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ABSTRACT

We propose the k-Shortest-Path (k-SP) constraint: a novel constraint on the agent’s
trajectory that improves the sample-efficiency in sparse-reward MDPs. We show
that any optimal policy necessarily satisfies the k-SP constraint. Notably, the
k-SP constraint prevents the policy from exploring state-action pairs along the
non-k-SP trajectories (e.g., going back and forth). However, in practice, excluding
state-action pairs may hinder convergence of RL algorithms. To overcome this,
we propose a novel cost function that penalizes the policy violating SP constraint,
instead of completely excluding it. Our numerical experiment in a tabular RL
setting demonstrate that the SP constraint can significantly reduce the trajectory
space of policy. As a result, our constraint enables more sample efficient learning by
suppressing redundant exploration and exploitation. Our experiments on MiniGrid
and DeepMind Lab show that the proposed method significantly improves proximal
policy optimization (PPO) and outperforms existing novelty-seeking exploration
methods including count-based exploration, indicating that it improves the sample
efficiency by preventing the agent from taking redundant actions.

1 INTRODUCTION

Recently, deep reinforcement learning (RL) has achieved a large number of breakthroughs in many
domains including video games (Mnih et al., 2015; Vinyals et al., 2019), and board games (Silver
et al., 2017). Nonetheless, a central challenge in reinforcement learning (RL) is the sample effi-
ciency (Kakade et al., 2003); it has been shown that the RL algorithm requires a large number of
samples for successful learning in MDP with large state and action space. Moreover, the success of
RL algorithm heavily hinges on the quality of collected samples; the RL algorithm tends to fail if the
collected trajectory does not contain enough evaluative feedback (e.g., sparse or delayed reward).

To circumvent this challenge, planning-based methods utilize the environment’s model to improve or
create a policy instead of interacting with environment. Recently, combining the planning method
with an efficient path search algorithm, such as Monte-Carlo tree search (MCTS) (Norvig, 2002;
Coulom, 2006), has demonstrated successful results (Guo et al., 2016; Vodopivec et al., 2017; Silver
et al., 2017). However, such tree search methods would require an accurate model of MDP and the
complexity of planning may grow intractably large for complex domain. Model-based RL methods
attempt to learn a model instead of assuming that model is given, but learning an accurate model
also requires a large number of samples, which is often even harder to achieve than solving the given
task. Model-free RL methods can be learned solely from the environment reward, without the need
of a (learned) model. However, both value-based and policy-based methods suffer from poor sample
efficiency especially in sparse-reward tasks. To tackle sparse reward problems, researchers have
proposed to learn an intrinsic bonus function that measures the novelty of the state that agent visits
(Schmidhuber, 1991; Oudeyer & Kaplan, 2009; Pathak et al., 2017; Savinov et al., 2018b; Choi
et al., 2018; Burda et al., 2018). However, when such intrinsic bonus is added to the reward, it often
requires a careful balancing between environment reward and bonus and scheduling of the bonus
scale in order to guarantee the convergence to optimal solution.

To tackle aforementioned challenge of sample efficiency in sparse reward tasks, we introduce a
constrained-RL framework that improves the sample efficiency of any model-free RL algorithm in
sparse-reward tasks, under the mild assumptions on MDP (see Appendix G). Of note, though our
framework will be formulated for policy-based methods, our final form of cost function (Eq. (10)
in Section 4) is applicable to both policy-based and value-based methods. We propose a novel
k-shortest-path (k-SP) constraint (Definition 7) that improves sample efficiency of policy learning
(See Figure 1). The k-SP constraint is applied to a trajectory rolled out by a policy; all of its sub-path
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Figure 1: The k-SP constraint improves sample efficiency of RL methods in sparse-reward tasks by
pruning out suboptimal trajectories from the trajectory space. Intuitively, the k-SP constraint means
that when a policy rolls out into trajectories, all of sub-paths of length k is a shortest path (under a
distance metric defined in terms of policy, discount factor and transition probability; see Section 3.2
for the formal definition). (Left) MDP and a rollout tree are given. (Middle) The paths that satisfy
the k-SP constraint. The number of admissible trajectories is drastically reduced. (Right) A path
rolled out by a policy satisfies the k-SP constraint if all sub-paths of length k are shortest paths and
have not received non-zero reward. We use a reachability network to test if a given (sub-)path is a
shortest path (See Section 4 for details).

of length k is required to be a shortest-path under the π-distance metric which we define in Section 3.1.
We prove that applying our constraint preserves the optimality for any MDP (Theorem 3), except the
stochastic and multi-goal MDP which requires additional assumptions. We relax the hard constraint
into a soft cost formulation (Tessler et al., 2019), and use a reachability network (Savinov et al.,
2018b) (RNet) to efficiently learn the cost function in an off-policy manner.

We summarize our contributions as the following: (1) We propose a novel constraint that can improve
the sample efficiency of any model-free RL method in sparse reward tasks. (2) We present several
theoretical results including the proof that our proposed constraint preserves the optimal policy
of given MDP. (3) We present a numerical result in tabular RL setting to precisely evaluate the
effectiveness of the proposed method. (4) We propose a practical way to implement our proposed
constraint, and demonstrate that it provides a significant improvement on two complex deep RL
domains. (5) We demonstrate that our method significantly improves the sample-efficiency of PPO,
and outperforms existing novelty-seeking methods on two complex domains in sparse reward setting.

2 PRELIMINARIES
Markov Decision Process (MDP). We model a task as an MDP tuple M = (S,A,P,R, ρ, γ),
where S is a state set, A is an action set, P is a transition probability, R is a reward function, ρ is
an initial state distribution, and γ ∈ [0, 1) is a discount factor. For each state s, the value of a policy
π is denoted by V π(s) = Eπ[

∑
t γ

trt | s0 = s]. Then, the goal is to find the optimal policy π∗ that
maximizes the expected return:

π∗ = arg max
π

Eπs∼ρ
[∑

t γ
trt | s0 = s

]
= arg max

π
Es∼ρ [V π(s)] . (1)

Constrained MDP. A constrained Markov Decision Process (CMDP) is an MDP with extra con-
straints that restrict the domain of allowed policies (Altman, 1999). Specifically, CMDP introduces a
constraint functionC(π) that maps a policy to a scalar, and a thresholdα ∈ R. The objective of CMDP
is to maximize the expected returnR(τ) =

∑
t γ

trt of a trajectory τ = {s0, a0, r1, s1, a1, r2, s2, . . .}
subject to a constraint: π∗ = arg maxπ Eτ∼π [R(τ)] , s.t. C(π) ≤ α.
A popular choice of constraint is based on the transition cost function (Tessler et al., 2019)
c(s, a, r, s′) ∈ R which assigns a scalar-valued cost to each transition. Then the constraint
function for a policy π is defined as the discounted sum of the cost under the policy: C(π) =
Eτ∼π [

∑
t γ

tc(st, at, rt+1, st+1)] . In this work, we propose a shortest-path constraint, that provably
preserves the optimal policy of the original unconstrained MDP, while reducing the trajectory space.
We will use a cost function-based formulation to implement our constraint (see Section 3 and 4).
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3 FORMULATION: k-SHORTEST PATH CONSTRAINT

We define the k-shortest-path (k-SP) constraint to remove redundant transitions (e.g., unnecessarily
going back and forth), leading to faster policy learning. We show two important properties of our
constraint: (1) the optimal policy is preserved, and (2) the policy search space is reduced.

In this work, we limit our focus to MDPs satisfying R(s)+γV ∗(s) > 0 for all initial states s ∈ ρ and
all rewarding states that optimal policy visits with non-zero probability s ∈ {s|r(s) 6= 0, π∗(s) > 0}.
We exploit this mild assumption to prove that our constraint preserves optimality. Intuitively, we
exclude the case when the optimal strategy for the agent is at best choosing a “lesser of evils” (i.e.,
largest but negative value) which often still means a failure. We note that this is often caused by
unnatural reward function design; in principle, we can avoid this by simply offsetting reward function
by a constant −|mins∈{s|π∗(s)>0} V

∗(s)| for every transition, assuming the policy is proper1. Goal-
conditioned RL (Nachum et al., 2018) and most of the well-known domains such as Atari (Bellemare
et al., 2013), DeepMind Lab (Beattie et al., 2016), MiniGrid (Chevalier-Boisvert et al., 2018), etc.,
satisfy this assumption. Also, for general settings with stochastic MDP and multi-goals, we require
additional assumptions to prove the optimality guarantee (See Appendix G for details).
3.1 SHORTEST-PATH POLICY AND SHORTEST-PATH CONSTRAINT

Let τ be a path defined by a sequence of states: τ = {s0, . . . , s`(τ)}, where `(τ) is the length of a
path τ (i.e., `(τ) = |τ | − 1). We denote the set of all paths from s to s′ by Ts,s′ . A path τ∗ from s to
s′ is called a shortest path from s to s′ if `(τ) is minimum, i.e., `(τ∗) = minτ∈Ts,s′ `(τ).

Now we will define similar concepts (length, shortest path, etc.) with respect to a policy. Intuitively, a
policy that rolls out shortest paths (up to some stochasticity) to a goal state or between any state pairs
should be a counterpart. We consider a set of all admissible paths from s to s′ under a policy π:
Definition 1 (Path set). T πs,s′ = {τ | s0 = s, s`(τ) = s′, pπ(τ) > 0, {st}t<`(τ) 6= s′}. That is, T πs,s′
is a set of all paths that policy π may roll out from s and terminate once visiting s′.

If the MDP is a single-goal task, i.e., there exists a unique (rewarding) goal state sg ∈ S such that sg
is a terminal state, and R(s) > 0 if and only if s = sg, any shortest path from an initial state to the
goal state is the optimal path with the highest return R(τ), and a policy that rolls out a shortest path
is therefore optimal (see Lemma 4).2 This is because all states except for sg are non-rewarding states,
but in general MDPs this is not necessarily true. However, this motivates us to limit the domain of
shortest path to among non-rewarding states. We define non-rewarding paths from s to s′ as follows:
Definition 2 (Non-rewarding path set). T πs,s′,nr = {τ | τ ∈ T πs,s′ , {rt}t<`(τ) = 0}.
In words, T πs,s′,nr is a set of all non-rewarding paths from s to s′ rolled out by policy π (i.e., τ ∈ T πs,s′ )
without any associated reward except the last step (i.e., {rt}t<|τ | = 0). Now we are ready to define a
notion of length with respect to a policy and shortest path policy:

Definition 3 (π-distance from s to s′). Dπ
nr(s, s

′) = logγ
(
Eτ∼π: τ∈T π

s,s′,nr

[
γ`(τ)

] )
Definition 4 (Shortest path distance from s to s′). Dnr(s, s

′) = minπD
π
nr(s, s

′).
We define π-distance to be the log-mean-exponential of the length `(τ) of non-rewarding paths
τ ∈ T πs,s′,nr. When there exists no admissible path from s to s′ under policy π, the path length is
defined to be ∞: Dπ

nr(s, s
′) = ∞ if T πs,s′,nr = ∅. We note that when both MDP and policy are

deterministic, Dπ(s, s′) recovers the natural definition of path length, Dπ
nr(s, s

′) = `(τ).

We call a policy a shortest-path policy from s to s′ if it roll outs a path with the smallest π-distance:
Definition 5 (Shortest path policy from s to s′). π ∈ ΠSP

s→s′ = {π ∈ Π | Dπ
nr(s, s

′) = Dnr(s, s
′)}.

Finally, we will define the shortest-path (SP) constraint. Let SIR = {s | R(s) > 0 or ρ(s) > 0} be
the union of all initial and rewarding states, and Φπ = {(s, s′) | s, s′ ∈ SIR, ρ(s) > 0, T πs,s′,nr 6= ∅}
be the subset of SIR such that agent may roll out. Then, the SP constraint is applied to the non-
rewarding sub-paths between states in Φπ: T πΦ,nr =

⋃
(s,s′)∈Φπ T πs,s′,nr. We note that these definitions

are used in the proofs (Appendix G). Now, we define the shortest-path constraint as follows:
Definition 6 (Shortest-path constraint). A policy π satisfies the shortest-path (SP) constraint if
π ∈ ΠSP, where ΠSP = {π | For all s, s′ ∈ T πΦ,nr, it holds π ∈ ΠSP

s→s′}.

1It is an instance of potential-based reward shaping which has optimality guarantee (Ng et al., 1999).
2We refer the readers to Appendix F for more detailed discussion and proofs for single-goal MDPs.
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Intuitively, the SP constraint forces a policy to transition between initial and rewarding states via
shortest paths. The SP constraint would be particularly effective in sparse-reward settings, where the
distance between rewarding states is large.

Given these definitions, we can show that an optimal policy indeed satisfies the SP constraint in a
general MDP setting. In other words, the shortest path constraint should not change optimality:
Theorem 1. For any MDP, an optimal policy π∗ satisfies the shortest-path constraint: π∗ ∈ ΠSP.
Proof. See Appendix G for the proof.

3.2 RELAXATION: k-SHORTEST-PATH CONSTRAINT

Implementing the shortest-path constraint is, however, intractable since it requires a distance predictor
Dnr(s, s

′). Note that the distance predictor addresses the optimization problem, which might be
as difficult as solving the given task. To circumvent this challenge, we consider its more tractable
version, namely a k-shortest path constraint, which reduces the shortest-path problem Dnr(s, s

′)
to a binary decision problem — is the state s′ reachable from s within k steps? — also known as
k-reachability (Savinov et al., 2018b). The k-shortest path constraint is defined as follows:
Definition 7 (k-shortest-path constraint). A policy π satisfies the k-shortest-path constraint if π ∈
ΠSP
k , where

ΠSP
k = {π | For all s, s′ ∈ T πΦ,nr, D

π
nr(s, s

′) ≤ k, it holds π ∈ ΠSP
s→s′}. (2)

Note that the SP constraint (Definition 6) is relaxed by adding a condition Dπ
nr(s, s

′) ≤ k. In other
words, the k-SP constraint is imposed only for s, s′-path whose length is not greater than k. From
Eq. (2), we can prove an important property and then Theorem 3 (optimality):
Lemma 2. For an MDPM, ΠSP

m ⊂ ΠSP
k if k < m.

Proof. It is true since {(s, s′) | Dπ
nr(s, s

′) ≤ k} ⊂ {(s, s′) | Dπ
nr(s, s

′) ≤ m} for k < m.

Theorem 3. For an MDPM and any k ∈ R, an optimal policy π∗ is a k-shortest-path policy.

Proof. Theorem 1 tells π∗ ∈ ΠSP. Eq. (2) tells ΠSP = ΠSP
∞ and Lemma 2 tells ΠSP

∞ ⊂ ΠSP
k .

Collectively, we have π∗ ∈ ΠSP = ΠSP
∞ ⊂ ΠSP

k .

In conclusion, Theorem 3 states that the k-SP constraint does not change the optimality of policy, and
Lemma 2 states a larger k results in a larger reduction in policy search space. Thus, it motivates us to
apply the k-SP constraint in policy search to more efficiently find an optimal policy. For the numerical
experiment on measuring the reduction in the policy roll-outs space, please refer to Section 6.4.

4 SPRL: SHORTEST-PATH REINFORCEMENT LEARNING

k-Shortest-Path Cost. The objective of RL with the k-SP constraint ΠSP
k can be written as:

π∗ = arg maxπ Eπ [R(τ)] , s.t. π ∈ ΠSP
k , (3)

where ΠSP
k = {π | ∀(s, s′ ∈ T πΦ,nr), D

π
nr(s, s

′) ≤ k, it holds π ∈ ΠSP
s→s′} (Definition 7). We want to

formulate the constraint π ∈ ΠSP
k in the form of constrained MDP (Section 2), i.e., as C(π) ≤ α. We

begin by re-writing the k-SP constraint into a cost-based form:

ΠSP
k = {π | CSP

k (π) = 0}, where CSP
k (π) =

∑
(s,s′∈T πΦ,nr):D

π
nr(s,s

′)≤k

I [Dnr(s, s
′) < Dπ

nr(s, s
′)] . (4)

Note that I [Dnr(s, s
′) < Dπ

nr(s, s
′)] = 0 ↔ Dnr(s, s

′) = Dπ
nr(s, s

′) since Dnr(s, s
′) ≤ Dπ

nr(s, s
′)

from Definition 4. Similar to Tessler et al. (2019), we apply the constraint to the on-policy trajectory
τ = (s0, s1, . . .) with discounting by replacing (s, s′) with (st, st+l) where [t, t+ l] represents each
segment of τ with length l:

CSP
k (π) ' Eτ∼π

[∑
(t,l):t≥0,l≤k γ

t · I [Dnr(st, st+l) < Dπ
nr(st, st+l)] · I

[
{rj}t+l−1

j=t = 0
]]

= Eτ∼π
[∑

(t,l):t≥0,l≤k γ
t · I

[
Dnr(st, st+l) < logγ

(
Eτ∈T πst,st+l,nr

[
γ|τ |
])]
· I
[
{rj}t+l−1

j=t = 0
]]

≤ Eτ∼π
[∑

(t,l):t≥0,l≤k γ
t · I [Dnr(st, st+l) < k] · I

[
{rj}t+l−1

j=t = 0
]]

, ĈSP
k (π). (5)
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Algorithm 1 Reinforcement Learning with k-SP constraint (SPRL)
Require: Hyperparameters: k ∈ N, λ > 0

1: for n = 1, . . . , Npolicy do
2: Rollout transitions τ = {st, at, rt}|τ |t=1 ∼ π
3: Compute the cost term {ct}|τ |t=1 as Eq. (13).
4: Update policy π to maximize the objective as Eq. (10) (e.g., run PPO train steps).
5: Update Rnet training-buffer B = B ∪ {τ}.
6: if n%TRnet = 0 then . Periodically train Rnet for NRnet times
7: for m = 1, . . . , NRnet do
8: Sample triplet (sanc, s+, s−) ∼ B. . See Appendix D.3 for detail
9: Update Rnet to minimize LRnet as Eq. (14).

Note that it is sufficient to consider only the cases l = k (because for l < k, given Dnr(st, st+k) < k,
we have D(st, st+l) ≤ l < k). Then, we simplify ĈSP

k (π) as

ĈSP
k (π) = Eτ∼π

[∑
t γ

tI [Dnr(st, st+k) < k] · I
[
{rj}t+k−1

j=t = 0
]]

(6)

= Eτ∼π
[∑

t γ
tI[t ≥ k] · I [Dnr(st−k, st) < k] · I

[
{rj}t−1

j=t−k = 0
]]
. (7)

Finally, the per-time step cost ct is given as:

ct = I[t ≥ k] · I [Dnr(st−k, st) < k] · I
[
{rj}t−1

j=t−k = 0
]
, (8)

where ĈSP
k (π) = Eτ∼π [

∑
t γ

tct]. Note that ĈSP
k (π) is an upper bound of CSP

k (π), which will
be minimized by the bound to make as little violation of the shortest-path constraint as possible.
Intuitively speaking, ct penalizes the agent from taking a non-k-shortest path at each step, so
minimizing such penalties will make the policy satisfy the k-shortest-path constraint. In Eq. (8),
ct depends on the previous k steps; hence, the resulting CMDP becomes a (k + 1)-th order MDP.
In practice, however, we empirically found that feeding only the current time-step observation to
the policy performs better than stacking the previous k-steps of observations (See Appendix A.3
for details). Thus, we did not stack the observation in all the experiments. We use the Lagrange
multiplier method to convert the objective (3) into an equivalent unconstrained problem as follows:

min
λ>0

max
θ
L(λ, θ) = min

λ>0
max
θ

Eτ∼πθ
[∑

t γ
t (rt − λct)

]
, (9)

where L is the Lagrangian, θ is the parameter of policy π, and λ > 0 is the Lagrangian multiplier.
Since Theorem 3 shows that the shortest-path constraint preserves the optimality, we are free to
set any λ > 0. Thus, we simply consider λ as a tunable positive hyperparameter, and simplify the
min-max problem (9) to an RL objective with costs ct being added:

max
θ

Eτ∼πθ
[∑

t γ
t (rt − λct)

]
. (10)

Practical implementation of the cost function. We implement the binary distance discriminator
I(Dnr(st−k, st) < k) in Eq. (8) using k-reachability network (Savinov et al., 2018b). The k-
reachability network Rnetk(s, s′) is trained to output 1 if the state s′ is reachable from the state s with
less than or equal to k consecutive actions, and 0 otherwise. Formally, we take the functional form:
Rnetk(s, s′) ' I (Dnr(s, s

′) < k + 1) . We then estimate the cost term ct using (k − 1)-reachability
network as follows:

ct = I [Dnr(st−k, st) < k] · I
[
{rl}t−1

l=t−k = 0
]
· I [t ≥ k] (11)

= Rnetk−1(st−k, st) · I
[
{rl}t−1

l=t−k = 0
]
· I [t ≥ k] . (12)

Intuitively speaking, if the agent takes a k-shortest path, then the distance between st−k and st is k,
hence ct = 0. If it is not a k-shortest path, ct > 0 since the distance between st−k and st will be less
than k. In practice, due to the error in the reachability network, we add a small tolerance ∆t ∈ N to
ignore outliers. It leads to an empirical version of the cost as follows:

ct ' Rnetk−1(st−k−∆t, st) · I
[
{rl}t−1

l=t−k−∆t = 0
]
· I(t ≥ k + ∆t). (13)
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In our experiment, we found that a small tolerance ∆t ' k/5 works well in general. Similar
to Savinov et al. (2018b), we used the following contrastive loss for training the reachability network:

LRnet = − log (Rnetk−1(sanc, s+))− log (1− Rnetk−1(sanc, s−)) , (14)
where sanc, s+, s− are the anchor, positive, and negative samples, respectively (See Appendix D.3 for
the detail of training).

5 RELATED WORK
Connection between shortest-path problem and planning. Many early works (Bellman, 1958;
Ford Jr, 1956; Bertsekas & Tsitsiklis, 1991; 1995) have discussed (stochastic) shortest path problems
in the context of MDP. They viewed the shortest-path problem as planning problem and proposed a
dynamic programming-based algorithm similar to the value iteration (Sutton & Barto, 2018) to solve
it. Our main idea is inspired by (but not based on) this viewpoint. Specifically, our method does not
directly solve the shortest path problem via planning; hence, our method does not require model. Our
method only exploits the optimality guarantee of the shortest-path under the π-distance to prune out
sub-optimal policies (i.e., non-shortest paths).

Distance metric in goal-conditioned RL. In goal-conditioned RL, there has been a recent surge
of interest on learning a distance metric in state (or goal) space for to construct a high-level MDP
graph and perform planning to find a shortest-path to the goal state. Huang et al. (2019); Laskin et al.
(2020) used the universal value function (UVF) (Schaul et al., 2015) with a constant step penalty
as a distance function. Zhang et al. (2018); Laskin et al. (2020) used the success rate of transition
between nodes as distance and searched for the longest path to find the plan with highest success
rate. SPTM (Savinov et al., 2018a) defined a binary distance based on reachability network (RNet)
to connect near by nodes in the graph. However, the proposed distance metrics and methods can be
used only for the goal-conditioned task and lacks the theoretical guarantee in general MDP, while our
theory and framework are applicable to general MDP (see Section 3.1).

Reachability network. The reachability network (RNet) was first proposed by Savinov et al. (2018b)
as a way to measure the novelty of a state for exploration. Intuitively, if current state is not reachable
from previous states in episodic memory, it is considered to be novel. SPTM (Savinov et al., 2018a)
used RNet to predict the local connectivity (i.e., binary distance) between observations in memory
for graph-based planning in navigation task. On the other hand, we use RNet for constraining the
policy (i.e., removing the sub-optimal policies from policy space). Thus, in ours and in other two
compared works, RNet is being employed for fundamentally different purposes.

More related works. Please refer to Appendix H for further discussions about other related works.

6 EXPERIMENTS

Figure 2: An example observation of (a) FourRooms-11×11, (b) KeyDoors-11×11 in MiniGrid,
(c) GoalLarge in DeepMind Lab, and (d) the maze layout (not available to the agent) of GoalLarge.

6.1 SETTINGS
Environments. We evaluate our SPRL on two challenging domains: MiniGrid (Chevalier-Boisvert
et al., 2018) and DeepMind Lab (Beattie et al., 2016). MiniGrid is a 2D grid world environment
with challenging features such as pictorial observation, random initialization of the agent and the
goal, complex state and action space where coordinates, directions, and other object statuses (e.g.,
key-door) are considered. We conducted experiments on four standard tasks: FourRooms-7×7,
FourRooms-11×11, KeyDoors-7×7, and KeyDoors-11×11. DeepMind Lab is a 3D environment
with first person view. Along with the nature of partially-observed MDP, at each episode, the agent’s
initial and the goal location are reset randomly with a change of texture, maze structure, and colors.
We conducted experiments on three standard tasks: GoalSmall, GoalLarge3, and ObjectMany. We
refer the readers to Figure 2 for examples of observations.

3GoalLarge task corresponds to the Sparse task in Savinov et al. (2018b), and our Figure 4 reproduces the
result reported in Savinov et al. (2018b).

6



Under review as a conference paper at ICLR 2021

Baselines. We compared our methods with four baselines: PPO (Schulman et al., 2017), episodic
curiosity (ECO) (Savinov et al., 2018b), intrinsic curiosity module (ICM) (Pathak et al., 2017),
and GT-Grid (Savinov et al., 2018b). The PPO is used as a baseline RL algorithm for all other
agents. The ECO agent is rewarded when it visits a state that is not reachable from the states in
episodic memory within a certain number of actions; thus the novelty is only measured within an
episode. Following Savinov et al. (2018b), we trained RNet in an off-policy manner from the agent’s
experience and used it for our SPRL and ECO on both MiniGrid (Section 6.2) and DeepMind
Lab (Section 6.3). For the accuracy of the learned RNet on each task, please refer to the Appendix B.
The GT-Grid agent has access to the agent’s (x, y) coordinates. It uniformly divides the world in 2D
grid cells, and the agent is rewarded for visiting a novel grid cell. The ICM agent learns a forward and
inverse dynamics model and uses the prediction error of the forward model to measure the novelty.
We used the publicly available codebase (Savinov et al., 2018b) to obtain the baseline results. We
used the same hyperparameter for all the tasks for a given domain — the details are described in the
Appendix. We used the standard domain and tasks for reproducibility.
6.2 RESULTS ON MiniGrid
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Figure 3: Progress of average episode reward on MiniGrid tasks. We report the mean (solid curve)
and standard error (shadowed area) of the performance over six random seeds.

Figure 3 shows the performance of compared methods on MiniGrid domain. SPRL consistently
outperforms all baseline methods over all tasks. We observe that exploration-based methods (i.e.,
ECO, ICM, and GT-Grid) perform similarly to the PPO in the tasks with small state space (e.g.,
FourRooms-7×7 and KeyDoors-7×7). However, SPRL demonstrates a significant performance gain
since it improves the exploitation by avoiding sub-optimality caused by taking a non-shortest-path.
6.3 RESULTS ON DeepMind Lab
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Figure 4: Progress of average episode reward on DeepMind Lab tasks. We report the mean (solid
curve) and standard error (shadowed area) of the performance over four random seeds.

Figure 4 summarizes the performance of all the methods on DeepMind Lab tasks. Overall, our
SPRL method achieves superior results compared to other methods. By the design of the task,
the difficulty of exploration in each task increases in the order of GoalSmall, ObjectMany, and
GoalLarge tasks, and we observe a coherent trend in the result. For harder exploration tasks, the
exploration-based methods (GT-Grid, ICM and ECO) achieve a larger improvement over PPO:
e.g., 20%, 50%, and 100% improvement in GoalSmall, ObjectMany, and GoalLarge, respectively.
As shown in Lemma 2, our SPRL is expected to have larger improvement for larger trajectory
space (or state and action space) and sparser reward settings. We can verify this from the result:
SPRL has the largest improvement in GoalLarge task, where both the map layout is largest and the
reward is most sparse. Interestingly, SPRL even outperforms GT-Grid which simulates the upper-
bound performance of novelty-seeking exploration method. This is possible since SPRL improves
the exploration by suppressing unnecessary explorations, which is different from novelty-seeking
methods, and also improves the exploitation by reducing the policy search space.
6.4 ANALYSIS ON k-SHORTEST-PATH CONSTRAINT

In this section, we numerically evaluate the effect of our k-shortest path constraint in tabular-RL
setting. Specifically, we study the following questions: (1) Does the k-SP constraint with larger k
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results in more reduction in trajectory space? (i.e., validation of Lemma 2) (2) How much reduction
in trajectory space does k-SP constraint provide with different k and tolerance ∆t?
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Figure 5: (Left) 7×7 Tabular four-rooms
domain with initial agent location (red) and
the goal location (green). (Right) The trajec-
tory space reduction ratio (%) before and af-
ter constraining the trajectory space for var-
ious k and ∆t with k-SP constraint. Even
a small k can greatly reduce the trajectory
space with a reasonable tolerance ∆t.

Experimental setup. We implemented a simple tab-
ular 7×7 Four-rooms domain where each state maps
to a unique (x, y) location of the agent. The agent can
take up, down, left, right primitive actions to move to
the neighboring state, and the episode horizon is set to
14 steps. The goal of the agent is reaching to the goal
state, which gives +1 reward and terminates the episode.
We computed the ground-truth distance between a pair
of states to implement the k-shortest path constraint.
We used the ground-truth distance function instead of
the learned RNet to implement the exact SPRL agent.

Results. Figure 5 summarizes the reduction in the tra-
jectory space size. We searched over all possible tra-
jectories of length 14 using breadth-first-search (BFS).
Then we counted the number trajectories satisfying our
k-SP constraint with varying parameters k and toler-
ance ∆t and divided by total number of trajectories (i.e., 414 = 268M). The result shows that our
k-SP constraint drastically reduces the trajectory space even in a simple 2D grid domain; with very
small k = 3 and no tolerance ∆t = 2, we get only 24/268M size of the original search space. As
we increase k, we can see more reduction in the trajectory space, which is consistent with Lemma 2.
Also, increasing the tolerance ∆t slightly hurts the performance, but still achieves a large reduction
(See Appendix A for more analysis on effect of k and tolerance).

6.5 QUALITATIVE RESULT ON MiniGrid

(a) Random (b) GT-UCB (c) SPRL (d) SPRL+Reward

Figure 6: Transition count maps for baselines and SPRL: (a), (b), and (c) are in reward-free (light
green) while (d) is in reward-aware (dark green) setting. In reward-free settings (a-c), we show
rewarding states in light green only for demonstration purpose. The location of agent’s initial state
(orange) and rewarding states (dark green) are fixed. The episode length is limited to 500 steps.

We qualitatively study what type of policy is learned with the k-SP constraint with the ground-truth
RNet in NineRooms domain of MiniGrid. Figure 6 (a-c) shows the converged behavior of our SPRL
(k = 15), the ground-truth count-based exploration (Lai & Robbins, 1985) agent (GT-UCB) and
uniformly random policy (Random) in a reward-free setting. We counted all the state transitions
(st → st+1) of each agent’s roll-out and averaged over 4 random seeds. Random relies on the
random walk and cannot explore further than the initial few rooms. GT-UCB seeks for a novel states,
and visits all the states uniformly. SPRL learns to take a longest possible shortest path, which results
in a “straight” path across the rooms. Note that this only represents a partial behavior of SPRL, since
our cost also considers the existence of non-zero reward (see Eq. (8)). Thus, in (d), we tested SPRL
while providing only the existence of non-zero reward (but not the reward magnitude). SPRL learns
to take a shortest path between rewarding and initial states that is consistent with the shortest-path
definition in Definition 7.

7 CONCLUSION
We presented the k-shortest-path constraint, which can improve the sample-efficiency of any model-
free RL method by preventing the agent from taking a sub-optimal transition. We empirically showed
that our SPRL outperforms vanilla RL and strong novelty-seeking exploration baselines on two
challenging domains. We believe that our framework develops a unique direction for improving the
sample efficiency in reinforcement learning; hence, combining our work with other techniques for
better sample efficiency will be interesting future work that could benefit many practical tasks.
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Appendix: Shortest-path reinforcement learning
A MORE ABLATION STUDY
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Figure 7: Average episode reward of SPRL with varying k =1, 3, 10, 30 as a function of environment
steps for DeepMind Lab tasks. Other hyper-parameters are kept same as the best hyper-parameter.
The best performance is obtained with k = 10.
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Figure 8: Average episode reward of SPRL with varying k =3, 5, 7 as a function of environment
steps for MiniGrid tasks. Other hyper-parameters are kept same as the best hyper-parameter. The
best performance is obtained with k = 5.

A.1 EFFECT OF k

As proven in Lemma 2 and shown in Section 6.4, the larger k, the k-shortest constraint promises
a larger reduction in policy space, which results in a faster learning. However, with our practical
implementation of SPRL with a learned (imperfect) reachability network, overly large k has a
drawback. Intuitively speaking, it is harder for policy to satisfy the k-shortest constraint, and the
supervision signal given by our cost function becomes sparser (i.e., almost always penalized). Figure 7
and 8 shows the performance of SPRL on DeepMind Lab and MiniGrid domains with varying k. In
both domains we can see that there exists a “sweet spot” that balances between the reduction in policy
space and sparsity of the supervision (e.g., k = 10 for DeepMind Lab and k = 5 for MiniGrid).

0 5 10
steps (Millions)

50

100

re
tu

rn

GoalSmall

0 2.5 5 7.5 10
steps (Millions)

10

20

30

re
tu

rn

ObjectMany

Δt=1
Δt=2
Δt=3
Δt=5

0 2.5 5 7.5 10
steps (Millions)

0

20

40

re
tu

rn

GoalLarge

Figure 9: Average episode reward of SPRL with varying ∆t =1, 2, 3, 5 as a function of environment
steps for DeepMind Lab tasks. Other hyper-parameters are kept same as the best hyper-parameter.
The best performance is obtained with ∆t = 1.

A.2 EFFECT OF TOLERANCE ∆t

Adding the tolerance ∆t to our k-SP constraint makes it “softer” by allowing ∆t-steps of redundancy
in transition (See Eq. (13)). Intuitively, a small tolerance may improve the stability of RNet by
incorporating a possible noise in RNet prediction, but too large tolerance will make it less effective on
removing sub-optimality in transition. Figure 9 and 10 show the performance of SPRL on DeepMind
Lab and MiniGrid domains with varying tolerance ∆t. Similar to k, we can see that there exists a
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Figure 10: Average episode reward of SPRL with varying ∆t =10, 15, 25, 50 as a function of
environment steps for MiniGrid tasks. Other hyper-parameters are kept same as the best hyper-
parameter. The best performance is obtained with ∆t = 25.

“sweet spot” that balances between the reduction in policy space and stabilization of noisy RNet output
(e.g., ∆t = 25) in MiniGrid. Note that the best tolerance values for DeepMind Lab and MiniGrid
are vastly different. This is mainly because we used multiple tolerance sampling (See Appendix D)
for DeepMind Lab but not for MiniGrid. Since the multiple tolerance sampling also improves the
stability of RNet, larger tolerance has less benefit compared to its disadvantage.
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Figure 11: Average episode reward of SPRL with varying observation stacking dimension of 0, 1, 5,
10 as a function of environment steps for DeepMind Lab tasks. Other hyper-parameters are kept same
as the best hyper-parameter. The best performance is obtained without stacking (i.e., #stack=0).
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Figure 12: Average episode reward of SPRL with varying observation stacking dimension of 0, 1, 5
as a function of environment steps for MiniGrid tasks. Other hyper-parameters are kept same as the
best hyper-parameter. The best performance is obtained without stacking (i.e., #stack=0)

A.3 STACKING OBSERVATION

The CMDP with k-SP constraint becomes the (k + 1)-th order MDP as shown in Eq. (8). Thus,
in theory, the policy should take currrent state st augmented by stacking the k previous states
as input: [st−k, st−k+1 . . . , st], where [·] is a stacks the pixel observation along the channel (i.e.,
color) dimension. However, stacking the observation may not lead to the best empirical results
in practice. Figure 11 and 12 show the performance of SPRL on DeepMind Lab and MiniGrid
domains with varying stacking dimension. For stack=m, we stacked the observation from t−m to
t: [st−m, st−m+1, . . . , st]. We experimented up to m = k: up to m = 10 for DeepMind Lab and
m = 5 for MiniGrid. The result shows that stacking the observation does not necessarily improves the
performance for MDP order greater than 1, which is often observed when the function approximation
is used (e.g., Savinov et al. (2018b)). Thus, we did not augment the observation in all the experiments.
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B ANALYSIS ON THE REACHABILITY NETWORK (RNET)
B.1 ACCURACY OF THE REACHABILITY NETWORK

We measured the accuracy of reachability network on DeepMind Lab and MiniGrid in Figure 14
and Figure 13. The accuracy was measured on the validation set; we sampled 15,000 positive and
negative samples respectively from the replay buffer of size 60,000. Specifically, for an anchor st,
we sample the positive sample st′ from t′ ∈ [t+ 1, t+ k + ∆t], and the negative sample st′′ from
t′′ ∈ [t+ k + ∆t+ ∆−, t+ k + ∆t+ 2∆−]. The RNet reaches the accuracy higher than 80% in
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Figure 13: The accuracy of the learned reachability network on (a) FourRooms-7×7 (b) FourRooms-
11×11, (c) KeyDoors-7×7 and (d) KeyDoors-11×11 in MiniGrid in terms of environment steps.
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Figure 14: The accuracy of the learned reachability network on (a) GoalSmall (b) ObjectMany, and
(c) GoalLarge in DeepMind Lab in terms of environment steps.

only 0.4M steps in both MiniGrid and DeepMind Lab. We note that this is quite high considering
the unavoidable noise in the negative samples; i.e., since the negative samples are sampled based on
the temporal distance, not based on the actual reachability, they have non-zero probability of being
reachable, in which case they are in fact the positive samples.
B.2 ABLATION STUDY: COMPARISON BETWEEN THE LEARNED RNET AND THE GT-RNET

In this section, we study the effect of RNet’s accuracy on the SPRL’s performance. To this end,
we implement and compare the ground-truth reachability network by computing the ground-truth
distance between a pair of states in MiniGrid.

Ground-truth reachability network was implemented by computing the distance between the two
state inputs, and comparing with k. For the state inputs s and s′, we roll out all possible k-step
trajectories starting from the state s using the ground-truth single-step forward model. If s′ is ever
visited during the roll-out, the output of k-reachability network is 1 and otherwise, the output is 0.
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Figure 15: The accuracy of the learned reachability network on (a) FourRooms-7×7 (b) FourRooms-
11×11, (c) KeyDoors-7×7 and (d) KeyDoors-11×11 in MiniGrid in terms of environment steps.

Result. We compared the performance of our SPRL with the learned RNet and the ground-truth
RNet (GT-SPRL) in Figure 15 with the best hyperparameters. Overall, the performance of SPRL
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and GT-SPRL are similar. This is partly because the learned RNet achieves a quite high accuracy in
early stage of learning (see Figure 13). Interestingly, we can observe that our SPRL with learned
RNet performs better than SPRL with GT-RNet on FourRooms-7×7 and KeyDoors-7×7. This is
possible since a small noise in RNet output can have a similar effect to the increased tolerance ∆t on
RNet, which makes the resulting cost more dense, which may be helpful depending on the tasks and
hyperparameters.
B.3 ABLATION STUDY: CURRICULUM LEARNING OF RNET

We applied the linear scheduling of k to see if curriculum learning can improve the RNet training,
and eventually improve our SPRL performance. For example, in case of FourRooms-7×7, we used
k = 1 until 0.1M steps, and k = 2 until 0.2M steps, and so on, and finally k = 5 from 0.4M steps to
0.5M steps. Figure 16 and Figure 17 compares the performance of SPRL on four MiniGrid tasks
and three DeepMind Lab tasks with and without curriculum learning applied respectively. The result
shows that, however, the curriculum learning is not helpful for RNet training. We conjecture that
changing k during training RNet makes the learning unstable since changing k completely flips the
learning target for some inputs; e.g, the two states that are 2 steps away are unreachable for k = 1
but reachable for k = 2. In Figure 18, we compared the RNet accuracy when RNet was trained with
and without curriculum learning. We can observe that curriculum learning achieves similar or lower
RNet accuracy with higher standard error, which indicates that the curriculum learning makes RNet
training unstable.
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Figure 16: The performance of SPRL with and without curriculum learning of RNet on (a)
FourRooms-7×7 (b) FourRooms-11×11, (c) KeyDoors-7×7 and (d) KeyDoors-11×11 in MiniGrid.
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Figure 17: The performance of SPRL with and without curriculum learning of RNet on (a) GoalSmall
(b) ObjectMany, and (c) GoalLarge in DeepMind Lab in terms of environment steps.
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Figure 18: The accuracy of the learned reachability network with and without curriculum learning of
RNet on (a) GoalSmall (b) ObjectMany, and (c) GoalLarge in DeepMind Lab in terms of environment
steps.
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C EXPERIMENT DETAILS OF MiniGrid DOMAIN

C.1 ENVIRONMENT

MiniGrid is a 2D grid-world environment with diverse predefined tasks (Chevalier-Boisvert et al.,
2018). It has several challenging features such as pictorial observation, random initialization of the
agent and the goal, complex action space and transition dynamics involving agent’s orientation of
movement and changing object status via interaction (e.g., key-door).

State Space. An observation st is represented as H×W ×C tensor, where H and W are the height
and width of map respectively, and C is features of the objects in the grid. The (h,w)-th element
of observation tensor is (type, color, status) of the object and for the coordinate of agent, the
(h,w)-th element is (type, 0, direction). The map size (i.e., H ×W ) varies depending on the task;
e.g., for FourRooms-7×7 task, the map size is 7× 7.

Action Space and transition dynamics The episode terminates in 100 steps, and the episode may
terminate earlier if the agent reaches the goal before 100 steps. The action space consists of seven
discrete actions with the following transitions.

• Turn-Counter-Clockwise: change the direction counter-clockwise by 90 degree.
• Turn-Clockwise: change the direction clockwise by 90 degree.
• Move-Forward: move toward direction by 1 step unless blocked by other objects.
• Pick-up-key: pickup the key if the key is in front of the agent.
• Drop-the-key: drop the key in front of the agent.
• Open/Close-doors: open/close the door if the door is in front of the agent.
• Optional-action: not used

Reward function. The reward is given only if the agent reaches the goal location, and the reward
magnitude is 1− 0.9(length of episode/maximum step for episode). Thus, the agent can maximize
the reward by reaching to the goal location in shortest time.
C.2 TASKS

In FourRooms-7×7 and FourRooms-11×11, the map structure has four large rooms, and the agent
needs to reach to the goal. In KeyDoors-7×7 and KeyDoors-11×11, the agent needs to pick up the
key, go to the door, and open the door before reaching to the goal location.
C.3 ARCHITECTURE AND HYPER-PARAMETERS

We used a simple CNN architecture similar to (Mnih et al., 2015) for policy network. The
network consists of Conv1(16x2x2-1/SAME)-CReLU-Conv2(8x2x2-1/SAME)-CReLU-
Conv3(8x2x2-1/SAME)-CReLU-FC(512)-FC(action-dimension), where SAME
padding ensures the input and output have the same size (i.e., width and height) and CReLU (Shang
et al., 2016) is a non-linear activation function applied after each layer. We used Adam (Kingma &
Ba, 2014) optimizer to optimize the policy network.

For hyper-parameter search, we swept over a set of hyper-parameters specified in Table 1, and chose
the best one in terms of the mean AUC over all the tasks, which is also summarized in Table 1.

D EXPERIMENT DETAILS OF DeepMind Lab DOMAIN

D.1 ENVIRONMENT

DeepMind Lab is a 3D-game environment with first-person view. Along with random initialization of
the agent and the goal, complex action space including directional change, random change of texture,
color and maze structure are features that make tasks in DeepMind Lab hard to be learned.

State Space. An observation st has the dimension of 120× 160× 3 tensor. Observation is given as
a first-person view of the map structure.

Action Space and transition dynamics The episode terminates after the fixed number of steps
regardless of goal being achieved. The original action space consists of seven discrete actions:
Move-Forward, Move-Backward, Strafe Left, Strafe Right, Look Left, Look
Right, Look Left and Move-Forward, Look Right and Move-Forward. In our
experiment, we used eight discrete actions with the additional action Fire as in (Higgins et al., 2017;
Vezhnevets et al., 2017; Savinov et al., 2018b; Espeholt et al., 2018; Khetarpal & Precup, 2018).
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PPO
Hyperparameters Sweep range Final value

Learning rate 0.001, 0.002, 0.003 0.003
Entropy 0.003, 0.005, 0.01, 0.02, 0.05 0.01

ICM
Hyperparameters Sweep range Final value

Learning rate 0.001, 0.002, 0.003 0.003
Entropy - 0.01
Forward/Inverse model loss weight ratio 0.2, 0.5, 0.8, 1.0 0.8
Curiosity module loss weight 0.03, 0.1, 0.3, 1.0 0.3
ICM bonus weight 0.1, 0.3, 1.0, 3.0 0.1

GT-Grid
Hyperparameters Sweep range Final value

Learning rate 0.001, 0.002, 0.003 0.003
Entropy - 0.01
GT-Grid bonus weight 0.003, 0.01, 0.03, 0.1, 0.3 0.01

ECO
Hyperparameters Sweep range Final value

Learning rate - 0.003
Entropy - 0.01
k 3, 5, 7 3
ECO bonus weight 0.001, 0.002, 0.005, 0.01 0.001

SPRL
Hyperparameters Sweep range Final value

Learning rate 0.003, 0.01 0.01
Entropy - 0.01
k 2, 5 2
Tolerance (∆t) - 1
Negative bias (∆−) 10, 20 20
Positive bias (∆+) - 5
Cost scale (λ) 0.001, 0.002, 0.005 0.002
N∆t 30, 60 60

Table 1: The range of hyperparameters sweeped over and the final hyperparameters used in MiniGrid
domain.

D.2 TASKS

We tested our agent and compared methods on three standard tasks in DeepMind Lab: GoalS-
mall, GoalLarge, and ObjectMany which correspond to explore goal locations small,
explore goal locations large, and explore object rewards many, respectively.
GoalSmall and GoalLarge has a single goal in the maze, but the size of the maze is larger in
GoalLarge than GoalSmall. The agent and goal locations are randomly set in the beginning of the
episode and the episode length is fixed to 1,350 steps for GoalSmall and 1,800 steps for GoalLarge.
When the agent reaches the goal, it positively rewards the agent and the agent is re-spawned in a
random location without terminating the episode, such that the agent can reach to the goal multiple
times within a single episode. Thus, the agent’s goal is to reach to the goal location as many times as
possible within the episode length. ObjectMany has multiple objects in the maze, where reaching to
the object positively rewards the agent and the object disappears. The episode length is fixed to 1,800
steps. The agent’s goal is to gather as many object as possible within the episode length.

17



Under review as a conference paper at ICLR 2021

Algorithm 2 Sampling the triplet data from an episode for RNet training
Require: Hyperparameters: k ∈ N, Positive bias ∆+ ∈ N, Negative bias ∆− ∈ N

1: Initialize tanc ← 0.
2: Initialize Sanc = ∅, S+ = ∅, S− = ∅.
3: while tanc < T do
4: Sanc = Sanc ∪ {stanc}.
5: t+ = Uniform(tanc + 1, tanc + k).
6: t− = Uniform(tanc + k + ∆−, T ).
7: S+ = S+ ∪ {st+}.
8: S− = S− ∪ {st−}.
9: tanc = Uniform(t+ + 1, t+ + ∆+).

return Sanc, S+, S−

D.3 REACHABILITY NETWORK TRAINING

Similar to Savinov et al. (2018b), we used the following contrastive loss for training the reachability
network:

LRnet = − log (Rnetk−1(sanc, s+))− log (1− Rnetk−1(sanc, s−)) , (15)
where sanc, s+, s− are the anchor, positive, and negative samples, respectively. The anchor, positive
and negative samples are sampled from the same episode, and their time steps are sampled according
to Algorithm 2. The RNet is trained in an off-policy manner from the replay buffer with the size of
60K environment steps collecting agent’s online experience. We found that adaptive scheduling of
RNet is helpful for faster convergence of RNet. Out of 20M total environment steps, for the first 1M,
1M, and 18M environment steps, we updated RNet every 6K, 12K, and 36K environment steps,
respectively. For all three environments of DeepMind Lab, RNet accuracy was ∼ 0.9 after 1M steps.

Multiple tolerance. In order to improve the stability of Reachability prediction, we used the
statistics over multiple samples rather than using a single-sample estimate as suggested in Eq. (13).
As a choice of sampling method, we simply used multiples of tolerance. In other words, given
st−(k+∆t) and st as inputs for reachability network, we instead used st−(k+n∆t) and st where
1 ≤ n ≤ N∆t, n ∈ N and N∆t is the number of tolerance samples. We used 90-percentile of N∆t

outputs of reachability network, Rnetk−1(st−(k+n∆t), st), as in (Savinov et al., 2018b) to get the
representative of the samples.
D.4 ARCHITECTURE AND HYPER-PARAMETERS

Following (Savinov et al., 2018b), we used the same CNN architecture used in (Mnih et al., 2015). To
fit the architecture, we resized the input observation image into 84× 84× 3 image, and normalized
by dividing the pixel value by 255.

For SPRL, we used a smaller reachability network (RNet) architecture compared to ECO to reduce
the training time. The RNet is based on siamese architecture with two branches. Following (Savinov
et al., 2018b), ECO used Resnet-18 (He et al., 2016) architecture with 2-2-2-2 residual blocks
and 512-dimensional output fully-connected layer to implement each branch. For SPRL, we used
Resnet-12 with 2-2-1 residual blocks and 512-dimensional output fully-connected layer to implement
each branch. The RNet takes two states as inputs, and each state is fed into each branch. The outputs
of the two branches are concatenated and forwarded to three4 512-dimensional fully-connected layers
to produce one-dimensional sigmoid output, which predicts the reachability between two state inputs.
We also resized the observation to the same dimension as policy (i.e., 84× 84× 3, which is smaller
than the original 120× 160× 3 used in (Savinov et al., 2018b)).

For all the baselines (i.e., PPO, ECO, ICM, and GT-Grid), we used the best hyperparameter used
in (Savinov et al., 2018b). For SPRL, we searched over a set of hyperparameters specified in Table 2,
and chose the best one in terms of the mean AUC over all the tasks, which is also summarized
in Table 2.

4Savinov et al. (2018b) used four 512-dimensional fully-connected layers.
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Hyperparameters for SPRL Sweep range Final value

Learning rate - 0.0003
Entropy - 0.004
k 3, 10, 30 10
Tolerance (∆t) 1, 3, 5 1
Negative bias (∆−) 5, 10, 20 20
Positive bias (∆+) - 5
Cost scale (λ) 0.02, 0.06, 0.2 0.06
Optimizer - Adam
N∆t - 200

Table 2: The range of hyperparameters sweeped over and the final hyperparameters used for our
SPRL method in DeepMind Lab domain.
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E OPTION FRAMEWORK-BASED FORMULATION

E.1 PRELIMINARY: OPTION FRAMEWORK

Options framework (Sutton, 1998) defines options as a generalization of actions to include temporally
extended series of action. Formally, options consist of three components: a policy π : S×A → [0, 1],
a termination condition β : S+ → [0, 1], and an initiation set I ⊆ S. An option 〈I, π, β〉 is available
in state s if and only if s ∈ I. If the option is taken, then actions are selected according to π until
the option terminates stochastically according to β. Then, the option-reward and option-transition
models are defined as

ros = E
{
rt+1 + γrt+2 + · · ·+ γk−1rt+k | E(o, s, t)

}
(16)

P oss′ =

∞∑
k=1

p (s′, k) γk (17)

where t+ k is the random time at which option o terminates, E(o, s, t) is the event that option o is
initiated in state s at time t, and p(s′, k) is the probability that the option terminates in s′ after k steps.
Using the option models, we can re-write Bellman equation as follows:

V π(s) = E
[
rt+1 + · · ·+ γk−1rt+k + γkV π(st+k)

]
, (18)

=
∑
o∈O

Pr[E(o, s)]

[
ros +

∑
s′

P oss′V
π(s′)

]
. (19)

where t+ k is the random time at which option o terminates and E(o, s) is the event that option o is
initiated in state s.
E.2 OPTION-BASED VIEW-POINT OF SHORTEST-PATH CONSTRAINT

In this section, we present an option framework-based viewpoint of our shortest-path (SP) constraint.
We will first show that a (sparse-reward) MDP can be represented as a weighted directed graph
where nodes are rewarding states, and edges are options. Then, we show that a policy satisfying SP
constraint also maximizes the option-transition probability P oss′ .

For a given MDPM = (S,A,R,P, ρ, S̄), let SR = {s|R(s) 6= 0} ⊂ S be the set of all rewarding
states, where R(s) is the reward function upon arrival to state s. In sparse-reward tasks, it is assumed
that |SR| << |S|. Then, we can form a weighted directed graph Gπ = (V, E) of policy π and given
MDP. The vertex set is defined as V = SR ∪ ρ0 ∪ S̄ where SR is rewarding states, ρ0 is the initial
states, and S̄ is the terminal states. Similar to the path set in Definition 2, let Ts→s′ denotes a set of
paths transitioning from one vertex s ∈ V to another vertex s′ ∈ V:

Ts→s′ = {τ |s0 = s, s`(τ) = s′, {st}0<t<`(τ) ∩ V = ∅}. (20)

Then, the edge from a vertex s ∈ V to another vertex s′ ∈ V is defined by an (implicit) option tuple:
o(s, s′) = (I, π, β)(s,s′), where I = {s}, β(s) = I(s = s′), and

π(s,s′)(τ) =

{
1
Zπ(τ) for τ ∈ Ts→s′
0 otherwise

, (21)

where Z is the partition function to ensure
∫
π(s,s′)(τ)dτ = 1. Following Eq. (16), the option-reward

is given as

rπs,s′ = Eπ
(s,s′)

[
rt+1 + γrt+2 + · · ·+ γk−1rt+k | E(o(s,s′), s, t)

]
, (22)

= Eπ
(s,s′)

[
γk−1rt+k | E(o(s,s′), s, t)

]
, (23)

where t+ k is the random time at which option o(s, s′) terminates, and E(o, s, t) is the event that
option o(s, s′) is initiated in state s at time t. Note that in the last equality, rt+1 = · · · = rt+k−1 = 0

holds since {st+1, . . . , st+k−1} ∩ V = ∅ from the definition of option policy π(s,s′). Following
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Eq. (17), the option transition is given as

Pπs,s′ =

∞∑
k=1

p(s′, k)γk (24)

= Eπ
[
γk|s0 = s, sk = s′, {rt}t<k = 0

]
(25)

= γD
π
nr(s,s

′). (26)
where p(s′, k) is the probability that the option terminates in s′ after k steps, and Dπ

nr(s, s
′) is the

π-distance in Definition 3. Then, we can re-write the shortest-path constraint in terms of Pπs,s′ as
follows:

ΠSP = {π|∀(s, s′ ∈ T πŝ,ŝ′,nr s.t. (ŝ, ŝ′) ∈ Φπ), Dπ
nr(s, s

′) = min
π
Dπ

nr(s, s
′)} (27)

= {π|∀(s, s′ ∈ T πŝ,ŝ′,nr s.t. (ŝ, ŝ′) ∈ Φπ), Pπs,s′ = max
π

Pπs,s′} (28)

Thus, we can see that the policy satisfying SP constraint also maximizes the option-transition
probability. We will use this result in Appendix F.

F SHORTEST-PATH CONSTRAINT: A SINGLE-GOAL CASE

In this section, we provide more discussion on a special case of the shortest-path constraint (Sec-
tion 3.1), when the (stochastic) MDP defines a single-goal task: i.e., there exists a unique initial state
sinit ∈ S and a unique goal state sg ∈ S such that sg is a terminal state, and R(s) > 0 if and only if
s = sg .

We first note that the non-rewarding path set is identical to the path set in such a setting, because
the condition rt = 0(t < `(τ)) from Definition 2 is always satisfied as R(s) > 0 ⇔ s = sg and
s`(τ) = sg:

T πs,s′,nr = T πs,s′ = {τ | s0 = s, s`(τ) = s′, pπ(τ) > 0, {st}t<`(τ) 6= s′} (29)

Again, T πs,s′ is a set of all path starting from s (i.e., and ending at s′ (i.e., s`(τ) = s′) where the
agent visits s′ only at the end (i.e., {st}t<`(τ) 6= s′), that can be rolled out by policy with a non-zero
probability (i.e., pπ(τ) > 0).

We now claim that an optimal policy satisfies the shortest-path constraint. The idea is that, since sg is
the only rewarding and terminal state, maximizing R(τ) = γTR(sg) where sT = sg corresponds to
minimizing the number of time steps T to reach sg. In this setting, a shortest-path policy is indeed
optimal.

Lemma 4. For a single-goal MDP, any optimal policy satisfies the shortest-path constraint.

Proof. Let sinit be the initial state and sg be the goal state. We will prove that any optimal policy
is a shortest-path policy from the initial state to the goal state. We use the fact that sg is the only
rewarding state, i.e., R(s) > 0 entails s = sg .

π∗ = arg max
π

Eτ∼πs∼ρ

[∑
t γ

trt

∣∣∣∣ s0 = s

]
(30)

= arg max
π

Eτ∼π
[∑

t γ
trt

∣∣∣∣ s0 = sinit

]
(31)

= arg max
π

Eτ∼π
[
γTR(sg) | s0 = sinit, s`(τ) = sg

]
(32)

= arg max
π

Eτ∼π
[
γT | s0 = sinit, s`(τ) = sg

]
(33)

= arg min
π

logγ
(
Eτ∼π

[
γT | s0 = sinit, s`(τ) = sg

])
(34)

= arg min
π

Dπ
nr(sinit, sg), (35)

where Eq. (33) holds since R(sg) > 0 from our assumption that R(s) + V ∗(s) > 0.
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G PROOF OF THEOREM 1
We make the following assumptions on the Markov Decision Process (MDP) M: namely mild
stochasticity (Definitions 8 and 9).
Definition 8 (Mild stochasticity (1)). In MDPM, there exists an optimal policy π∗ and the corre-
sponding shortest-path policy πsp ∈ ΠSP such that for all s, s′ ∈ Φπ , it holds pπ∗(s̄ = s′|s0 = s) =
pπsp(s̄ = s′|s0 = s).
Definition 9 (Mild stochasticity (2)). In MDPM, the optimal policy π∗ does not visit the same
state more than once: For all s ∈ S such that ρπ∗(s) > 0, it holds ρπ∗(s) = 1, where ρπ(s) ,

Es0∼ρ0(S),a∼π(A|s),s′∼(S|s,a)

[∑T
t=1 I (st = s)

]
is the state-visitation count.

In other words, we assume that the optimal policy does not have a cycle. One common property of
MDP that meets this condition is that the reward disappearing after being acquired by the agent. We
note that this assumption holds for many practical environments. In fact, in many cases as well as
Atari, DeepMind Lab, etc.

Theorem 1. For any MDP with the mild stochasticity condition, an optimal policy π∗ satisfies the
shortest-path constraint: π∗ ∈ ΠSP.

Proof. For simplicity, we prove this based on the option-based view point (see Appendix E). By
plugging Eq. (23) and Eq. (25) into Eq. (19), we can re-write the Bellman equation of the value
function V π(s) as follows:

V π(s) =
∑
o∈O

Pr[E(o, s)]

[
ros +

∑
s′

P oss′V
π(s′)

]
(36)

=
∑

s′∈SIR

pπ(s̄ = s′|s0 = s)
[
R(s′)Eτ∼π(γ`(τ)|s0 = s, s̄ = s′) + γPπs,s′V

π(s′)
]

(37)

=
∑

s′∈SIR

pπ(s̄ = s′|s0 = s)
[
R(s′)Pπs,s′ + γPπs,s′V

π(s′)
]
, (38)

=
∑

s′∈SIR

pπ(s̄ = s′|s0 = s)Pπs,s′ [R(s′) + γV π(s′)] , (39)

where s̄ is the first rewarding state that agent encounters. Intuitively, pπ(s̄ = s′|s0 = s) means
the probability that the s′ is the first rewarding state that policy π encounters when it starts from s.
From Eq. (28), our goal is to show:

π∗ ∈ ΠSP = {π | ∀(s, s′) ∈ T πΦ,nr, P
π
s,s′ = P ∗s,s′}, (40)

where P ∗s,s′ = maxπ P
π
s,s′ .

We will prove Eq. (40) by contradiction. Suppose π∗ is an optimal policy such that π∗ 6∈ ΠSP. Then,

∃(ŝ, ŝ′ ∈ T π
∗

Φ,nr) s.t. Pπ
∗

ŝ,ŝ′ 6= P ∗ŝ,ŝ′ . (41)
Recall the definition: P ∗s,s′ = maxπ P

π
s,s′ . Then, for any π, the following statement is true.

Pπs,s′ 6= P ∗s,s′ ↔ Pπs,s′ < P ∗s,s′ . (42)
Thus, we have

Pπ
∗

ŝ,ŝ′ < P ∗ŝ,ŝ′ (43)

Let πsp ∈ ΠSP be a shortest path policy that preserves stochastic dynamics from Definition 8. Then,
we have

Pπ
∗

ŝ,ŝ′ < P ∗ŝ,ŝ′ = P
πsp
ŝ,ŝ′ . (44)

Then, let’s compose a new policy π̂:

π̂(a|s) =

{
πsp(a|s) if ∃ τ ∈ T πspŝ,ŝ′,nr s.t. s ∈ τ
π∗(a|s) otherwise

. (45)

Now consider a path τŝ→ŝ′ that agent visits ŝ at time t = i and transitions to ŝ′ at time t = j > i
while not visiting any rewarding state from t = i to t = j with non-zero probability (i.e., pπsp(τ) > 0).
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We can define a set of such paths as follows:

T̂ŝ→ŝ′ = {τ | ∃(i < j), si = ŝ, sj = ŝ′, {st}i<t<j ∩ SIR = ∅, pπsp(τ) > 0}. (46)

To reiterate the definitions from Definition 6: SIR = {s | R(s) > 0 or ρ(s) > 0} is the union of all
initial and rewarding states, and Φπ = {(s, s′) | s, s′ ∈ SIR, ρ(s) > 0, T πs,s′,nr 6= ∅} is the subset of
SIR such that agent may roll out.

From Definition 9 and Eq. (45), the likelihood of a path τ under policy π̂ is given as follows:

pπ̂(τ) =

{
pπ∗(τ ∈ T̂ŝ→ŝ′)pπsp(τ |τ ∈ T̂ŝ→ŝ′) for τ ∈ T̂ŝ→ŝ′
pπ∗(τ) otherwise

, (47)

where pπ̂(τ) is the likelihood of trajectory τ under policy π̂, pπ̂(τ ∈ T̂ŝ→ŝ′) =
∫
τ∈T̂ŝ→ŝ′

pπ̂(τ)dτ

ensures the likelihood π̂(τ) to be a valid probability density function (i.e.,
∫
pπ̂(τ)dτ = 1). From the

path τŝ→ŝ′ and i, j, we will choose two states sir, s
′
ir ∼ τŝ→ŝ′ , where

sir = max
t

(st|st ∈ SIR, t ≤ i), s′ir = min
t

(st|st ∈ SIR, j ≤ t). (48)

Note that such sir and s′ir always exist in τŝ→ŝ′ since the initial state and the terminal state satisfy the
condition to be sir and s′ir.

Then, we can show that the path between sir and s′ir is not a shortest-path. Recall the definition of
Dπ

nr(s, s
′) (Definition 3):

Dπ∗

nr (sir, s
′
ir) := logγ

(
Eτ∼π∗: τ∈T π∗

sir,s
′
ir,nr

[
γ`(τ)

])
(49)

= logγ

Eτ∼π∗
[
γ`(τ) | τ ∈ T π

∗

sir,s′ir,nr

]
︸ ︷︷ ︸

♣

 (50)

where we will use ♣ := γ`(τ) | τ ∈ T π∗sir,s′ir,nr for a shorthand notation. Then, we have

γD
π∗
nr (sir,s

′
ir) := Eτ∼π∗ [♣] (51)

= pπ∗(τ ∈ T̂ŝ→ŝ′)Eτ∼π∗
[
♣ | τ ∈ T̂ŝ→ŝ′

]
+ pπ∗(τ /∈ T̂ŝ→ŝ′)Eτ∼π∗

[
♣ | τ /∈ T̂ŝ→ŝ′

]
. (52)

(From Definition 5) < pπ∗(τ ∈ T̂ŝ→ŝ′)Eτ∼πsp

[
♣ | τ ∈ T̂ŝ→ŝ′

]
+ pπ∗(τ /∈ T̂ŝ→ŝ′)Eτ∼π∗

[
♣ | τ /∈ T̂ŝ→ŝ′

]
(53)

(From Eq. (47)) = pπ̂(τ ∈ T̂ŝ→ŝ′)Eτ∼π̂
[
♣ | τ ∈ T̂ŝ→ŝ′

]
+ pπ̂(τ /∈ T̂ŝ→ŝ′)Eτ∼π̂

[
♣ | τ /∈ T̂ŝ→ŝ′

]
(54)

= Eτ∼π̂ [♣] = γD
π̂
nr (sir,s

′
ir) (55)

⇐⇒ Dπ∗

nr (sir, s
′
ir) > Dπ̂

nr(sir, s
′
ir) (56)

where Ineq. (56) is given by the fact that γ < 1. Then, Pπ
∗

sir,s′ir
< P π̂sir,s′ir

.
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From Eq. (39), we have

V π̂(sir) =
∑

s′∈SIR

pπ̂(s̄ = s′ | s0 = sir)P
π̂
sir,s′

[
R(s′) + γV π̂(s′)

]
(57)

= pπ̂(s̄ = s′ir | s0 = sir)P
π̂
sir,s′ir

[
R(s′ir) + γV π̂(s′ir)

]
+

∑
s′∈SIR\s′ir

pπ̂(s̄ = s′ | s0 = sir)P
π̂
sir,s′

[
R(s′) + γV π̂(s′)

]
(58)

= pπ∗(s̄ = s′ir | s0 = sir)P
π̂
sir,s′ir

[
R(s′ir) + γV π

∗
(s′ir)

]
+

∑
s′∈SIR\s′ir

pπ∗(s̄ = s′ | s0 = sir)P
π∗

sir,s′

[
R(s′) + γV π

∗
(s′)
]

(59)

> pπ∗(s̄ = s′ir | s0 = sir)P
π∗

sir,s′ir

[
R(s′ir) + γV π

∗
(s′ir)

]
+

∑
s′∈SIR\s′ir

pπ∗(s̄ = s′ | s0 = sir)P
π∗

sir,s′

[
R(s′) + γV π

∗
(s′)
]

(60)

=
∑

s′∈SIR

pπ∗(s̄ = s′ | s0 = sir)P
π∗

sir,s′

[
R(s′) + γV π

∗
(s′)
]

(61)

= V ∗(sir), (62)
where Eq. (59) holds from the mild-stochasticity (1) and mild-stochasticity (2) assumption, and
Ineq. (60) holds because P π̂sir,s′ir

> Pπ
∗

sir,s′ir
and R(s′) + γV π

∗
(s′) > 0 from the non-negative optimal

value assumption (See Section 2). Finally, this is a contradiction since the optimal value function
V ∗(s) should be the maximum.
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H EXTENDED RELATED WORKS

Approximate state abstraction. The approximate state abstraction approaches investigate parti-
tioning an MDP’s state space into clusters of similar states while preserving the optimal solution.
Researchers have proposed several state similarity metrics for MDPs. Dean et al. (2013) proposed to
use the bisimulation metrics (Givan et al., 2003; Ferns et al., 2004), which measures the difference
in transition and reward function. Bertsekas et al. (1988) used the magnitude of Bellman residual
as a metric. Abel et al. (2016; 2018); Li et al. (2006) used the different types of distance in optimal
Q-value to measure the similarity between states to bound the sub-optimality in optimal value after
the abstraction. Recently, Castro (2019) extended the bisimulation metrics to the approximate version
for deep-RL setting where tabular representation of state is not available.

Our shortest-path constraint can be seen as a form of state abstraction, in that ours also aim to reduce
the size of MDP (i.e., state and action space) while preserving the “solution quality”. However, our
method does so by removing sub-optimal policies, not by aggregating similar states (or policies).

Connection to Option framework Our shortest-path constraint constrains the policy space to a set
of shortest-path policies (See Definition 5 for definition) between initial and rewarding states. It can
be seen as a set of options (Sutton, 1998) transitioning between initial and rewarding states. We refer
the readers to Appendix E for the detailed description about option framework-based formulation of
our framework.
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