach
in the main body of the paper.
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Table 6: Accuracy and relative mantissa footprint of different Quantum Mantissa runs with ResNet18
on Imagenet. Runs labeled with R use rounding instead of chopping. Runs labeled with RES use
rounding instead of chopping and stop learning, round up and fix the mantissa length at epoch 15.
Experiments with multiple runs show mean and standard deviation of obtained results.

Version TOP-1 Validation
Accuracy

TOP-5 Validation
Accuracy

Relative Mantissa
Footprint vs FP32

Baseline 69.94 89.34 100%
γ = 0.01 69.76 89.21 13.9%
γ = 0.10 69.94± 0.13 88.30± 0.07 11.1%± 0.1%
γ = 1.00 68.25 88.40 2.5%
γ = 0.10 R 69.73± 0.26 89.17± 0.1 7.0%± 0.7%
γ = 0.10 RES 69.50 89.05 7.9%

C.1.4 EARLY STOPPING OF Quantum Mantissa

Finally, we present the rounding early stop version, denoted by RES. This version stops the mantissa
length learning at epoch 15, rounds them all up, and keeps them constant throughout the last 75
epochs. As a result, the overhead (in our case negligible) is constrained only to the first 15 epochs,
with a small drop in accuracy and memory footprint reduction (Table 6). This experiment shows that
ending Quantum Mantissa early is a viable strategy in cases where overhead is an issue.

C.2 OTHER TASKS

In this section, we further analyze the effects of Quantum Mantissa on tasks such as recommendation
systems and natural language processing as well as different network architectures such as transform-
ers. All models we discuss in this section are extremely weight heavy, as opposed to activation heavy
ImageNet CNNs. As a result, the weights transfer on and off chip (sometimes repeatedly transferred
back and forth in chunks) will be the costliest operation. In this case, reducing weights is much
more important. Quantum Mantissa excels here due to its ability to zero in on the costliest tensor
during training through its additional loss that targets minimum footprint. This is clearly shown in
the following section and tables 7 and 8.

C.2.1 RECOMMENDATION

We present DLRM on the Kaggle Criteo Dataset in Table 7. Since DLRM is trained only on one
epoch, we tried Quantum Mantissa with stopping the mantissa length learning, rounding and fixing
at about 10% and 40% iterations. Both work well. We try γ of 0.1 and 1.0. All versions match
the baseline and excel at reducing mantissa footprint. Mantissa compression rates are about 10×.
Quantum Mantissa practically removes all mantissa bits from many layers, only leaving the sign and
the exponent.

Since DLRM is trained only for one epoch, it does not allow for enough iterations to show the full
potential of Quantum Mantissa. Consequently, we report the last iteration footprint as well. All
iterations beyond the first epoch will exhibit this smallest footprint.
Table 7: Accuracy and relative mantissa footprint of Quantum Mantissa runs with DLRM on the
Kaggle Criteo Dataset. Quantum Mantissa is disabled and mantissa lengths are fixed at the indicated
iteration

Version TOP-1 Validation
Accuracy

Relative Mantissa
Footprint vs FP32

Relative Mantissa Footprint
vs FP32 — last iteration

Baseline 79.42 100% 100%
γ = 0.10, Stop at iteration 30k/300k 79.50 12.2% 11.5%
γ = 1.00, Stop at iteration 30k/300k 79.46 10.8% 10.7%
γ = 0.10, Stop at iteration 120k/300k 79.45 11.8% 11.1%
γ = 1.00, Stop at iteration 120k/300k 79.43 10.7% 9.6%

C.2.2 NATURAL LANGUAGE PROCESSING

Finally, to show applicability of Quantum Mantissa on natural language processing we present
finetuning of BERT on the MRCP dataset and GPT–2 on the Wikitext-2 dataset in Table 8. We
finetuned BERT and GPT–2 for 5 and 3 epochs, respectively. Both models are trained with Quantum
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Mantissa enabled for the first epoch and disabling it, rounding up and fixing the mantissa lengths for
the rest. Again, we run both with γ = 0.1 and γ = 1.0, and get similar results. We repeated these
experiments three times. The general γ = 0.1 works great all round, matching the baseline accuracy
and achieving 8− 11× mantissa compression, while γ = 1.0 achieves even better compression ratios
at a small cost to performance. At γ = 1.0 Quantum Mantissa manages to find many layers that do
not need any mantissa bits.

Similarly to DLRM training, finetuning does not allow for enough iterations to show the full potential
of Quantum Mantissa. Consequently, we report the last iteration footprint as well. All iterations
beyond the predetermined epoch length will exhibit this smallest footprint. This last iteration is a
very good estimate of mantissa reduction during a full training run.

Table 8: Accuracy/Perplexity and relative mantissa footprint of different Quantum Mantissa runs
with BERT and GPT2 finetuning. Values are reported as mean standard deviation across multiple
runs. For Perplexity, lower is better.

Version Metric Score Relative Mantissa
Footprint vs FP32

Relative Mantissa Footprint
vs FP32 — last iteration

BERT Baseline Accuracy 84.56 100% 100%
BERT γ = 0.1 Accuracy 84.31± 0.00 9.34%± 0.01% 7.82%± 0.01%
BERT γ = 1.0 Accuracy 86.68± 0.28 3.43%± 0.01% 1.25%± 0.01%
GPT–2 Baseline Perplexity 20.95 100% 100%
GPT–2 γ = 0.1 Perplexity 20.96± 0.00 12.3%± 0.00% 11.2%± 0.00%
GPT–2 γ = 1.0 Perplexity 21.42± 0.00 2.68%± 0.00% 2.0%± 0.00%

D BITCHOP – MORE DATA

This section analyzes in additional detail the effects that BitChop has on the training process. We
study: a) the effect of the exponential decay factor (α) used in the moving average, b) the variation in
accuracy across different runs, and c) the effect of the threshold for the change in the moving average.

(a) (b)
Figure 9: BitChop α effects on ResNet18/ImageNet: (a) TOP-1 validation accuracy during training.
(b) Average mantissa bitlengths during training.

Table 9: Accuracy and relative mantissa footprint of different BitChop runs with ResNet18 on
Imagenet. Experiments with multiple runs show mean and standard deviation of obtained results.

Version TOP-1 Validation
Accuracy

TOP-5 Validation
Accuracy

Relative Mantissa
Footprint vs FP32

Baseline 69.94 89.34 100%
α = 0.4 66.27 (inconsistent) 86.95 (inconsistent) 11.2%
α = 0.8 69.93± 0.15 88.64± 0.09 23.7%± 2%
α = 0.9 70.07 89.37 82.6%

Exponential decay factor α: We run three full training runs with varying α ∈ {0.4, 0.8, 0.9}. All
other hyperparameters remain the same. The lower the α the more influence past changes to the loss
have on BitChop’s decisions and the more resistant it becomes in changing course. Conversely, the
higher the alpha the more influence recent changes to the loss are, and the more re-active BitChop
becomes. This is reflected in the changes in the validation accuracy and the mantissa bitlengths as
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seen in Figure 9. The results show that higher α values better track baseline accuracy as BitChop
quickly tries to recover from any apparent increase in loss. However, too high an α value coupled
with the natural variations in the loss across different batches prevents BitChop from trimming
mantissas significantly as can be seen for α = 0.9. Lower α values such as 0.4 produce erratic
behaviour in validation accuracy. In this case, the heuristic is looking too far back into previous
loss values and becomes slow to change course in adjusting bitlengths leading to trimming them too
aggressively. A mid-high α value of 0.8 balances reactiveness to changes in the loss and bitlength
reduction aggressiveness. The cumulative training memory footprint and final validation accuracies
are reported in Table 9.

In summary, BitChop works best with an α value of 0.8, as it achieves low bitlengths while being
consistent and matching the baseline validation accuracy. Values higher than 0.8 result in almost no
bitlength compression. As such, α values between 0.6 and 0.8 were found to strike a good balance
between high memory compression and consistent and converging validation accuracy.

(a) (b)
Figure 10: BitChop consistency on ResNet18/ImageNet with α = 0.8: (a) TOP-1 validation accuracy
during training. (b) Average mantissa bitlengths during training
Variation Accuracy Across Runs: Figure 10 demonstrates the robustness of BitChop by reporting
how validation accuracy varies across multiple runs (all using the same hyperparameters). All runs of
BitChop converged into baseline accuracy with a standard deviation of ±0.15%.

(a) (b)
Figure 11: BitChop moving average heuristic with and without threshold on ResNet18/ImageNet
with α = 0.8: (a) TOP-1 validation accuracy during training. (b) Average mantissa bitlengths during
training.
The Effect of Having a Threshold: Figure 11 shows the effect of using the threshold in BitChop’s
moving average heuristic. This shows that the threshold allows BitChop to achieve much lower
bitlengths while achieving much lower swings in bitlength and accuracy throughout the process.
Without the threshold, BitChop becomes overly reactive to minute changes producing an overall
erratic behavior. Those swings in turn produce worse overall bitlengths and less memory compression.

Takeaways: There are several key takeaways from this ablation analysis:

• Exponential decay factor (α) values lower than 0.6 take into account loss values that are no
longer useful to tune the bitlength, resulting in a method that is too resistant in changing
course and as such reduces bitlengths too aggressively, hurting accuracy. Values higher than
0.8 overemphasize recent loss behavior and as such the heuristic becomes too reactive to
minor increases in loss and does not achieve significant memory compression.

• The use of a threshold enables BitChop to be resistant to minor changes in the loss and
as a result enables it to trim bitlengths more effectively than a heuristic without it, while
maintaining baseline accuracy. Otherwise, BitChop exhibits unnecessary big swings in
bitlength which as a result don’t allow it to converge into the low bitlengths seen with the
dynamic threshold.
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• Crucially, BitChop is robust as it keeps validation accuracy convergence and bitlengths
consistent over different training runs with the same hyperparameters.

E MODEL HYPERPARAMETERS AND DATASETS

In this section we summarize the hyperparamters we used for training and finetuning experiments.

E.1 RESNET18 AND RESNET50

• Epochs: 90
• Learning Rate: 0.1, 0.01 and 0.0001 at epochs 0, 30 and 60, respectively
• Batch size: 256 and 48 for ResNet18 and ResNet50, respectively
• Momentum: 0.9
• Weight Decay: 1e-4
• Dataset: ImageNet

E.2 MOBILENET V3 SMALL

• Epochs: 150
• Learning Rate: Cosine Annealing Schedule with starting Learning rate of 0.05
• Batch size: 256
• Momentum: 0.9
• Weight Decay: 1e-4
• Dataset: ImageNet

E.3 BERT

We use the default hyperparameters provided by Hugging Face for the MRCP dataset.

• Epochs: 5
• Batch size: 32
• Learning Rate: 2e-5
• Dataset: MRCP

E.4 GPT–2

We use the default hyperparameters provided by Hugging Face for the Wikitext 2 dataset.

• Epochs: 3
• Batch size: 8
• Dataset: Wikitext 2

E.5 DLRM

We use the default hyperparameters provided by Facebook for the Kaggle Criteo dataset.

• Epochs: 1
• Learning Rate: 0.1
• Mini batch size: 128
• Bottom architecture: 13-512-256-64-16
• Top architecture: 512-256-1
• Dataset: Kaggle Criteo
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