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Summary
To safely operate in various dynamic scenarios, AI agents must be resilient to unexpected

changes in their environment. Previous work on such types of resilience has focused on single-
agent settings. In this work, we introduce a multi-agent variant we call group resilience and
formalize this notion. We further hypothesize that collaboration with other agents is key to
achieving group resilience, meaning that collaborating agents adapt better to environment per-
turbations in multi-agent reinforcement learning (MARL) settings. We test our hypothesis
empirically by evaluating different collaboration protocols and examining their effect on group
resilience. We deployed several MARL algorithms in multiple environments with varying
magnitudes of perturbations. Our experiments show that all collaborative approaches lead to
greater group resilience compared to their non-collaborative counterparts. Furthermore, our
results map the capabilities of the compared collaboration methods in maintaining group re-
silience.

Contribution(s)
1. We introduce a novel definition of group resilience and formalize this notion, which corre-

sponds to the group’s ability to adapt to unexpected changes.
Context: Prior work primarily focused on resilience in single-agent settings or adversarial
MARL scenarios without a unified resilience measure.

2. We are the first to introduce that collaboration promotes group resilience, providing empir-
ical evidence across multiple MARL benchmarks.
Context: Since prior work only explored single-agent settings, collaboration could not be
considered.
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Abstract

To safely operate in various dynamic scenarios, RL agents must be resilient to unex-1
pected changes in their environment. Previous work on such types of resilience has2
focused on single-agent settings. In this work, we introduce a multi-agent variant we3
call group resilience and formalize this notion. We further hypothesize that collabora-4
tion with other agents is key to achieving group resilience, meaning that collaborating5
agents adapt better to environment perturbations in multi-agent reinforcement learning6
(MARL) settings. We test our hypothesis empirically by evaluating different collabo-7
ration protocols and examining their effect on group resilience. We deployed several8
MARL algorithms in multiple environments with varying magnitudes of perturbations.9
Our experiments show that all collaborative approaches lead to greater group resilience10
compared to their non-collaborative counterparts. Furthermore, our results map the11
capabilities of the compared collaboration methods in maintaining group resilience.12

1 Introduction13

Reinforcement Learning (RL) agents are typically required to operate in dynamic environments and14
must develop an ability to quickly adapt to unexpected perturbations. Promoting this ability is hard,15
even in single-agent settings (Padakandla, 2022). When the RL agent operates alone, it needs to16
adapt its behavior to the changing, and possibly partially observable, environment. For a group, this17
is even more challenging. In addition to the dynamic nature of the environment, agents need to deal18
with high variance caused by the other agents’ changing behavior.19

Recent Multi-Agent RL (MARL) work showed the beneficial effect of collaboration between agents20
on their performance (Christianos et al., 2020; Foerster et al., 2016; Honhaga & Szabo, 2024; Jaques21
et al., 2019; Lowe et al., 2020; Qian et al., 2019; Xu et al., 2012). Our objective is to highlight the22
relationship between a group’s ability to collaborate effectively and its resilience, which measures23
the group’s ability to adapt to environment perturbations. We aim to demonstrate that collaborating24
agents are able to recover a larger fraction of the previous performance after a perturbation occurs.25

The ability of autonomous agents, individually or as a group, to adapt to environmental changes26
is highly desired in real-world settings where dynamic environments are the norm. Therefore, if a27
group is to reliably pursue its objective, it should be able to handle unexpected environment changes.28

Contrary to investigations of transfer learning (Liang & Li, 2020; Zhu et al., 2023) or curriculum29
learning (Portelas et al., 2020), we do not have a stationary target domain in which the group of30
agents is going to be deployed, nor do we have a training phase dedicated to preparing agents31
for various deployment environments. Instead, we aim to measure a group’s ability to adapt to32
unexpected changes that can occur at random times and show that the ability to collaborate with other33
agents increases resilience. We focus on multi-agent reinforcement learning (MARL) settings for34
which previous work demonstrates how collaboration allows a group to learn and operate efficiently35
in complex but stationary environments (Christianos et al., 2020; Foerster et al., 2016; Jaques et al.,36
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2019). We offer empirical evidence that collaboration promotes resilient behavior in non-stationary37
environments. We facilitate collaboration via communication using existing (Jaques et al., 2019)38
and custom communication protocols.39

The literature offers a range of definitions for resilience in both single and multi-agent settings (Pat-40
tanaik et al., 2017; Phan et al., 2020; Vinitsky et al., 2020; Zhang et al., 2017), primarily focusing on41
resilience in the face of adversarial behavior (Saulnier et al., 2017; Phan et al., 2020) or on algorithms42
for training resilient agents, defining resilience for specific models. However, these works do not43
define resilience in a unified, measurable way and thus do not quantify it effectively. we concentrate44
on non-adversarial settings, emphasizing the agents’ ability to enhance resilience through collab-45
oration. We define and measure group resilience based on agents’ performance under unexpected46
and random environment perturbations of bounded magnitude. Unlike prior work that addresses47
resilience concerning adversarial agents’ behavior, our approach focuses on resilience concerning48
environment changes. Our goal is to provide a unified, general measure of resilience based on a49
user-specified distance metric, adaptable to various settings. The perturbations we model represent50
unexpected changes in the real world, reflecting practical scenarios that agents might encounter.51

(a) (b)

Figure 1: An illustration of the coop-mining domain. There are 5 miner agents (colorful creatures).
Two types of ores (resources) appear randomly on the map: iron (grey mounds) and gold (yellow
mounds). 1a shows a clean mine with walls only on the boundaries. 1b shows a perturbation of the
environment; perturbations are newly introduced non-traversable walls (solid lines).

Example 1 Figure 1a depicts a multi-agent variation of the coop-mining domain (Leibo et al.,52
2021). All miners are employed by the same mining company, which aims to maximize the group’s53
total revenue. Miners may find two types of ores, iron and gold, anywhere in the mine. A single54
miner can extract one unit of iron alone, which sells for $100. Mining gold requires two miners55
to strike the ore multiple times in unison, but it sells for $800. As the miners excavate, unstable56
terrain or mild earthquakes may cause cave-ins that create unexpected blockages in seemingly ran-57
dom locations within the mine (see Figure 1b). At this point, the miners may benefit from sharing58
information about these blockages to enhance the group’s resilience, i.e., their ability to adapt to the59
perturbations. We aim to show that agents trained to communicate prior to perturbations are more60
resilient to unexpected disruptions and can more quickly adapt to the changing mine layout.61

Our contributions are threefold. First, we suggest a new unified measure called group resilience62
corresponding to the group’s ability to adapt to unexpected changes. This formulation covers a wide63
range of real-world multi-agent problems. Second, we design and implement a MARL framework64
for testing multi-agent resilience in the face of environment perturbations1. Finally, we provide65
empirical evidence supporting our hypothesis that collaboration promotes resilience in MARL.66

1code will be open-sourced upon acceptance
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2 Background67

Reinforcement learning (RL) is a learning paradigm where agents learn by observing the world,68
acting within it, and receiving rewards (positive or negative) for achieving certain states or state69
transitions. RL problems commonly model the world as a Markov decision process (MDP) (Bell-70
man, 1957) M = ⟨S,A,R, P, γ⟩ where S is a set of possible states, A is a set of agent actions,71
P : S × A × S → [0, 1] is the state transition function, R : S × A × S → R is the reward func-72
tion, and γ is the temporal reward discount factor. The objective is to find a policy π∗ such that73
π∗ ∈ argmaxπE[J(π)], where74

The objective is to find a policy π∗ such that π∗ ∈ argmaxπE[J(π)], where75

J(π) = Est, st+1∼P ; at∼π

[ ∞∑
t=0

γt R
(
st, at, st+1

)]
(1)

is the expected return of policy π.76

Multi-Agent Reinforcement Learning (MARL) extends RL to multiple agents. In MARL, we77
model the world as a Markov Game (MG) (Littman, 1994), where each agent can choose a separate78
action and receive a reward. Transitions are based on the joint action, i.e., all the actions chosen by79
the agents. A group’s utility (performance), denoted U , can be defined in various ways. In this work,80
we measure U as the sum of discounted rewards achieved by the group, which indicates the group’s81
level of collaboration (we will use group performance and utility interchangeably). Furthermore,82
this work focuses on homogeneous agents with a shared reward function, thus we treat MGs as83
MDPs and refer to them as such.84

3 Measuring Group Resilience85

Saulnier et al. (2017) defined resilience in the presence of a bounded number of adversarial agents.86
Similarly, we want group resilience to mean that agents can still achieve a fixed fraction of their87
performance after an environment undergoes an unexpected perturbation bounded in magnitude.88
As such, ours differs from the original definition by measuring resilience to consider changes in89
the agents’ observations and experiences. Our definition of resilience relies on a distance measure90
δ(M,M

′
) that quantifies the magnitude of the change between an original MDP M and the modified91

MDP M
′
, and a utility measure U(M), quantifying the performance of a group of agents in an92

environment (e.g., accumulated reward). Given these user-specified measures, we require that a93
perturbed environment within a bounded distance K from the original environment will result in94
decreased performance by a factor of at most some constant CK . Notice that this is similar to the95
classical ϵ-δ-definition of the continuity of a function.96

We note that a range of subtly different formal definitions
of group resilience can satisfy this intuitive requirement.
We provide only the definitions that are relevant to our
experiments. Specifically, the following definitions rely on
the assumption that a designer might want to guarantee
resilience over some subset of perturbed environments in
MDP class M within a specified distance from a chosen
environment M (see Figure 2). For instance, in 1, instead
of being resilient to arbitrary perturbations that may occur
over the landscape, miners might be interested in
guaranteeing that a group of miners is resilient under a
bounded number of random path blockages.

Figure 2: Relative to origin
resilience considers the difference
in performance for perturbed
environments M

′
that are within

some distance from an origin
environment M .

Definition 1 (Relative to Origin CK-resilience) Given a class of MDPs M, source MDP M ∈97
M, and bound K ∈ R, we say that a group of agents is CK-resilient over M relative to origin M if98

∀M ′ ∈ M : δ(M,M ′) ≤ K =⇒ U(M ′) ≥ CK · U(M) (2)
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Setting Ck ∈ [0, 1] means U(M ′) is lower bounded, i.e., the performance degradation is bounded.99

Resilience over M allows us to choose a subset of environments of interest for which the distance100
condition is easily verified. However, this condition may be unreasonably strong and impractical in101
many cases. It requires the performance bound to strictly hold for any M ′ ∈ M (under the distance102
bound). Therefore, equipped with a probability distribution (e.g., uniform distribution) Ψ over M,103
we further define resilience-in-expectation as follows.104

Definition 2 (Relative to Origin CK-resilience in Expectation) Given an MDP M , a distribu-105
tion over a class of MDPs Ψ, and a bound K ∈ R, we say that a group of agents is CK-resilient in106
expectation over Ψ relative to origin M if107

E[M ′∼Ψ|δ(M,M ′ )≤K]U(M
′) ≥ CK · U(M) (3)

Our definition above requires the expected group performance to fulfill a guarantee, where the ex-108
pectation is over a distribution of MDPs in M within K-distance of M . Polynomially many samples109
from Ψ are sufficient to achieve arbitrarily close approximations of the true expectation with high110
probability. To show this, we assume that the utility function U(M ′) is a random variable with M ′111
drawn from Ψ under the constraint δ(M,M ′) ≤ K, is i.i.d. for a random draw of M ′, and has a112
finite variance σ2. Then by Chebychev’s inequality, the approximated expected utility using σ2

ϵ2·(1−δ)113
samples is at most ϵ distance from the true expectation with probability at least δ.114

Note that Definitions 1 and 2 compare agent performance in a perturbed environment against their115
performance in the original one, without considering performance in the environment before any116
perturbations occur. This means that a group following a non-efficient policy (e.g., performing a117
no-op action repeatedly) may be associated with high resilience. Depending on the objective of118
the analysis, our suggested measures could, therefore, be considered in concert with the group’s119
measure of utility or normalized against some baseline.120

3.1 Perturbations121

In this work, we are interested in settings in which we have an initial environment and a set of122
perturbations that can occur. A perturbation ϕ : M 7→ M is a function transforming a source MDP123
into a modified MDP. An atomic perturbation is a perturbation that changes only one of the basic124
elements of the original MDP. Given an MDP M = ⟨S,A,R, P, γ⟩ and perturbation ϕ, we denote125
the resulting MDP after applying ϕ by Mϕ = ⟨Sϕ, Aϕ, Rϕ, Pϕ, γϕ⟩.126

Among the variety of perturbations that may occur, we focus here on three types of atomic pertur-127
bations. Transition function perturbations modify the distribution over the next states for a single128
state-action pair. Reward function perturbations modify the reward of a single state-action pair.129
Initial state perturbations change the initial state of the MDP.130

Definition 3 (Transition Function Perturbation) A perturbation ϕ is a transition function pertur-131
bation if for every MDP M = ⟨S,A,R, P, γ⟩, Mϕ is identical to M except that for a single action-132
state pair s ∈ S and a ∈ A, Pa

s [S] ̸= Pa,ϕ
s [S].133

Definition 4 (Reward Function Perturbation) A perturbation ϕ is a reward function perturbation134
if for every MDP M = ⟨S,A,R, P, γ⟩, Mϕ is identical to M except that for a single action-state135
pair s ∈ S and a ∈ A, ras ̸= ra,ϕs .136

Definition 5 (Initial State Perturbation) A perturbation ϕ is an initial state perturbation if for ev-137
ery MDP M = ⟨S, s0, A,R, P, γ⟩, Mϕ is identical to M except that s0 ̸= sϕ0 .138

Example 1 (continued) In our coop-mining domain, a path blockage can be modeled as an initial139
state perturbation or as a transition function perturbation that stops the agent from transitioning to140
the adjacent cell. This is represented by changing P to express a probability distribution Pa

s [S] that141
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is set to be Pa
s(s

′) = 0 when (s, a, s′) represents crossing the blocked area, and Pa
s(s) = 1, which142

represents staying in the same place. A change in an ore’s (gold) location can be represented by143
two atomic perturbations: one that replaces the reward for mining at the original location with a144
negative reward, and one that adds a positive reward for mining at the new location.145

A straightforward way to measure the distance δ between two MDPs is to count the minimal number146
of atomic perturbations between the original MDP and the modified one. While this metric has147
some limitations, it is good enough for our experiment settings. Future work should consider more148
complex measures like the ones suggested by Song et al. (2016).149

4 Facilitating Collaboration via Communication150

Equipped with a measure for group resilience, we now focus on maximizing the resilience of a151
group of RL agents by facilitating collaboration. Recent MARL work suggests various approaches152
for promoting collaboration (Jaques et al., 2019; Mahajan et al., 2019; Rashid et al., 2018). In this153
work, we focus on communication (Christianos et al., 2020; Foerster et al., 2016).154

To support collaboration, communication protocols produce messages that encode information valu-155
able to other agents’ learning. We examine different communication protocols based on broadcast-156
ing observations that least align with their previous experiences. Misalignment corresponds to the157
agents’ familiarity with the environment, which may decrease due to perturbations. By communi-158
cating misaligned transitions, agents increase familiarity with the environment for the other agents.159

We present two definitions of misalignment. The first is taken from (Gerstgrasser et al., 2023), and160
measures misalignment using the Temporal Difference (TD) error of a given observation. Formally,161
let et = ⟨st, at, st+1, rt⟩ be the experience at time t, that is, transitioning to state st+1 after taking162
action at in st and receiving reward rt. Let πp represent the policy of agent p, and let Qπp represent163
the Q-function of policy πp, i.e., the expected value of taking action a in state s and following π164
thereafter. Given an experience, the TD-error is:165

TD(et) =
∣∣∣rt + γ max

a
Qπp(st+1, a)−Qπp(st, at)

∣∣∣ (4)

This definition is inspired by Prioritized Experience Replay (Schaul et al., 2016, PER), according to166
which a deep Q-Network (DQN) agent (Mnih et al., 2015) maintains a buffer of past transitions and167
prioritizes them in a way that expedites training.168

A second measure of misalignment of a transition considers the difference between the observed169
reward rt and the expected reward r̂t. The misalignment for agent p at st after taking action at,170
denoted by Jp

st,at
, is defined as171

Jp
st,at

=

∣∣rt − r̂t
∣∣

rt
(5)

where r̂t ≈ Qπp(st, at)−Qπp(st+1, πp(st+1)).172

Using these two measures, we created different communication protocols in which misalignment is173
used to decide which messages to broadcast to other agents, described below:174

1. No Communication – Agents do not share information (used as a baseline).175

2. Mandatory Broadcast – Each agent p broadcasts at state st its most misaligned experiences, i.e.,176
transitions with the highest Jp

st,at
. A message consists of the misaligned transitions τ . Messages177

are received by all other agents and inserted into their replay buffers. The number of transitions178
broadcast at each time step is bounded by a the channel bandwidth parameter ml.179

3. Emergent Communication – Each agent p broadcasts a discrete communication symbol mp
t180

among a given set of symbols, at each state st. Individual messages of all agents are concate-181
nated into a single vector mt = [m1

t . . .m
N
t ], which is included as an additional observation182
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signal that all agents receive at the next time step (t + 1). We distinguish between two sub-183
cases: Self-Centric and Global-Centric. In Emergent Self-Centric Communication, each agent184
p uses counterfactual reasoning and chooses a symbol mp

t that would have minimized its own185
misalignment at time step t− 1. Formally, the loss function for πm is:186

Lt =
∣∣∣argmin

m
Jpm
st−1,at−1

− Jp
st−1,at−1

∣∣∣
where Jpm

st−1,at−1
is the misalignment at (t − 1) had it received message m. In textbfEmergent187

Global-Centric Communication, agents observe the misaligned observations of all other agents at188
each time step. Each agent p is rewarded for choosing a symbol mp

t that would have minimized189
the total misalignment of the group at (t − 1). Agents maintain a model that predicts the global190
(average) misalignment of the other agents given an observation and messages. Formally,191

Lt =
∣∣∣argmin

m
ĴPm
st−1,at−1

− JP
st−1,at−1

∣∣∣
where ĴPm

st−1,at−1
is the counterfactual predicted average misalignment of the other agents, having192

received m, and JP
st−1,at−1

is the actual average misalignment of the other agents.193

4. suPER – Selectively Sharing Experiences (Gerstgrasser et al., 2023): Each agent p broadcasts194
at state st its experiences with the highest TD-errors (Equation 4). These transitions are inserted195
into the replay buffers of receiving agents. The number of broadcast transitions per time step is196
bounded by ml. suPER leverages PER insights so that not all experiences are equally relevant197
for learning, and thus it supports decentralized training with minimal communication overhead,198
compatible with standard DQN (Mnih et al., 2015) variants.199

5 Empirical Evaluation200

Our empirical evaluation aims to assess the effect collaboration has on group resilience. Specifically,201
we measure and compare the utility of groups of agents in randomly perturbed environments (various202
types of atomic perturbations), where each group implements a different communication protocol203
and learning approach (our code base and full results will be publicly available). We conducted two204
sets of experiments. The first uses our custom communication protocols in environments requiring205
relatively simple forms of collaboration. The second uses SOTA communication in an abstraction206
of 1. Experiments ran on a x86_64 CPU running Ubuntu 20.04.6.207

Experiment 1: Simple Collaboration We trained individual neural networks for every RL agent208
using the distributed Asynchronous Advantage Actor-Critic (A3C) algorithm (Mnih et al., 2016).209
For the multi-taxi domain, agents were implemented using a Deep Q-Network (Mnih et al., 2015).210
We evaluate a spectrum of communication protocols within our framework. The No Communi-211
cation protocol involves agents operating independently without exchanging information. In the212
Social Influence protocol, as suggested by (Jaques et al., 2019), agents broadcast messages aimed213
at maximizing their impact on the immediate behaviors of other agents. The Mandatory Com-214
munication protocol requires agents to share their top ml most misaligned transitions, as detailed215
in Section 4. In the Emergent Self-Centric Communication protocol, agents broadcast a discrete216
symbol at each step that would have minimized their previous step’s misalignment. In the Emergent217
Global-Centric Communication protocol, agents monitor the current misalignment levels of their218
peers and broadcast symbols that aim to minimize the group’s overall misalignment.219

We experiment with three multi-agent RL environments. Cleanup (Vinitsky et al., 2019): Seven220
agents must balance harvesting apples (individual rewards) and cleaning a river (enables regrowth221
but prevents harvesting). Agents can fine each other, and each observes a raw image of its surround-222
ings. Harvest (Vinitsky et al., 2019): Similar to Cleanup, but apple regrowth depends on proximity223
rather than a river, requiring coordinated harvesting to avoid depletion. Multi-Taxi (Azran et al.,224
2024): Taxis transport passengers in a configurable grid world with perturbations. Observations are225
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symbolic state vectors. Rewards include high positive for drop-offs, small negative for time steps,226
and large negative for collisions. Grid sizes range from 5×5 to 8×8 with 2–3 taxis and passengers.227

In the Cleanup and Multi-taxi domains, we used two types of perturbations. The first is a transition228
function perturbation, randomly adding non-traversable obstacles (e.g., walls) to the map. The sec-229
ond is an initial state perturbation, randomly changing the initial configuration (e.g., changing the230
river location in Cleanup, or initial taxi/passenger locations in Multi-taxi). In Harvest and Multi-taxi,231
we used a reward function perturbation, randomly reallocating rewards/resources (e.g., eliminating232
passengers or apples). We measure the perturbation’s magnitude using the state-distance approach233
of (Song et al., 2016) described in Section 3. We experiment with bounds K ∈ {50, 150, 200}. For234
each initial environment M and bound K, we uniformly sample from possible perturbed M ′ such235
that δ(M,M ′) ≤ K, applying random atomic perturbations until the desired magnitude is reached.236

To measure the effect of perturbations on group performance, we calculate the average utility237
throughout training before and after perturbation. We repeat each experiment 8 times with dif-238
ferent random seeds. The process described above is used to generate perturbations for each seed.239

To measure resilience, we use Definition 2 with a uniform distribution Ψ. We let CK =
avg

(
U(M ′)

)
U(M) ,240

where M ′ is drawn from Ψ within distance K.241

Experiment 2: Cooperative Mining We trained agents similarly to Experiment 1, but using Deep242
Q-Networks (DQNs) (Mnih et al., 2015). We employ the suPER advanced communication protocol243
with the hyperparameters in the original work, whereby agents transmit their highest TD-error ex-244
periences into others’ replay buffers, leveraging PER ideas for decentralized training with minimal245
overhead. Our environment is the coop-mining domain, designed to test various social interactions.246
There are five agents, and, as described in Example 1, the domain incentivizes coordinating to gather247
resources, balancing reliable low-reward iron versus high-yield gold that requires cooperation.248

We apply transition function perturbations of varying magnitudes, measuring distance similarly to249
Experiment 1. Resilience and utility are calculated likewise.250

Table 1: Average (and standard deviation) CK-resilience for Cleanup, Harvest, and Multi-Taxi.

Cleanup Harvest Multi-Taxi
CK=50 CK=150 CK=200 U CK=50 CK=150 CK=200 U CK=50 CK=150 CK=200 U

No com- 0.62 0.21 0.06 3.56 0.64 0.38 0.25 128.18 0.67 0.35 0.27 141.35
munication (0.25) (0.14) (0.05) (1.32) (0.15) (0.11) (0.12) (94.84) (0.14) (0.17) (0.17) (40.59)
Social 0.78 0.40 0.25 7.49 0.77 0.50 0.36 132.68 0.69 0.51 0.38 149.45
Influence (0.17) (0.17) (0.13) (2.59) (0.13) (0.13) (0.11) (100.51) (0.10) (0.17) (0.13) (45.18)
Mandatory 0.69 0.40 0.21 4.47 0.72 0.48 0.38 169.02 0.70 0.48 0.35 221.25
Communication (0.19) (0.23) (0.17) (1.59) (0.14) (0.11) (0.13) (105.65) (0.11) (0.13) (0.13) (51.63)
Emergent 0.77 0.43 0.27 11.41 0.81 0.48 0.36 186.50 0.74 0.45 0.34 197.75
Global-Centric (0.16) (0.14) (0.08) (2.05) (0.11) (0.13) (0.12) (101.67) (0.10) (0.17) (0.14) (67.33)
Emergent 0.64 0.33 0.15 4.81 0.74 0.52 0.33 131.68 0.67 0.49 0.38 140.15
Self-Centric (0.21) (0.17) (0.14) (0.87) (0.14) (0.13) (0.12) (94.76) (0.11) (0.14) (0.15) (40.42)

5.1 Results251

Table 1 shows results for Experiment 5, reporting mean CK-resilience with perturbations of varying252
magnitudes, alongside U in the non-perturbed environment (std. dev. in parentheses). Figure 5 com-253
pares group resilience in the Cleanup domain across different communication protocols, grouped by254
perturbation intensity, while Figure 3 shows the utility throughout training for K = 200. Figures 6255
and 4 similarly present results for Experiment 5 (coop-mining).256

In both experiments, we observe that all collaborative approaches achieve higher resilience than the257
no-communication approach, supporting our main hypothesis. The effect is more pronounced for258
larger-magnitude perturbations (e.g., a small 3% increase in resilience with K = 50 in Cleanup259
versus a 180% increase with K = 200). We also observe that the global-centric approach generally260
outperforms the self-centric approach (higher or similar resilience, and higher initial performance).261
This further reinforces that collaboration induces resilience in that agents can recover after pertur-262
bation a larger fraction of their previous performance, even if they are self-interested.263

7



Under review for RLC 2025, to be published in RLJ 2025

Figure 3: Average utility for K = 200 in the
cleanup environment domain before and after a
perturbation occurs.

Figure 4: Average utility for different perturba-
tion magnitudes in the Coop-mining environment
domain before and after a perturbation occurs

Figure 5: Cleanup environment resilience Figure 6: Coop-mining environment resilience

6 Conclusion264

We suggest collaboration to promote resilience: we hypothesized that agents who learn to col-265
laborate will adapt more quickly to changes in their environment. In support of this agenda, we266
introduced a novel formulation for group resilience. To the best of our knowledge, this is the first267
measurement of group resilience that is relevant to MARL settings. In addition, we presented an268
empirical evaluation of various MARL settings and communication protocols that show that collab-269
oration via communication can significantly increase resilience to changing environments.270

While we examined our approach in MARL settings with homogeneous agents that collaborate271
via communication, we intend to examine additional methods for collaboration in settings with272
heterogeneous groups of agents as a next step. Additionally, we intend to explore resilience in273
real-world domains, including multi-robot settings.274

It is noteworthy that the recent global pandemic perturbed many aspects of the environments in275
which we operate. In such cases, people used to certain kinds of collaboration before the pandemic276
may have found it easier to adjust to the unfamiliar constraints that were imposed. We believe our277
results reflect a quite specific benefit that automated agents can derive from collaborating with one278
another. We do note that many usual caveats on AI research apply, especially concerning tasks that279
might not be of societal benefit. We leave this for future work, noting potential solutions in existing280
research on differential privacy and federated learning.281
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