
Towards Bridging Classical and Neural Computation
through a Read-Eval-Print Loop

David W. Zhang * 1 Michaël Defferrard * 1 Corrado Rainone * 1 Roland Memisevic 1

Abstract
Humans rely on step-by-step reasoning to solve
new problems, each step guided by the feedback
of its effect on a potential solution. For compli-
cated problems, such a sequence of step-by-step
interactions might take place between the human
and some sort of software system, like a Python
interpreter, and the sequence of operations so ob-
tained would then constitute an algorithm to solve
a particular class of problems. Based on these
ideas, this work proposes a general and scalable
method to generate synthetic training data, which
we in turn use to teach a Large Language Model
to carry out new and previously unseen tasks. By
tracing the execution of an algorithm, through
careful transformations of the control flow ele-
ments, we can produce “code traces” containing
step-by-step solutions for a range of problems.
We empirically verify the usefulness of training
on such data, and its superiority to tracing the
state changes directly.

1. Introduction
Neural computations, as performed, for example, by large
language models (LLMs) (Radford et al., 2018; 2019), are
“informal”: they match patterns between distributed repre-
sentations. This approach allows for reasoning shortcuts
and analogies but can lead to hallucinations. In contrast,
classical computations performed by a Turing machine or
equivalent virtual machine (VM) are formal, providing guar-
antees but with reduced flexibility. We herein propose to
bridge those two computing paradigms by making neural
and classical computation interact through a Read-Eval-
Print Loop (REPL), making informal reasoning drive formal
computations.

*Equal contribution 1Qualcomm AI Research. Qualcomm AI
Research is an initiative of Qualcomm Technologies, Inc.. Corre-
spondence to: David Zhang <davizhan@qti.qualcomm.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

m
ul

ti-
tu

rn
 in

te
ra

ct
io

n

Find the greatest of these numbers.
>>> a, b, c = 3, 8, 1
>>> greatest = a
>>> b > greatest
True
>>> greatest = b
>>> c > greatest
False
>>> greatest
8
>>> exit()

 
{'a': 3, 'b': 8, 'c':1}
{'greatest': 3}

{'greatest': 8}

 

Figure 1: Interaction between the user writing a prompt,
the LLM writing code, and the Python interpreter inserting
responses. The resulting trace resembles an interactive ses-
sion within the Read-Eval-Print Loop (REPL), and is used
to train an LLM to interactively solve problems step-by-step.
Statements correspond to state transitions (grey), and are
used as the "state trace" baseline, as detailed in section 3.

Such interactions have been proposed by making an LLM
write programs for an interpreter to execute (Chen et al.,
2023; Gao et al., 2023). We propose instead to work at
an intermediate level of abstraction, where the interpreter
manipulates the data but the LLM controls the execution
flow. Figure 1 illustrates such an LLM–interpreter interac-
tion. The VM’s evaluation of expressions are used by the
LLM to make decisions on what to execute next, and the
execution of statements manipulates the data, inducing state
transitions in the VM. This multi-turn interaction with the
VM requires the LLM to plan ahead, but also allows it to
inspect the data and backtrack where applicable. We exper-
imentally demonstrate that this level of abstraction yields
generalization benefits.

We generate training data by tracing the execution of al-
gorithms, resulting in code traces that consist of a se-
quence of interactions with the Python interpreter through
its read–eval–print loop (REPL). This sequence of interac-
tions effectively teaches the LLM how to execute algorithms
by demonstrating how the Python REPL can be leveraged
for solving a given problem instance.

Finally, we explore whether we may omit the VM and have
the LLM simulate it. Code traces then constitute a training
signal in the form of sequences of reasoning steps, akin to
those elicited by Chain of Thought (CoT) prompting (Wei
et al., 2022; Kojima et al., 2023; Zhou et al., 2023). This

1



Towards Bridging Classical and Neural Computation through a Read-Eval-Print Loop

def exchange_sort(A: list) -> list:
for i in range(len(A)):

for j in range(i+1, len(A)):
if A[j] < A[i]:

A[i], A[j] = A[j], A[i]
return A

(a) Algorithm.

>>> A = [28, 25, 62, 50, 97]
>>> forloop0 = iter(range(len(A)))
>>> i = next(forloop0)
>>> forloop1 = iter(range(i+1, len(A)))
>>> j = next(forloop1)
>>> A[j] < A[i]
True
>>> A[i], A[j] = A[j], A[i]
...
>>> i = next(forloop0)
StopIteration
>>> A
[25, 28, 50, 62, 97]

(b) Code trace.

{'A': [28, 25, 62, 50, 97]}
{'i': 0}
{'j': 1}
{'A': [25, 28, 62, 50, 97]}
{'j': 2}
...
{'i': 2}
{'j': 3}
{'A': [25, 28, 50, 62, 97]}
{'j': 4}
{'i': 3}
{'i': 4}
[25, 28, 50, 62, 97]

(c) State trace.

Figure 2: Two ways of tracing the execution of an algorithm (a): executed code statements (b) and state changes (c). Without
control flow, code statements correspond to state transitions.

comes with the advantage of allowing for the generation of
faithful and correct chains-of-thought at scale.

Our main contribution is that we enable LLMs to interact
with the Python interpreter through its Read-Eval-Print Loop
(REPL). This allows grounded step-by-step reasoning where
the reasoning steps happen at a meta-level. We enable these
interactions with a scalable data generation method wherein
we trace the algorithm execution on diverse inputs, which
we then use to finetune the LLM.

2. Algorithmic traces in interactive sessions
In this section, we explain the format in which the large
language model (LLM) interacts with the Python virtual
machine (VM), and how we generate algorithmic traces in
that format. While we emphasize Python for concreteness,
the general framework applies to other programming lan-
guages as well. Python, being a high-level general-purpose
language, enables the implementation of commonly taught
algorithms without the need to manage low-level memory
operations such as memory allocation. It is a programming
language designed to be easily readable and relatively close
to pseudo-code; it therefore effectively conveys the essence
of an algorithm, which is precisely what we aim to teach to
the LLM.

Ideally, the format of the algorithmic traces should mimic
what a pre-trained LLM observed in its training dataset.
For Python there exists a natural format to achieve this:
the Python interactive session, also referred to as the
read–eval–print loop (REPL). Herein, each code line starts
with >>> and ends with a line break. The interpreter exe-
cutes the code and updates its state, consisting of the objects
in the global and local namespaces. When the code line gen-
erates a result and the result is not None, then the interpreter
prints the result into the subsequent line. Text data in this
format can be found on the web: for example in docstrings
of Python code, or in tutorials on Python programming. It
is however relatively scarce and each example usually only

consists of a few back-and-forths between the programmer
and the machine. Because of this, we implemented a method
to synthetically generate such data.

2.1. Generating code traces

We generate synthetic data by tracing Python functions that
implement common algorithms used for teaching data struc-
tures and algorithms, such as Bubble Sort, Exchange Sort,
or A* search. These algorithms typically run a sequence
of statements that are chained together in a specific order
to produce the correct result. We trace the Python code at
the level of a function, which allows control over which
Python code we track, and which code is executed in the
background without explicitly appearing in the code trace.
The execution of function or method calls such as len(A)
is, for example, not traced.

Consider as an example the function exchange_sort
shown in Figure 2a, and its argument [28, 25, 62,
50, 97]. The corresponding code trace shown in Fig-
ure 2b starts with an assignment of the argument to the pa-
rameter A. Then, we add to the code trace by simulating the
function’s execution line-by-line. Lines that do not control
execution are directly copied into the code trace, while lines
that contain control flow statements are transformed into an
interactive session. The purpose of this transformation is to
explicitly place the decision of what to run next on the agent
that interacts with the interpreter. Table 3 lists examples of
how we transform for-loop, if-else, while-loop, and return
statements. For more details we refer to Appendix A.

Every time we execute a statement in the interactive session,
the interpreter might create or update a variable as a result.
We track these changes in form of a state trace, as shown in
Figure 2c. The state trace mimics the format of execution
traces from previous works (Lehnert et al., 2024) and serves
as one of the baselines in our experiments.

2



Towards Bridging Classical and Neural Computation through a Read-Eval-Print Loop

3-5 6 7 8 9 10
length

0%

20%

40%

60%

80%

100%

ac
cu

ra
cy

(a) Sorting random words.

3-5 6 7 8 9 10
length

0%

20%

40%

60%

80%

100%

ac
cu

ra
cy

no trace
state trace
code trace
without VM
code trace
with VM

(b) Words with shared prefix (hard).

6x6 8x8 10x10 12x12
size

0%

20%

40%

60%

80%

100%

ac
cu

ra
cy

no trace
state trace
code trace
without VM
code trace
with VM

(c) Searching with A* on mazes.

Figure 3: Size generalization. Bubble sort (a,b) and A* search (c) trained on lists of length 3-5 and mazes of size 6x6; and
tested on larger ones. Code traces enable size generalization.

2.2. Learning the classical and neural computer

We generate multiple samples of code traces for each func-
tion by tracing execution with different input values. Each
sample starts with a prompt describing the algorithm’s be-
havior and the input values. These samples are then used to
train the LLM on a standard next token prediction objective.
As a consequence, the LLM learns both the role of neural
computer, which decides what code to run next, and the
classical computer which runs that code, and reports the
result if any. Empirically we observe that code execution
is the most difficult part to learn and generalize on. We
investigate two settings that shed light on the limitations and
opportunities in simulating the interpreter.

Quiz. Executing the result of many operations is difficult,
because the LLM needs to keep track of the state of the
machine implicitly. For example the list A in exchange sort
only appears at the very end of the trace, and all intermediate
states of the list remain hidden to the LLM. For the LLM
to correctly predict the result, the representations of the
intermediate steps need to capture the changes to the list.
We introduce quizes as an optional auxiliary task to improve
the representation of the LLM. For every line in the code
trace we randomly add a variable to the code trace as an
expression. As an effect of this, the LLM needs to be ready
at any step for predicting the value of some variable in the
local namespace.

Multiple algorithms. An LLM trained on the code traces
of multiple different algorithms needs to predict the inter-
preter response for multiple different variable names, se-
quences of operations, and lengths of code traces. We in-
vestigate whether this type of variability can aid the LLMs
ability to generalize its predicition for interpreter responses.

3. Experiments
Our experiments aim to answer the overarching question of
how well code traces generalize out-of-distribution. For that
purpose we compare four different setups: no trace, state

trace, code trace without access to the VM, and code trace
with access to the VM.

We fine-tune Llama2-7B (Touvron et al., 2023) in all our
experiments with QLoRA (Dettmers et al., 2023). See Ap-
pendix D for more details on the experimental setup and
Appendix E for detailed descriptions of the datasets.

3.1. Bubble sort and A* search

In this experiment, we focus on the model’s capability to
generalize to longer inputs, or different input types than
those seen during training. We consider bubble sort for sort-
ing lists of words or integers, and the A* search algorithm
for finding the path through a 2d maze.

For bubble sort we sample input lists from two different
distributions: random words, or random words with a shared
prefix. We train on lists of length 3 to 5 and test on lengths
up to 10. For A* search we sample random mazes of size
6×6 using the backtracking generation algorithm and test
on mazes of sizes up to 12×12.

Generalization to longer inputs. We report our results
in Figure 3 and Figure 5. We observe that, by teaching the
model to use a Python interpreter via training on code traces,
we are able to achieve near perfect length generalization
with both input distributions for sorting. Conversely, once
the VM is taken out of the evaluation loop, direct predic-
tion (i.e., no tracing at all) outperforms all tracing methods
across all input lengths, including those encountered during
training. Since list sorting is a very common and pedagogi-
cal task, we speculate that this might be due to the model
having already been exposed to it during pre-training.

We also observe that all tracing methods, as well as no-
trace, quickly break down on the hard distribution, unless
the VM is used during evaluation; both tracing methods
already perform poorly on in-distribution tasks, whilst direct
prediction gradually breaks down as the length of evaluation
inputs increases. We can also observe that state tracing
performs acceptably only in-distribution, and on the easier
input distribution.

3



Towards Bridging Classical and Neural Computation through a Read-Eval-Print Loop

ints
hard
ints words

hard
words

tested on

ints

hard
ints

words

hard
words

tr
ai

ne
d 

on

98%
±1%

54%
±4%

0%
±0%

0%
±0%

79%
±40%

80%
±40%

0%
±0%

0%
±0%

10%
±14%

0%
±0%

93%
±3%

20%
±2%

0%
±0%

0%
±0%

42%
±3%

69%
±3%

(a) No trace.

ints
hard
ints words

hard
words

tested on

100%
±0%

85%
±5%

0%
±0%

0%
±0%

99%
±1%

100%
±0%

0%
±0%

0%
±0%

0%
±0%

0%
±0%

92%
±1%

10%
±4%

0%
±0%

0%
±0%

6%
±1%

5%
±2%

(b) State trace.

ints
hard
ints words

hard
words

tested on

99%
±1%

70%
±3%

34%
±5%

4%
±1%

90%
±3%

96%
±1%

14%
±1%

3%
±2%

27%
±10%

32%
±8%

91%
±3%

13%
±3%

4%
±3%

4%
±3%

5%
±2%

6%
±1%

(c) Code trace w/o VM.

ints
hard
ints words

hard
words

tested on

100%
±0%

100%
±0%

100%
±0%

100%
±0%

100%
±0%

100%
±0%

100%
±0%

100%
±0%

100%
±0%

100%
±0%

100%
±0%

100%
±0%

96%
±7%

99%
±2%

100%
±0%

100%
±0%

25%

50%

75%

100%

(d) Code trace with VM.

Figure 4: Generalization between different data distributions.

The results for A* in Figure 3c highlight the difficulty of gen-
eralization without the VM in the loop. Even in-distribution
generalization fails for all but code traces with VM access.
At first sight this appears inconsistent with the results re-
ported in Lehnert et al. (2024), which applies a method
similar to state traces. We speculate that this is due to differ-
ences in the training regime and dataset size: we fine-tune a
pre-trained LLM with QLoRA on 1000 mazes and traces,
whilst in Lehnert et al. (2024) an (albeit smaller) transformer
model is trained from scratch on 1 million sequences.

Generalization to different input types. In this experi-
ment, we examine generalization between the different input
types: random words, random words with shared prefix, ran-
dom integers, and random integers with shared prefix. We
report the results in Figure 4.

The model equipped with access to the VM during evalu-
ation generalizes near perfect, independent of which input
type it is trained or evaluated on. With the no trace methods,
we observe a block-diagonal pattern, with generalization
within a certain input class (words or integers) being much
more robust than “off-diagonal” generalization between dif-
ferent classes. In comparison, state traces generalize better
between easy and hard integers, but fails on hard words dis-
tribution. Amongst those that do not have VM access, code
trace without VM generalizes the best between integers and
words, but similar to state traces fails on the hard words
distribution.

3.2. Simulating the interpreter

In this section we examine the capability of the model to
simulate the Python interpreter, and in particular, whether
training on multiple algorithms is helpful or not in achieving
this, and whether adding quizes to the code as outlined in
section 2.2 is helpful.

We evaluate on code traces of bubble sort. For each line
that corresponds to the response of the interpreter, we check
whether every token in that line is correctly predicted given
the ground-truth up until that token. Then, we average over

Table 1: Simulating the interpreter. We evaluate how quizes
affect the LLM’s accuracy in predicting the interpreter re-
sponses.

ints words

trained 3-5 7 3-5 7

w/o quizes 99.46±0.1 80.76±0.8 99.11±0.2 80.58±1.3

with quizes 99.25±0.2 84.46±0.4 98.89±0.3 85.04±0.7

Table 2: Simulating the interpreter. We evaluate how train-
ing on multiple sorting algorithms affects the LLM’s accu-
racy in predicting the interpreter responses.

trained on 3-5 7

all 97.73±0.4 77.16±0.6

all except bubble sort 90.81±1.2 72.95±1.0

all interpreter responses in all code traces that we evaluate
over. The results are reported in Table 1 and Table 2.
In Table 1 we observe that, while quizes do not make the
model better at simulating the interpeter for in-distribution
inputs, they do help it do so when evaluated on the traces
for longer inputs. In Table 2, we observe that training on
all sorting algorithms but bubble sort can still achieve a
high, albeit lower, performance in predicting the interpreter
results.

4. Conclusion
We showed how interacting with classic computations al-
lows an LLM to improve generalization to OOD problem
instances, problem sizes, and data types. The interactions
can be thought of as increasing the level of abstraction the
LLM works at, i.e., of making the model manipulate data
indirectly through Python statements instead of manipulat-
ing it directly in-sequence. A potential benefit of solving
problems interactively with an interpreter in the loop is that
a model can potentially learn to recover from, and appropri-
ately deal with, exceptions during solution generation. This
is an important area for future research.

4



Towards Bridging Classical and Neural Computation through a Read-Eval-Print Loop

References
Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,

H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., and
Sutton, C. Program synthesis with large language models,
2021.

Bouzenia, I., Ding, Y., Pei, K., Ray, B., and Pradel, M.
Tracefixer: Execution trace-driven program repair, 2023.

Chen, W., Ma, X., Wang, X., and Cohen, W. W. Pro-
gram of thoughts prompting: Disentangling computation
from reasoning for numerical reasoning tasks. Transac-
tions on Machine Learning Research, 2023. ISSN 2835-
8856. URL https://openreview.net/forum?
id=YfZ4ZPt8zd.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer,
L. Qlora: Efficient finetuning of quantized llms, 2023.

Gandhi, K., Lee, D., Grand, G., Liu, M., Cheng, W., Sharma,
A., and Goodman, N. D. Stream of search (sos): Learning
to search in language. arXiv preprint arXiv:2404.03683,
2024.

Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang,
Y., Callan, J., and Neubig, G. Pal: Program-aided lan-
guage models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Graves, A., Wayne, G., and Danihelka, I. Neural turing
machines, 2014.

Hao, S., Liu, T., Wang, Z., and Hu, Z. Toolkengpt: Aug-
menting frozen language models with massive tools via
tool embeddings. In Oh, A., Naumann, T., Globerson, A.,
Saenko, K., Hardt, M., and Levine, S. (eds.), Advances in
Neural Information Processing Systems, volume 36, pp.
45870–45894. Curran Associates, Inc., 2023.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Huang, Q., Vora, J., Liang, P., and Leskovec, J. Mlagent-
bench: Evaluating language agents on machine learning
experimentation, 2024.

Kaiser, L. and Sutskever, I. Neural gpus learn algorithms,
2016.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2017.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners, 2023.

Lehnert, L., Sukhbaatar, S., Su, D., Zheng, Q., Mcvay, P.,
Rabbat, M., and Tian, Y. Beyond a*: Better planning with
transformers via search dynamics bootstrapping, 2024.

Li, Y., Gimeno, F., Kohli, P., and Vinyals, O. Strong gener-
alization and efficiency in neural programs, 2020.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization, 2019.

Ni, A., Allamanis, M., Cohan, A., Deng, Y., Shi, K., Sut-
ton, C., and Yin, P. Next: Teaching large language
models to reason about code execution. arXiv preprint
arXiv:2404.14662, 2024.

Nye, M., Andreassen, A., Gur-Ari, G., Michalewski, H. W.,
Austin, J., Bieber, D., Dohan, D. M., Lewkowycz,
A., Bosma, M. P., Luan, D., Sutton, C., and
Odena, A. Show your work: Scratchpads for in-
termediate computation with language models, 2021.
https://arxiv.org/abs/2112.00114.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. Improving language understanding by generative
pre-training. 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Recchia, G. Teaching autoregressive language models com-
plex tasks by demonstration, 2021.

Reed, S. and de Freitas, N. Neural programmer-interpreters,
2016.

Schick, T., Dwivedi-Yu, J., Dessi, R., Raileanu, R., Lomeli,
M., Hambro, E., Zettlemoyer, L., Cancedda, N., and
Scialom, T. Toolformer: Language models can teach
themselves to use tools. In Oh, A., Naumann, T., Glober-
son, A., Saenko, K., Hardt, M., and Levine, S. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 36, pp. 68539–68551. Curran Associates, Inc., 2023.

Schuurmans, D. Memory augmented large language models
are computationally universal, 2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,

5

https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd


Towards Bridging Classical and Neural Computation through a Read-Eval-Print Loop

Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,
Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. Llama 2: Open foundation and fine-tuned
chat models, 2023.

Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks.
In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 28. Curran Associates, Inc.,
2015. URL https://proceedings.neurips.
cc/paper_files/paper/2015/file/
29921001f2f04bd3baee84a12e98098f-Paper.
pdf.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Yang, J., Prabhakar, A., Narasimhan, K., and Yao, S. Inter-
code: Standardizing and benchmarking interactive coding
with execution feedback, 2023.

Zaremba, W. and Sutskever, I. Learning to execute, 2015.

Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.,
Schuurmans, D., Cui, C., Bousquet, O., Le, Q., and Chi,
E. Least-to-most prompting enables complex reasoning
in large language models, 2023.

6

https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf


Towards Bridging Classical and Neural Computation through a Read-Eval-Print Loop

Table 3: Transforming a program into an interactive session by tracing its execution through control flow.

Static program Interactive session

for v in range(1):
w = v + 1

>>> forloop0 = iter(range(1))
>>> v = next(forloop0)
>>> w = v + 1
>>> v = next(forloop0)
StopIteration

if c: # c == False
b = 1

else:
b = 0

>>> c
False
>>> b = 0

while c: # c == True
c = False

>>> c
True
>>> c = False
>>> c
False

while c: # c == True
break

a = 1

>>> c
True
>>> a = 1

return r # r == (1, 2, 3) >>> r
(1, 2, 3)
>>> exit()

A. Tracing rules
Control flow statements affect the order in which the code is run. More precisely, we identify a line as a control flow
statement if and only if its compiled byte code contains an instruction that modifies the byte code pointer, for example like
POP_JUMP_IF_FALSE or JUMP_ABSOLUTE. We turn the code that is part of the control flow statement into interactions
with an interpreter through a set of transformation rules.

For-loop. In the for-loop we introduce a new variable forloop0 that holds the sequence over which the loop iterates.
We add a number as suffix to account for nested for-loops and increment the number for the inner ones. At the start of each
iteration we explicitly assign the next item in the sequence to the loop variable. We repeat this until no more items remain
and the StopIteration exception is thrown, which is added to the code trace as a response from the interpreter.

If-else. For conditional statements, we pass the condition as an expression to the interpreter. The interpreter evaluates
the expression and prints the result in the next line. Different from how the Python interpreter commonly works, we do
not explicitly cast the condition to a boolean. Note that Python can take non-boolean values as conditions which are then
evaluated based on the truthiness rules. Consider for example the case where the variable c references the list [’a’,
’b’]. Here, c is a valid condition that evaluates to True. Instead of adding the boolean result to the next line, we add the
original list. The body of the conditional only appears in the interactive session if it is actually run.

While-loop. Similar to if-else statements, we expose the condition as an expression in the interactive session. At the
beginning of each iteration in the loop we evaluate the condition and repeat the body of the loop as long as the condition is
true.

Return. We add the return value as an expression to the code trace and conclude the interactive session with a call to the
exit function.

7



Towards Bridging Classical and Neural Computation through a Read-Eval-Print Loop

3-5 6 7 8 9 10
length

0%

20%

40%

60%

80%

100%

ac
cu

ra
cy

(a) Random integers.

3-5 6 7 8 9 10
length

0%

20%

40%

60%

80%

100%

ac
cu

ra
cy

no trace
state trace
code trace
without VM
code trace
with VM

(b) Random integers with a shared prefix (hard).

Figure 5: Size generalization. Bubble sort trained on lists of integers of length 3-5 and tested on larger ones. Code traces
enable size generalization.

B. More length generalization results

C. Related work
A wide range of neural architectures have been proposed that mimic aspects of a classic computer to perform step-by-step
program execution. These include the Neural Turing Machine (Graves et al., 2014), Pointer Networks (Vinyals et al., 2015),
Neural GPUs (Kaiser & Sutskever, 2016), and the Neural Program Interpreter (Reed & de Freitas, 2016) and related work
(e.g., (Li et al., 2020)). In our work, we restrict our attention to pre-trained LLMs, and instead focus on data generation
as the means to instill program execution abilities in these models. More importantly, we do not consider a specialized
instruction set and instead train models to interact with a Python interpreter.

Letting an LLM interact with Python to solve reasoning tasks has recently been proposed by (Gao et al., 2023), as well
as (Chen et al., 2023). Instead of generating a solution directly, a model is trained or prompted to generate Python code,
whose output serves as the solution. In light of these, and in contrast to that work, our work can also be viewed as generating
solutions as code, while however by-passing the code generation stage, and instead directly generating the step-by-step
execution of a program, that is never explicitly generated itself.

There has been some preliminary recent work on letting a language model learn task-specific, back-tracking based search
algorithms, such as A* or DFS (Lehnert et al., 2024; Gandhi et al., 2024). However, that work is confined to domain-specific
encodings of task-specific solution paths. This makes them comparable to the special case of state traces discussed above.
Nye et al. (2021) discuss a more general setting, which includes general Python programs and their traces, albeit without
interactivity, making that work comparable to our without-VM setting. A non-interactive setting similar to our no trace
setting has been discussed in a variety of past work as well (for example, Zaremba & Sutskever (2015) and follow-up work).

The Intercode benchmark (Yang et al., 2023) provides an environment for evaluating interactive code generation. While
the Python portion, based on MBPP (Austin et al., 2021), bears some similarity to our work, it evaluates iterative code
improvements, not interaction with Python for the sake of generating a solution to a given problem. Another benchmark
related to interactive code generation, albeit restricted to the context of machine learning research workflows, is the work by
Huang et al. (2024).

The use of external APIs is another emerging research theme towards LLM interactions with external resources (see, for
example, (Schick et al., 2023; Hao et al., 2023)), which, in contrast to our work, is significantly more restrictive than an
open ended, multi-hop interaction with Python. An even more rudimentary way to interact with an external resource is the
use of an external, addressable memory (see, for example, Recchia (2021)), and it can be shown that this is sufficient for
common LLMs to be Turing complete (Schuurmans, 2023). An interactive Python session offers a wide range of tools and
data structures to support external memory use with more flexibility than a simple random access memory. The benefits of
this additional flexibility in the context of external memory use by an LLM is beyond the scope of this paper but a potential
avenue for future research.

Excerpts from execution traces have recently been used to aid models in code repair (Ni et al., 2024; Bouzenia et al., 2023).
This is in contrast to our work, which proposes using full execution traces themselves for training interactive problem
solving skills using supervised learning.

8



Towards Bridging Classical and Neural Computation through a Read-Eval-Print Loop

D. Detailed experimental setup
We fine-tune Llama2-7B (Touvron et al., 2023) in all our experiments with QLoRA (Hu et al., 2021; Dettmers et al.,
2023). We use a rank parameter of 16, a scaling parameter of 64, and a dropout rate of 0.1. We use the AdamW optimiser
(Kingma & Ba, 2017; Loshchilov & Hutter, 2019), with a linear decay schedule with 10 warmup steps. Since our training
datasets are synthetically generated, we carry out 250 (unless otherwise specified) parameter updates regardless of dataset
size. Once training is concluded, we evaluate the model by feeding it prompts from one or more evaluation datasets, and
autoregressively generating from them the associated traces, which, as outlined in the previous section, also include the
final result. The metrics we report are always averaged, for each run, over all evaluation prompts, and we report mean and
variance over 5 different random seeds. In most experiments, we report the 1-0 accuracy (1 if perfectly correct, 0 otherwise)
of the final result as our main metric, though we also consider next-token-prediction accuracy in one experiment. During
evaluation, the model can either have access to the Python VM, or not. In the first case, the output of the Python statements
generated by the model is environment-forced during generation of subsequent tokens, whilst in the second case, this is not
the case.

Each run for Bubble Sort is trained on a V100 on 16000 training examples for less than 5h per run for a single epoch. For
A* search, we train on 1000 mazes of 6x6, and associated traces; each run takes about 24 hours on a single V100 GPU.

E. Datasets
All our datasets are synthetically generated, and unless otherwise specified, each example in them consists of a string
representation of the algorithm inputs (either a list or a maze), the three different traces associated with it (no-trace i.e. final
result only, code-trace, and state-trace), and metadata. During generation, we use a deduplication filter to ensure there be no
leakage between training and evaluation splits. We store both inputs and traces in string format.

E.1. Lists

We have four different distributions of input lists: ints, ints hard, words, words hard. The ints distribution samples numbers
randomly from the range of 1 to 100.000. The ints hard distribution samples numbers with up to six digits randomly, while
keeping the first one to three digits the same. The words distribution samples a list of words randomly from a vocabulary
with more than 30.000 natural words. In the words hard distribution we restrict the words distribution to only sample lists of
words with a shared prefix. The shared prefix length ranges from one to three.

E.2. Mazes

We use the Mazelib library1 to generate mazes of a desired height and width. In particular, we use the Backtracking Generator
algorithm, the most commonly used for maze generation. We show examples of the resulting mazes in Figure 6. The mazes
are represented by Python dictionaries, with each cell being a key and a list of its neighbors being the values; every cell is
represented as a tuple reporting its Cartesian coordinates, and the model ingests them via the string representation (repr())
of these dictionaries. For training, we use a dataset of 1000 3x3 mazes and associated A* algorithm traces. For evaluation,
we generate four datasets of 20 examples each for sizes 6x6, 8x8, 10x10, and 12x12.

E.3. quizes

We add a variable with 0.3 probability to the code trace if it has changed since the last time it was quizzed. We sample this
for every line in the original code trace and for every variable in the algorithm.

1https://github.com/john-science/mazelib

9

https://github.com/john-science/mazelib


Towards Bridging Classical and Neural Computation through a Read-Eval-Print Loop

Figure 6: Three example mazes of 6x6, 10x10, and 14x14 size. The yellow and blue cells are the entrances and exits,
respectively. Due to how Mazelib is implemented, these size correspond to width and height parameters of (3,3), (5,5), and
(7,7).

10


