
Zero-shot Cross-Language Transfer of
Monolingual Entity Linking Models

Anonymous ACL submission

Abstract

Most entity linking systems, whether mono or001
multilingual, link mentions to a single English002
knowledge base. Few have considered link-003
ing non-English text to a non-English KB, and004
therefore, transferring an English entity link-005
ing model to both a new document and new006
KB language. We consider the task of zero-007
shot cross-lingual transfer of entity linking sys-008
tems to a new language and KB. We find that009
a system trained with multilingual representa-010
tions does reasonably well, and propose im-011
provements to system training that lead to im-012
proved recall in most datasets, often matching013
the in-language performance. We further con-014
duct a detailed evaluation to elucidate the chal-015
lenges of this setting.016

1 Introduction017

Entity linking – the process of matching mentions018

of people, places or organizations with a relevant019

knowledge base (KB) entry – has often focused on020

linking English text. Cross-language linking often021

uses English KBs for matching to non-English text.022

While transferring a system to a new document023

language presents challenges, it does not consider024

issues that arise when transferring to a new KB025

language. KBs in different languages consider dif-026

ferent topics, and matching text within the same027

language presents different challenges from build-028

ing cross-language representations. We should not029

expect people to only be interested in linking docu-030

ments from different languages to an English KB.031

This paper considers zero-shot cross-lingual032

adaptation of a trained entity linking system to a033

new monolingual setting: the same new language034

for both the query document and KB. We consider035

adaptation so as to utilize the extensive annotated036

data resources for English, improving entity linking037

on language that have little to no training data. Con-038

sider the example in Figure 1, which links the Span-039

ish language mention Senado (Senate) to the KB040

entry Senado de la República (Senate of the Repub- 041

lic of Mexico). An entity linker uses the mention 042

text and surrounding sentence paired with the KB 043

entry (including information such as the name, de- 044

scription) to score the likelihood of a match. Many 045

approaches to entity linking learn these linkages 046

by training on a set of hand-annotated links in the 047

desired language. If there are no or few language- 048

specific annotations, how can we train a model on 049

an annotation-rich language to perform well on 050

other languages? 051

We take a neural approach to entity linking and 052

use a multilingual pretrained transformer model, 053

XLM-Roberta (XLM-R) (Conneau et al., 2019), 054

to build representations of the available text for a 055

mention and candidate entity pair. We feed each of 056

these representations through a feed forward neu- 057

ral model to produce a likelihood score. XLM-R 058

is a multilingual model that yields robust repre- 059

sentations of text in a wide variety of languages. 060

However, we find that even with the cross-language 061

ability of XLM-R, in-language annotation data is 062

key to an accurate linker. We thus propose ways 063

to improve zero-shot cross-lingual transfer of a 064

trained linker from one language to another. 065

We adapt a method from Chen and Cardie 066

(2018) to add an adversarial objective to linker 067

training which uses an intermediate layer in the 068

linker to transform language-specific embeddings 069

to language-agnostic via a language classification 070

module. To train this language-agnostic layer, 071

we force the language classifier alone to predict 072

the incorrect language label for unannotated por- 073

tions of the source (e.g., English) and target (e.g., 074

Spanish) text. We jointly train the ranker and the 075

language classifier using the correct source (e.g., 076

English) language labels. which encourages the 077

name and mention representation to be language- 078

independent. 079

Second, we augment the entity linker with in- 080

formation from the target language KB to capture 081
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También lo acompañan el presidente del Senado,
Luis Miguel Barbosa y los industriales ...

name Senado de la República

desc. El Senado de los Estados Unidos
Mexicanos es la Cámara Alta ...

As the general explained in testimony to the
Senate Armed Services Committee,...

name United States Senate

desc. The United States Senate is the upper
chamber of the United ...

Figure 1: Example Spanish mention Senado, which is a link to the Spanish KB entity Senado de la República (the
Senate of Mexico), and the example English mention Senate, referring to the entity United States Senate.

popularity of each entity, better handling entities082

that are common in the target language but rare in083

the source. We find that both model adjustments im-084

prove zero-shot performance on several language085

pairs, and that the adversarial model specifically086

produces consistent improvement in recall. Overall,087

we demonstrate that entity linking models can be088

effectively adapted to a new language for both the089

query document and KB.090

2 Entity Linking Model091

Figure 1 shows an example mention in Spanish092

(Senado) and English (Senate), each linked to a093

same language KB entry – Senado de la República094

for the Spanish mention and United States Senate095

for the English mention. A linker will compare096

the text of the mention to the name of the entity,097

and consider information available in the context of098

the mention (the surrounding sentences). the entity099

description, and the mention and entity types.100

One approach to handling both the Spanish and101

English cases would be to train two language-102

specific entity linking models. While this works103

well for languages with a large amount of anno-104

tated data (English), others have far less (Span-105

ish). Additionally, training a new model for each106

language does not scale well to many languages.107

Instead, we pursue building a model that can be108

trained on entity linking annotations in a single lan-109

guage and transferred to another without additional110

annotations: cross-language entity linking.111

2.1 Architecture112

We use a standard neural ranking architecture to fo-113

cus on the mechanisms of transfer. To score a men-114

tion m and and candidate entity e, we leverage a115

pointwise neural ranker inspired by the architecture116

of Dehghani et al. (2017). This produces a score117

for each mention-entity pair, creating a ranking of118

entities specific to each mention. Additionally, this119

pointwise approach allows scoring of previously120

unseen entities. We select a subset of entities to 121

score using a triage system (§4.) 122

Our ranker captures two common sources of in- 123

formation about the entity – the mention string and 124

entity name, and the context of the mention and 125

the entity description. These sources are not KB 126

specific (e.g., type information) and thus transfer to 127

different KBs. We create separate multilingual rep- 128

resentations for the mention string and entity name 129

(ms and es), and the mention and entity context 130

(mc and ec). The string and context pairs are fed 131

into separate multilayer perceptrons (MLP), out- 132

putting an embedding that models the relationship 133

between the entity and the mention. For example, 134

we inputms and es into a text-specific hidden layer 135

which outputs a combined representation rs, and 136

we input mc and ec into a context-specific hidden 137

layer which outputs a representation rc. These rep- 138

resentations rs and rc are then fed into a final MLP, 139

which produces a score between −1 and 1. 140

To train our model parameters θ, we score a men- 141

tion m and a correct entity link e+, and separately 142

score the same mention paired with n randomly 143

sampled negative entities e−. We apply hinge loss 144

between the positive pair and the best performing 145

negative pair; 146

147

L(θ) = max{0, ε− (S({m, e+}; θ)− 148

max{S({m, e0−}; θ) . . . S({m, cn−}; θ)}} 149

We use the resulting loss to back propagate through 150

the entire network. We use random combinations of 151

parameters to select the best model configuration, 152

which is discussed further in the Appendix. 153

2.2 Multilingual Representations 154

To create representations of the name and con- 155

text for a mention-entity pair, we use XLM- 156

Roberta (XLM-R) (Conneau et al., 2019), a mul- 157

tilingual transformer representation model. XLM- 158

R outperforms other transformer models (such as 159

mBERT (Devlin et al., 2019)) on multilingual tasks, 160
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Figure 2: Our adversarial training approach consists of two steps – standard entity linking paired with training a
language classifier (left), and adversarially training the language classifier (right). The hidden layer hs0 is shared.

and we confirmed this behavior in our initial ex-161

periments. Consider the Spanish example in Fig-162

ure 1. We create a representation of the mention163

text ms, Senado, by feeding the entire sentence164

through XLM-R, and form a single representation165

using max pooling on only the subwords of the166

mention. We create a representation of the entity167

name es, Senado de la República in the same way,168

except without any surrounding context.169

To create mc, we select the sentences surround-170

ing the mention up to XLM-R’s sub-word limit.171

We use max pooling over XLM-R to create a single172

representation. A similar method is used for the173

entity context ec, but uses the definition or other174

text in the KB, using the first 512 subword tokens175

from that description.176

3 Multilingual Transfer177

The use of XLM-R makes our model inherently178

multilingual, allowing a single model to build rep-179

resentations in several languages. While this al-180

lows our models to do fairly well on previously181

unseen languages, we consider we ways to further182

improve models during transfer: adaptation of the183

name matching model, and adaptation to the new184

knowledge base.185

3.1 Language Adaptation186

One source of error in cross-language transfer is dif-187

ferences between the languages themselves. Con-188

sider the example in Figure 1: does the model rec-189

ognize that the English mention Senate and the190

Spanish mention Senado should be treated simi-191

larly? While XLM-R provides a multilingual rep-192

resentation, the entity linking model has not been193

trained to match these representations in the new194

language (Spanish).195

We add an adversarial objective to ensure that 196

the model learns language-agnostic representations 197

of the text, which will better transfer to other lan- 198

guages. The advantage of this approach is that it 199

does not require annotated training data, but uses 200

existing data to encourage desired model behavior. 201

Chen and Cardie (2018) train a text classification 202

system with an adversarial objective that forces 203

the network to learn domain-invariant features. In 204

addition to a standard text classifier that uses fea- 205

tures from a shared and domain specific feature 206

extractor, they add a domain discriminator which 207

uses the shared feature extractor as input. They run 208

two training passes: 1) a training pass for the en- 209

tire network that uses the correct classification and 210

domain labels; 2) an adversarially trained domain 211

discriminator and only the shared feature extractor, 212

which uses the inverse of domain labels as the tar- 213

get. Prediction only uses the standard classification 214

output. This objective improves performance when 215

classifying text from previously unseen domains. 216

We use this approach to learn language-invariant 217

representations for our linking task, so they can be 218

transferred to a new languages using only source- 219

language language entity linking annotations. 220

We propose an adaptation of this algorithm to 221

our language-transfer entity linking task, described 222

in Algorithm 1 and illustrated in Figure 2. For each 223

epoch, we first adversarially train the language clas- 224

sifier. Using pairs of unannotated English A and 225

L2 B text, we create representations in the same 226

method as for ms as described §2.2. Initially, we 227

use randomly selected names from the ontology 228

for A and B (see §5.4 for other approaches). Each 229

of the two representations are fed into the shared 230

invariant layer hs0, the language classifier hadv, 231

and softmaxed to produce separate language like- 232
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Algorithm 1 Pseudo-code of adversarial model
training. In each epoch, a random set of text
(y = 5) is used to adversarially train the language
classifier. Then, the entity linker and the language
classifier with the correct labels are jointly trained.
Require: Mentions M, entity labels E; English

Text A; L2 Text B; Hyperparameter λ > 0, y,
z ∈ N , num epochs

1: for ep = 0 to num epochs do
2: ladv, l = 0
3: for i = 0 to y do . Adversarial Step
4: tA = representation of Ai

5: tB = representation of Bi

6: pA =Hadv(Hs0(tA))
7: pB =Hadv(Hs0(tB))

. Calculate Lang scores
8: ladv += MSE(pA, L2) + MSE(pB ,

ENG)
. Calculate Loss using reversed labels

9: UpdateHadv using ladv
10: for i = 0 to z do . Main Step
11: m = representation of Mi

12: rm =Hs0(m)
13: e = representation of Ei

14: re =Hs0(e)
15: l = EL Loss (Eq. 1) with rm and re
16: pM =Hadv(rm)
17: pE =Hadv(re)

. Calculate Lang scores
18: l += λ (MSE(pM , ENG) + MSE(pE ,

ENG))
. Calculate Loss using correct labels

19: Update all parameters exceptHadv using l

lihood scores for the English pA and L2 pB text.233

Importantly, we calculate the mean squared error234

(MSE) using the inverted language labels – for the235

English input, we apply the L2 label, and for the L2236

input, we apply the English label. If we train with237

multiple L2 languages at the same time, all incor-238

rect labels are applied with equal probability. We239

stop training the adversarial step after 50 epochs240

for one dataset (Wiki) based on development data241

performance.242

We also run a standard entity linking training243

pass, in which we jointly train the linker and the244

language classifier using our set of training men-245

tions M and corresponding entity labels E. The246

entity linking loss is unchanged from §2.1, except247

that the ms and es are first fed separately through248

the shared invariant layer hs0. The loss for the lan- 249

guage classifier is unchanged from the first step 250

except that the correct labels are used. The effect 251

of the language classifier loss is controlled by the 252

parameter λ, which we set to be either 0.25 or 0.01 253

depending on the dataset. Models including this are 254

referred to as +A. Further implementation details 255

are available in the Appendix. We experimented 256

with adding the additional layers hs0 and not apply- 257

ing the adversarial objective, and feeding both the 258

language-invariant (e.g., m) and language-specific 259

representations (e.g., rm)) into the linker, but both 260

performed worse in development experiments. 261

3.2 KB Adaptation 262

A second source of error comes from a change in 263

the coverage of the KB, not necessarily due to the 264

change in language. Trained entity linkers tend 265

to do well on popular, or previously seen entities. 266

New entities, which are common when a linker 267

changes to a new KB, do worse. Considering the ex- 268

ample in Figure 1: a linker trained on English will 269

favor the KB entry for the U.S. Senate, more com- 270

mon in English language documents, as opposed 271

to the Mexican Senate, which is more common in 272

Spanish documents. This is especially important 273

since we consider models transferred from TAC to 274

our Wiki data (§4), which cover different topics. 275

We adapt the model to a KB in a new language 276

by supplying the entity linker with popularity mea- 277

sures drawn from the new KB. While normally 278

this information would come annotated entity link- 279

ing data, we continue with the zero-shot cross- 280

language transfer setting and instead leverage the 281

cross-links within the entities in the KB, a good 282

indicator of the popularity of entities. For exam- 283

ple, the entity Senado de la República might have 284

a link to the lower legislature of Mexico, Cámara 285

de Diputados, and the President of Senate, Presi- 286

dente de la Cámara de Senadores. Others, such as 287

Senado de Arizona, are likely to have fewer. We 288

count unique cross-links between entities, divide 289

by the median number of links, and feed the re- 290

sult into the final feed forward neural network h 291

(indicated as +P). 292

4 Datasets 293

We consider entity linking datasets in multiple lan- 294

guages from two sources. We treat each language 295

as having a distinct KB, although entities may over- 296

lap in different languages. We predict NILs (men- 297
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tions with no matching entity) as those where all298

candidate entities are below a given threshold (−1299

unless otherwise noted). We evaluate using the300

script from Ji et al. (2015): Precision, Recall, F1,301

and Micro-averaged precision. See Appendix B for302

implementation details.303

TAC. The 2015 TAC KBP Entity Discovery304

and Linking dataset (Ji et al., 2015) consists of305

newswire and discussion posts in English, Spanish,306

and Mandarin Chinese. A mention is linked to NIL307

if there is no relevant entity in the KB. The KB is308

based on BaseKB. KB entities without non-English309

names are omitted.310

Wiki. We created a multi-language entity link-311

ing dataset from Wikipedia links (Pan et al., 2017a)312

for Farsi and Russian. A preprocessed version of313

Wikipedia1 is annotated with links to in-language314

pages, which we treat as entities. We consider this315

to be silver-standard data because–unlike TAC –316

the annotations are automatically derived. Thus317

the resulting distribution of mentions is different.318

Comparing the number of exact matches between319

the mention text and the entity name in Wikipedia320

(e.g.,, in Farsi 54.5%) to TAC (e.g.,, in Spanish321

21.2%) underscores that TAC is a more illustrative322

dataset. We include two Wikipedia languages to323

expand the number of languages to evaluate, but324

caution treating Wikipedia as a replacement for a325

human-annotated entity linking dataset.326

Triage. We use the triage system of Upadhyay327

et al. (2018), which retrieves a reduced set of en-328

tities for a mention for us to score. For a given329

gold mention m, a triage system will provide a set330

of k candidate entities e1 . . . ek. The system uses331

Wikipedia cross-links to generate a prior probabil-332

ity Pprior(ei|m) by estimating counts from those333

mentions. Originally, this system was designed334

to produce cross-language candidate links, specif-335

ically for a non-English mentions to English ti-336

tles. We tweak this approach by applying the same337

pipeline, but for in-language titles, which did not338

require any major algorithmic adaptations.339

5 Model Evaluation340

We begin with a zero-shot evaluation: how well341

does a model trained on English (TAC) transfer to342

a new language with no new training data? We eval-343

uate the English trained model on Spanish (es) and344

1We thank the authors of Pan et al. (2017a) for providing
us with a preprocessed Wikipedia. We will work with the
authors to release the dataset.

Chinese (zh) for TAC, and Russian (ru) and Farsi 345

(fa) for Wiki. We also train a separate model for 346

each of these languages to establish an in-language 347

performance baseline. We illustrate the difference 348

in performance of an English-only model as com- 349

pared to an in-language trained one in Figure 3; 350

the dashed line above each metric shows the in- 351

crease in performance. To control for the effect 352

of training set size we ensure that the training sets 353

are of equivalent size for each language by ran- 354

domly downsizing the larger training dataset (e.g., 355

English) to match the smaller (e.g., Spanish). For 356

comparison, we include a simple nearest neighbor 357

baseline (noted as nn), which selects the highest 358

scoring mention-entity pair using cosine similar- 359

ity between the mention name ms and the entity 360

representation es. 361

We then apply our language (noted as +A) and 362

KB (noted as +AP) adaptation strategies for each 363

language, and measure the performance on both the 364

target and English language. In all cases, reported 365

metrics are averaged over three runs. We report 366

results for each language in the form of micro- 367

averaged precision (micro), recall (r), and F1. See 368

Appendix Table 2 for full results and additional 369

metrics, and Tables 3 and 4 for development results. 370

5.1 Transfer Performance 371

Figure 3 shows that zero-shot cross-language trans- 372

fer from English gives worse performance com- 373

pared to in-language models. For TAC languages 374

(es and zh) there is a large decrease in micro-avg 375

and F1, and the same for Wiki languages (fa and 376

ru), except that F1 decreases more significantly 377

than recall, illustrating a drop in precision. Still, 378

the overall drop in performance is not large - the 379

largest drop in F1 is only .1 less compared to the 380

in-language baseline. This illustrates that the linker 381

is able to transfer across language and knowledge 382

bases effectively. Compared to the baseline near- 383

est neighbor model, which one performs better de- 384

pends on the language. For example, while Spanish 385

F1 is nearly the same, Chinese F1 is slightly higher 386

with the nn, but in Farsi the English-trained model 387

is a large improvement for F1. 388

We also evaluate other languages as sources of 389

transfer. Appendix Table 2 shows results on train- 390

ing models on Chinese using the +A approach and 391

testing on Spanish, demonstrating that our results 392

are not specific to English. Note that the same 393

pattern appears when transferring from a Chinese 394
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Figure 3: Compared to an English-only baseline (0.0 on y-axis), how do models with the adversarial objective
(+A), the adversarial objective with popularity (+PA), and a nearest neighbor baseline (nn) perform? While in
most cases, the performance of all models is below that of an in-language trained model (dashed line), +A most
closely matches the recall in most cases. Additionally, +PA is best able to improve micro-average, especially
compared to the poor performance of nn. All results and additional metrics are provided in Appendix Table 2.

trained model to a Spanish model. While the Span-395

ish performance is understandably worse when396

transferring from Chinese instead of English, the397

reduction of F1 performance is only −.086.398

5.2 Language and KB adaptation399

We train the TAC and Wiki datasets with different400

adversarial configurations based on development401

results (see §5.4): TAC: λ = 0.25 and the adversar-402

ial step covers all of training; Wiki: λ = 0.01 and403

stop the adversarial step after 50 epochs.404

Applying the adversarial objective to English-405

trained models usually increases recall compared406

to the baseline English-trained models, and often407

even compared to the in-language trained models.408

For example, the English-trained, Chinese-tested409

model sees a large drop in recall which is almost410

completely eliminated when applying the adver-411

sarial objective. This increase in recall leads to412

nearly-equivalent F1 performance in Spanish and413

Chinese in-language models and English trained414

models with the adversarial objective. In short, ad-415

versarial training greatly improves the models abil-416

ity to locate the right KB entry, suggesting better417

name matching. This recall-focused improvement418

is useful for settings where high-recall is desired, 419

such as in search. The exception to this is Farsi – 420

this is likely because the high recall 0.934 of the 421

zero-shot model established a high starting point. 422

Compared to the nearest neighbor baseline, the +A 423

outperforms the baseline in all languages for F1, 424

nn F1, micro-avg., and recall. The same pattern ap- 425

pears when transferring a Chinese model instead of 426

English. The F1 performance is only −.017 below 427

the in-language trained model despite not sharing 428

a writing system. 429

We also explored transferring a multilingual 430

model: training on English with +A and testing 431

on all target languages at once (see Appendix Table 432

2). In almost all cases, the multilingual adversarial 433

approach performs worse than a single-language 434

one, but only slightly; it may be preferable when 435

targeting multiple languages. KB popularity (+AP) 436

has the largest effect on micro-average precision 437

by doing much better on rarer entities, specifically 438

in the TAC dataset. While in Chinese the improve- 439

ment in micro-average is larger in the +AP models 440

than in +A, in all other cases the micro-average is 441

close to the +A model. 442
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Target micro F1 nn F1

baseline (zh match) 0.484 0.672 0.797
zh+A +.009 +.014 +.015
zh+P +.030 −.025 −.031
baseline (es match) 0.472 0.678 0.802
es+A +.004 −.014 −.017
es+P +.011 −.036 −.043

Table 1: Compared to a baseline English TAC model
(with training set size reduced to the noted language’s
training set size), we find that English performance is
largely unchanged for both +A and +P.

Test micro r F1 nn F1

zh 0.674 0.789 0.824 0.846
en baseline −.341 −.123 −.060 −.071

+A
na

m
e .25 −.190 −.001 +.009 −.003

.01 −.202 −.078 −.033 −.036
.25+EL −.205 −.123 −.062 −.073
.01+EL −.230 −.137 −.072 −.087

+A
de

sc

.25 −.317 −.048 −.015 −.012

.01 −.169 −.088 −.041 −.046
.25+EL −.287 −.188 −.108 −.133
.01+EL −.145 −.150 −.080 −.097

Table 2: How do adversarial settings affect perfor-
mance? We consider the coefficient λ, type of text
(names or descriptions), and entity-only training for 50
more epochs (i.e., we stop updating the language clas-
sifier, + EL). Comparing an in-language to an English
trained model using TAC Chinese evaluation, we find
that λ = .25 with name data performs best in terms of
recall, F1, and nn F1.

We explored model behavior on different types443

of entities using the TAC evaluation dataset and444

provided mention types (see Appendix Table 5).445

For Person mentions, we see consistent perfor-446

mance between in-language, English, and En-447

glish+A trained models. While this is not unex-448

pected in Spanish (which has similar names to449

English), it is also true in Chinese, which uses a450

different orthography than English. The largest per-451

formance change occurred in Geo-Political Entities.452

For Chinese, F1 drops 0.15 for an English trained453

model compared to an in-language trained model,454

but the deficit is erased in the English+A model. A455

similar pattern occurs in Spanish, suggesting that456

the adversarial model is able to improve the more457

challenging entity types.458

5.3 Effect on English performance 459

What effect does forcing an English-trained model 460

to better orient to a target language have on English- 461

language performance? Table 1 shows TAC En- 462

glish evaluation results in three settings: 1) a base- 463

line linker with English training data matched to 464

the size of the target language’s training data; 2) the 465

added +A objective; 3) the added +AP objective. 466

These are the same models as in Table 1, except 467

tested on English. 468

Interestingly, the performance change is very 469

small: a small increase for micro-average and a 470

small decrease in F1 and non-NIL F1. The largest 471

drop in performance is less than 0.05. This illus- 472

trates the capacity of the model: it can adapt to a 473

new language while maintaining its performance 474

on the source language. 475

5.4 Design of Adversarial objective 476

How does the configuration of the +A model 477

change its behavior? We vary three factors and 478

measure results on TAC evaluation (Table 2): 1) 479

the size of the coefficient λ; 2) whether to train 480

using the entity linking objective only for an addi- 481

tional 50 epochs instead of for all epochs (for lower 482

λ and additional entity linking training, we found 483

that both worked better on Wiki development data, 484

while a higher λ and full training worked better 485

for TAC); and 3) training +A using randomly se- 486

lected names from English and the target language 487

plausibly learns a better name model than it does 488

language-invariant representations, so we instead 489

train with the first 512 subwords of randomly se- 490

lected descriptions. 491

Comparing to a Chinese trained model, we re- 492

port results in Table 2, with all non-baseline models 493

trained on the joint entity linking and adversar- 494

ial objective for 50 epochs, and the +EL models 495

trained on EL data for an additional 50. Our re- 496

ported setting for TAC, λ = 0.25 with name data, 497

performs best on recall, F1, and non-NIL F1. How- 498

ever, when using the description data and λ = 0.01 499

with or without additional EL training, a better 500

micro-averaged precision is achieved. Generally, 501

the models using name data perform slightly better 502

than those using descriptions, but the overall dif- 503

ference is slight (e.g., +.009 F1 for λ = 0.25 with 504

name, −.015 F1 with description), suggesting that 505

the model is learning better multilingual representa- 506

tions. Finally, recall generally performs best with a 507

higher λ and full adversarial training, and improves 508
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less with a lower λ and EL only training.509

5.5 Analysis510

While our training methods are effective, they are511

inconsistent across our experiments. +A improves512

performance more on TAC data (Spanish and Chi-513

nese) than Wiki data (Farsi and Russian).514

We postulate several explanations for this trend.515

First, the distribution of mentions is different be-516

tween the two datasets. The lexical similarity be-517

tween mentions and entity names – one measure518

of how easy the mentions are to link – is much519

higher in Wiki. For Farsi development mentions,520

54.5% were exact matches and also had an over-521

all Jaro-Winkler (Winkler, 1990) lexical similar-522

ity of 94.1%. Compared to Spanish TAC (21.1%523

exact, 71.4% similarity) and Chinese (28% exact,524

66.1% similarity), the Farsi data is relatively easy525

to link. While many entity linking studies rely on526

Wikipedia data due to its availability, it is not rep-527

resentative of other data types; we should build528

more human-annotated entity linking resources in529

non-English languages.530

When comparing the drop in performance from531

an in-language trained model to an English trained532

model, recall drops in the TAC data, while preci-533

sion drops in the Wiki data. The drop in precision534

may be due to the fact that we use English TAC535

data to train the zero-shot Wiki models, and that536

recall is fairly easy given the high mention-entity537

similarity. Another factor is the possibility that538

Wikipedia text is less suited as adversarial training539

data, compared to that from TAC. Thus, while see540

an increase in recall in the Wiki models, but this541

does not cancel out the reduction in precision.542

6 Related Work543

Many studies on entity linking (Dredze et al., 2010;544

Durrett and Klein, 2014; Gupta et al., 2017; Lample545

et al., 2016; Francis-Landau et al., 2016; Cao et al.,546

2018; Mueller and Durrett, 2018; Wang et al., 2015;547

Witten and Milne, 2008; Piccinno and Ferragina,548

2014; Orr et al., 2020) have served as the basis549

for developing cross-language systems, and they550

inform our own model development. Separately,551

there has been increasing research in monolingual552

model transfer in other information extraction tasks553

(Johnson et al., 2019; Rahimi et al., 2019).554

One multilingual model is Raiman and Raiman555

(2018), which transfers an English-trained system556

to French-language Wikipedia. They formulate a557

type system as a mixed integer problem, which 558

they use to learn a type system from knowledge 559

graph relations. Their training approach uses broad 560

amounts of annotated data with type information 561

(e.g., all of English Wikipedia). Since we do not 562

train English Wikipedia models, and also do not 563

use that magnitude of training data, we were not 564

able to produce numbers using their system that are 565

comparable to ours despite our best efforts to do so. 566

Other recent work (Botha et al., 2020) uses a neural 567

approach to link mentions in multiple languages, 568

but differs from us by targeting language-agnostic 569

KBs that include text in multiple languages. Work 570

using unsupervised graph methods, such as Wang 571

et al. (2015), are applied in non-English language 572

pairs, such as Chinese, but are not transferred from 573

a secondary language. 574

The related task of cross-language entity link- 575

ing motivates approaches like transliteration (Mc- 576

Namee et al., 2011; Pan et al., 2017b), or mono- 577

lingual entity linking paired with translation (Ji 578

et al., 2015). Some (Tsai and Roth, 2016; Upad- 579

hyay et al., 2018) use the cross-language structure 580

of Wikipedia to build entity linkers, or Rijhwani 581

et al. (2019) study cross-language entity linking on 582

low-resource languages. 583

7 Conclusion 584

In this work, we explore how to build a 585

monolingually-trained entity linker that can be 586

transferred to new languages that do not have anno- 587

tated training data. With a neural ranker model us- 588

ing XLM-R, we see that while in-language trained 589

models perform better than English-trained mod- 590

els applied to second languages, the performance 591

decrease is not large. 592

We presented several ways to improve these 593

zero-shot models and find that an adversarial lan- 594

guage classifier improves recall and F1 on many 595

datasets. Furthermore, by adjusting the adversarial 596

parameters, different performance objectives can 597

be achieved, such as maximizing recall or micro- 598

averaged precision. We also present a detailed anal- 599

ysis of our models, demonstrating which settings 600

have the highest expectation of success. Overall, 601

we find that training the model to learn language- 602

invariant representations is effective in improving 603

performance when transferring to both text and a 604

KB in a new language. 605
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A Architecture information762

Parameter Values
Context Layer(s) [768], [512], [256], [512,256]
Mention Layer(s) [768], [512], [256], [512,256]
Final Layer(s) [512,256], [256,128], [128,64], [1024,512],

[512], [256]
Dropout probability 0.1, 0.2, 0.5
Learning rate 1e-5, 5e-4, 1e-4, 5e-3, 1e-3

Table 6: To select parameters for the ranker, we tried 10 random combinations of the above
parameters, and selected the configuration that performed best on the TAC development set.
The selected parameter is in bold. The full TAC multilingual model takes approximately 1
day to train on a single NVIDIA GeForce Titan RTX GPU, including candidate generation,
representation caching, and prediction on the full evaluation dataset – the Wiki model takes
approximately 12 hours for the same set of steps.

B Dataset763

TAC The training set consists of mentions across764

447 documents, and the evaluation set consists of765

mention annotations across 502 documents. This766

leaves us 14, 793 development mentions, of which767

11, 344 are non-NIL.768

Wiki Some BaseKB entities used in the TAC769

dataset have Wikipedia links provided; we used770

those links as seed entities for retrieving mentions,771

retrieving a sample mention of those and adding772

the remaining links in the page. We mark 20% of773

the mentions as NIL.774

Triage We use the system discussed in for both775

the TAC and Wiki datasets. However, while the776

triage system provides candidates in the same KB777

as the Wiki data, not all entities in the TAC KB778

have Wikipedia page titles. Therefore, the TAC779

triage step requires an intermediate step - using the780

Wikipedia titles generated by triage (k = 10), we781

query a Lucene database of BaseKB for relevant782

entities. For each title, we query BaseKB propor-783

tional to the prior provided by the triage system,784

meaning that we retrieve more BaseKB entities for785

titles that have a higher triage score, resulting in786

l = 200 entities. First, entities with Wikipedia ti-787

tles are queried, followed by the entity name itself.788

If none are found, we query the mention string -789

this provides a small increase in triage recall.790
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Spanish (es) evaluation Chinese (zh) evaluation
Training micro p r F1 nn F1 micro p r F1 nn F1

same 0.623 0.910 0.711 0.798 0.870 0.670 0.862 0.787 0.822 0.844
nn 0.375 0.924 0.633 0.751 0.809 0.244 0.910 0.719 0.803 0.826
en 0.565 0.925 0.635 0.753 0.810 0.371 0.893 0.647 0.750 0.757
en+A 0.615 0.923 0.706 0.800 0.876 0.472 0.877 0.770 0.820 0.839
en+P 0.632 0.919 0.616 0.738 0.790 0.462 0.869 0.636 0.734 0.734
en+PA 0.628 0.921 0.633 0.750 0.808 0.622 0.871 0.698 0.775 0.790
en+A (all) 0.562 0.917 0.694 0.790 0.862 0.466 0.882 0.722 0.794 0.813
zh 0.492 0.924 0.579 0.712 0.755 — — — — —
zh+A 0.523 0.901 0.690 0.781 0.852 — — — — —

Farsi (fa) evaluation Russian (ru) evaluation
Training micro p r F1 nn F1 micro p r F1 nn F1

same 0.838 0.902 0.958 0.929 0.908 0.526 0.729 0.827 0.775 0.721
nn 0.392 0.560 0.950 0.705 0.585 0.362 0.654 0.868 0.746 0.680
en 0.623 0.748 0.934 0.830 0.774 0.552 0.798 0.863 0.829 0.791
en+A 0.498 0.616 0.918 0.737 0.639 0.508 0.697 0.899 0.785 0.729
en+A (all) 0.525 0.631 0.955 0.759 0.668 0.516 0.758 0.852 0.802 0.755
en+P 0.627 0.700 0.958 0.809 0.741 0.565 0.700 0.889 0.783 0.728
en+PA 0.584 0.679 0.930 0.785 0.709 0.519 0.661 0.881 0.755 0.691

Table 4: Compared to an in-language trained model and a nearest-neighbor baseline (nn), how does a zero-shot
model trained only on English transfer? We find that while there is usually a performance improvement, it is
often not large. Can we recover some of that lost performance by using an adversarial objective (+A) or adding
knowledge base information (+P), or both (+PA)? We find that when applying an adversarial objective specifically,
recall is increased leading to higher F1 scores. For each setting, we report Micro-avg., precision, recall, F1, and
non-NIL F1 on TAC and Wiki datasets.

Train /
Test

All Non-NIL
Model micro p r f1 micro p r f1 Epoch

zh/zh Baseline 0.795 0.890 0.830 0.859 0.801 0.884 0.884 0.884 50
en/zh Baseline 0.202 0.905 0.697 0.788 0.077 0.899 0.721 0.800 100
en/zh +A 0.439 0.897 0.732 0.806 0.367 0.892 0.764 0.823 50
en/zh +A 0.381 0.911 0.756 0.827 0.296 0.907 0.794 0.847 50
en/zh +PA 0.635 0.889 0.753 0.815 0.606 0.881 0.789 0.833 100
en/zh +A (Desc) 0.266 0.908 0.718 0.802 0.156 0.903 0.747 0.818
en/zh +PA (Desc) 0.645 0.885 0.774 0.826 0.618 0.877 0.815 0.845
en/zh +P 0.544 0.894 0.685 0.776 0.494 0.888 0.707 0.787 200
es/es Baseline 0.714 0.933 0.777 0.848 0.739 0.930 0.891 0.910 50
en/es Baseline 0.488 0.942 0.643 0.764 0.444 0.944 0.716 0.815 100
en/es +A 0.469 0.938 0.693 0.797 0.420 0.939 0.782 0.853 150
en/es +A (multi) 0.548 0.952 0.753 0.841 0.523 0.956 0.860 0.906 50
en/es +PA 0.654 0.931 0.695 0.796 0.660 0.931 0.784 0.851 100
en/es +A (Desc) 0.496 0.943 0.737 0.828 0.455 0.949 0.839 0.891
en/es +PA (Desc) 0.650 0.937 0.692 0.796 0.656 0.939 0.780 0.852
en/es +P 0.664 0.928 0.698 0.797 0.674 0.930 0.788 0.853 150
zh/es Baseline 0.378 0.942 0.661 0.777 0.301 0.943 0.739 0.829 550
zh/es +A 0.514 0.939 0.785 0.855 0.479 0.945 0.902 0.923 49

Table 5: Single runs of Development TAC results for our reported models, and the training epoch we report for
that configuration in the evaluation results table. Note that while we report results with the training sets equalized
(zh and en training are set to be of equal size) for evaluation, the full development results do not have equalized
training set sizes.
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Train/Test Model micro p r f1 Eval Epoch
ru/ru Baseline 0.650 0.823 0.888 0.854 800
en/ru Baseline 0.484 0.762 0.855 0.806 550
en/ru +A 0.451 0.712 0.893 0.792 50
en/ru +A (multi) 0.4188 0.6517 0.8652 0.7434 200
en/ru +P 0.473 0.685 0.860 0.762 50
fa/fa Baseline 0.832 0.881 0.966 0.922 800
en/fa Baseline 0.603 0.720 0.928 0.811 150
en/fa +A 0.447 0.555 0.948 0.700 200
en/fa +A (multi) 0.448 0.538 0.966 0.691 50

Table 6: Single runs of Development Wiki results for select reported models, and the training epoch we report for
that configuration in the evaluation results table. Note that while we report results with the training sets equalized
(ru and en training are set to be of equal size) for evaluation, the full development results do not have equalized
training set sizes. For the +AP model, we report at Epoch 150 for Russian and 200 for Farsi, and for +P Farsi we
report Epoch 50 (same as in Russian). Note that with the Farsi +A (multi) model, since the best performing epoch
was at 50, in effect to EL-only training was performed.

In-Language En En+A
type lang count micro r f1 micro r f1 micro r f1

CMN FAC 59 0.169 0.631 0.756 0.119 0.515 0.670 0.169 0.632 0.768
CMN GPE 3933 0.856 0.906 0.912 0.108 0.685 0.796 0.510 0.887 0.916
CMN LOC 461 0.729 0.947 0.886 0.488 0.810 0.840 0.547 0.933 0.892
CMN ORG 1441 0.160 0.726 0.774 0.299 0.629 0.722 0.127 0.799 0.821
CMN PER 3116 0.708 0.682 0.797 0.612 0.676 0.792 0.610 0.676 0.792
SPA FAC 59 0.051 0.294 0.454 0.068 0.285 0.444 0.102 0.289 0.448
SPA GPE 1570 0.664 0.891 0.927 0.338 0.674 0.791 0.532 0.830 0.888
SPA LOC 174 0.144 0.824 0.874 0.672 0.717 0.810 0.787 0.863 0.892
SPA ORG 799 0.451 0.681 0.782 0.444 0.678 0.779 0.444 0.691 0.788
SPA PER 2022 0.715 0.624 0.755 0.693 0.602 0.741 0.723 0.624 0.755

Table 7: How do the results of in-language training compare to English-only trained models and models trained
with the adversarial objective? We find that some types perform consistently, such as PER (or Persons) even in
languages that do not share scripts. Others, such as GPE (Geo-Political Entities) and ORG (Organizations) see a
substantial drop in performance when applying a English-only model, but see more of that regained when using an
adversarial objective. These results are taken from a single run of the TAC evaluation data.
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