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ABSTRACT

Modelling and understanding time remains a challenge in contemporary video
understanding models. Time also appears in language through temporal rela-
tions. Video-language models can benefit from having a sense of time, especially
since language provides an interface for generalization. In this paper, we con-
sider a specific aspect of temporal understanding: consistency of time order as
elicited by before/after relations. We construct a simple synthetic dataset to mea-
sure such temporal understanding in video-language models and find that six ex-
isting models struggle to understand even such simple relations. We then posit
whether it is feasible to equip these foundation models with temporal aware-
ness without re-training them from scratch. Towards this, we propose a tem-
poral adaptation recipe on top of one such model, VideoCLIP, based on post-
pretraining on a small amount of video-text data. Our work serves as a first step
towards probing and instilling a sense of time in existing video-language models
without needing data- and compute-intense training from scratch. Project page:
https://bpiyush.github.io/testoftime-website.1

1 INTRODUCTION

Self-supervised pretraining on multimodal web corpora tied with powerful architectures (Vaswani
et al. (2017)) has led to foundation models (Bommasani et al. (2021)) for images (Radford et al.
(2021); Ramesh et al. (2021)) and videos (Xu et al. (2021); Alayrac et al. (2022)). These mod-
els have enabled remarkable improvements on a plethora of downstream tasks, particularly, video-
language tasks such as retrieval and question-answering. Given the cost and difficulty of video
annotations, even for a small amount of downstream data, such foundation models are emerging as
the de-facto backbone for zero-shot visual understanding tasks (Xu et al. (2021); Zeng et al. (2022);
Alayrac et al. (2022)). However, it remains unclear if these video-language models capture essential
properties of a video beyond what can be learned from static images, most notably: time.

Many before us have shown that existing video-language models (Xu et al. (2021); Bain et al.
(2021a); Luo et al. (2021)) can achieve impressive performance on several video benchmarks with-
out reliably encoding time (Buch et al. (2022); Lei et al. (2022); Li et al. (2022)). Buch et al.
(2022) show that a model that uses a single (carefully selected) frame often outperforms recent
video-language models on standard video benchmarks such as MSR-VTT (Xu et al. (2016)). Lei
et al. (2022) report similar findings with a single-frame pretraining approach. These findings hint at
a lack of time awareness in video models. However, it remains unclear if these findings are caused
by the lack of time in video models or whether the benchmarks themselves do not mandate time
awareness. Furthermore, there is no clear definition of what it means for a model to be time aware.
In this paper we strive to shed light on all these factors of time awareness in video-language models.

As a first step, we consider a simple notion of understanding time through temporal relations such
as before and after (Allen (1984)). Consider a pair of visual events, E1, E2 that occur in that order.
This order can also be captured in language by describing the video as "E1 before E2". If we
swap the order of events in the text, then the swapped sentence that is consistent with the time
order in the video should be assigned a higher similarity score than the original sentence that is
inconsistent. Thus, the first question we ask in Section 2: do the representations learnt by video-
language foundation models encode this sense of time? To reliably attribute lack of time awareness

1Original version of the paper (Bagad et al. (2023)) to appear at CVPR 2023.
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to models and not existing benchmarks, we design our own synthetic dataset to probe models. We
create video-language pairs that show a sequence of two events. Then, we alter the order of events
either in the text or the video and check if models can connect (reversed) video with (reversed)
language consistently. We find that existing video-language models indeed struggle to associate the
time order across video and language.

In light of these findings, the second question we ask in Section 3 is: can we adapt a video-language
model, without expensive re-training from scratch, to instill this sense of time? Towards this, we take
inspiration from the literature on understanding time in natural language, where there has been much
work on developing time aware language models (Dhingra et al. (2022); Han et al. (2021; 2020);
Zhou et al. (2020; 2021)). To instill time awareness, we propose TACT: Temporal Adaptation by
Consistent Time-ordering based on two key components: (i) we artificially create samples that pro-
vide temporal signal, for example, by flipping the order of events in the video or the text, (ii) we
introduce a modified contrastive loss to learn time order consistency based on these samples. In-
stead of training from scratch, we adapt an existing model, VideoCLIP (Liang et al. (2022)), using
the paradigm of post-pretraining (Luo et al. (2021)) on a small amount of video-text data. We
demonstrate the effectiveness of TACT on four diverse datasets in Section 3.

Related work. We focus on video-language models that can be categorized into (i) image-language
models adapted for videos (e.g.Luo et al. (2021)), (ii) video-language models trained by contrastive
objective (e.g., Xu et al. (2021)), and (iii) video-language models trained by masking objective (e.g.,
Ge et al. (2022)). Recently, post-pretraining approaches (Luo et al. (2021)) have been proposed, e.g.,
to adapt image-language models for video-language tasks by adding another stage of self-supervised
training before using models on downstream tasks. This is attractive as it circumvents the cost of
large-scale pretraining. We follow this line of work and aim to instil time awareness in pretrained
video-language models.

Understanding of time has been studied independently in videos and language. For videos, aspects
of time such as direction(Wei et al. (2018)), frame/clip ordering (Xu et al. (2019)), continuity (Liang
et al. (2022)), etc.have been used as a self-supervision signal to learn time aware representations.
However, it remains unclear if such representations actually encode time reliably. In a similar spirit,
a related direction pursues evaluation and benchmarking of time awareness in video datasets, models
or both (Huang et al. (2018)). Modelling time in natural language text has also been thoroughly
investigated (Zhou et al. (2021; 2020)). Our work derives inspiration from these but applies more
generally to video-language models. As far as we know, we are the first to shed light on time
awareness in a cross-model (video-language) setting. Note that, in this study, we do not consider
supervised video-language models trained on a particular task (e.g., temporal grounding).

2 DO VIDEO-LANGUAGE MODELS SENSE TIME?

Probing video-language models for temporal understanding is an open direction of research. In this
work, we consider a specific sense of temporal understanding: consistency in the order of events
in a video with the associated textual description. For example, consider a text description: A red
circle appears before a yellow circle. This imposes an order constraint on the video stream
to have the event red circle appears happen before the event yellow circle appears. Can
existing video-language models connect time-order in text with that in video? To answer this, we
design an experiment with synthetic data.

Synthetic dataset. We construct simple videos that comprise a pair of events such as the ones
mentioned above. We generate N=180 video-language pairs as a combination of C=6 colors, S=3
shapes, and |τ |=2 temporal relations: before and after. The corresponding caption describes the
order of events connected with a before/after temporal relation. We call this caption as an attractor
since it is consistent with the time-ordering in the video. Likewise, we construct a distractor where
we flip the order of event descriptions while retaining the temporal relation. An example pair is
illustrated in Fig. 1 (left). Ideally, a time aware video-language model should be able to associate
the video with the temporally consistent text, or vice versa. We refer to this task as time-order
consistency check. In order to rule out the possibility that synthetic videos are out-of-distribution,
we also perform the same experiment with canonical clips where a video displays a single event and
the text describes that same event as shown in Fig. 1 (right). We refer to this as the control task.
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Figure 1: Proposed task to evaluate time-order consistency
across synthetic video-language pairs having before/after re-
lations. We also define a control task to check if the synthetic
videos are considered out-of-distribution by the model.

Paradigm Method Video-to-Text Text-to-Video

Chance - 50.0 50.0 50.0 50.0

Image-Language
adapted to video

CLIP4Clip 49.4 51.1 50.0 49.4
CLIP2Video 100.0 47.8 97.8 52.3
CenterCLIP 91.7 46.1 97.2 51.1

Video-Language
Contrastive

VideoCLIP 87.1 51.1 66.7 48.3
Frozen in Time 97.8 49.4 100.0 50.6

Video-Language
Masking BridgeFormer 100.0 51.1 97.2 42.2

Table 1: Results on synthetic control ( )
and time-order consistency ( ) task as de-
scribed in Fig. 1. Existing models show ran-
dom performance on our time-order task.

Choice of models. We consider recent video-language models, broadly categorized into three
groups: (i) image-language models like CLIP (Radford et al. (2021)) that are adapted to videos (Luo
et al. (2021); Fang et al. (2021); Zhao et al. (2022)), (ii) pure video-language models trained on a
contrastive learning objective (Xu et al. (2021); Bain et al. (2021a)), and (iii) pure video-language
models trained on a masking objective (Ge et al. (2022)).

Findings. We evaluate video-to-text and text-to-video retrieval on both time-order consistency and
control tasks. From Tab. 1, we observe that while most video-language models perform well on the
control task, all of them struggle and perform on par with random chance on the temporal task. This
gap in performance deserves attention given the importance of time in videos.

3 INSTILLING VIDEO-LANGUAGE MODELS WITH A SENSE OF TIME

We describe a post-pretraining recipe for instilling this sense of time into a video-language model.
We propose TACT: Temporal Adaptation by Consistency of Time-order, that is based on two key
components: (i) we artificially create samples that provide temporal signals, e.g., by flipping the
order of events; (ii) we introduce a modified contrastive loss to learn temporal consistency based on
these samples. First, we define the notation and then describe the key components of our recipe.

Preliminaries. Let V be the space of video clips and T be the space of text clips. Consider two non-
overlapping video clips vi, vj ∈ V . Let ζi, ζj ∈ T be their respective captions. Let τ be a temporal
relation, τ ∈ {before, after}. Then, we denote a stitched and time-order consistent clip as (uij , tij),
where uij := [vi; vj ], tij := [ζi; τ ; ζj ], and [·; ·] denotes concatenation. Note that depending on τ ,
the order of vi and vj may need to change in uij . For brevity, we drop the subscripts and refer to the
stitched pair as (u, t) unless stated otherwise.

Time-order reversal. The classical contrastive learning paradigm for video-language models aligns
components of a video clip vi with it’s text counterpart ζi and contrasts against other texts ζj that
usually describe a completely different clip. This makes such models ignore the finer details of tem-
poral understanding as it is easier to contrast the negatives by simply focusing on the objects/scene.
This leads to bag-of-words like representations (Yuksekgonul et al. (2023)). We hypothesize that
unless there are negatives in a contrastive setup that contain the same scenes and objects, models do
not need to learn a sense of time. Thus, we present a simple strategy to generate negatives that force
the learning process to focus on the temporal order. We define a time-order reversal function T that
operates on the stitched video clip or text description and temporally swaps its constituents :

T(u) = T([vi; vj ]) := [vj ; vi], (1) T(t) = T([ζi; τ ; ζj ]) := [ζj ; τ ; ζi] (2)

An illustration of T is shown in Fig. 2. Note that T does not reverse the actual video, i.e.„ time
does not flow backwards, but only changes the order in which events happen in the stitched clips.
Our objective is to train a model that is able to distinguish between the original pair (u, t) and
time-reversed versions (u,T(t)), and (T(u), t).

Loss function. We assume access to an existing pretrained video-language model with a visual en-
coder fθ and text encoder gϕ. We obtain the video encoding zu := fθ(u) ∈ Rd and the text encoding
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Figure 2: TACT overview. Along with the usual
contrastive loss, we make use of time-order re-
versal within the same sample and cross sam-
ples to generate additional negatives for both
video and text. We also extend the contrastive
loss to time-order reversed video and text corre-
sponding to reverse consistency Lr .

Dataset Method Retrieval Time-order

R@1↑ MedR ↓ Atime↑
Zero-shot 3.7 49.0 48.1

TEMPO TACT† 7.7 13.0 46.5
TACT⋆ 9.3 9.0 66.5

Zero-shot 1.1 44.0 49.6
ActivityNet TACT† 5.8 34.0 59.7

TACT⋆ 5.8 35.0 85.7

Zero-shot 1.3 170.0 47.1
Charades TACT† 5.3 38.5 73.5

TACT⋆ 5.7 35.0 77.0

Zero-shot 1.6 64.0 53.7
Charades-Ego TACT† 6.4 35.0 60.1

TACT⋆ 10.1 28.5 68.2

Table 2: Results with TACT on test sets of various datasets.
TACT⋆ is the model with optimal loss coefficients and
TACT† is a baseline with all coefficients 0 (usual con-
trastive learning without additional negatives/positives).
On time order, TACT generalizes well with TACT⋆ out-
performing the baselines. On retrieval, for TEMPO and
Charades-Ego, TACT⋆ outperforms the baseline as their
optimal models have β=1 which helps retrieval with a
small amount of data.

zt := gϕ(t) ∈ Rd. Our goal is to adapt Θ = {θ, ϕ} via post-pretraining s.t. the resulting model is
time aware while maintaining its original retrieval performance. As we aim to use a small dataset,
we only update some parameters of the model (e.g.last few layers). We use the Info-NCE (van den
Oord et al. (2018)) loss on a 2B × 2B-sized similarity matrix (B being batch size) instead of the
usual B×B in contrastive loss (Fig. 2). Details of the loss computation are provided in Appendix A.

Experimental setup. We show the efficacy of TACT by adapting pretrained VideoCLIP model. We
post-pretrain it on four diverse datasets: (i) TEMPO (Hendricks et al. (2018)): with text descriptions
for fixed 5s segments ; (ii) ActivityNet Captions (Krishna et al. (2017)): a dense video captioning
dataset with human-centric actions; (iii) Charades (Sigurdsson et al. (2016)): a scripted indoor
daily human activities video dataset; and (iv) Charades-Ego (Sigurdsson et al. (2018)): similar to
Charades, scripted human activities from the egocentric viewpoint. To construct stitched clips, we
randomly sample any two non-overlapping clip-text pairs in the video. We evaluate adapted models
on retrieval metrics such as R@1, median rank (MedR) and temporal accuracy Atime (% of video-
text pairs with correctly identified time order). More details are provided in Appendix C.

Results. (i) Synthetic data: we first evaluate trained models on the same synthetic data. On the
models trained on four datasets independently, we obtain 78.1%, 59.4%, 88.3% and 86.7% respec-
tively. (ii) Real data: as shown in Tab. 2, on test sets of the real datasets, we obtain much superior
performance in comparison to zero-shot or contrastive-only baseline. (iii) Generalization to a new
temporal prompt: Having trained on sentences with before/after relations, we also test if adapted
models generalize to new kinds of prompts such as "First,E1,then,E2". On each of the four
datasets, we obtain 53.2%, 62.9%, 73.1%, 62.9% accuracies respectively with this new prompt.
More details are provided in Appendix D. This substantiates the learning of time order of events
rather than merely learning the order of words in the sentence or learning about specific words.

Conclusion. Given the essence of time in video-language foundation models, we present a simple
experiment based on synthetic data to test for time awareness in existing models. We find that ex-
isting models lack a sense of time defined in terms of consistency of order of events in video and
language. To fill this gap, building upon VideoCLIP, we present TACT, a recipe to instill this sense
of time in video-language models. As a result of such adaptation, we observe strong performance on
the synthetic data and several real datasets. We hope that this work provokes further probing and in-
stilling time awareness in video-language models; and also inspires other adaptations of foundation
models to solve various challenging tasks.
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A DETAILS OF LOSS COMPUTATION

We now introduce our recipe for temporal adaptation based on the InfoNCE loss van den Oord
et al. (2018) to learn time-order sensitive video-text correspondence. For a positive (or time-order
consistent) video-text pair (u, t), we first define a forward loss where the stitched pair is in its
original time-order.

Lf =
∑

(u,t)∈B

(TNCE(zu, zt) + TNCE(zt, zu)) , (3)

where TNCE is the Noise Contrastive Estimation (NCE) loss for temporal adaptation, defined as:

TNCE(zu, zt) := − log
exp(zu · zt)∑

t′∈Bt
exp(zu · zt′) + Ctime , (4)

where B is the batch of (u, t) pairs and Bt specifically refers to other stitched text captions in the
batch. C time accumulates negatives defined using time-order reversal as:

Ctime = αsame exp(zu · zT(t)) + αcross
∑

t′∈Bt\{t}

exp(zu · zT(t′)), (5)

where αsame controls the effect of contrasting text from the same sample but with reversed text time-
order, i.e.„ T(t), and αcross encourages the model to contrast between reversed versions of other text
captions, i.e.„ T(t′). Note that when both αsame and αcross are 0, we revert back to the standard
NCE formulation, albeit on stitched pairs. While Eq. equation 4 corresponds to the video-text loss
TNCE(zu, zt), the text-video loss TNCE(zt, zu) is defined symmetrically.

Furthermore, we also apply a reverse loss Lr to bring time-order reversed versions of both the video
and the text together. Note that as we consider (u, t) as a positive pair, (T(u),T(t)) also form a
positive pair,

Lr =
∑

(T(u),T(t))∈B

(
TNCE(zT(u), zT(t)) + TNCE(zT(t), zT(u))

)
. (6)

Here, the TNCE term operates on time-reversed clips and C time contrasts (T(u),T(t)) with un-
reversed text clips in the batch (T(u), t).

The overall loss function is defined as a combination,

L = Lf + βLr . (7)

Depending on the choice of loss coefficients αsame, αcross, β ∈ {0, 1}, we can vary properties of the
adapted model. For example, setting αsame=1 encourages high sensitivity to time-order reversal. As
we will see empirically, the loss coefficients also provide the flexibility to adapt the model to various
datasets.

We illustrate this temporal extension of the contrastive loss in Fig. 2 (best seen in color). T illustrates
the time order reversal function. The top half corresponds to Lf while the bottom half visualizes
Lr. In particular, the top-left quadrant alone corresponds to the standard contrastive loss. While the
green diagonal terms are positive pairs, the red diagonal terms are the strongest drivers for instilling
temporal understanding in the model.

B IMPACT OF LOSS COEFFICIENTS

Choosing appropriate values for loss coefficients Θl:={αsame, αcross, β} allows the model to learn
various aspects and adapt using different datasets. On each dataset, we vary Θl∈{0, 1}3 and find the
best configuration based on the GeometricMean(R@1,max(Atime − 50, 0)) on the validation sets.
The above metric ensures the geometric mean is not overpowered by Atime. The results are shown
in Tab. 4.

As αsame is directly responsible for discriminating between original and time-reversed orders, un-
surprisingly, setting it to 1 is necessary to achieve the best results on Atime for all the datasets. For
TEMPO and Charades-Ego, using all loss components (all 1) provides the best results, whereas
αcross=1 and β=0 achieves a better trade-off for ActivityNet and Charades. Choosing β=1 leads
to an improvement in retrieval performance for TEMPO and Charades-Ego but leads to a decline
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Figure 3: Time-distance between stitched clips in datasets for temporal adaptation (∆time). TEMPO has stitched
clips close to each other while those in Charades-Ego are farthest apart suggesting a correlation between ∆time
and the difficulty of temporal adaptation.

Dataset Train Validation Test Ego Length

NV NC NV NC NV NC (s)

TEMPO 3,904 28,427 411 1,000 396 1,000 ✗ 30
ActivityNet 7,440 95,474 453 906 456 912 ✗ 120
Charades 5,262 99,928 500 1,000 500 1,000 ✗ 30
Charades-Ego 2,679 155,306 500 1,000 210 420 ✓ 31

Table 3: Statistics of datasets we consider for temporal adaptation. NV is the number of unique videos and
NC is the number of stitched clips. Based on NV , TEMPO and Charades-Ego are smaller as compared to
ActivityNet and Charades.

for ActivityNet and Charades. We attribute this to the number of unique videos in the train set for
these datasets. As ActivityNet and Charades have more videos than TEMPO or Charades-Ego (see
train NV Tab. 3) additional positives introduced by setting β=1 are not necessary and in fact hurt
performance.

C DETAILS OF TACT ADAPTATION

Base model. We demonstrate the effectiveness of TACT as an adaptation recipe on top of Video-
CLIP Xu et al. (2021) owing to its simple architecture, contrastive objective, and use of pre-
computed S3D Xie et al. (2018) features that enable faster experimentation and allow encoding a
long temporal context (∼32 secs). We initialize Θ from the model pretrained on HowTo100M Miech
et al. (2019) and post-pretrain on multiple datasets.

Datasets. One of our key objectives is to post-pretrain on a small amount of data in contrast
to massive pretraining datasets such as WebVid2M Bain et al. (2021b) or HowTo100M Miech
et al. (2019). We consider dense video captioning datasets that offer sufficient diversity in terms
of size, backgrounds, clip durations, viewpoints and activities. Specifically, we experiment with:
(i) TEMPO Hendricks et al. (2018): the subset of stitched diverse third-person videos from
DiDeMo Hendricks et al. (2017) with text descriptions for fixed 5s segments that contain before/after
relations; (ii) ActivityNet Captions Krishna et al. (2017): a dense video captioning dataset with
human-centric actions; (iii) Charades Sigurdsson et al. (2016): a scripted indoor daily human ac-
tivities video dataset; and (iv) Charades-Ego Sigurdsson et al. (2018): similar to Charades, scripted
human activities from the egocentric viewpoint. To construct stitched clips, we randomly sample
any two non-overlapping clip-text pairs in the video. Since we require stitched clips instead of raw
videos, we create new splits for each dataset (see Tab. 3). We will release all the splits publicly on
our project page.

Evaluation metrics. We evaluate the post-pretrained model using two sets of metrics: (i) standard
retrieval metrics, recall R@1, R@5, R@10 and median-rank evaluated on stitched video-text clips;
and (ii) time-order consistency, i.e.„ the fraction of videos for which the model correctly associates
text that is time order consistent with the video:

Atime :=
1

|D|
∑

(u,t)∈D

I[d(zu, zt) < d(zu, zT(t))], (8)
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where (u, t) are time-order consistent pairs, D is the dataset, and d(·, ·) is a distance metric based
on cosine similarity.

Post-pretraining details. We freeze the word embeddings and layers 1 to 5 for both the video and
text encoders in VideoCLIP. For adaptation, we use the Adam optimizer Kingma & Ba (2015) with
learning rate 5e−6, batch size 32 trained on a single node with 4 GeForce GTX 1080 GPUs. On
TEMPO, we train for 60 epochs while on the other datasets, we train for 10 epochs and pick the
checkpoint that maximizes the geometric mean of R@1 and Atime on the respective validation set.
A typical training run takes about 1-3 hours.

Loss coefficients TEMPO ActivityNet Charades Charades-Ego

αsame αcross β R@1 ↑ MedR ↓ Atime ↑ R@1 ↑ MedR ↓ Atime ↑ R@1 ↑ MedR ↓ Atime ↑ R@1 ↑ MedR ↓ Atime ↑
Chance 0.1 500.0 50.0 0.1 453.0 50.0 0.1 500.0 50.0 0.1 500.0 50.0

0 0 0 8.3 14.0 49.4 6.4 30.0 57.3 5.7 42.0 71.5 2.9 44.0 64.6
0 0 1 8.2 14.0 49.5 5.6 27.0 47.0 4.2 58.0 75.1 3.2 41.5 65.2
0 1 0 8.2 15.0 49.3 6.1 29.0 78.8 5.2 45.0 78.9 3.4 38.0 64.5
0 1 1 8.1 14.0 49.5 5.8 27.0 48.3 4.2 58.0 75.1 3.1 41.0 67.0
1 0 0 6.4 20.0 60.6 5.9 28.0 79.1 6.1 38.0 76.3 3.2 42.0 66.1
1 0 1 6.5 24.0 62.9 5.6 26.0 63.1 4.9 51.0 78.0 3.3 39.0 70.7
1 1 0 5.9 24.0 59.7 6.0 29.0 86.3 6.6 43.0 77.8 3.7 40.5 67.9
1 1 1 7.5 17.0 62.5 5.7 27.0 63.8 5.1 51.0 77.7 3.8 38.5 68.3

Table 4: Impact of loss coefficients for TACT post-pretraining on validation sets of various datasets. For each
dataset, the corresponding color-marked row denotes the best configuration based on the geometric mean of
R@1 and Atime. TACT is able to connect time-order in video and language while maintaining its retrieval
capabilities across several datasets.

D GENERALIZATION TO NEW TEMPORAL PROMPTS

The time-order of events in language can be described using various sentence structures. Although
we train video-language models using before/after relations, it is natural to ask if the model still cor-
rectly associates time-order for a different prompt such as First,.., then,... To systematically
test this, we gather event pairs E1, E2 (E1 occurs before E2 in the video) for each sample in the
validation set and stitch them using three prompts as follows: (i) E1 before E2, (ii) E2 after E1,
(iii) FirstE1, thenE2. As shown in Fig. 4, TACT-adapted models generalize well to a new prompt
(iii). This substantiates the learning of time-order of events rather than merely learning the order of
words in the sentence.
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Figure 4: Models trained by TACT with before/after relations generalize to a new kind of prompt
such as First, .., then .. indicating learning of the underlying true time-order of events.
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