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Abstract

In real world applications of machine learning, adaptation to new domains (e.g.
new regions, new populations, new sensors, or new points in time) has been shown
to be an ongoing challenge. In unsupervised domain adaptation, the assumption is
that the user has access to a large labeled set of source domain data, and the goal is
to adapt to a new target domain without the use of any labeled target data. The open
question is how unlabeled samples from the target domain should be incorporated
into the model training process. In this work we document our experiences applying
recently proposed unsupervised domain adaption techniques for object detection to
a novel application domain: counting fish in sonar video. We find that: (i) prior
works that show progress on standard domain adaptation benchmark datasets do
not necessarily translate to our domain, (ii) validation methods are often unrealistic
in these prior works, and (iii) higher complexity (in terms of implementation and
parameters) techniques work better. We aim for this work to be a useful guide for
other practitioners looking to use unsupervised domain adaptation techniques in
real world applications.

1 Introduction

Object detection and tracking have been shown to work well on benchmark datasets across diverse
real world applications [16, 27, 26, 4, 23, 21], but these models often struggle to generalize out of
domain [1, 9, 12]. The effort and expense required to develop training datasets and train models
for new domains is a significant bottleneck to the reliable deployment of these models at scale. One
approach to address this is unsupervised domain adaptation (UDA). UDA methods derive a training
signal from a collection of unlabeled target domain data in order to adapt a model trained on data
from one distribution (a “source” domain) to a new data distribution (the “target” domain).

Are UDA methods ready for real-world deployment? In this work we explore the practical challenges
of utilizing UDA techniques beyond the standard computer vision benchmarks for which they were
designed. We use detecting, tracking, and counting fish in sonar data as a case study representing
a non-standard domain with real-world impact in sustainability. Sonar imaging provides a non-
invasive way to monitor escapement—the number of salmon returning home each season to spawn—
which helps inform sustainable fisheries management and supporting UN SDGs 2 (Zero Hunger),
13 (Climate Action), and 14 (Life Below Water) [13]. Automation using computer vision could
enable current sonar-based monitoring programs to scale from a few locations to entire watersheds,
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Figure 1: (A): Example imagery from the Caltech Fish Counting Domain Adaptation dataset. Models are
trained on source imagery (left) and deployed on target imagery (right). (B): Purple and green lines show the
effects of adding incrementally more target-domain supervision on detection (AP50), tracking (IDF1, MOTA,
HOTA), and counting (nMAE) metrics. Green (oracle) uses the validation set to determine its optimal checkpoint,
while purple uses the source set. All metrics are shown in terms of error, i.e. lower is better. The largest gains
can be seen between 0 and 1500 additional annotated frames. The crosses indicate “vanilla“ self-supervised
performance after being trained on 2.6M unannotated images. We see there are there is no obvious best threshold,
however, suboptimal settings can be quite harmful, since only one threshold shows an improvement for only one
of the five metrics (red cross on MOTA).

yet computer vision methods for this task struggle in part due to domain shift caused by changing
environmental conditions [9]. The problem of domain shift is faced in many applications, and our
conclusions may have relevance to the broader community of computer vision practitioners.

We focus on a popular framework for UDA called teacher-student self-training [24, 29, 30, 14] due
to its prevalence in the literature. In these approaches, a “teacher” model is used to label a set of
(unlabeled) target-domain images. These images and machine labels are subsequently used to train a
“student” model, thereby adapting the student model to the target domain. Self-training is intuitive
and ostensibly simple to implement, making it an attractive UDA option for practitioners.

However in our investigation we find that these approaches are not as simple and effective as they are
made out to be, and do not offer consistent benefit. Our results illuminate some surprising pitfalls and
promises in the deployability of UDA for real-world applications:

1. Many self-training approaches are not effective outside of standard benchmarks. Specifically,
we show that using fixed pseudo-labels is not an effective technique even when some supervised
target-domain data is used.

2. Validation methods in UDA for object detection are unrealistic and over-optimistic. We show
that UDA methods do not offer consistent improvements when using realistic validation methods.

3. Recent work is promising, at the cost of more complexity. We find some positive results from
using recent extensions of the mean teacher framework [25].

2 Related Work

“Vanilla” self-training for UDA In self-training, a model is first trained on the source domain and
then used to generate predictions on the target domain. Then, these predictions become “pseudo-
labels” that are used as ground truth to train a new model for the target domain. In this work we call
this approach “vanilla” self-training as it involves no modifications to model architectures. Vanilla
self-training has been reported to yield more accurate models in semi-supervised learning [28] as
well as in our focus area of UDA in object detection [22].

Teacher-student frameworks for UDA In teacher-student approaches, a “teacher” model and a
“student” model are trained in a way that enforces consistency between the target-domain predictions
from both models. A popular approach, mean teacher [25] uses an exponential moving average of
the student weights as the teacher model. As opposed to vanilla self-training, where the teacher’s
pseudo-labels are fixed at the beginning of training, in mean teacher the teacher is frequently updated
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and can produce different pseudo-labels every epoch. Most recent state-of-the-art UDA methods in
object detection are based on the mean teacher framework [15, 8, 6, 5].

Validation methods and hyperparameter selection in UDA Prior work notes that unrealistic
methods for selecting best models and hyperparameters have led to over-optimistic results in UDA for
image classification [18, 19]. This remains a problem for UDA in object detection, despite attempts
to automatically select optimal confidence thresholds or to minimize prediction entropy [22].

3 Dataset and metrics
The Caltech Fish Counting Dataset (CFC) [9] contains over 1,500 videos where the goal is to detect,
track, and count moving fish in low signal-to-noise sonar video. The visual conditions encountered in
this application are starkly different from existing benchmarks in domain adaptive object detection
(see Fig. 1A), enabling us to test whether existing algorithms translate to new applications.

We introduce an extension to the CFC dataset, deemed Caltech Fish Counting Domain Adaptation
(CFC-DA), to allow for the study of using unsupervised and semi-supervised domain adaptation to
improve OOD performance. Specifically, we curated 2.6M unsupervised video frames and 15,000
supervised video frames from the Elwha (“EL”) test location in CFC. Supervision consists of multi-
object tracking annotations where each target is enclosed in a bounding box and maintains a constant
unique ID within each clip. This data is sourced from the same time period (July 2018) and the same
camera hardware as the original test set.

Our problem involves counting fish, which we do through a detection and tracking framework. We
monitor the following metrics: AP50 (detection); MOTA [2], HOTA [17], and IDF1 [20] (tracking);
and nMAE (counting) [9].

4 Experimental results
Validation settings. We compare two approaches: “realistic” validation, where hyperparameters
and early stopping points are chosen based on model performance on a source-domain validation
set, and “oracle” validation, where parameters are chosen based on a target-domain test set. We
emphasize that in true UDA settings, oracle validation is not possible.

Incremental supervision as upper bounds. What if we could collect some target domain annota-
tions? As is common in the UDA literature we consider this an upper bound for what unsupervised
methods could achieve. We test incremental levels of supervision by progressively sampling up to 50
annotated target-domain video clips, 300 frames each, and train on the union of these clips and the
CFC source-domain training set. In Fig. 1B we show the effect of this incremental supervision on
detection, tracking, and counting performance when using 1, 5, 10, 25, and 50 annotated video clips.
We compare using both realistic (purple) and oracle (green) validation settings, where we choose
detector settings based on AP50 and tracker settings based on nMAE.

Our key takeaways are: (1) For object detection and tracking, adding annotated frames from the
target domain improves performance roughly monotonically, with diminishing returns after a few
thousand labeled images; (2) Validating on target-domain data has a larger effect on performance
than training on target-domain data. For example, oracle validation with 0 supervised target-domain
frames achieves better nMAE than realistic validation with 14k supervised target domain frames.
This is worth emphasizing: even if perfect target-domain labels are available during self-training
(e.g., from a perfect teacher model), this still may not lead to improved performance under realistic
(source-only) validation conditions. Therefore, if possible, practitioners should allocate effort toward
creating target-domain validation sets instead of solely focusing on training data.

Detector-only self-training Next we investigate the efficacy of vanilla self-training on the CFC-DA
dataset as a method of closing the performance gap between source-supervised and target-supervised
models. We run inference using our baseline detector (the “teacher”) on the unsupervised portion of
CFC-DA from the target domain (2.6M frames), and use all detections with a confidence score s ≥ α
as pseudo-labels for self-training, where α is a hyperparameter that we sweep from 0.5 to 0.8. We
then train a second detector (the “student”) on the union of the CFC training set and the target-domain
pseudo-labels. We also test self-training in the semi-supervised case. Specifically, we train several
teacher models using various amounts of target-domain data. Each teacher predicts pseudo-labels on
the same 2.6M image dataset, and self-training proceeds as normal.
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Figure 2: Pseudo-label refinement using an object tracker introduces additional hyperparameters that
are nontrivial to set. Depending on which metric the tracker is optimized for, the resulting pseudo-labels vary
greatly in quantity (A) and quality (B). We found that fitting tracker parameters to validation MOTA gave the
best results. However, disappointingly, when using realistic validation adding a tracker made results worse on all
metrics except AP50, where improvement was marginal (C).

We show results from detector-only self-training in Fig. 1B. Our key takeaways are: (1) Vanilla
self-training does not consistently lead to performance improvements, and can dramatically hurt
performance if the wrong α is chosen. (2) First training on target-domain data, and then pseudo-
labeling (all points in Fig. 1B where Num EL Frames > 0) is not guaranteed to lead to effective
self-training either. (3) Annotating about 1000 target-domain images by hand is better than self-
training on millions of images using a source-only teacher.

A number of solutions have been proposed to address the shortcomings of vanilla self-training [22,
10, 22, 11, 11, 31]. We investigate one such approach in the next section.

Pseudo-label refinement via tracking. CFC-DA contains video frames, offering the ability to use
temporal information to improve pseudo-labels. We investigate using an object tracker [3] to do so, as
in [22]. We run object tracking on the pseudo-label outputs and use the boxes from the final tracks as
pseudo-labels. Intuitively, tracking can help remove spurious false positives as well as recover false
negatives; however we find that small changes to the tracker hyperparameters can lead to big changes
in the quantity (Fig. 2A) and quality (Fig. 2B) of the resulting pseudo-labels. This again poses the
challenge of how to properly set these hyperparameters. We show in Fig. 2C the effect of tuning
the tracker hyperparameters to the MOTA metric with source validation data (realistic) and target
validation data (oracle). Under realistic validation, adding a tracker resulted in worse performance
than detector-only self-training for four out of five metrics. Under oracle validation, refinement with
a tracker still resulted in worse performance than detector-only self-training for all metrics except
AP50. For AP50, the improvement was marginal (around 1%). The takeaway: filtering psuedo-labels
using a tracker is not advantageous.

Preliminary results from more complex approaches. After finding vanilla self-training (with
and without a tracker) to be ineffective, we tested mean teacher for object detection [25] using the
Adaptive Teacher [15, 7] implementation. We upgraded the codebase to use a more modern backbone
and training recipe, though we note that this required using a different detector architecture than
our previous experiments (Faster R-CNN vs. YOLOv5). We find that compared to a two-stage
baseline source-only model, which achieved an AP50 of 75.8 on EL, mean teacher self-training
achieved AP50=79.8 in the realistic validation setting and AP50=80.6 in the oracle validation setting.
Though there is still a performance cost due to the validation constraints of real-world settings, these
experiments demonstrate that improvements are possible and potentially promising under the realistic
validation setting.

5 Conclusion

This work focused on a practical question: how should developers of computer vision models adapt
their models to changing data distributions in real-world applications? We tried the simple and
obvious approaches first—i.e., those that required no modification to underlying architectures—as
these are appealing to practitioners for their ease of implementation. Unfortunately, we find these
“simple” approaches actually require careful tuning of parameters that have not been fully explored or
transparently discussed in prior work. A key takeaway from our collection of negative results is that
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validation methods will be critical if UDA algorithms are to have real-world impact. Our experiments
emphasize that the ability to estimate our performance on target-domain data is as important as the
adaptation algorithm itself.

In short, for our problem, we found vanilla self-training to be a dead-end even when used in
combination with additional target-domain data and pseudo-label refinement strategies. However,
we have observed promising initial results using more complex mean teacher approaches. But these
techniques still involve a collection of hyperparameters and design choices that must be appropriately
set when moving to a new application domain. Future work in this space must involve rigorous and
thorough analysis of these approaches to confirm our initial findings.
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