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ABSTRACT

Open vocabulary models (e.g. CLIP) have shown strong performance on zero-
shot classification through their ability generate embeddings for each class based
on their (natural language) names. Prior works focused on improving the accuracy
of these models through prompt engineering or by finetuning with a small amount
of labeled downstream data. However, there has been little focus on improving
the richness of the class names themselves, which can pose issues when class
labels are coarsely-defined and uninformative. We propose Classification with
Hierarchical Label Sets (or CHILS), an alternative strategy for zero-shot classifi-
cation specially designed for datasets with implicit semantic hierarchies. CHiLS
proceeds in three steps: (i) for each class, produce a set of subclasses, using ei-
ther existing hierarchies or by querying GPT-3; (ii) perform the standard zero-shot
CLIP procedure as though these subclasses were the labels of interest; (iii) map
the predicted subclass back to its parent to produce the final prediction. Across
numerous datasets with underlying hierarchical structure, CHiLS improves accu-
racy in situations both with and without ground-truth hierarchical information.

1 INTRODUCTION

There has been a recent growth of interest in the capabilities of pretrained open vocabulary models
(Radford et al., 2021} Wortsman et al.| 2021} |Jia et al.l 2021; /Gao et al., [2021}; [Pham et al., 2021}
Cho et al., 2022} Pratt et al.} 2022). These models, e.g., CLIP (Radford et al.,|2021)) and ALIGN (Jia
et al., 2021), learn to map images and captions into shared embedding spaces such that images are
close in embedding space to their corresponding captions but far from randomly sampled captions.
The resulting models can then be used to assess the relative compatibility of a given image with an
arbitrary set of textual “prompts”. Radford et al. (2021 observed that by inserting each class name
directly within a natural language prompt, one can then use CLIP embeddings to perform zero-shot
image classification with high success rates (Radford et al.,[2021;|Zhang et al., [2021b)).

Despite the documented successes, the current interest in open vocabulary models poses a new ques-
tion: How should we represent our classes for a given problem in natural language? As class
names are part of the predictive pipeline (as opposed to mostly an afterthought in standard settings)
for open vocabulary models, CLIP’s performance is now directly tied to the descriptiveness of the
class “prompts” (Santurkar et al., 2022)). While there is a growing body of work on improving the
quality of the prompts into which class names are embedded (Radford et al., 2021} Pratt et al., 2022
Zhou et al.,|2022bza; |Huang et al., [2022)), surprisingly little attention has been paid to improving the
richness of the class names themselves. This can be particularly crucial in cases where datasets may
contain a rich underlying structure but have uninformative class labels. Consider, for an example, the
class “large man-made outdoor things” in the CIFAR20 dataset (Krizhevsky, |2009), which includes
“bridges” and “roads” but also “castles” and “skyscrapers” (see App. [3|for more information).

In this paper, we introduce a new method to tackle zero-shot classification with CLIP models for
classification tasks with coarsely-defined class labels. We refer to our method as Classification with
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Figure 1: (Left) Standard CLIP Pipeliﬁe for Zero-Shot Classification. For inference, a standard
CLIP takes in input a set of classes and an input image, and makes a prediction from that set of
classes. (Right) Our proposed method CHILS for using hierarchical class information in the zero-
shot pipeline. We map each individual class to a set of subclasses, perform inference in the subclass
space (i.e., union set of all subclasses), and map the predicted subclass back to its original superclass.

Hierarchical Label Sets (CHIiLS). Our method utilizes a hierarchical map to convert each class into
a list of subclasses, performs normal CLIP zero-shot prediction across the union set of all subclasses,
and finally uses the inverse mapping to convert the subclass prediction to the requisite superclass.
We additionally include a reweighting step wherein we leverage the raw superclass probabilities in
order to make our method robust to less-confident predictions at the superclass and subclass level.

We evaluate CHILS on a wide array of image classification benchmarks with and without available
hierarchical information. These datasets share the property of having an underlying semantic sub-
structure that is not captured in the set of class labels. In the former case, leveraging preexisting hi-
erarchies leads to strong accuracy gains across all datasets. In the latter, we show that we can use
GPT-3 to query a list of possible subclasses for each class (whether or not they are actually present
in the dataset), which still leads to consistent improved accuracy over raw superclass prediction.

2 PROPOSED METHOD

In this paper, we are primarily concerned with the problem of zero-shot image classification in CLIP
models For CLIP models, zero-shot classification involves using both a pretrained image encoder
and a pretrained text encoder (see the left part of Figure[I). To perform zero-shot classification, we
need a predefined set of classes written in natural language. Let C = {c¢, co, ..., cx} be such a set.
Given an image and set of classes, each class is embedded within a natural language prompt (through
some function T(+)) to produce a “caption” for each class (e.g. one standard prompt mentioned in
Radford et al.|(2021) is “A photo of a {}.”). These prompts are then fed into the text encoder and
after passing the image through the image encoder, we calculate the cosine similarity between the
image embedding and each class-prompt embedding. These similarity scores form the output “log-
its” of the CLIP model, which can be passed through a softmax to generate the class probabilities.

As noted in Appendix |Al previous work has focused on improving the T(-) for each class label
c;. With CHILS, we instead focus on the complementary task of directly modifying the set of
classes C when C is ill-formed or overly general, while keeping T(-) fixed. Our method involves
two main steps: (1) performing zero-shot prediction over label subclasses and (2) aligning subclass
probabilities with the raw superclass outputs to reconcile both inference methods.

Zero-Shot Prediction with Hierarchical Label Sets Our method CHiLS slightly modifies the
standard approach for zero-shot CLIP prediction. As each class label ¢; represents some concept in
natural language (e.g. the label “dog”), we acquire a subclass set S., = {s¢,,1,5¢;,2, - -+ Sei,m; ¢
through some mapping function G, where each s., ; is a linguistic iyponym, or subclass, of ¢; (e.g.
corgi for dogs) and m; is the size of the set S.,. Given a label set S;, for each class, we proceed
with the standard process for zero-shot prediction, but now using the union of all label sets as the
set of classes. Through this, CHIiLS will output a distribution over all subclasses Ys,,. We then
leverage the inverse mapping function G~! to map the argmax subclass probabilitiy back into the
corresponding superclass G~!(arg max gy, ). Our method is detailed more formally in Algorithm
[1l In our work, we experiment with two scenarios: (i) when hierarchy information is available and
can be readily queried; and (ii) when hierarchy information is not available and the label set for each
class must be generated, which we do so by prompting GPT-3.
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Algorithm 1 Classification with Hierarchical Label Sets (CHiLS)
input : data point x, class labels C, prompt function T, label set mapping G, CLIP model f

1: Set Cgup (—UciecG(ci) >Union of subclasses for subclass prediction
2 Yab = o(f(2, T(Can))) > Subclass probabilities
3: Yap = o(f (2, T(C))) > Superclass probabilities
4: fori =1to|C| do

5: Sc,; = G(Cl)

6: forsc, ; €S, do

7: Ysub[Sc; 5] = Ysuv[Se;,j] * Ysup[ci] > Combines subclass & superclass probability
8: end for

9: end for

output : G~ (arg max Gan)

Table 1: Zero-Shot performance at different levels of ImageNet hierarchy, where CHiLS has access
to true ImageNet leaf node classes. CHILS shows clear performance gains over the baseline at
coarse-to-intermediate granularities.

ImageNet Depth  Standard CHILS % Leaf Classes

1 67.43 97.08 0.0
2 69.22 90.47 0.0
3 63.97 86.20 0.0
4 49.48 80.31 32.03
5 63.80 74.08 77.90
6 62.96 65.07 96.28

Reweighting probabilities with Superclass Confidence While the above method is able to effec-
tively utilize CLIP’s ability to identify relatively fine-grained concepts, by predicting on only sub-
class labels we lose any positive benefits of the superclass label, and performance may vary widely
based on the quality of the subclass labels. Given recent evidence (Minderer et al.,[2021; Kadavath
et al.| [2022) that large language models are well-calibrated and generally assign higher probability
to correct predictions, we modify our initial algorithm to leverage this behavior and use both super-
class and subclass information. We provide empirical evidence of this property in Appendix

Specifically, we include an additional reweighting step within our main algorithm. Here, we
reweight each set of subclass probabilities by its superclass probability. Heuristically, as the predic-
tion is now taken as the argmax over products of probabilities, large disagreements between subclass
and superclass probabilities will be down-weighted (especially if one particular superclass is confi-
dent) and subclass probabilities will be more important in cases where the superclass probabilities
are roughly uniform. We show ablations on the choice of the reweighting algorithm in Appendix[B.1]

3 A MOTIVATING EXAMPLE

Before validating the effectiveness of CHiLS across standard benchmarks, we provide a more nu-
anced investigation on the ImageNet dataset at different hierarchy levels. Given that ImageNet is
arranged in a rich taxonomical structure, we perform zero-shot classification at progressively finer
levels of the hierarchy, where CHiLS is given access to all the leaf nodes in each class at the current
level (unless the classes are themselves leaf nodes).

In Table[I] we see that at lower depths (e.g. depth 1 or 2), CHILS significantly improves on top of
standard zero-shot performance. As the depth in the hierarchy increase, the gap between CHiLS’s
performance and the standard zero shot decreases while the number of leaf nodes increases. This
behavior highlights a key fact about CHILS’s potential use cases: CHILS can help for tasks where
class labels resemble intermediate nodes of the ImageNet hierarchy.

4 EXPERIMENTS

Datasets As we are primarily concerned with improving zero-shot CLIP performance in situations
with uninformative and / or semantically coarse class labels (as described in Appendix [3)), we test
our method on 15 different datasets (see Table [2). We use the validation sets for each dataset (if
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Figure 2: Selected examples of behavior differences between the standard and CHiLS performance
across two different datasets. (Upper left): CHILS is correct, standard prediction is not. (Lower left):
Both correct. (Upper right): Both wrong. (Lower Right): standard prediction is correct, CHiLS is
not.

Table 2: Zero-shot accuracy performance across image benchmarks with superclass labels (base-
line), CHIiLS with existing hierarchy (whenever available), and CHiLS with GPT-3 generated hier-
archy. CHILS improves classification accuracy in all situations with given label sets and all but 2
datasets with GPT-3 generated label sets.

CHILS CHILS
(True Map)  (GPT-3 Map)

Nonliving26 (Santurkar et al.|2021 79.8 90.7 (+10.9)  81.7 (+1.9)
Living17 (Santurkar et al.||20 91.1 93.8 (+2.7) 91.6 (++0.5)

Dataset Superclass

Entity13 (Santurkar et al.|[2021 77.5 92.6 (+15.1)  78.1 (+0.6)
Entity30 (Santurkar et al. W 70.3 88.9 (+18.6)  71.7(+1.4)
CIFAR20 (Krizhevsky! 59.6 853 (+25.7)  65.0(+5.4)
Food-101 93.9 N/A 93.8 (—0.1)
Fruits360 (Muresan & O 58.7 59.2 (+0.5) 60.1 (+1.4)
Fashionl1 _ao et al.|2015] 45.8 N/A 47.4 (+1.6)
Fashion-M 68.5 N/A 70.8 (+2.3)
LSUN-scene (Yu et al.[[2015 88.1 N/A 88.8 (+0.7)
Office31 ( 89.1 N/A 90.5 (+1.4)
OfficeHome (Ven ateswara et al. 83.8 N/A 88.9 (—0.1)
ObjectNet (Barbu et al. 53.1 853 (+32.2)  53.5(+0.4)
EuroSAT (H 62.1 N/A 62.4 (+0.3)
RESISC45 (Cheng et al.|[2017] 72.6 N/A 72.7(+0.1)

present). These datasets constitute a breadth of different image domains and include datasets with
and without available hierarchy information. Additionally, the chosen datasets vary widely in the
semantic granularity of their classes, from overly general cases (CIFAR20) to settings with a mixture
of general and specific classes (Food-101, OfficeHome). We also examine CHiLS’s robustness to
distribution shift within a dataset by averaging all results for the BREEDS datasets, Office31, and
OfficeHome across different shifts. We additionally modify the Fruits-360 and ObjectNet datasets
to create existing taxonomies. More details for dataset preparation are detailed in Appendix [C.7}
Additionally, see Apppendix [C.3]for details regarding the dataset-dependent choice of the prompt
template function T(-).

Model Architecture Unless otherwise noted, we use the ViTL/14@336px backbone (Radford
2021)) for our CLIP model, and DaVinci-002 (temperature = 0.7) for all ablations with GPT-3.

Choice of Mapping Function G In our experiments, we primarily look at how the choice of the
mapping function G influences the performance of CHIiLS. In Sectlon B1] we first focus on the
datasets with available hierarchy information. Here, G and G~! are simply table lookups to find
the list of subclasses and corresponding superclass respectively. Later, we explore situations in
which the true set of subclasses is unknown. In these scenarios, we use GPT-3 to generate our
mapping function G. Specifically, given some label set size m, superclass name class—name, and
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optional context (see Appendix [C.3), we query GPT-3 with the prompt: "Generate a list
of m types of the following [context]: class—name." The resulting output
list from GPT-3 thus defines our mapping G from superclass to subclass. Unless otherwise specified,
we fix m = 10 for all datasets. Additionally, in Appendix [B.I] we explore situations in which
hierarchical information is present but noisy, i.e. the label set for each superclass contains the true
subclasses and erroneous subclasses that are not present in the dataset.

4.1 RESULTS

Leveraging Available Hierarchy Information We start in the scenario in which there is hierarchy
information already available (or readily accessible). In this situation, the set of subclasses for each
superclass is exactly specified and correct (i.e. every image within each superclass falls into one of
the subclasses). For example, each class in Nonliving26 is made up of 4 ImageNet subclasses at
finer granularity (e.g. “roof” includes “dome” and “thatch”). In Table[2] we can see that our method
performs better than using the baseline superclass labels alone across all 7 of the datasets with
available hierarchy information, in some cases leading to +15% improvement in predictive accuracy.

CHILS in Unknown Hierarchy Settings Though we have seen considerable success in situations
with access to the true hierarchical structure, in some real-world settings our dataset may not include
any available information about the subclasses within each class. In this scenario, we turn to using
GPT-3 to approximate the hierarchical map G (as specified in Section[d). It is important to note that
GPT-3 may sometimes output suboptimal label sets, most notably in situations where GPT-3 chooses
the wrong wordsense or when GPT-3 only lists modifiers on the original superclass (e.g. producing
the list [red, yellow, green] for types of apples). In order to account for these issues in
an out-of-the-box fashion, we automatically append the superclass name (if not already present)
to each generated subclass label, and also include the superclass itself within the label set. For a
controlled analysis about the effect of including the superclass itself in the label set, see Appendix
@ In this setting, our method is still able to beat the baseline performance in most datasets, albeit
with lower accuracy gains (see Table [Z). Thus, while knowing the true subclass hierarchy can lead
to large accuracy gains, it is enough to simply enumerate a list of possible subclasses for each class
with no prior information about the dataset in order to improve the predictive accuracy. In Figure[2]
we show selected examples to highlight CHIiLS’s behavior across two datasets.

5 CONCLUSION

In this work, we demonstrated that the zero-shot image classification capabilities of CLIP models
can be improved by leveraging hierarchical information for a given set of classes. When hierarchical
structure is available in a given dataset, our method shows large improvements in zero-shot accuracy,
and even when subclass information isn’t explicitly present, we showed that we can leverage GPT-3
to generate subclasses for each class and still improve upon the baseline (superclass) accuracy. We
remark that CHiLS may be quite beneficial to practitioners using CLIP as an out-of-the-box image
classifier. Namely, we show that in scenarios where the class labels may be ill-formed or overly
coarse, even without existing hierarchical data accuracy can be improved with a fully automated
pipeline (via querying GPT-3), yet CHILS is flexible enough that any degree of hand-crafting label
sets can be worked into the zero-shot pipeline. Our method has the added benefit of being both
completely zero-shot (i.e. no training or fine-tuning necessary) and is resource efficient.

Limitations and Future Work We recognize that CHILS is suited for scenarios in which a seman-
tic hierarchy likely exists, and thus may not be useful for problems where the classes are already
fine-grained. We believe that this limitation will not hinder the applicability of our method, as prac-
titioners can assess if their task contains any latent semantic hierarchy (see Appendix [3) and thus
choose to use our method or not a priori. Given CHiLS’s empirical successes, we hope to perform
more investigation to develop an understanding of why CHILS is able to improve zero-shot accuracy.
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REPRODUCIBLITY STATEMENT

The source code for reproducing the work presented here is available athttps://github.com/
acmi—-lab/CHILS. We implement our method in PyTorch (Paszke et al.l [2017) and provide an
infrastructure to run all the experiments to generate corresponding results. We have stored all models
and logged all hyperparameters and seeds to facilitate reproducibility. Additionally, all necessary
data preprocessing details are present in Appendix

APPENDIX

A RELATED WORK

Transfer Learning While the focus of this paper is to improve CLIP models in the zero-shot
regime, there is a large body of work exploring improvements to CLIP’s few-shot capabilities. In
the standard fine-tuning paradigm for CLIP models, practitioners discard the text encoder and only
use the image embeddings as inputs for some additional training layers.

One particular line of work on improving the fine-tuned capabilities of CLIP models leverages model
weight interpolation between the pre-trained and fine-tuned models (Wortsman et al.|, 2021} 2022
Ilharco et al. 2022). There is another line of work that seeks to improve CLIP models by inject-
ing a small amount of learnable parameters into the frozen CLIP backbone, through building on the
adapter framework from parameter-efficient learning (Houlsby et al.,|2019; |Gao et al.,|2021; Zhang
et al.,[2021a)) or by adding learnable “prompt” vectors inside the model (Jia et al., 2022). Addition-
ally, some have looked at circumventing the entire process of prompt engineering, whether by di-
rectly optimizing the prompt embeddings (Zhou et al.| [2022afb; Huang et al., 2022)) or pre-training
the language model with a frozen image model (Zhai et al.| 2022). In all the above situations, some
amount of data, whether labeled or not, is used in order to improve CLIP’s accuracy.

Zero-Shot Prediction The field of Zero-Shot Learning (ZSL) has existed well before the emer-
gence of open vocabularly models, with its inception traced to |Larochelle et al.| (2008). Outside of
CLIP related methods, the ZSL paradigm has shown success in improving multilingual question an-
swering (Kuo & Chenl|2022) and image classification (Bujwid & Sullivan, 2021} Shen et al.| [2022).
With CLIP models, ZSL success has been found in a variety of tasks, including 3D recognition
(Zhang et al., 2021b)), image-to-text generation (Tewel et al.,2021), VQA (Shen et al., 2021}, audio-
captioning (Yu et al.| 2022), object navigation (Gadre et al.||2022), and open-ended reasoning (Zeng
et al., 2022). Unlike our work here, these prior directions mostly focus on generative problems or, in
the case of Bujwid & Sullivan| (2021) and [Shen et al.| (2022), require rich external databases to em-
ploy their methods. In the realm of improving CLIP’s zero-shot capabilities for image classification,
we particularly note the work of Pratt et al.| (2022)). Here, authors explore using GPT-3 to generate
rich textual prompts for each class rather than using preexisting prompt templates. In contrast, our
work explores a complementary direction of leveraging hierarchy in class names to improve zero-
shot performance of CLIP with a fixed set of preexisting prompt templates.

Hierarchical Classification Methodologies from Hierarchical Classification (HC) (Silla & Freitas,
2010), where there is a DAG-like structure to the class labels, have been extensively used for multi-
label classification (Dimitrovski et al.l [2011; [Liu et al., 20215 |(Chalkidis et al., |2020), and recent
works have shown that this paradigm can aid in zero-shot learning during the pretraining step (Chen
et al.| 2021} [Mensink et al.l 2014 Y1 et al., [2022; |Cao et al., [2020). While our work is similar in
spirit to prior work on HC, we note that there are two crucial distinctions: (i) we are concerned only
with the zero-shot training-free regime (as we only require class names) while most previous work
assumes some amount of training, and (ii) CHiLS only leverages the class hierarchy for the flat task
of superclass prediction without requiring any supervision at the subclass level.

B MAIN ABLATIONS

B.1 ABLATIONS

Is Reweighting Necessary? Though the reweighting step in CHILS is motivated by the evidence
that CLIP generally assigns higher probability to correct predictions rather than incorrect ones (see
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Table 3: Average accuracy across datasets for superclass prediction, CHIiLS (ours), and CHiLS
without the reweighting step. While when given the true hierarchy omitting the reweighting step can
slightly boost performance beyond CHILS, in situations without the true hierarchy the reweighting
step is crucial to improving on the baseline accuracy.

Experiment Average Accuracy
Standard 73.28
CHILS (True Map, No RW) 86.40
CHIiLS (True Map, RW) 85.11
CHIiLS (GPT Map, No RW) 71.61
CHiLS (GPT Map, RW) 74.49

Table 4: Average accuracy across datasets with GPT-generated label sets for different reweighting
algorithms. Using aggregate subclass probabilities for reweighting performs noticeably worse than
our initial method and reweighting in superclass space. CHILS too only performs slightly worse
than the contrived best possible union of subclass and superclass predictions.

Experiment Average Accuracy
Best Possible 78.69
Standard 73.28
CHiLS 74.49
CHILS (RW subclass w/mean subclass) 72.79
CHILS (RW mean subclass w/superclass) 74.55

Appendix for empirical verification), it is not immediately clear whether the reweighting step
is truly necessary. Averaged across all documented datasets, in Table [3] we show that in the true
hierarchy setting, not reweighting the subclass probabilities can actually slightly boost performance
(as the label sets are adequately tuned to the distribution of images). However, in situations where
the true hierarchy is not present, omitting the reweighting step puts accuracy below the baseline
performance. We attribute this difference in behavior to the fact that reweighting multiplicatively
combines the superclass and subclass predictions, and thus if subclass performance is sufficient on its
own (as is the case when the true hierarchy is available) then combining it with superclass predictions
can cause the model to more closely follow the behavior of the underperforming superclass predictor.
Thus, as the presence of a ground-truth hierarchy is not guaranteed in the wild, the reweighting step
is necessary for CHILS to improve zero-shot performance.

Different Reweighting Strategies We also experimented on whether the initial reweighting al-
gorithm is the optimal method for combining superclass and subclass predictions. Namely, we in-
vestigated whether superclass probabilities could be replaced by the sum over the matching sub-
class probabilities, and whether we can aggregate subclass probabilities and reweight them with the
matching superclass probabilities (i.e. performing the normal reweighting step but in the space of
superclasses). In Table |4/ we show that replacing the superclass probabilities in the reweighting step
with aggregate subclass probabilities removes any accuracy gains from CHILS, but that doing the
reweighting step in superclass space does maintain CHiLS accuracy performance. This suggests that
the beneficial behavior of CHIiLS may be due to successfully combining two different sets of class
labels. We also display the upper bound for combining superclass and subclass prediction (i.e. the
accuracy when a datum is correctly labeled if the superclass or subclass predictions are correct) in
purple, which we note is impossible in practice, and observe that even the best possible performance
is not much higher than the performance of CHiLS.

Noisy Available Hierarchies While lacking access to any existing hierarchical information is the
most probable in practice, we additionally investigate the situation in which the hierarchical informa-
tion is present but overestimates the set of subclasses. For example, the scenario in which a dataset
with the class “dog” includes huskies and corgis, but CHILS is provided with huskies, corgis, and
Labradors as possible subclasses, with the last being out-of-distribution. To do this, we return to the
BREEDS datasets presented in|Santurkar et al.|(2021). As the BREEDS datasets were created so that
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Table 5: CHILS zero-shot accuracy when G includes all subclasses in the ImageNet hierarchy de-
scended from the respective root node. Even in the presence of noise added to the true label sets,
CHILS is able to make large accuracy gains.

CHIiLS CHiLS
(True Map) (True Map+)

nonliving26 79.8 90.7 (+10.9)  89.8 (+10.0)

Dataset Standard

living17 91.1 93.8 (+2.7) 932 (+2.1)
entity13 71.5 92.6 (+15.1)  90.7 (+13.2)
entity30 70.3 88.9 (+18.6) 86.7 (+16.4)

each class contains the same number of subclasses (which are ImageNet classes), we modify G such
that the label set for each superclass corresponds to all the ImageNet classes descended from that
node in the hierarchy (see Appendix [C.6]for more information). As we can see in Table[5} CHiLS is
able to improve upon the baseline performance even in the presence of added noise in each label set.

Label Set Size In previous works investigating importance of prompts in CLIP’s performance,
it has been documented that the number of prompts used can have a decent effect on the overall
performance (Pratt et al 2022} [Santurkar et all, [2022). Along this line, we investigate how the
size of the subclass set generated for each class effects the overall accuracy by re-running our main
experiments with varying values of m (namely, 1, 5, 10, 15, and 50). In Figure [3] (right), there is
little variation across label set sizes that is consistent over all datasets, though m = 1 has a few very
low performing outliers due to the extremely small label set size. We observe that the optimal label
set size is context-specific, and depends upon the total number of classes present and the semantic
granularity of the classes themselves. Individual dataset results are available in Appendix[C.3]

Model Size In order to examine whether the performance of CHILS only exists within the best
performing CLIP backbone (e.g. ViT-L/14@336), we measure the average relative change in ac-
curacy performance between CHILS and the baseline superclass predictions across all datasets for
an array of different CLIP models. Namely, we investigate the RN50, RN101, RN50x4, ViT-B/16,
ViT-B/32, and ViT-L/14@336 CLIP backbones (see [Radford et al| (2021)) for more information on
the model specifications). In Figure [3] (left), we show that across the 6 specified CLIP backbones,
CHILS performance leads to relatively consistent relative accuracy gains, with a slight (but not con-
fidently significant) trend showing improved performance for the ResNet backbones over the ViT
backbones, which is to be expected given their worse base capabilities. This shows that CHIiLS’s
benefits are not an artifact of large model size.
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Figure 3: (Left) Average relative change between CHiLS and baseline for true mapping and GPT-
3 generated mapping. Across changes in CLIP backbone size and structure, the effectiveness of
CHILS at improving performance only varies slightly. (Right) Average relative accuracy change
from the baseline to CHIiLS (across all datasets), for varying label set sizes. In all, there is not much
difference in performance across label set sizes.

Alternative Aggregating Methods While CHILS is based on a set-based mapping approach for
subclasses and a linear averaging for prompt templates (based on[Radford et al.[(2021)’s procedure),

12



Published as a workshop paper at ICLR 2023

Table 6: Average accuracy across datasets for varying aggregative methods on both the prompt
and subclass steps of the zero-shot pipeline. In general, linear averaging for subclasses performs
worse than our proposed set-based method, while linear averaging for prompts (for raw superclass
prediction) performs better thant using a set-based mapping.

Experiment Accuracy

Superclass (linear average) 73.28
Superclass (set-based prompt mapping) 72.25
CHILS (True Map, set-based mapping) 85.11

CHILS (True Map, linear average) 81.61
CHILS (GPT Map, set-based mapping) 74.43
CHILS (GPT Map, linear average) 72.25

we experimented with two alternative ensembling methods for different parts of the CHiLS pipeline:
(1) Using a linear average of subclass embeddings rather than the set-based mapping (that is, every
superclass’s text embedding is the average across all subclass embeddings, each themselves aver-
aged across every prompt template) and (2) Using a set-based mapping for prompt templates rather
than a linear average (i.e. instead of averaging across prompt templates, predict across each prompt
template separately at inference time and then use embedded class to map back to the set of su-
perclasses). Note in the latter case we only experiment with how this effects superclass prediction
(where each class maps to a set of the dataset’s chosen prompt embeddings), as using set-based en-
sembling for both prompts and subclasses within CHiLS quickly becomes computationally expen-
sive. In Table[6] we see that using our initial aggregation methods (i.e. linear averaging for prompts
and set mappings for subclasses) achieves greater accuracy.
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C ADDITIONAL APPENDICES

C.1 EMPIRICAL EVIDENCE OF CLIP CONFIDENCE
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Figure 4: Distribution of argmax probabilities across ImageNet BREEDS datasets for correctly and
incorrectly classified data points, with the diamonds representing average probability for each class.

Correctly classified probabilities are on average higher than the misclassified probabilities.

The motivation behind the reweighting step of CHiLS primarily comes from the heuristic th:

at LLMs

make correct predictions with high estimated probabilities assigned to them (Kadavath et all,[2022)),

and that CLIP models themselves are well-calibrated (Minderer et al.| [2021). However,
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verify whether there is some evidence of this behavior in CLIP models. Given that the output of a
CLIP model is a probability distribution over the provided classes, we care specifically about the
probability of the argmax class (i.e. the predicted class) when the model is correct and when it is
incorrect. Across the BREEDS datasets for the standard ImageNet domain, in Figure ] we show the
distribution of the correct and incorrect argmax probabilities for each class (i.e. for each class ¢;, we
show the output probabilties for ¢; when it was correctly classified and the output probabilities of
the predicted classes when the true class is ¢;). Whenever CLIP is correct, the associated probability
is on average much higher than the probabilities associated with misclassification.
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C.2 CLIP PRIMER

Open Vocabulary models (as termed in |Pham et al.[(2021))) refer to models that are able to classify
images by associating them with natural language descriptions of each class. These models are
“open” in the sense that they are to predict on an arbitrary vocabulary of descriptions (as opposed
to a fix set), thus allowing for arbitrary-way image classification. Popular open vocabulary models
include the model of focus CLIP (Radford et al., 2021) and ALIGN (Jia et al.,2021) as examples.

Contrastive Language Image Pretraining (CLIP) is a family of open vocabulary models, and the
focus of the present work. CLIP, which is comprised of a text encoder and an image encoder that
project into the same latent space, is trained in the following way: Given a set of image-caption pairs
(e.g. a photo of a dog with the caption “a photo of a dog.”’), CLIP is trained to predict which caption
goes with which image as a contrastive learning objective by comparing the similarity between each
image embedding and each caption embedding.

At inference time (in the zero-shot setting), a naive method for image classification (which is the
initial baseline tried in Radford et al.[|(2021)) involves simply passing in the list of class names for a
given dataset, and calculating the similarity between a particular image embedding and each one of
these class embeddings. However, Radford et al.| (2021) found that by taking a cue from the recent
literature on prompt engineering for large language models (Gao et al.l 2020), CLIP can perform
significantly better as a zero-shot predictor if each class name is included in a natural language
prompt that resembles some sort of image caption (as that is what CLIP was trained on). As an
example, the standard baseline prompt mentioned is “A photo of a {}.”. In our work, we define a
prompt (or prompt template, which we use interchangeably) as any caption-like phrase in natural
language that a class name can be injected into.

C.3 ADDING CONTEXT TO PROMPTS AND GPT-3 QUERIES

Table 7: Context tokens and prompt sets used for each dataset.

Dataset [context] Prompt Set Used
Nonliving26 N/A ImageNet
Living17 N/A ImageNet
Entity13 N/A ImageNet
Entity30 N/A ImageNet
CIFAR20 N/A ImageNet
Food-101 “food” Dataset-Specific
Fruits-360 “fruit” Dataset-Specific
Fashion1M “article of clothing”  Dataset-Specific
Fashion-MNIST  “article of clothing” ImageNet
LSUN-Scene N/A ImageNet
Office31 “office supply” Dataset-Specific
OfficeHome “office supply” ImageNet
ObjectNet N/A ImageNet
EuroSAT N/A Dataset-Specific
RESISC45 N/A Dataset-Specific

For the choice of the prompt embedding function T(-), for each dataset we experiment (where ap-
plicable) with two different functions: (1) Using the average text embeddings of the 75 different
prompts for each label used for ImageNet in|Radford et al.| (2021), where the prompts cover a wide
array of captions and (2) Following the procedure that Radford et al.|(2021) puts forth for more spe-
cialized datasets, we modify the standard prompt to be of the form “A photo of a {}, a type of [con-
text].”, where [context] is dataset-dependent (e.g. “food” in the case of food-101). In the case that
a custom prompt set exists for a dataset, as is the case with multiple datasets that the present work
shares with Radford et al.|(2021), we use the given prompt set for the latter option rather than build-
ing it from scratch. For each dataset, we use the prompt set that gives us the best baseline (i.e. su-
perclass) zero-shot performance. We follow the procedure laid out for ImageNet in [Radford et al.
(2021) by averaging the text embeddings of each prompt set for each class label.
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Table 8: Zero-Shot Accuracy Performance across benchmarks, controlling for the presence of the
superclass label within each respective label set. In the existing map case, adding the superclass
labels removes some of the performance gains of the raw existing map. In the GPT-3 Map case,
adding the superclass is crucial to maintaining performance in most datasets

Dataset CHILS Accuracy CHILS Accuracy CHILS Accuracy CHILS Accuracy
(Existing Map) (Existing Map+) (GPT-3 Map) (GPT-3 Map+)
Nonliving26 90.68 (+10.85) 89.80 (+9.97) 81.46 (+1.63) 81.52 (+1.69)
Living17 93.81 (+2.72) 93.62 (+2.53) 91.30 (+0.21) 91.43 (+0.33)
Entity13 92.59 (+15.13) 92.06 (+14.60) 76.97 (-0.48) 78.10 (+0.65)
Entity30 88.87 (+18.55) 87.29 (+16.96) 71.79 (+1.47) 71.74 (+1.42)
CIFAR20 85.28 (+25.71) 81.45 (+21.88) 65.67 (+6.10) 65.91 (+6.34)
Food-101 N/A N/A 93.66 (-0.21) 93.80 (-0.07)
Fruits-360 59.22 (+0.48) 58.88 (+0.15) 60.53 (+1.79) 60.12 (+1.38)
FashionlM N/A N/A 4751 (+1.73) 47.44 (+1.66)
Fashion-MNIST N/A N/A 70.79 (+2.27) 70.76 (+2.24)
LSUN-Scene N/A N/A 88.80 (+0.60) 88.97 (+0.77)
Office31 N/A N/A 86.58 (—2.71) 89.37 (+0.24)
OfficeHome N/A N/A 87.88 (—0.97) 88.76 (—0.09)
ObjectNet 85.34 (+32.24) 81.30 (+28.20) 51.23 (—2.07) 53.52 (+0.42)
EuroSAT N/A N/A 62.21 (+0.11) 62.40 (+0.30)
RESISC45 N/A N/A 71.84 (-0.75) 72.75 (+0.16)

In order to disentangle the effect that well-formed prompt templates have on the success of CHiLS,
for each dataset (besides the BREEDS datasets and ObjectNet as they are already semantically
similar to ImageNet) we compare the ImageNet 75 classes against a dataset-specific set of prompt
templates. In the case of EuroSAT, RESISC45, CIFAR20 and Food-101, we directly use the prompt
template set from Radford et al.| (2021). For LSUN-Scene, we use the prompt template set for
SUN397 (Xiao et al., |2010), as the two datasets are semantically similar. For the rest of the datasets
not yet mentioned (namely Fruits360, Fashion1M, Fashion-MNIST, Office31, and OfficeHome) we
add the [context] marker into the standard prompt template as mentioned in Section[d] The prompt
sets themselves can be directly found in the code implementation for this project.

For the GPT-3 Query with additional context, we add the respective [context] token to the query
if the dataset-specific prompt template is used. Note that we did not create [context] tokens for
EuroSAT, LSUN-Scene, or RESISC45 despite testing dataset-specific prompt templates, as there did
not seem to be a concise semantic label to describe the classes in these datasets. In Table[/] we list
the dataset, the [context] token (if applicable), and the final prompt set used for all the experiments.
Here, we found that while dataset-specific prompts often improved baseline performance, they were
not gauranteed to improve performance, as in both Fasion-MNIST and OfficeHome the general
ImageNet prompt set performed better.

C.4 INCLUDING SUPERCLASS LABELS IN LABEL SETS

With CHILS when the existing map is not available, we append the superclass name to each la-
bel set to account for possible noise in the GPT-generated label set. In Table 8, we show the effect
that this inclusion has in both the existing map and GPT-map cases. Note that in the main paper,
columns 1 and 4 correspond to the main results (i.e. no superclass labels in existing maps and su-
perclass labels in GPT-3 maps). In both cases, the presence of the superclass label more effectively
strikes a balance between subclass and superclass predictions. In the existing map case, this actually
hurts performance, as the subclass labels are optimal in the given dataset. In the GPT-3 map case,
while there are some datasets where removing the superclass label improves performance (namely
Fruits360 and Entity30), in ever other case removing the superclass label hurts performance, some-
times by multiple percentage points.

C.5 LABEL SET ABLATION ACCURACY

Table 9 displays the raw accuracy scores for CHILS across different label set sizes.
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Table 9: Accuracy across different label set sizes generated by GPT-3, with best performing label
set size in each row bolded. In general, there is no consistent trend related to label set size and zero-
shot performance across datasets.

Dataset CHILS CHILS CHiLS CHiLS CHILS
(m=1) (m =15) (m = 10) (m = 15) (m = 50)

Nonliving26 79.71 (—=0.12)  81.12(+1.29) 81.68 (+1.85) 81.98 (+2.15) 80.03 (++0.20)
Living17 91.14 (+0.04)  92.68 (+1.58) 91.56 (+0.46) 91.73 (+0.63)  91.41 (40.31)
Entity13 7743 (—0.02) 78.14 (+0.69) 78.10 (+0.65)  78.37 (+0.92)  78.28 (40.83)
Entity30 71.06 (+0.73) 7148 (+-1.15) 7172 (+1.39) 73.03 (+2.70)  72.62 (42.29)
CIFAR20 60.15 (+0.58)  64.93 (+5.36)  65.05 (+5.48) 63.71 (+4.14)  64.99 (+5.42)
Food-101 93.84 (—0.03) 93.90 (+0.03) 93.82(—0.05) 93.81(—0.06) 93.73 (—0.14)
Fruits360 58.70 (—0.04) 59.70 (+0.96)  60.14 (+1.40) 59.75 (+1.01)  59.66 (+0.92)
FashionlM 4346 (—2.32) 45.77(—0.01) 47.44 (+1.66) 4695 (+1.17) 43.61(—2.17)
Fashion-MNIST  68.01 (—0.51)  71.00 (+2.48) 70.81 (+2.29) 69.07 (+0.55)  69.45 (+0.93)
LSUN-scene 88.43 (+0.30) 86.30(—1.83) 88.83(+0.70) 86.80(—1.33) 8597 (—2.16)
Office31 89.51 (+0.38)  88.15(—0.98) 90.55 (+1.42) 89.43 (+0.30) 89.42 (+0.29)
OfficeHome 88.75(—-0.12)  89.11 (+0.24) 88.76 (—0.09) 89.16 (+0.29) 88.87 (+0.00)
ObjectNet 53.75 (+0.63)  53.27 (+0.15) 53.53 (+0.41)  57.70 (+4.58)  58.03 (+4.91)
EuroSAT 62.32 (+0.21)  62.21 (+0.10)  62.40 (+0.29) 62.72 (+0.61) 62.11 (0.00)
RESISC45 73.29 (+-0.70)  73.05 (+0.46) 7271 (+0.12)  72.67 (+0.08)  71.90 (—0.69)

C.6 NoOISY AVAILABLE HIERARCHY DETAILS

The ImageNet (Deng et al., 2009) dataset itself includes a rich hierarchical taxonomy, where every
class is a leaf node of the hierarchy. In the original BREEDS (Santurkar et al., [2021) work, the
authors modify the structure slightly in order to place concepts at semantically-similar levels of
granularity at the same depth, and additional restrict the number of subclasses within each of the
BREEDS datasets in order to balance the data. Thus, it is possible for each BREEDS dataset to
use the dataset with its superclasses and restricted set of subclasses but provide CHIiLS with all the
subclass labels present in the ImageNet hierarchy for each superclass (i.e. all leaf nodes descended
from each superclass node). In Table[TT] we display a subset of the living]7 BREEDS dataset class
structure with the original subclasses and the ImageNet subclasses. Observe that in some cases,
there are many subclass labels provided to CHiLS than is present in the data.

C.7 DATASET DETAILS

Table 10: Domains used for BREEDS, Office31, and OfficeHome.

Dataset Domains
BREEDS ImageNet, ImageNet-Sketch, ImageNetv2, ImageNet-c
{Fog-1, Contrast-2, Snow-3, Gaussian Blur-4, Saturate-5}
Office31 Amazon, DSLR, webcam
OfficeHome Clipart, Art, Real World, Product

CHILS Across Domain Shifts For each of the BREEDS datasets (Santurkar et al.,[2021)), Office31
(Saenko et al.l 2010), and OfficeHome (Venkateswara et al., 2017), all results presented are the
average over different domains. The specific domains used are show in Table [0}

Fruits-360 For zero-shot classification with CLIP models, Fruits-360 (Muresan & Oltean), [2018))
in its raw form is somewhat ill-formed from a class name perspective, as there are classes only
differentiated by a numeric index (e.g. “Apple Golden 1” and “Apple Golden 2”) and classes at
mixed granularity (e.g. “forest nut” and “hazelnut” are separate classes even though hazelnuts are a
type of forest nut). We thus manually rename classes using the structure laid out in Table[T3] which
results in a 59-way superclass classification problem, with 102 ground-truth subclasses.
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Table 11: Subset of living17 class hierarchy, showing the difference between the original BREEDS
subclasses and the ImageNet subclasses used for the ablation in Section [B.I} Noisy Available Hier-

archies.

Superclass

Original BREEDS subclasses

All ImageNet subclasses

salamander
turtle

lizard

snake

spider

grouse
parrot

crab

European fire salamander, common
newt, eft, spotted salamander
loggerhead, leatherback turtle, mud tur-
tle, terrapin

common iguana, American chameleon,

agama, frilled lizard

thunder snake, ringneck snake, dia-
mondback, sidewinder

black and gold garden spider, barn spi-
der, garden spider, black widow

black grouse, ptarmigan, ruffed grouse,
prairie chicken

African grey, macaw, sulphur-crested
cockatoo, lorikeet

Dungeness crab, rock crab, fiddler crab,
king crab

European fire salamander, common
newt, eft, spotted salamander, axolotl
loggerhead, leatherback turtle, mud tur-
tle, terrapin, box turtle

banded gecko, common iguana, Ameri-
can chameleon, whiptail, agama, frilled
lizard, alligator lizard, Gila monster,
green lizard, African chameleon, Ko-
modo dragon

thunder snake, ringneck snake, hognose
snake, green snake, king snake, garter
snake, water snake, vine snake, night
snake, boa constrictor, rock python, In-
dian cobra, green mamba, sea snake,
horned viper, diamondback, sidewinder
black and gold garden spider, barn spi-
der, garden spider, black widow, taran-
tula, wolf spider

black grouse, ptarmigan, ruffed grouse,
prairie chicken

African grey, macaw, sulphur-crested
cockatoo, lorikeet

Dungeness crab, rock crab, fiddler crab,
king crab

ObjectNet The ObjectNet dataset (Barbu et al., |2019) has partial overlap (113 classes) with the
ImageNet (Deng et al.,2009) hierarchical class structure. From this subset of ObjectNet, we use the
BREEDS hierarchy (Santurkar et al., 2021) to generate a coarse-grained version of ObjectNet that is
shown in Table[T2] In this 11-way classification task, the true subclasses are the original ObjectNet

classes.

Table 12: Class Structure for ObjectNet experiments.

Superclass

Subclasses (Original ObjectNet)

soft furnishings

wheeled vehicle

garment

{Dress, Jeans, Skirt, Suit jacket,
Sweater, Swimming trunks, T-shirt}
{Bath towel, Desk lamp, Dishrag or hand towel,
Doormat, Lampshade, Paper towel, Pillow }

{Backpack, Dress shoe (men), Helmet, Necklace,

accessory

Plastic bag, Running shoe, Sandal, Sock,

Sunglasses, Tie, Umbrella, Winter glove}

appliance

{Coffee/French press, Fan, Hair dryer, Iron (for clothes),
Microwave, Portable heater, Toaster, Vacuum cleaner }

{Cellphone, Computer mouse, Keyboard, Laptop (open),

equipment

Monitor, Printer, Remote control, Speaker,

Still Camera, TV, Tennis racket, Weight (exercise) }

furniture
toiletry

{Bench, Chair}
{Band Aid, Lipstick}
{Basket, Bicycle}

cooked food {Bread loaf}
produce {Banana, Lemon, Orange}
beverage {Drinking Cup}
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Table 13: Mapping from original class names to new subclass and superclasses for Fruits-360.

Original Class Cleaned Subclass  Cleaned Superclass
Apple Braeburn braeburn apple apple
Apple Crimson Snow  crimson snow apple apple
Apple Golden 1 golden apple apple
Apple Golden 2 golden apple apple
Apple Golden 3 golden apple apple
Apple Granny Smith ~ granny smith apple apple
Apple Pink Lady pink lady apple apple
Apple Red 1 red apple apple
Apple Red 2 red apple apple
Apple Red 3 red apple apple
Apple Red Delicious  red delicious apple apple
Apple Red Yellow 1 red yellow apple apple
Apple Red Yellow 2 red yellow apple apple
Apricot apricot apricot
Avocado avocado avocado
Avocado ripe avocado avocado
Banana banana banana
Banana Lady Finger  lady finger banana banana
Banana Red red banana banana
Beetroot beetroot beetroot
Blueberry blueberry blueberry
Cactus fruit cactus fruit cactus fruit
Cantaloupe 1 melon melon
Cantaloupe 2 melon melon
Carambula star fruit star fruit
Cauliflower cauliflower cauliflower
Cherry 1 cherry cherry
Cherry 2 cherry cherry
Cherry Rainier rainier cherry cherry
Cherry Wax Black black cherry cherry
Cherry Wax Red red cherry cherry
Cherry Wax Yellow yellow cherry cherry
Chestnut nut nut
Clementine orange orange
Cocos €oCos €OoCos
Corn corn corn
Corn Husk corn husk corn husk
Cucumber Ripe cucumber cucumber
Cucumber Ripe 2 cucumber cucumber
Dates date date
Eggplant eggplant eggplant
Fig fig fig
Ginger Root ginger root ginger root
Granadilla granadilla passion fruit
Grape Blue blue grape grape
Grape Pink pink grape grape
Grape White white grape grape
Grape White 2 white grape grape
Grape White 3 white grape grape
Grape White 4 white grape grape
Grapefruit Pink pink grapefruit grapefruit
Grapefruit White white grapefruit grapefruit
Guava gauva gauva
Hazelnut nut nut
Huckleberry huckleberry huckleberry
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Kaki
Kiwi
Kohlrabi
Kumquats
Lemon
Lemon Meyer
Limes
Lychee
Mandarine
Mango
Mango Red
Mangostan
Maracuja
Melon Piel de Sapo
Mulberry
Nectarine
Nectarine Flat
Nut Forest
Nut Pecan
Onion Red
Onion Red Peeled
Onion White
Orange
Papaya
Passion Fruit
Peach
Peach 2
Peach Flat
Pear
Pear 2
Pear Abate
Pear Forelle
Pear Kaiser
Pear Monster
Pear Red
Pear Stone
Pear Williams
Pepino
Pepper Green
Pepper Orange
Pepper Red
Pepper Yellow
Physalis
Physalis with Husk
Pineapple
Pineapple Mini
Pitahaya Red
Plum
Plum 2
Plum 3
Pomegranate
Pomelo Sweetie
Potato Red
Potato Red Washed
Potato Sweet
Potato White
Quince
Rambutan
Raspberry

kaki
kiwi
kohlrabi
kumquat
lemon
meyer lemon
lime
lychee
orange
mango
red mango
mangostan
maracuja
melon
mulberry
nectarine
flat nectarine
forest nut
pecan nut
red onion
red onion
white onion
orange
papaya
passion fruit
peach
peach
flat peach
pear
pear
abate pear
forelle pear
kaiser pear
monster pear
red pear
stone pear
williams pear
pepino
green pepper
orange pepper
red pepper
yellow pepper
groundcherry
groundcherry
pineapple
mini pineapple
dragon fruit
plum
plum
plum
pomegranate
pomelo
red potato
red potato
sweet potato
white potato
quince
rambutan
raspberry
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persimmon
kiwi
kohlrabi
kumquat
lemon
lemon
lime
lychee
orange
mango
mango
mangostan
passion fruit
melon
mulberry
nectarine
nectarine
nut
nut
onion
onion
onion
orange
papaya
passion fruit
peach
peach
peach
pear
pear
pear
pear
pear
pear
pear
pear
pear
pepino
pepper
pepper
pepper
pepper
groundcherry
groundcherry
pineapple
pineapple
dragon fruit
plum
plum
plum
pomegranate
pomelo
potato
potato
potato
potato
quince
rambutan
raspberry
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Redcurrant
Salak
Strawberry
Strawberry Wedge
Tamarillo
Tangelo
Tomato 1
Tomato 2
Tomato 3
Tomato 4
Tomato Cherry Red
Tomato Heart
Tomato Maroon
Tomato Yellow
Tomato not Ripened
Walnut
Watermelon

redcurrant
salak
strawberry
strawberry
tamarillo
tangelo
tomato
tomato
tomato
tomato
cherry tomato
heart tomato
maroon tomato
yellow tomato
unripe tomato
nut
melon

redcurrant
snake fruit
strawberry
strawberry
tamarillo
tangelo
tomato
tomato
tomato
tomato
tomato
tomato
tomato
tomato
tomato
nut
melon
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