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ABSTRACT

The long-tailed recognition (LTR) is the task of learning high-performance clas-
sifiers given extremely imbalanced training samples between categories. Most of
the existing works address the problem by either enhancing the features of tail
classes or re-balancing the classifiers to reduce the inductive bias. In this paper,
we try to look into the root cause of the LTR task, i.e., training samples for each
class are greatly imbalanced, and propose a straightforward solution. We split the
categories into three groups, i.e., many, medium and few, according to the num-
ber of training images. The three groups of categories are separately predicted to
reduce the difficulty for classification. This idea naturally arises a new problem of
how to assign a given sample to the right class groups? We introduce a mutual
exclusive modulator which can estimate the probability of an image belonging
to each group. Particularly, the modulator consists of a light-weight module and
learned with a mutual exclusive objective. Hence, the output probabilities of the
modulator encode the data volume clues of the training dataset. They are further
utilized as prior information to guide the prediction of the classifier. We conduct
extensive experiments on multiple datasets, e.g., ImageNet-LT, Place-LT and iNat-
uralist 2018 to evaluate the proposed approach. Our method achieves competitive
performance compared to the state-of-the-art benchmarks.

1 INTRODUCTION

In the past years, deep learning has achieved significant progress in computer vision (Krizhevsky
et al., 2012). The huge success in deep technologies is inseparable from the availability of high-
quality large-scale datasets, e.g., ILSVRC (Russakovsky et al., 2015), MS COCO (Lin et al., 2014),
and Places (Zhou et al., 2017). In contrast with these canonical datasets which are manually well-
balanced across different categories w.r.t training data samples, the real-world data are always ex-
tremely skewed and exhibit long-tailed distribution. Most of the samples are congregated on a few
of categories, i.e., head classes, while the rest categories, i.e., tail classes, possess very limited sam-
ples. Traditional models learned on such datasets perform very weak generalization ability and
obtain poor recognition accuracy on tail classes.

To alleviate the skewness and increasing the performance of tail classes, previous works can be
roughly summarized into two streams. The first stream aims to increase the representation capability
of models and improve the extracted features for tail classes by seeking various constraints and
network architectures (Liu et al., 2019; Cui et al., 2019; 2021; Yang & Xu, 2020). Another line of
works focuses on the adjustment of the decision boundaries of classifiers (He & Garcia, 2009; Shen
et al., 2016; Mahajan et al., 2018; Cui et al., 2019). For example, Kang et al. (2019) proposes to
boost the recognition performance of tail classes by adjusting the cardinality of the classifier layer
so as to adjust the separating hyperplane between categories.

In this paper, we first analyze the misclassified samples across different classes. For simplicity,
we follow the same setting in (Liu et al., 2019) and divide the given dataset into three groups, i.e.,
Many, Medium and Few, on the basis of the samples in each classes. Figure 1(a) depicts the propor-
tion of misclassified images from one group to another. For the misclassified images in “Medium”
group, 73.6% of them are predicted into the “Many” group. Similarly, for “Few” group, 71.2% of
the wrongly predicted images are attributed into the “Many” group and 27.2% are assigned into the
“Medium” group. Such an observation naturally arises a question: Can reducing the misclassifica-
tion rate between groups facilitate the accurate prediction? To illustrate this, we hypothesize an
ideal case that the ground-truth group that each sample belongs to is available. We then compute the
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Figure 1: (a) The digits indicate the percentage of images being misclassified to the wrong groups.
For example, the digit di,j on i row, j column means the misclassified images in group i has di,j
percent be misclassified to group j. Analysis is conducted on ImageNet-LT dataset with Vit-
Base. (b) Evaluation accuracy compares between the entire set and the X-shot subset, where
X ∈ {Many, Medium, Few}. For the entire set evaluation, which is also the common evaluation
approach, consider all classes in this process. However, for X-shot evaluation, we only use the X-
shot classes output rather than overall classes to calculate the X-shot accuracy.

precision on each group separately and plot it in the light pink column in Figure 1(b). Compared
to the case without group prior (light blue column), the dramatically improved performance of each
group, for example, 67.9 v.s. 24.9 in “Few” group, answers yes to this question.

We introduce a Mutual Exclusive Modulator (MEM) to realize this purpose. MEM aims to learn
and predict the mutually exclusive guidance of the groups for a given image. This prior-guidance
assigns a set of selection probability on the three groups and enables the classifier to predict the
right category within the chosen group. With the guide of MEM, the classifier can be re-adjusted
and achieve a more accurate prediction from the guided label space. To learn the MEM guidance,
we follow the same idea of the network activations, i.e., the output of MEM is activated if the group
of an image is rightly predicted, otherwise it is depressed. Particularly, an embedding vector is
employed to represent the group a given image belongs to. The magnitude of the embedding is
optimized to be large w.r.t. the correct groups. Otherwise, the magnitude should be small and close
to zero for the wrong groups. To achieve this goal of the feature magnitudes, we propose an objective
function to learn the data-aware embedding in the training process. In detail, we first train a standard
classification model by supervised learning. Based on the representation of the standard model, we
train a mutual exclusive modulator to estimate the activation values for each group.

After harvesting the group guidance information, it is further utilized to obtain precise category pre-
dictions. We propose a data-aware classifier by fusing the group information into the estimation
of the accurate labels in a soft manner. In particular, the data-aware classifier has the analogical
property with the canonical classifier, so it can also be trained by backward propagation directly.
In Figure 1(b), we reveal that the proposed method increases the recall rate to facilitate the classifi-
cation precision in each group (the light green column). Especially, the accuracy in the few group
significantly improves by 11.9%. Our contribution can be summarized as follows:

• We analyze the relationship between the categories and the number of training samples by
splitting them into different groups, and explore that the causes of low accuracy for tail
classes are the low recall rates;

• We propose a novel mutual exclusive modulator to boost the recall of tail classes so as to
improve the overall accuracy of long-tailed recognition;

• We conduct extensive experiments compared with the most relevant decoupled learning
methods, i.e., τ -normalized, cRT, and LWS, and the state-of-the-art for long-tailed recog-
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nition. We show that our method achieves a more balanced performance between head and
tail classes and outperforms the state-of-the-art by a nontrivial margin.

2 RELATED WORK

Long-Tailed visual recognition. In a general way, methodologies in long-tailed recognition can
be categorized as classes re-balancing, multi-stage learning, and ensemble learning. Classes re-
balancing can be further divided into two types: re-sampling and re-weighting. For re-sampling, The
most intuitive approach is under-sampling head classes or over-sampling tail classes to achieve more
balance between head classes and tail classes (He & Garcia, 2009; Han et al., 2005). Another way
for re-sampling is to apply a class-balanced sampling based on the cardinality of each class (Shen
et al., 2016; Mahajan et al., 2018). For re-weighting, various methods propose to assign different
losses to different instances (Lin et al., 2017; Ren et al., 2020; Cui et al., 2019). Multi-stage based
methods deal with long-tailed datasets by conducting a multi-steps schema (Kang et al., 2019; Li
et al., 2021). For instance, Kang et al. (2019) decouples the learning procedure into representation
learning and classifier learning. More recently, ensemble-based methods usually adopt multiple
experts to reduce the model variance, e.g., RIDE (Wang et al., 2020), LFME (Xiang et al., 2020),
TADE (Zhang et al., 2021), BBN (Zhou et al., 2020), and NCL (Li et al., 2022). For example, LFME
constructs three experts in the cardinality-adjacent subset to reduce the imbalance in training with
the assumption that training on these subsets is better than jointly trained counterparts.

Self-supervised pretraining. Self-supervised learning unleashes the potential of vision transform-
ers (Caron et al., 2021; Chen et al., 2021; He et al., 2022). In the past few years, contrastive learning
is very popular, which aims to learn invariances from different augmented views of images (He
et al., 2020; Chen et al., 2020; Grill et al., 2020). Recently, Masked Image Modeling (MIM) (Xie
et al., 2022; Liu et al., 2022; He et al., 2022; Gao et al., 2022) become more and more prevalent for
vision transformers. MIM is the task that reconstructs image content from a masked image. Mask
Autoencoders (MAE) (He et al., 2022) is a recent representative work. MAE builds an asymmetric
encoder and decoder to reconstruct the corrupted input images in which most tokens are randomly
masked.

Out-of-distribution detection. Out-of-distribution detection (Hendrycks & Gimpel, 2016; Liang
et al., 2017; DeVries & Taylor, 2018; Bendale & Boult, 2016; Lakshminarayanan et al., 2017) is
crucial to ensuring the reliability of the learning system (Yang et al., 2021). It is a task to discrim-
inate whether a sample in the inference is from a different distribution of the training data. Some
approaches reject the out-of-distribution samples by setting a threshold on maximum softmax scores,
they assume that the out-of-distribution samples will have a low maximum softmax score. However,
different from the methods making a such assumption on out-of-distribution samples, Dhamija et al.
(2018) proposes two simple yet effective loss functions, the Entropic Open-Set loss, and Objecto-
sphere loss, to jointly train the model with in-distribution data and out-of-distribution data. The
Objectosphere loss attempts to increase the feature magnitude for in-distribution data and decrease
it for other data. Motivated by Dhamija et al. (2018), we design a regularization objective for the
sub-network of MEM to activate the positive samples and depress the negative samples.

3 METHOD

For long-tailed recognition, various approaches of re-sampling (Shen et al., 2016; Mahajan et al.,
2018) and re-weighting (Cui et al., 2019; Ren et al., 2020) aim to alleviate the bias towards the
head classes and most of them adhere to joint learning representation and classification. Kang et al.
(2019) decouple the learning procedure into representation learning and classifier learning, which
presents a great potential way from a different perspective. We follow this schema and propose a
novel Mutual Exclusive Modulator (MEM) to receive more accurate predictions. Practically, we first
train a standard classification model by supervised learning. Then, based on the representation of the
standard model, we train an individual mutual exclusive modulator to generate a group of adaptive
weights. By encoding the adaptive weights, the data-aware classifier act on logits in a soft-routing
manner to boost the classification accuracy.

3.1 MUTUAL EXCLUSIVE MODULATOR

Motivated by the observation in Figure 1(a) that most of the misclassified samples are incorrectly
recognized into the wrong group rather than the group they belong to. The performance can be
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Figure 2: An illustration of our proposed Mutual Exclusive Modulator (MEM). MEM consists of
three sub-networks and a fusion module. The sub-network maps the representation zi to a latent
vector that implies the signal of the group. To generate the adaptive weights, the fusion module
encodes the magnitude from each sub-network and top K logits of each group from classifier.

significantly promoted if the samples were recalled in the right group, as illustrated in Figure 1(b).
Thus, we explore a new way of trying to recall the misclassified samples to the right group and
propose a novel module i.e., Mutual Exclusive Modulator (MEM). Without loss of generality, we
split the classes into three mutual exclusive groups and denote them as G = {G1,G2,G3}, following
the previous practices (Liu et al., 2019). The mutual exclusive indicates that a category can only be
assigned into one specific group according to the number of training images.

Figure 2 depicts the overall structure of our approach. Given an image xi, the encoder F transfers xi

to representation zi, zi = F(xi). With input zi, the MEM generates a group of adaptive weights via
two procedures. First, the sub-networks inside the MEM map the representation zi to latent vectors
which imply the signal of the groups. To explicitly express the signal, we adopt the magnitude (L2-
norm) of the latent vector to represent it. Such a magnitude represents the influence contributed by
each group. In order to learn it, we design an objective to regularize the sub-networks. Afterward,
we generate the adaptive weights by fusing the magnitude from each sub-network with the top K
logits of each group through the designed fusion module. Finally, the data-aware classifier is given
the final output. Our learning objective and the detail of the fusion module will be described as
follows.

For each batch data in practice, we split the samples into three mutual exclusive groups based on
their labels. We denote a batch input as X = {zi, ci}, i ∈ {1, . . . , n}, where zi is the input feature
after encoder and ci is the ground-truth label. Meanwhile, each sample can be further categorized
into three mutual exclusive groups with pseudo-label g ∈ {1, 2, 3}. We try to capture the peculiarity
of each sample and find the group label it belongs to. To realize this, we design three sub-networks
Q1,Q2,Q3 which parameterized with θ1, θ2 and θ3 respectively, and a learning objective. Specifi-
cally, the learning objective can be formulated as:

r(zi) = λ

{
max(ξ −Qg(zi; θg), 0)

2 ifci ∈ Gg,
max(Qg(zi; θg)− µ, 0)2 otherwise. (1)

The learning objective aims to regularize the magnitude of Qg(zi; θg) to be higher than ξ for a
positive class, otherwise lower than µ for a negative classes. For each sub-network Qg , classes in
the Gg are positive classes, other are negative classes. For example, sub-network Q1 treats samples in
G1 as positive and the rest as negative. Intuitively, each sub-network focuses on one group and tries
to acquire the difference between groups. To elaborate the construction of the learning objective, we
take sub-network G1 as an example. We leverage its output latent vector and compute the magnitude
(L2-norm). We denote the magnitude as Q1(zi; θ1). For notation convenience, we first split X in
each group g into positive part X+

g and negative part X−
g . Formally, the positive part X+

g and
negative part X−

g can be expressed as:

X+
g = {(zi, ci) | ci ∈ Gg, (zi, ci) ∈ X}; X−

g = X\X+
g (2)
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From another perspective, the X+
g and X−

g can be also seen as ID (in-distribution) and OOD (out-
of-distribution) data for sub-network Qg . Based on X+

g and X−
g , we formulate the regularization

objective as:

LX+
g
=

1∣∣X+
g

∣∣ ∑
z∈X+

g

max(ξ−Qg(z; θg), 0)
2; LX−

g
=

1∣∣X−
g

∣∣ ∑
z∈X−

g

max(Qg(z; θg)−µ, 0)2 (3)

where |·| stands for the cardinality in the set. The objective LX+
g

is to encourage the output of Qg

greater than ξ for positive part X+
g , however, objective LX−

g
encourages the output lower than µ for

negative part X−
g . Then the regularization objective for sub-network Qg can be summed up as:

LQg
= LX+

g
+ LX−

g
(4)

The separation of the LX+
g

and the LX−
g

can equally contribute to the loss by average independently.
If not, the loss of positive part and negative part will have a huge gap especially when the distribution
of the groups is extremely imbalanced in the batch. Finally, the regularization objective for all three
sub-networks can be written as:

LREO =
∑

g∈1,2,3

LQg (5)

To get the final output of MEM, we take a fusion module to fuse the Q(zi) and top K logits of each
group, where K is a hyper-parameter. The fusion module can be implemented as a simple multilayer
perceptron (MLP). Suppose the logits are ℓi = {ℓ1i , ℓ2i , . . . ℓmi } for representation zi, and the logits
of group g can be write as:

ℓi,g = {ℓji |j ∈ {1, . . . , n}, j ∈ Gg} (6)

Suppose Ti = [T 1
i , T 2

i , T 3
i ] where T g

i , g ∈ {1, 2, 3} is the set of top K values in ℓi,g . Then the
fusion operation can be formulated as:

wi = MLP(concat(Q(zi), Ti)), (7)

where concat means the concatenate operation between the parameters.

3.2 DATA-AWARE CLASSIFIER

After harvesting the adaptive weights wi, we construct a data-aware classifier (DAC) by utilizing
the group information in a soft-routing manner. Together with the logits ℓi = {ℓ1i , ℓ2i , . . . ℓmi } of
representation zi, we can formulate our data-aware classifier as:

pi = softmax({ℓji · w
g(j)
i | j ∈ {1, . . . ,m}), (8)

where g(j) ∈ {1, 2, 3} denotes the mapping function from the class index j to the corresponding
group. The loss of data-aware classifier is thus:

LDAC = − 1

n

n∑
i=1

yilog(pi) (9)

In the proposed individual mutual exclusive modulator, the two supervisions are employed together
to achieve a comprehensive learning, and the final loss is written as:

L = LREO + LDAC (10)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We conduct our experiments on three large-scale datasets (i.e., ImageNet-LT (Liu et al.,
2019), Places-LT (Liu et al., 2019), iNaturalist 2018 (Van Horn et al., 2018)). ImageNet-LT and
Places-LT are the long-tailed versions of ImageNet (Deng et al., 2009) and Places-365 (Zhou et al.,
2017) respectively. ImageNet-LT has 1,000 classes and contains 115.8k samples, with maximum of
1,280 samples and minimum 5 samples for a category. Places-LT contains 184.5K samples from 365
classes, with class samples ranging from 4,980 to 5. The iNaturalist 2018 is a large-scale species
dataset collected in the natural world. It contains 437.5K samples for 8,142 classes.

5



Under review as a conference paper at ICLR 2023

Table 1: Comparisons with previous works on dataset ImageNet-LT, iNaturalist 2018 and Places-
LT. The results show that our proposed method (MEM) outperforms the state-of-the-art method by
a large margin.

Method Dataset Many Medium Few All

MiSLAS(Zhong et al., 2021)

ImageNet-LT

62.0 49.1 32.8 51.4
Balanced Softmax (Ren et al., 2020) 64.1 48.2 33.4 52.3
LADE (Huang et al., 2016) 64.4 47.7 34.3 52.3
ACE (Cai et al., 2021) - - - 56.6
RIDE (Wang et al., 2020) 68.2 53.8 36.0 56.9
PaCo (Cui et al., 2021) 68.2 58.7 41.0 60.0
NCL (Li et al., 2022) - - - 60.5
TADE (Zhang et al., 2021) 68.6 61.2 47.0 62.1

MEM(ours) 76.0 62.0 43.7 64.9
LADE (Huang et al., 2016)

iNaturalist 2018

- - - 69.3
Balanced Softmax (Ren et al., 2020) - - - 70.6
MiSLAS (Zhong et al., 2021) - - - 70.7
RIDE (Wang et al., 2020) 70.9 72.4 73.1 72.6
ACE (Cai et al., 2021) - - - 72.9
PaCo (Cui et al., 2021) 70.3 73.2 73.6 73.2
NCL (Li et al., 2022) - - - 74.9
TADE (Zhang et al., 2021) 78.3 77.0 76.7 77.0

MEM (ours) 83.6 83.0 81.3 82.4
MiSLAS (Zhong et al., 2021)

Places-LT

- - - 38.3
LADE (Huang et al., 2016) - - - 39.2
Balanced Softmax (Ren et al., 2020) - - - 39.4
TADE (Zhang et al., 2021) 40.4 43.2 36.8 40.9
PaCo (Cui et al., 2021) 36.1 47.9 35.3 41.2
NCL (Li et al., 2022) - - - 41.8

MEM (ours) 49.1 47.4 37.4 46.0

Evaluation protocols. Following previous works (Liu et al., 2019; Kang et al., 2019), the top-1
accuracy is adopted for evaluation. Moreover, we follow the setting in Liu et al. (2019) to split
the dataset into many-shot (with more than 100 samples), medium-shot (with 20∼100 samples),
and few-shot (with less than 20 samples) and report the accuracy of each shot. All the results are
reported as a percentage.

Implementation details. For ImageNet-LT and iNaturalist 2018, we report results based on
ResNeXt-50 (Xie et al., 2017) and the transformer networks, i.e., Vit-Base (He et al., 2022), Vit-
Large (He et al., 2022) and CVit-Base (Gao et al., 2022). We apply MAE in (He et al., 2022) to
pretrain the Vit-Base and CVit-Base for 400 epochs and Vit-Large for 800 epochs, while 100 epochs
train from scratch for ResNeXt-50. For Places-LT, we report results based on ResNet-152 (He et al.,
2016) and the transformer networks mentioned above. We start training from the finetuned classifi-
cation model from He et al. (2022) and Gao et al. (2022) for transformer network, while the same
setting follows Liu et al. (2019) for ResNet-152 (He et al., 2016). If not specified, for all exper-
iments, we use Adamw (Loshchilov & Hutter, 2017) with betas=(0.9, 0.95), cosine learning rate
schedule (Loshchilov & Hutter, 2016) with learning rate warmup to 1.5e-4 for 40 epochs, mask ra-
tio 0.75 and weight decay 0.05, for MAE pre-training. For supervised finetuning, we train it for 100
epochs with 5 epochs warmup, cosine learning rate schedule, layer-wise learning decay following
(He et al., 2022) and weight decay 0.05.

4.2 RESULTS COMPARISONS

In this section, we make the comparison in two parts. The first part are about comparison with
other decoupling methods which are most relevant to ours and the second part are more compre-

6



Under review as a conference paper at ICLR 2023

Table 2: The accuracy on ImageNet-LT with Vision Transformer. We compare with the state-of-the-
art decoupling methods on ResNeXt-50, Vit-Base, Vit-Large and CVit-Base.

Method ResNeXt-50 Vit-Base Vit-Large CVit-Base

CE 45.17 53.48 59.67 57.54
τ -normalized (Kang et al., 2019) 48.99 57.07 62.74 60.56
cRT (Kang et al., 2019) 49.25 58.06 64.04 61.85
LWS (Kang et al., 2019) 48.16 57.87 63.30 61.34

MEM 49.60 58.88 64.85 62.51

hensive results with previous methods as shown in Table 1. For the first part, we reproduce the
corresponding methods for a fair comparison, and show our superior performances on all datasets
mentioned above. For the second part, we compare with the state-of-the-art methods that based on
convolutional networks.

4.2.1 COMPARISON WITH OTHER DECOUPLING METHODS
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Figure 3: An illustration of the performance of each split with Vit-Base on ImageNet-LT. Different
colors denote different methods.

ImageNet-LT. Comparisons between different methods on ImageNet-LT are shown in Table 2.
Most prior works present results based on CNN-based models, but results on recent prevalent struc-
tures are lacking. In this paper, we not only provide the comparisons on ResNeXt-50 but also the
results on transformer based models. We reproduce the decoupling methods (τ -normalized, cRT
and LWS) (Kang et al., 2019) on all backbones for a fair comparison. Compare with these meth-
ods, without bells and whistles, we achieve a new state-of-the-art for all backbones. Specifically,
the MEM surpasses cRT by 0.82%, 0.81% and 0.66% on Vit-Base, Vit-Large and CVit-Base re-
spectively, cRT is the best among all three decouple methods. And we found CVit-Base with fewer
parameters but the accuracy is much higher than Vit-Base, e.g., 62.51% vs. 58.88%. A reasonable
explanation is that the CVit-Base benefits from hybridizing convolutions and transformer blocks.
Moreover, as shown in Figure 3, with the proposed mutual exclusive modulator, our method achieves
more balance accuracy on each split than other decoupling methods. For example, MEM has higher
medium-shot and few-shot accuracy with a slightly lower many-shot accuracy.

iNaturalist 2018. Comparisons on iNaturalist-2018 are shown in Table 3. Under a fair train-
ing setting, MEM surpasses τ -normalized, cRT and LWS consistently across all backbones (i.e.,
ResNeXt-50, Vit-Base, Vit-Large and CVit-Base). For example, the MEM outperforms cRT, which
achieves the highest performance among all three decouple methods, on ResNeXt-50 (65.58% vs.
65.21%) and Vit-Base (76.63% vs. 76.29%). Once again, the CVit-Base with fewer parameters
but has much higher accuracy than Vit-Base (81.40% vs. 76.63%). Moreover, we achieve a new
state-of-the-art of 82.39% with Vit-Large that is outperforming the previous best result by 5.4%, see
Table 1 for detail.

Places-LT. We further evaluate our MEM on Places-LT dataset. We follow the protocol of (Liu
et al., 2019), initialize from a full ImageNet pre-trained model. We present the results after 30
epochs of fine-tuning, as shown in Table 4. Our MEM exceeds all other approaches, including CE,
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Table 3: The accuracy on iNaturalist-2018 with Vision Transformer. We compare with the state-of-
the-art decoupling methods on ResNeXt-50, Vit-Base, Vit-Large and CVit-Base.

Method ResNeXt-50 Vit-Base Vit-Large CVit-Base

CE 60.14 72.59 79.47 78.18
τ -normalized (Kang et al., 2019) 61.85 76.27 81.96 81.11
cRT (Kang et al., 2019) 65.21 76.29 82.09 81.14
LWS (Kang et al., 2019) 63.94 76.24 82.11 81.19

MEM 65.58 76.63 82.39 81.40

Table 4: The accuracy on Places-LT with Vision Transformer. We compare with the state-of-the-art
decoupling methods on ResNet-152, Vit-Base, Vit-Large and CVit-Base.

Method ResNet-152 Vit-Base Vit-Large CVit-Base

CE 30.74 35.98 37.68 36.95
τ -normalized (Kang et al., 2019) 31.18 36.12 37.83 37.23
cRT (Kang et al., 2019) 37.16 43.48 44.81 44.11
LWS (Kang et al., 2019) 36.73 42.84 44.80 43.47

MEM 37.49 44.21 46.04 44.35

τ -normalized, cRT, and LWS. Moreover, we achieve the highest accuracy 46.04% on Vit-Large,
which is 4.2% higher than the best results of previous works, see Table 1 for detail.

4.2.2 MORE COMPREHENSIVE COMPARISON

Here we make a more comprehensive comparison with the previous works on ImageNet-LT, iNat-
uralist 2018 and Places-LT, as shown in 1. The results of ours are based on the Vit-Large for all
datasets. More specifically, our result on ImageNet-LT is 2.8% higher than the best, e.g., TADE
(Zhang et al., 2021) which is based on ResNeXt-152 (Xie et al., 2017). On iNaturalist 2018, our re-
sult is 5.4% higher than TADE with ResNeXt-152. Moreover, for Places-LT, our MEM outperforms
the best, i.e., NCL (Li et al., 2022), by 4.2%. NCL is based on an ensemble of ResNeXt-50 models.
By the comparison with previous CNN based works in Table 1 shows transformer networks could
be a better choice for long-tailed recognition.

4.3 ABLATION STUDY

Pre-training for vision transformer. Ablations are conducted on ImageNet-LT with Vit-Base. As
shown in Table 5, Vit-Base without MAE pre-training gets a very low accuracy, i.e., 27.72% for
100 epochs. It only attains 39.88% in accuracy when increasing the number of epoch form 100 to
500. However, with the training schedule that 400 epochs for MAE pre-training and 100 epochs
for supervised fine-tuning, the accuracy is significantly improved from 39.9% up to 53.5%, which
shows the necessity of MAE pre-training for transformer based models on long-tailed datasets. One
explanation could be that there are insufficient samples in the long-tailed datasets for transformer
based models to give play to its strength. From another point of view, the MAE could be regarded
as providing with a fair initialization for the following supervised training.

Strategies for group partitioning. An intuitive way for group partition is based on the cardinality
of each class. In long-tailed recognition, the classes are divided into {many, medium, few}-shot by
default and we denote it as strategy (1) here. However, we try to explore whether there are more
proper partition methods for mutual exclusive modulator learning. As shown in Table 5, we first
conduct a random and even partition which is denoted as strategy (2). Afterwards, we split the
classes evenly according to the cardinality of classes and denote it as strategy (3). We find that even
in a random partition, our MEM can work well. But the strategies which utilize the information of
the cardinality of each class, i.e., strategy (1) and strategy (3), work better.
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Table 5: Comparisons on pre-training and without pre-training on ImageNet-LT with Vit-Base. We
present the results of without pre-training with supervised learning for 100, 500 and 1000 epochs,
respectively. And the result of 400 epochs MAE pre-training and 100 epochs supervise learning is
given for comparison. We also present the results of our MEM with different partitioning strategies.

case Partitioning strategy epochs Many Medium Few All

w/o pre-training / 100 46.5 19.5 4.6 27.72
w/o pre-training / 500 61.0 31.6 10.9 39.88
w/o pre-training / 1000 59.5 30.0 11.2 38.59
w/ pre-training / 400+100 73.4 47.2 21.1 53.48

+MEM Strategy (1) +10 67.9 55.9 43.0 58.67
+MEM Strategy (2) +10 71.2 55.0 34.1 58.18
+MEM Strategy (3) +10 67.5 56.6 41.8 58.66

32 64 128 256 512
58.2

58.3

58.4

58.5

58.6

58.7

58.8

58.9

59.0

A
cc

ur
ac

y(
%

)

dimension

(a) Sub-network width.

1 2 3 4 8
58.2

58.3

58.4

58.5

58.6

58.7

58.8

58.9

59.0

A
cc

ur
ac

y(
%

)

depth

(b) Sub-network depth.

20 40 60 80 100
58.3

58.4

58.5

58.6

58.7

58.8

58.9

59.0

59.1

A
cc

ur
ac

y(
%

)
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Figure 4: The ablation experiments with Vit-Base on ImageNet-LT. (a) and (b) are the ablation ofn
the capacity of sub-network inside MEM. (c) and (d) are the ablation on the hyper-parameters which
used for our regularization objective (see Equation 3).

The capacity of sub-network. Our sub-network inside MEM can be flexibly designed, we explore
from two aspects (i.e., sub-network width and depth), as shown in Figure 4(a) and 4(b). Figure 4(a)
varies the width (the dimension of embedding) of sub-network, while we fix the sub-network depth.
And Figure 4(b) varies the depth (number of transformer block) of sub-network, while we fix the
sub-network width. We found that our sub-network is not sensitive to the width or depth. Interest-
ingly, our sub-network with a single transformer block can yield strong performance (58.72%).

The hyper-parameters in regularization objective. We compare the different ξ and µ for our
regularization objective (see Equation 3), as shown in Figure 4(c) and 4(d). Figure 4(c) varies the
parameter ξ and fix the parameter µ. When µ is 0, the accuracy has 0.2% improvement when
ξ changes from 20 to 100. This can be explained as the regularization objective needs a large
margin between positive classes and negative classes to optimize. And for Figure 4(d), we vary the
parameter µ and under a certain ξ. Figure 4(d) shows that the accuracy has minor adjustments under
different µ. In general, our regularization objective is not sensitive to the hyper-parameters ξ and µ.

5 CONCLUSIONS

In this paper, we first focus on the behaviors of existing models on three separate groups, i.e., Many,
Medium, and Few, in the long-tailed datasets and reveal that the reason for the poor performance is
the severe confusion between groups. The model tends to categorize samples in one group to another.
Then, we investigate an ideal case that the images are first classified to the right group before the final
label is predicted. The overall performance has seen huge promotion with this simple assumption.
Motivated by this, we thus propose a straightforward structure, which is called Mutual Exclusive
Modulator (MEM), to capture the characteristics of each group and the discrepancy among them. It
perceives a set of adaptive weights for different groups. Together with original logits, the data-aware
classifier make the final prediction by following a soft-routing manner. MEM achieves significantly
better results on different backbones, including convolutional networks and transformer networks,
compared with the state-of-the-art methods.
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