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ABSTRACT

Human infants learn to recognize objects largely without supervision. In machine
learning, contrastive learning has emerged as a powerful form of unsupervised rep-
resentation learning. The utility of learned representations for downstream tasks
depends strongly on the chosen augmentation operations. Taking inspiration from
biology, we here study a framework for unsupervised learning of object repre-
sentations we call Contrastive Learning Through Time (CLTT). CLTT simulates
viewing sequences as they might be experienced by an infant while interacting
with objects and avoids arbitrary augmentation operations. Instead, positive pairs
are formed by successive views in such unsegmented viewing sequences. Gener-
ating viewing sequences procedurally, rather than using natural videos, gives us
perfect control over the temporal structure of the input and allows us to ask the
following two questions. First, can CLTT approach the performance of fully su-
pervised learning? Second, if so, what are the required conditions on the temporal
structure of the input? To answer these questions, we develop a new data set us-
ing a near-photorealistic training environment based on ThreeDWorld (TDW). We
consider several state-of-the-art contrastive learning methods and demonstrate that
CLTT allows linear classification performance that approaches that of the fully su-
pervised setting if subsequent views are sufficiently likely to stem from the same
object. We also consider the effect of one object being seen systematically before
or after another object. We show that this leads to increased representational sim-
ilarity between these objects, reminiscent of classic neurobiological findings. The
data sets, code and pre-trained models for this paper can be downloaded at: (link
will be added in the final version).

1 INTRODUCTION

A hallmark of biological organisms is their ability to learn to understand the world around them
in a largely autonomous fashion. Consider learning about visual objects. A human infant is not
exposed to object views sampled i.i.d. from some fixed distribution and conveniently labeled image
by image, but forms representations of objects and categories during extended interactions with
individual objects (Bambach et al.,|2018) and requires hardly any (verbal) labels for this (LaTourrette
& Waxman, |2019). Mimicking such learning abilities in artificial systems would represent a giant
leap forward for artificial intelligence.

Self-supervised learning has emerged as a promising alternative to fully supervised approaches. In
the domain of visual object recognition, recent contrastive learning approaches have obtained strong
results on standard object recognition benchmarks (Chen et al., 2020azb; [Mitrovic et al., 2021} |Grill
et al.,|2020). These approaches rely on a range of so-called augmentation operations. The basic idea
is that an image is transformed through a number of operations (e.g., scaling, flipping, cropping,
rotating, blurring, color distortions, pixel noise, ...) that change its appearance but not its meaning
(e.g., “cat”). The key mechanism of contrastive learning is to form a representation where such
augmented versions of an image are mapped on to close-by latent representations, while at the same
time avoiding a “collapse” of the representation, i.e., making sure the network does not simply
map all inputs to the same point in the latent space. Not surprisingly, the quality of the learned
representations for downstream tasks strongly depends on the chosen augmentation operations (Grill
et al., [2020).

Theories of biological learning have also addressed the requirement to learn object representations
without (or with only few) labels. The classic theory of how biological organisms learn invariant
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Figure 1: Contrastive Learning Through Time (CLTT). A. Infants learn about objects during ex-
tended interactions with these objects. Typically, they experience different views of an object before
a different object comes into view. B. Our CLTT approach mimics the essence of such interac-
tions. A certain number Ng, of object views are sampled before directing attention to another
object. Latent representations of successive views are made more similar. Ng, determines the rel-
ative abundance of intra-object transitions vs. inter-object transitions. Importantly, CLTT does not
require knowledge of which transitions are inter-object transitions. Both types of transitions are
treated identically during learning, making the approach fully unsupervised.

representations uses the notion of time to substitute for explicit labeling (Foldiakl 1991} [Rolls &
Milward| 2000; [Wiskott & Sejnowskil 2002). Biological organisms (including the human infant
mentioned above) experience objects across time, typically seeing a sequence of different views of
the same object before directing their attention elsewhere (Fig. [T]A). Thus, by learning a represen-
tation such that subsequent views are mapped onto close-by latent codes (Fig.[IB), a representation
should emerge that maps different views of the same object onto similar latent codes, thereby estab-
lishing (partial) invariance. While this idea has a long history in biological theorizing, it has only
recently been explored in a contrastive learning context. The basic idea is to replace the augmen-
tation operations in contrastive learning with natural appearance variation occurring during object
interactions. To systematically study this approach, we propose a new Contrastive Learning Through
Time (CLTT) framework that permits perfect control over the generated viewing sequences. For our
experiments, we utilize the ThreeDWorld (TDW) virtual environment (Gan et al., {2021}, which al-
lows near-photorealistic rendering. We also simulate classic biological experiments by [Miyashita
(1988), demonstrating that objects form similar latent representations in the brain when they are
systematically seen one after the other, even if they are visually dissimilar (Miyashital |1988)). We
summarize our contributions as follows:

* We develop the CLTT framework using state-of-the-art contrastive learning methods.

* We introduce novel data sets to study CLTT under controlled conditions.

* We systematically analyze the conditions for CLTT to be successful and demonstrate that
it approaches fully supervised learning.

* We show that CLTT maps objects that are systematically seen in temporal succession on
similar latent representations, reminiscent of classic neurobiological findings.

2 RELATED WORK

An early demonstration that the temporal structure of visual inputs shapes object representations in
primate visual cortex was given by Miyashital (1988)). He showed 97 images of fractal-like objects
to monkeys in always the same order. As the monkeys learned to represent these images in their
visual cortices, Miyashita’s observations suggested that the representations of objects which were
neighbors in the sequence became aligned — even if these objects were visually dissimilar. This
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effect extended over a few objects, i.e., the representations of objects six steps apart in the sequence
were still more similar than the average similarity.

In part motivated by such findings, there is a long history of neural network and machine learning
models exploiting temporal structure for unsupervised representation learning. in-
troduced so-called trace learning rules to explain how neurons in the mammalian visual system learn
invariance properties, setting a starting point for later models considering multi-layered network ar-
chitectures (Rolls & Milward] [2000). Another line of research introduced by [Wiskott & Sejnowski
explicitly considers the objective of extracting components from an input stream that are
slowly changing. A recent variant attempts to do so in a biologically plausible fashion (Lipshutz]

et al} 2020).

The use of temporal learning objectives in contrastive learning has received increasing attention re-
cently. Among the first,[Mobahi et al](2009) have proposed a method for learning object represen-
tations that combines supervised learning and unsupervised learning based on temporal coherence
using a siamese neural network architecture. Subsequently,[Wang & Guptal (2015)) used tracking of
patches in videos for unsupervised pre-training, by learning an embedding that keeps patches from
the same track close in the embedding space.

An approach more closely related to ours has recently been proposed by |Orhan et al.| (2020). They
consider learning on a longitudinal headcam video set from three developing children
2020). They focus on a temporal classification approach, where they divide the videos into a
finite number of contiguous segments of the same length that they call temporal classes. The learn-
ing objective is to predict from which of the classes a particular video frame originates. They also
consider a temporal contrastive learning objective with the MoCo contrastive learning implementa-
tion of |Chen et al.| (2020b). This objective also aims to make the latent representations of adjacent
video frames similar. However, the use of uncontrolled headcam video does not permit determining
the required the temporal statistics of the visual input for the approach to work. Another related
approach is that of [Knights et al.[{(2021]), who learn embeddings of video clips. Their learning objec-
tive makes latent codes of adjacent frames within a video clip similar, while making them distinct
from latent codes of frames from other video clips. Note that this setup requires the video clips to
be segmented, i.e., the system has access to the information where each video starts and ends rather
than being exposed to an unlabeled continuous video stream as in/Orhan et al.| (2020) and CLTT. The
same holds true for the recent approach of [Feichtenhofer et al (2021} and also|Pan et al.| (2021)). Yet,
they don’t make the connection between continuous time frames and biologically-inspired vision.
Finally, the interesting work of [Stojanov et al| (2019) has modeled continual infant-like learning
of object representations from unsegmented input streams, but they did not consider a contrastive
learning approach.

3 METHODS

3.1 SAMPLING SEQUENCES OF OBJECT VIEWS IN CLTT

CLTT aims to mimic the stream of object views that an infant may experience during natural interac-
tions with objects, while giving precise control over the statistical properties of this view sequence.
Specifically, an object is always viewed for Ngy fixations before another object comes into view.
Importantly, the learner does not have access to the information when a new object comes into view,
making the approach fully unsupervised. Generating these view sequences involves two sampling
procedures. The first describes how the next view of the same object is sampled during the Ngy fix-
ations on the same object. We refer to this as view sampling. The second describes how the identity
of the next object is determined at the end of the Ny fixations on the same object, which we refer
to as object sampling.

For the view sampling, we distinguish two sampling methods. Our default method is the random
walk view sampling. Here, the next view of an object is a “neighbor” of the previous view. For
example, in the TDW data set (see below) this corresponds to changing azimuth or elevation by
10° or viewing distance by 10 cm. This procedure mimics the infant gradually turning an object or
moving around an object while fixating it. The second method is the uniform view sampling. Here,
the next view is picked uniformly at random. While this does not mimic infants’ viewing sequences,
it provides more diversity among successive views, which is expected to aid learning.
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For the object sampling we also distinguish two methods. Our default method is the random order
method. Here, the order of the objects is a new random permutation during each training cycle.
This corresponds to the case that the infant encounters objects randomly. The second method uses a
fixed order of objects, i.e., object A is always followed by object B, etc. in all training cycles. This
situation matches the neurobiological experiments by and is expected to lead to an
alignment of the latent codes of objects that are consistently seen in succession.

Training occurs in cycles. In every cycle each of the Ngp; objects will be chosen exactly once
— the order depending on the chosen object sampling method. Thus, a cycle consists of a total
of Nobj x Ngx object views. The Ngy views for each object are determined by the chosen view
sampling procedure. Several cycles of N,p,; X Ny views are stored in a buffer. For our experiments
we use a batch size of 256. During learning, batches of pairs of subsequent views are sampled
uniformly from the buffer. This leads to a probability 1/Ngy of sampling inter-class transitions and
a probability of (Ngx — 1)/Ngyx of sampling intra-class transitions (compare Fig. 1). We consider an
epoch to be a full run through the buffer, which is chosen to be of equal size as the underlying data
set. That means that on average, every image of the data set is presented once during each epoch.

3.1.1 CONTRASTIVE LEARNING ALGORITHMS FOR CLTT

The sampled sequences can be fed into a wide range of contrastive learning methods. Here we
consider SimCLR (Chen et al.}[2020a) and RELIC (Mitrovic et al, 202T) in which for every positive
pair, all the other pairs in the batch are considered negative pairs. We also experiment with BYOL
2020), that uses only positive pairs. We refer to the CLTT versions of these algorithms as
SimCLR-TT, RELIC-TT, and BYOL-TT, respectively. In all cases, we use a ResNet-18 architecture
to transform the input images into 128-dimensional latent representations, which
is followed by a single layer as the projection head for RELIC-TT and SimCLR-TT. For BYOL-TT
we use a two layer projection head with batch normalization after the hidden layer.

SimCLR-TT. SimCLR (Chen et al.,[20204) is an effective contrastive learning approach for visual
representation learning. By defining a wide range of augmentation operations and treating differ-
ently augmented images as positive samples, SImCLR has achieved state-of-the-art performance.
Its groundbreaking success has triggered a surge of interest in augmentation-based self-supervised
learning. For SimCLR-TT we replace the traditional augmentations with successive views as pairs
defined in the previous subsection. For each positive pair, all remaining pairs in the batch are con-
sidered negative samples. The loss of SImCLR-TT is then defined as follows:

exp (sim (2, 2}) /7)

SoRZ o [exD (sim (27, 21)) + exp (sim (24, 2;))] /7

L (z) = —log )

where z; and z| are the latent codes of a sampled view pair, and Np is the number of pairs in a

. . . . . . . . . . T
batch. Specifically, we use the cosine similarity as the similarity function sim (u,v) = m

For simplicity, we set the temperature parameter 7 in the original SimCLR loss to be 1. In all our
experiments, we use the AdamW optimizer (Loshchilov & Hutter, [2019) with a starting learning
rate of 1073, which decays by a factor of 0.3 after every 10 epochs. The batch size for training is
256 and the buffer size is determined by the size of the data set.

RELIC-TT. RELIC (Mitrovic et al} [2021)) is an approach that uses an additional penalty loss
compared to SimCLR. It obtains state-of-the-art results by keeping the similarity distribution of one
sample invariant against differently augmented views of other samples. Incorporating this notion
into the CLTT approach, we derive RELIC-TT by adding another loss term that. The loss can be
described as follows:

Ly(z:) =KL(p (Y |2),p(Y |%)), @)
where K L is the Kullback-Leibler divergence and
exp (sim (z;, zé))
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Figure 2: Data sets developed/used in our study. A. TDW data set containing common household
objects viewed from different orientations and distances. The upper two images show the same
example object (‘“hair brush”) from two perspectives. The lower two images show two other example
objects B. Fractal-like objects inspired by [Miyashital (1988). C. Example objects from COIL-100.

In the definition above, z; and z; are the latent codes of the first view and the second view of the
sampled view pair. The similarities between z; and all the second views in every pair are calculated
and passed to a Softmax function as shown in equation 3] The same computation is done for the
second view z/ for all the other first views, resulting in totally two probability distributions denoted
asp (Y | z;) and p (Y | z}) that resembles a classification task of predicting the label Y out of totally
Np classes. And then those two distributions are pulled together by minimizing the KL divergence
between them. The training configuration is the same as used in SImCLR-TT.

BYOL-TT. BYOL-TT builds on the Bootstrap Your Own Latent (BYOL) architecture by (Grill
et al) [2020). BYOL has been shown to outperform other contrastive learning architectures like
SimCLR (Chen et al., 2020a) or MoCov?2 (Chen et al.,|2020b) on the ImageNet data set (Deng et al.,
2009). A key advantage of the BYOL architecture is that it works without negative pairs, which sets
it apart from other contrastive learning algorithms. Instead, it uses a second so-called target network.
The target network receives an augmented version of the input data like the online network. It will
produce a target projection and the online network tries to predict this target projection. The loss
function minimizes the similarity between the target projection and the prediction of the online
network. In our BYOL-TT implementation, we use the AdamW optimizer with a learning rate of
2 x 10~* which decays by a factor of 0.3 after every 30 epochs and a batch size of 256. The loss is
given by:
(q0(20), 2¢)
llga (z0)ll2 - [12¢]2”

Loc=2-2 @)
where gg(zg) is the prediction of the online network of zé 6 corresponds to the weights of the online
network and & represent the weights of the target network. The optimization will be performed
with respect to 6, the weights £ of the target network will be updated using an exponential moving
average of the online network. Here we choose 7 = 0.99 as target decay rate. In the original BYOL
architecture, an input image x produces two augmented views v and v’ which are then shown to the
target and online network. In our case no augmentations are applied to the input image, positive pairs
are formed by images next to each other in the presented data timeline. Two consecutive images in
this timeline will then be used as views v and v'.

3.2 DATA SETS

ThreeDWorld data set. This data set was created with the ThreeDWorld (TDW) software (Gan
et al., |2021). TDW was chosen, because it enables near-photorealistic rendering including depth-
of-field effects and the possibility of simulating physical interaction with objects (which we plan to
utilize in the future). Our data set comprises twelve high quality 3D models of common household
objects such as a hair brush, a hammer or scissors (compare Fig.2JA). They are arranged in a 4 x 3
grid on a white floor. To simulate viewing sequences that an infant may experience while interacting
with an object such as turning an object in hand or moving relative to an object while fixating it, we
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render object views from different directions and distances. The individual images of the data set can
then be arranged into videos simulating different viewing sequences, where an object is seen from
different directions and distances. Specifically, to create the different views, we define a spherical
coordinate system around the center of each object. Different views are created by changing viewing
direction in terms of azimuth (from 0° to 350° in 10° steps), elevation (from 10° to 70° in 10° steps),
and distance (0.3 cm to 0.6 cm in 10 cm steps). This gives rise to 1,008 views per object and a total
of 12,096 images, which are down-sampled to the size of 64 by 64 pixels. We also created a test
set with distinct viewing directions by shifting the azimuth and elevation by 5° (from 15° to 75°
and from 5° to 355° in 10° steps). This procedure resulted in a second data set with 12,096 images.
Note that due to the varying distances from the objects, sometimes not all parts of an object are
visible inside the image and sometimes (parts of) other objects may be present. These appear blurry
due to the simulated depth-of-field effect. By sampling different paths through this object, azimuth,
elevation and distance space, we generate different viewing sequences that form the input to the
CLTT algorithms presented above.

Miyashita-style data set. The Miyashita-style data set draws inspiration from the neuroscience
experiments from Miyashital(1988). We adhered to the generation procedure described in (Miyashita
et al} [1991) and wrote python code to generate 100 different fractals of size 64 x 64. Each of
those fractals is unique and highly distinguishable from all others. For our experiments, we give
each fractal its own class label and allow for a certain degree of variability to simulate fixation
inaccuracies during viewing of the images. Each fixation applies a transformation with a random
rotation between —10 and +10 degrees, a random rescaling between 90 and 100 % and a random
translation of up to 15 % in x- and y-direction (compare Fig. ). The fractals are used exclusively
with the fixed order procedure, i.e., there is a predefined order of fractals that is repeatedly shown
to the network.

COIL-100 data set. To validate the CLTT approach on real images, we employ the Columbia
Object Image Library (COIL-100) database (Nene et al.| [1996)). It is composed of color images of
100 objects, each viewed from 72 different directions by placing the objects on a motorized turntable
making a total of 7,200 images. The objects are seen against a homogeneous black background

(compare Fig. 2[C).

4 RESULTS

4.1 CLTT APPROACHES REPRESENTATION QUALITY OF SUPERVISED LEARNING

Results with ThreeDWorld data set. We evaluate the proposed family of CLTT methods, namely
SimCLR-TT, RELIC-TT, BYOL-TT on the novel ThreeDWorld data set (Fig. E]) We also add a
supervised method as baseline, which has access to the true label of each image. We focus on the
random walk sampling of views and the random sequence procedure for sampling objects. We train
the network for 100 epochs and vary Ngy to study its effect. In order to evaluate the quality of
learned representations, we use a Linear Least Squares (LLS) classifier to test linear separability.
In general, a good representation, like that resulting from supervised learning, should be linearly
separable and have high LLS classification accuracy. In Fig.[B]A we show the LLS classification
accuracy for Ny = 5 as a function of training epoch. Both SImCLR-TT and RELIC-TT achieve
the same or even slightly better performance than the supervised approach. Figure shows the
final LLS classification accuracy after 100 training epochs for different values of Ngy. Noticeably,
SimCLR-TT and RELIC-TT perform on par with the supervised approach with Ng, > 5, while
BYOL-TT achieves the best score at Ng, = 5 and larger Ngx seems to have no positive effect
on BYOL-TT. Figure 3[C depicts a PacMAP (Wang et al., 2021) visualization of the latent space
resulting from training with RELIC-TT for 100 epochs using Ngx = 30. The objects form well
separated clusters.

Results with COIL-100 data set. To evaluate CLTT on real (rather than computer rendered) im-
ages and a data set with a larger number of objects, we use the classic COIL-100 data set. Note that
the COIL-100 data set does not have separate validation and test sets, thus we evaluated performance
on the training set in the following experiments. This approach may have led to some over-fitting
in the supervised setting, but this effect would only make it harder for our unsupervised method to
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Figure 3: Results for CLTT on the TDW data set. A. Comparison of Linear Least Squares (LLS)
classification accuracy as a function of training epoch for the different algorithms and with Ngy = 5.
B. Final LLS classification accuracy as a function of Ngy. C. Visualization of the clustering of
representations in the latent space using PacMAP, here shown for RELIC-TT with Ng, = 5. Each
color corresponds to one distinct object. Shaded areas in panels A and B represent the standard
deviation based on three individual runs.

match the performance of the supervised counterpart. We compare performance of SimCLR-TT,
RELIC-TT, and supervised methods for different values of Ng,. We also compare the two sampling
strategies: random walk sampling where successive views are generated via a random walk in the
space of viewing directions and uniform sampling where successive views are picked uniformly at
random across all possible viewing directions. Figure dA shows the LLS accuracy of the different
algorithms and sampling strategies as a function of the number of training epochs for Ng, = 30.
The SimCLR-TT method outperforms RELIC-TT. Furthermore, we observe that the uniform sam-
pling leads to better results than the random walk sampling. This is not surprising, as it creates more
diversity in the training data by allowing for very different views of an object to be grouped as a pos-
itive pair during contrastive learning. Also, although learning is somewhat slower, the performance
of SImCLR-TT and RELIC-TT with uniform sampling approaches that of fully supervised learning.
Figure @B compares the final LLS classification accuracy of the algorithms after 50 training epochs
for different values of Ngy. The performance improves monotonically with Ng, as expected and
approaches that of the fully supervised setting. Figure d|C visualizes the clustering of latent repre-
sentations with PacMAP for RELIC-TT with Ngy, = 30 and the random walk sampling procedure.
The 100 different objects have formed distinct clusters in the latent space. Finally, in Appendix [AT]
we compare uniform sampling and random walk sampling for the three methods with Ngx = 2 and
Ny = 10. As expected, the results show that uniform sampling achieves better performance.

4.2 CLTT ALIGNS LATENT CODES OF SUCCESSIVELY VIEWED OBJECTS

Results with Miyashita-style data set. To relate our framework to biological findings we use the
Miyashita-style data set combined with our SimCLR-TT approach. We train the network for 10°
stimuli presentations (100 epochs, buffer size = 10,000) and vary Ng,. Here, the buffer-size is larger
than the number of fractals, because the data set is dynamically generated using the aforementioned
fixations. In line with results from neuroscience, fractals that were presented in succession evoke
more similar activations in the latent space than fractals that are far apart in the predefined sequence.
Fig.[5A depicts the mean cosine similarity between a fractal’s latent representation and that of its
two n-th nearest neighbors along the sequence (in the positive and negative time direction). Note
that neighbor zero has a similarity of one, as it is de-facto the same activation pattern. The curves
for all values of Ngy display the property of a downward slope that is clearly separated from the
baseline (dashed lines). This indicates that over time not only immediate neighbors, but also more
distant fractals become associated. In fact for Ng, = 2 we see significant deviations (p < .01, two-
sided Kolmogorov-Smirnov two-sample test) for the nine next neighbors before merging with the
baseline. The number of deviating neighbors shrinks with increasing N, but significant effects still
can be observed. This experiment illustrates a fundamental property of CLTT that can be directly
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Figure 4: Results for CLTT on the COIL-100 data set. A. Comparison of LLS classification ac-
curacy for the different algorithms and sampling strategies with Ng, = 30. B. Comparison the
influence of Ng, on LLS classification accuracy under the two sampling strategies. C. Visualization
of the clustering of representations in the latent space using PacMAP, here shown for RELIC-TT
with Ngx = 30 and the random walk sampling procedure. Different colors correspond to different
objects, but due to the large number of objects, colors have been reused multiple times. Shaded
areas in panels A and B represent the standard deviation based on five individual runs.

related to biological findings. We also compare our results to supervised learning, which can solve
the classification of 100 fractals, but the resulting latent representations do not display any structure
of temporal associations and thus do not differ significantly from its baseline (not shown).
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Figure 5: Latent codes of successively viewed objects. Cosine similarity of neighboring objects
along the timeline as seen in the latent space for different values of Ngy. Colored dashed lines
and envelopes represent the mean and standard deviation of the neighbors not shown, i.e., n > 10.
Error-bars depict the standard deviation based on three independent runs. A. Miyashita fractals. B.
TDW objects. C. COIL-100 objects.

Results with ThreeDWorld data set. We tested if the alignment of latent representations of ob-
jects that are consistently shown in succession could also be observed with the TDW data set. For
this we sampled objects using the fixed order procedure, i.e., the objects were always seen in the
same sequence order. We focused on SimCLR-TT for this experiment. Figure 5B replicates the
effect from the Fractals data set (compare Fig. [5JA). Figure [5C shows the equivalent experiment
for the COIL-100 data set. The fixed order aids classification and SimCLR-TT achieves excellent
classification performance for different values of Ngy. Thus, the network is able to learn good rep-
resentations of the input data even with low values of Ngy when the order in which the objects are
shown to the network is fixed.
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5 DISCUSSION

We have developed a general framework for contrastive learning through time (CLTT). CLTT em-
ulates viewing sequences as may be experienced by infants and uses a temporal contrastive loss
that maps subsequent inputs occurring during such interactions onto close-by latent representations
(“close in time, will align”). To systematically investigate this approach, we have created a new data
set using the ThreeDWorld environment (Gan et al.,[2021)), allowing us to flexibly simulate different
kinds of viewing scenarios in a near photo-realistic fashion. We also validated our approach using a
new fractal-like data set inspired by biological experiments and the classic COIL-100 computer vi-
sion data set. We have demonstrated that CLTT can approach the quality of representations learned
using full supervision. For this it is important that intra-object transitions (successive fixations fall
on the same object) dominate over inter-object transitions (successive fixations fall on different ob-
jects). We have also shown that CLTT produces effects reminiscent of classic biological findings
showing that inputs that occur close in time are mapped onto close-by latent representations by the
brain.

Our work has a number of limitations. First, while the use of TDW gives us perfect control over
all parameters of viewing sequences including scene geometry, sequence of views, lighting condi-
tions, etc., the approach needs to be validated in the real world. Using the COIL-100 data set has
been a first step in this direction. To address this more thoroughly, future work could consider first
person videos from infants wearing head-mounted cameras (Bambach et al., 2018; |Orhan et al.,
2020). Second, we have assumed well-separated objects without major occlusions in front of uni-
form backgrounds. Learning in a cluttered environment is expected to be harder, but it may benefit
from foveated vision and additional attentional and figure-ground separation mechanisms, which we
plan to incorporate in future work. Third, our eye movement model, which kept gaze on the same
object for a certain number of fixations before redirecting it elsewhere, is overly simplistic. In the
future, it will be interesting to use more refined models that better reflect (measured) gaze sequences
of children and adults. Indeed, it is an interesting question what gaze sequences are particularly
beneficial for learning and if and how infants and artificial vision systems can optimize viewing
sequences to maximize their own learning progress. This links CLTT to research on intrinsic mo-
tivation and (artificial) curiosity. Exploring these issues will bring us closer to building artificial
vision systems that can learn truly autonomously.
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A APPENDIX

A.1 COIL-100: ADDITIONAL EXPERIMENTAL RESULTS

In this section, we supply additional results on the COIL-100 data set. Figure A.1. compares the two
view sampling methods for the different algorithms for N5, = 2 and Ngy, = 10. It shows improved
LSS accuracy for the uniform sampling strategy. This is not suprising, since it creates more diverse
views than the random walk sampling strategy. It also shows that N5, has a larger influence on the
random walk sampling.
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Figure A.1: LLS Classification Accuracy results of different Ngy for COIL-100 with random walk
sampling and uniform sampling.
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