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Abstract

When performing a task such as making a cup
of coffee or replacing a bicycle tyre, an indi-
vidual or ‘User’ might seek further guidance
to ensure that the task is completed correctly.
Foundation models are suitable candidates to
provide this guidance automatically. However,
a model must first be able to grasp a given situa-
tion to provide situated guidance. This work fo-
cuses on ‘Step Detection’ (SD), where a model
is asked to detect which step of a task a User
is performing given a dialogue history and an
image of the current scene. We leverage open-
access language and vision-language founda-
tion models to perform zero-shot SD on the
Watch, Talk and Guide benchmark. We show
that current publicly available models achieve
up to 54.40 F1, outperforming ChatGPT-3.5 by
12%. To enhance the performance of VLMs
on SD, we propose to apply ‘structured Chain
of Thought (CoT)’. This approach guides the
model through a multi-turn interaction to steer
it to the correct answer. We demonstrate that
structured CoT can lead to significant improve-
ments when scene images are clear and relevant.
We also demonstrate that leveraging predictions
from an image classifier trained on in-domain
data yields further performance gains.

1 Introduction

As large-scale foundation models rapidly develop,
we begin to consider their applicability to tasks that
require knowledge of the physical world. Recent
multimodal foundation models such as Gemini 2.0
(Georgiev et al., 2024) and GPT-4 (Achiam et al.,
2023) have been able to demonstrate increasingly
complex capabilities across multiple modalities,
making them suitable candidates to form the back-
bone of next-generation virtual and embodied as-
sistants. However, to serve as reliable assistants
these models must first be able to perceive a real-
world environment and interpret the current situa-
tion. One specific aspect of situational understand-
ing is detecting which step of a procedural task

an individual is performing. This step detection
problem is one that requires models to relate vari-
ous sources of information, such as the immediate
scene or a short video leading up to the scene, an in-
dividual’s previous utterances and prior (potentially
pre-trained) knowledge of the task at hand.

Much of the work in the area of virtual assis-
tants is conducted in well-controlled virtual envi-
ronments where interactions are often simulated.
While this is practical and cost effective, it remains
useful to benchmark models against real-world set-
tings to obtain a more realistic account of how
they would perform in practice. The recently re-
leased Watch, Talk and Guide (WTaG) benchmark
(Bao et al., 2023) provides first-person videos of
individuals performing relatively simple kitchen
tasks alongside transcriptions of their real-time in-
teractions with a human instructor. This dataset
provides a suitable sandbox to investigate different
strategies of performing zero-shot step detection
with foundation models. So far, only ChatGPT 3.5
has been evaluated on WTaG (Bao et al., 2023).
We believe that benchmarking more recent publicly
available multimodal foundation models would be
useful to the wider community, not only to assess
the readiness of these models in real-world appli-
cations but also to improve the accessibility and
reproducibility of our experiments.

This work makes two key contributions, both
with the aim of extracting useful insights for build-
ing practical applications with foundation mod-
els. The first is a focused evaluation of a range
of open access foundation models on the Step De-
tection (SD) sub-task of the WTaG benchmark.
We choose this task because it requires process-
ing of both video and transcript, making it an ideal
task-oriented benchmark for multimodal founda-
tion models. We study two methods of combin-
ing information from different modalities, namely
captioning and direct multimodal processing. Our
experiments show that captioning generally leads



to better results than direct multimodal process-
ing. Moreover, our results support the intuition that
selecting a relevant, representative image of the
current scene is central to achieving strong perfor-
mance.

Our second contribution is to enhance SD per-
formance on WTaG by applying ‘structured’ CoT
as an alternative method to standard CoT. Instead
of prompting a model in the usual way, structured
CoT conducts a guided interaction consisting of
static prompts in an attempt to steer the model to
systematically deduce the correct answer. We find
that structured CoT can indeed yield gains in per-
formance, provided that there is already a relevant
image of the scene available. We also demonstrate
that these gains are sensitive to task complexity.
Finally, we extend the CoT setting to incorporate
probability distribution outputs from an in-domain
image classifier, and observe further improvements.
This suggests that strong assistive agents can po-
tentially be bootstrapped by composing a simple
system like an image classifier with a powerful
VLM.

In the following sections, we introduce the
WTaG benchmark (Section 2) and the experimental
setup we adopt to produce results for open-access
models on this benchmark (Section 3). We consider
using standard LLMs, the same LLMs equipped
with a caption of the current scene and VLMs that
can directly process multimodal inputs. In Section
4, we elaborate on the proposed structured CoT
approach to improve SD performance. The results
and the corresponding discussions from all our ex-
periments are subsequently covered in Section 5.

2 Dataset

The WTaG dataset consists of 48 publicly available
first-person videos in a real (i.e. non-simulated)
environment. The videos show a User following
a recipe to make either a pinwheel pastry (similar
to a peanut butter and jelly sandwich), a cup of
coffee or a small cake. The videos range from 5
to 18 minutes in length. The median video length
is 10 minutes. In total, the dataset contains 4,233
English dialogue utterances (Bao et al., 2023).
Throughout a video, the User is verbally guided
by a human Instructor. Both User and Instructor
utterances are manually transcribed and the tran-
scription is aligned with the video. The WTaG
benchmark is constructed by extracting a set of
‘query points’ (QPs) from these videos. A QP can

Pinwheel | Coffee | Cake | Total

User 501 567 930 1998
Instructor 429 472 698 1599
Wait 490 599 581 1670

| Total 1420 | 1638 | 2209 | 5267 |

Table 1: Distribution of QPs across the WTaG bench-
mark across task and query type.

be thought of as a situational snapshot at a point in
time that is used to make a prediction (step of the
recipe, whether to speak, etc.). The features asso-
ciated with this point, including the text transcript
of the interaction, and visual information, can be
used as input to the model that makes a predic-
tion. For each QP, the LLM/VLM is queried with a
prompt that broadly follows the same structure as
the template described in Bao et al. (2023). This
template includes the recipe of the task the User is
performing as well as the running dialogue history
in order to contextualise the current situation. Fol-
lowing Bao et al. (2023), three different types of
QPs are extracted whenever one of the following
conditions is satisfied: 1) the User speaks, 2) the
Instructor speaks and 3) Neither User or Instructor
have spoken for 10 seconds.

Extracting QPs across all the raw videos results
in the final WTaG benchmark that consists of 5267
total QPs, roughly distributed across the 3 tasks.
Table 1 shows the exact breakdown of the QPs in
the benchmark. In the full benchmark, a founda-
tion model can in principle be evaluated against
7 tasks such as ‘User Intent Prediction’, ‘Mistake
Detection’, or ‘Step Detection’. In this work, as a
first step towards a situational assistant, we focus
on Step Detection, which relies both on informa-
tion from the video and dialogue history. Instructor
and User Intent Prediction for instance rely less on
visual information and can be optimised with text
information alone.

Formally, we define a query for a QP Q); as either
a text prompt Hy,, which includes the dialogue his-
tory up until the QP occurs, or a tuple that contains
Hj, and a paired image Hy;, which is a still frame
from a WTaG video. We do not consider multiple
frames due to compute requirements and our initial
observations that current publicly accessible video
LLMs such as Video-LLaMA (Zhang et al., 2023a)
and LLaVA-NeXT Interleave (Li et al., 2024a) do
not yet have strong reasoning skills compared to
standard VLMs.
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Suppose we are given a QP ();, an autoregressive
foundation model Py and a description of a physical
task with K steps. The task of Py is to classify Q);
to the correct step k. This is referred to as ‘Step
Detection’ in Bao et al. (2023). We then evaluate
Py across the 3 tasks in WTaG. For reference, the
pinwheel and cake tasks consist of 12 steps, while
the coffee task consists of 8.

3 Evaluating Open-Access Models on
Step Detection

We run a range of experiments to benchmark sev-
eral foundation models on the SD task in WTaG.
We extend the original evaluation framework ! to
handle more models and experiment setups. These
experiments are designed to evaluate current open-
access models against the closed-source ChatGPT-
3.5 baseline and to yield practical insights about
how foundation models combine multimodal infor-
mation. In particular, we implement the following
experimental setups:

e Blind LLM , where a model P, only has ac-
cess to the textual context Hy, of a QP.

e Blind LLM w/ Caption , where Fy is a lan-
guage model augmented with a text caption
representing Hv .

* Single-Frame VLM , where P is a multi-
modal model that can natively handle text-
image pairs (Hy,, Hy/).

The above nomenclature is loosely adopted from
Majumdar et al. (2024) and (Zeng et al., 2022). We
consider two families of open access models, based
on the popular LLaMA-2 (Touvron et al., 2023)
and Mistral (Jiang et al., 2023) models. For the
LLaMA-based models, we consider the 7B and
13B instruction-tuned variants of LLaMA-2, as
well as Vicuna (Chiang et al., 2023) and LLaVA-
NeXT (Liu et al., 2024a). Vicuna is initialised as
the base LLaMA-2 model but is further fine-tuned
on instruction-following data generated by Chat-
GPT, procured through the ShareGPT platform?.
LLaVA-NeXT is a VLM that is a successor to the

"https://github.com/sled-group/Watch-Talk-and-Guide
Zhttps://sharegpt.com/

popular LLaVA model (Liu et al., 2024b) that uses
Vicuna as its language backbone. We also consider
the recently released Pixtral model (Agrawal et al.,
2024), which is based on a bespoke vision encoder
Pixtral-ViT and the Mistral-NeMo LLM, designed
to natively handle images of different resolutions
and aspect ratios. The parameters of all the models
are frozen across all experiments.

For the Blind LLM w/ Caption setup, we con-
sider Pixtral and Vicuna as the blind models to be
augmented. When captioning Hv,, we adopt a ‘self-
captioning’ approach. For Pixtral, this means that
we run the model with text-only input, but augment
this input with a caption generated by running the
model separately as a Single-Frame VLM. Because
Vicuna is a text-only model, we instead append cap-
tions to the default prompt template. The captions
are generated by LLaVA-NeXT, as Vicuna forms
the backbone for this model.

Importantly, for the settings where an image
is required i.e. | Blind LLM w/ Caption and

Single-Frame VLM , we examine two scenarios.
The first is the default scenario described in Bao
et al. (2023), where Hv is selected simply as the
video frame corresponding to the timestamp at
which a given ); occurs. Under this approach, im-
age quality can be volatile; frames could be blurry,
irrelevant or unhelpful to the model since the User
could turn their heads, get distracted and focus their
gaze on a region of the scene that is unhelpful to
the Instructor, etc. Thus, we examine a second sce-
nario, ‘fixed image’, where we hand-pick K frames
(one representative of each step in a task) that are
clearly discernable by humans and use these as
the accompanying image to Hy,. Under this set-
ting, many QPs will share the same visual informa-
tion, but differ in their text components. We con-
sider this setting an upper bound on performance
as we effectively guarantee that the models see a
‘clear and representative’ image. In real-world ap-
plications, efficient algorithms to select meaningful
frames would be necessary. Note that we could
not run exhaustive combinations of experimental
settings due to constraints on compute.

4 Structured Chain of Thought

To further improve SD performance for VLMs we
explore structured Chain of Thought (CoT) (Wei
et al., 2022). Under standard CoT, rationales are
generated in one step, usually with the command
‘think step by step’, making each intermediate rea-



soning stage implicit and uncontrollable. Models
are also expected to have emergent few-shot in-
context learning abilities which have been shown
to be more limited in smaller scale models (Brown
et al., 2020).

In the structured CoT approach we propose, ra-
tionales are instead generated iteratively, through a
multi-turn interaction where at each turn, the model
is prompted to reason by looking at the output of
the previous turn and the provided evidence (see
Figure 1). The exact prompts are included in Ap-
pendix A.2. These prompts attempt to simulate how
a human would reason about a multimodal situation
and ‘connect the dots’ in order to systematically
deduce the correct answer. The hypothesis is that
this explicit reasoning chain will allow us to steer
the model towards the correct answer. Through our
preliminary experiments, we observed that LLaVA-
NeXT does not have the base reasoning capabilities
to benefit from this approach. Thus, we opt to study
Pixtral only for these experiments.
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Figure 1: Schematic diagram of structured CoT. The

step classifier Pé)T) is an optional component of the

setup and is shown with dotted lines.

The deductive process begins with a prompt to
contextualise the task (this is similar to the prompt
used in the original WTaG setup) and another to
record the model’s initial guess, l%o. Given l%o, D
follow-up prompts are passed. These are designed
to elicit a set of expectations from the model based
on its initial guess. Then, the model is instructed

to identify any evidence in the given scene that
contradicts its initial expectations. The idea is to
elicit the model to update its current guess if the
evidence it has been provided is inconsistent with
its expectations.

4.1 Leveraging In-Domain Classifiers

While structured CoT has potential to improve per-
formance, we also investigate the direction of lever-
aging bespoke image classifiers for the SD task. In
this case, we train a set of in-domain classifiers for
each (physical) task in WTaG, and use their out-
puts for zero-shot step detection with a VLM. The
idea here is to steer the model towards steps that
are deemed more probable by an external expert
model. In other words, we can think of this process
as biasing the prior knowledge of the model with
task-specific knowledge of which steps are more or
less likely given the current scene. Under this setup,
the in-domain classifiers encode domain-specific
knowledge about the WTaG tasks, which the VLM
should be able to exploit to improve performance.

Formally, our objective is to train a simple im-

age classifier Pd(}T) (k|Hy ), where T is one of the
WTaG tasks. We choose a standard ViT (Dosovit-
skiy, 2020) as PTET). However, once we have ob-
tained this distribution the question becomes: how
should P;T) be leveraged by the foundation model,
P,? In this work, we opt for the cheap-and-cheerful
method of encoding the classifier distribution in the
setup prompt as a string (see Appendix A.3). We
do not pass the raw probabilities but rather ordinal
categories (i.e. Very Low, Low, Medium, High,
Very High) as we found that Pixtral struggled with
comparing numerical values. These categories are
split at uniform intervals.

5 Results

This section summarises the key findings from our
experiments. Regarding implementation details,
we extended the WTaG evaluation framework to
conduct our experiments. Experiments were run on
a single A100 GPU, or 4 V100 GPUs. To train
the in-domain classifiers, we subsampled 1 fps
from the WTaG videos and obtain datasets of 7509,
8011 and 9546 images for the pinwheel, coffee
and cake tasks respectively. We then fine-tuned 3
vanilla ViT models with LoRA (Hu et al., 2021)
via the AdapterHub framework and use the recom-
mended hyperparameters for image classification
(Poth et al., 2023) (see Appendix C for details).



Model Type Model Model Size Pinwheel F1 Coffee F1 Cake F1 Overall F1
ChatGPT-3.5 - 42.09 47.27 38.23 42.53
Vicuna 13B 31.06 53.54 50.38 44.99
Blind LLM LLaMA-2 7B 29.37 19.11 23.90 24.13
LLaMA-2 13B 26.27 45.91 36.76 36.31
Mixtral 47B 38.45 47.07 55.32 46.95
Pixtral 12B 42.32 53.17 60.25 51.91
ChatGPT-3.5+BLIP-2 - 37.99 48.64 41.75 42.79
Blind LLM w/ Caption Vicuna+LLaVA-NeXT 13B 28.59 50.18 49.75 42.84
Pixtral+Pixtral 12B 45.00 56.47 61.74 54.40
Pixtral+Pixtral (Fixed image) 12B 58.59 56.78 65.91 60.43
LLaVA-NeXT 13B 28.73 53.79 51.34 44.62
; LLaVA-NeXT (Fixed image) 13B 30.63 55.31 53.06 46.33
Single-Frame VLM Pixtral 12B 38.80 55.07 55.82 49.90
Pixtral (Fixed image) 12B 55.21 54.40 59.17 56.26

Table 2: Summary of key results from the various benchmarking experiments we conducted. Best F1 scores among the open
access models (regardless of type) are shown in bold. The ChatGPT-3.5 results are as reported in Bao et al. (2023).

Training was seeded and took about 20 minutes for
each classifier. Inference was much more expen-
sive, with some experiments taking up to 20 hours.
As a result, the results presented for each task con-
sist of single runs. The mean of these scores are
then presented as the overall F1 for that model and
experiment setup.

5.1 Language-Only Baselines

From Table 2 we observe that the |Blind LLM

baselines are strong, with Vicuna, Mixtral and
Pixtral outperforming the reported ChatGPT-3.5
results. This demonstrates that dialogue cues alone
provide significant information for models to de-
tect the step. This observation agrees with similar
findings from Majumdar et al. (2024).

Further, we find that certain steps in a task are
more strongly signalled than others. Figure 2 shows
that Steps 2, 6 and 10 of the pinwheel task are well
signalled and are often correctly classified by mod-
els. We call such steps ‘landmark’ steps. The risk
of landmark steps is that they are ‘sticky’, meaning
a model may fixate on them, misclassifying the
following steps (as seen in Figure 2a). Pixtral’s
superior performance can thus be attributed to its
ability to identify more ‘in-between’ steps and mit-
igate the risk of fixation on landmarks as seen in
2b where steps 4, 7, 8 and 9 are better classified by
the model.

Regarding scale, LLaMA-2 7B is outperformed
by all larger models, suggesting that SD is diffi-
cult and requires a certain base level of reasoning
to perform well. However, Pixtral exhibits higher
F1 scores than both ChatGPT-3.5 and Mixtral (as-

suming the former has a similar size to GPT 3
(Brown et al., 2020)). This shows that models also
do not need to be exceedingly large to perform
SD; a medium-sized model with a strong language
backbone (in this case Mistral-NeMo) is sufficient.
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Figure 2: Confusion matrices of Vicuna 13B (top) and
Pixtral (bottom) for the pinwheel task, using only the
dialogue history as context.



5.2 Effectiveness of Scene Captions

As for the | Blind LLM w/ Caption setup, we ob-
tain the intuitive results that 1) image information
can improve SD performance and 2) caption
quality is important for achieving strong SD
performance. Captions generated with LLaVA-
NeXT consistently degrade the relative base ‘blind’
performance of Vicuna 13B (see Blind Vicuna v.
Vicuna+LLaVA-NeXT), while the captions gener-
ated with Pixtral lead to gains relative to the blind
performance for all 3 tasks (see Blind Pixtral v.
Pixtral+Pixtral).

Table 2 also demonstrates that captioning gen-
erally performs better than processing the scene
information jointly with the dialogue history, as the
scores for Single-Frame VLM are lower than the
scores of LLM with caption. In other words, us-
ing Py to map Hv to language space first is more
helpful than passing Hv as is to the model and
predicting the target step in the following way:

k = arg max|Py(k|Hr, Hy )]
keK

Where k is the predicted step. We hy-
pothesise that the drop in performance on the
Single-Frame VLM setting is due to 1) the mod-
els struggling to focus on aspects of the full scene
that are relevant to inferring the current step, 2)
the models not having enough context to deduce
the current step and 3) excessive hallucinations i.e.
‘seeing’ the scene inaccurately, leading to derailed
rationales and incorrect predictions. While caption-
ing is also prone to hallucination, it would seem
that models can more easily attend to relevant in-
formation and disregard irrelevant cues when the
given scene is represented as text.

5.3 Representative Fixed Images

The results obtained from the ‘fixed image’ exper-
iments demonstrate that passing a representative
image of a step to a model is crucial to achiev-
ing strong performance on SD. Across all mod-
els, experimental setups and tasks, the ‘fixed im-
age’ setting generally leads to improved SD per-
formance, with the Pixtral+Pixtral (Fixed image)
setup performing the best overall. We also find that
F1 scores increase the most on the pinwheel task
when fixing Hy; (consider the 14.59% relative gain
for Pixtral+Pixtral), showing that this task is highly
sensitive to accurate visual information, for reasons
related to task complexity discussed in Section 5.6.

5.4 Structured Chain of Thought

Table 3 shows our results for the structured CoT
experiments with Pixtral. F1 scores are computed
after the model’s initial guess and after its final
guess. This is done to determine the effects of both
the visual information and the deductive process on
overall performance. It should be noted that since
the initial context prompt for these experiments
differs slightly from the previous experiments, the
‘initial guess’ results do not exactly match the blind
scores of Pixtral in Table 2.

Previously we have shown that using an LLM
with captioned image information outperforms
VLMs that process the raw image jointly with the
dialogue history, even when this scene is expected
to be informative as in the ‘Fixed image’ setting.
We find that performing structured CoT addresses
these weaknesses. Under the ‘Naive image’ setting
we observe that CoT hurts overall performance,
but with the ideal ‘Fixed’ image it increases sig-
nificantly, thus demonstrating the importance of
selecting the right image when performing the SD
task.

The _ results show that struc-
tured CoT leads to large performance gains on the
pinwheel and coffee tasks, given that Hy is rele-
vant to the task at hand. Interestingly, scores for
the cake task improve marginally, but not as much
as the captioning setup, which yielded a score of
65.91%.

5.5 In-Domain Classifiers for Structured CoT

The trends observed for the _

results are even more pronounced for the

setting. Between
the initial blind guess and the final guess, the scores
on the pinwheel and coffee tasks improve by 22.75
and 25.4 absolute points respectively. These im-
provements suggest that Pixtral was successfully
steered by the task-specific knowledge of the clas-
sifier to improve SD during the deductive process.
It should be noted that the classifier for the cof-
fee images performed best on the SD task and thus
yielded the most gain for the VLM since it provided
more accurate step distributions at each QP.

5.6 The Effect of Task Complexity

Interestingly, we observe that the scores for the
cake task do not increase significantly with the
deductive process, or even when leveraging the
outputs from the in-domain image classifier. This



Model Type Prompt Type Pinwheel F1 Coffee F1 Cake F1 Overall F1
Initial guess 45.99 48.78 61.57 52.11
‘Socratic VLM Final guess (Fixed) 60.28 60.62 63.51 61.47
Final guess (Naive) 46.76 48.17 58.17 51.03
Final guess (Fixed) 69.23 74.85 61.79 68.62

Table 3: F1 scores for the structured CoT or ‘Socratic’ experiments for Pixtral 12B, assuming the image of the scene Hv is
hand-selected. The best VLM scores are in boldface. The ‘naive image’ results are included for reference.
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Figure 3: Breakdown of the proportions of reasoning
chains (out of the total 5267) that were fixed or derailed
by the different structured CoT experimental setups.
‘C’ stands for Correct and ‘W’ stands for Wrong. For
example, ‘W->C’ means that the initial guess was wrong,
but the final guess was correct.

indicates that the deductive process benefits certain
tasks more than others.

To understand why this is the case, we consider
the cake task in more detail. According to Table 1,
the cake task has the most utterances overall. One
explanation for this is that making a cake is a more
complex task than making a pinwheel (similar to
a peanut butter sandwich) or a cup of coffee. As
such, people are less likely to be familiar with the
intermediate steps of the cake task. This results
in more User utterances (and by extension a lower
proportion of Wait QPs) because they will seek
more guidance from the Instructor, thus reducing
the utility of visual information since the dialogue
history contains sufficient information to determine
the step. In fact, at times this visual information
could risk causing a model to ‘overthink’, where
the gains from multi-turn reasoning diminish and
instead confuse the model, leading to lower per-
formance. Comparing the Pixtral+Pixtral (Fixed
image) and Socratic VLM F1 scores for the cake
tasks, we find that while both lead to improvements
over the text-only baselines, captioning slightly out-

performs structured CoT, which we believe is due
to overthinking.

Conversely, the pinwheel and coffee tasks have
fewer dialogue utterances (as evidenced by a higher
proportion of Wait QPs) since Users do not have to
ask for guidance as often. Therefore, these tasks are
inherently more reliant on the scene information.
Since structured CoT is designed to make the most
out of this information, we obtain the substantial
performance gains observed in Table 3. In sum, we
believe that the lack of improvement in F1 scores
for the cake task despite using structured CoT is
due to the abundance of dialogue cues (as a result
of task simplicity) that makes scene information
more redundant and less useful to the model.

5.7 Does Structured CoT Derail, Correct or
Reinforce the First Guess?

Finally, we further analyse the reasoning chains
generated by Pixtral when undergoing structured
CoT. Using the initial and final guesses of the
model, we measure the rates at which the deductive
process is helpful or harmful to the final predic-
tion. Specifically, we compute the percentage of
Pixtral’s reasoning chains (one for each QP) that
fall under one of four scenarios: either the first
and final guesses are both correct or wrong, or
one of either the first and final guesses are correct
while the other is wrong. From Figure 3 we ob-
serve that including the step probabilities from the
task-specific classifiers in the deductive prompts
has a slightly higher risk of derailing a reasoning
chain than when these probabilities are omitted
(see the ‘C->C’ and ‘C->W’ scenarios). However,
this trade-off is acceptable given that the step prob-
abilities correct a much larger proportion of rea-
soning chains (over 20%). The performance gain
for can therefore be
attributed to the reasoning chains that are corrected
as a result of the information provided by the im-
age classifiers. Pixtral’s ability to self-correct is



encouraging, as self-correction is key for making
future agents that are robust to reasoning errors and
the unpredictability of real-world environments.

6 Related Work

6.1 Step Detection as Embodied Question
Answering

As previously established, step detection can be
performed as a text-only or vision-language task.
SD is essentially a procedural segmentation task
(Zhou et al., 2018), but it can also be framed as an
(E)mbodied QA (EQA) problem, where an agent
is tasked with answering a question that requires
egocentric perception of an environment. In our
case, the model is asked which step of a task
a User is actively performing. Much work has
been done on EQA (Bohus et al., 2024; Das et al.,
2018; Schoonbeek et al., 2024; Yu et al., 2019; Li
et al., 2024b), though a recent major contribution
in this area is OpenEQA (Majumdar et al., 2024).
OpenEQA is a large-scale benchmark that covers
a broad range of questions about realistic environ-
ments that extend beyond step detection. However,
they focus on multi-frame VLMs (i.e. VLMs that
can handle video) rather than single-frame VLMs
where only one frame of the scene is passed. We
also study the utility of structured CoT rather than
scene-graph captions. Another closely related work
is SuccessVQA (Du et al., 2023). This work stud-
ies whether VLMs can serve as reward models by
leveraging Flamingo (Alayrac et al., 2022) as a
binary classifier to determine whether or not an
action was completed successfully. However, Suc-
cessVQA does not consider the setting where the
guidance system has access to dialogue history, nor
does it study the impact of CoT on classification
performance.

6.2 Chain of Thought for Vision-Language
Reasoning

Regarding vision-language reasoning, there have
been substantial efforts in this direction (Amizadeh
et al., 2020; Hu et al., 2024; Xu et al., 2024a; Zeng
et al., 2022). Zhang et al. (2023b) in particular
tackle the popular ScienceVQA benchmark by gen-
erating CoT rationales that exploit the multimodal
information in a given problem, thereby grounding
a model and providing hallucinations that should
be less prone to hallucination. In this work we in-
stead study structured CoT, where the model is in-
stead guided through a fixed reasoning chain rather

than generating the rationale itself. We believe
that manually injecting this human ‘know-how’ of
combining multimodal clues can lead to more con-
sistent and explainable rationales. C4AMMD (Xu
et al., 2024b) adopts a similar approach as well,
but instead applies the technique to the problem of
metaphor detection, which is a binary classification
task rather than the multiclass tasks we examine.
Another related work is Inner Monologue (Huang
et al., 2022), which explores the use of an LLM as
a planner for an embodied agent. As part of the
evidence provided to the planner, Inner Monologue
leverages a small success detection model that first
determines the likelihood that the current action
was completed before passing this information to
the agent. This is similar to the ‘step classifiers’
that we trained for the WTaG tasks.

7 Conclusion

In conclusion, this paper studied a range of meth-
ods of combining visual and text information to
perform zero-shot step detection with open access
foundation models. The aim was to extract insights
for building task guidance agents powered by such
models. First, we found that dialogue cues are cru-
cial to correctly detecting the current step, since
the text-only baselines performed well alone. Next,
we empirically observed that image captioning gen-
erally outperforms direct processing, even when a
relevant image of a given scene is provided.

We found that structured CoT successfully
guided Pixtral to make full use of the visual in-
formation available and led to substantial gains in
F1. We also observed an interesting interaction
between performance and task complexity, in that
tasks that are more complex may cause the User to
ask for more guidance and render visual informa-
tion less useful. This effectively limits our ability to
generalise structured CoT to other tasks. However,
the fact that Pixtral was able to leverage the outputs
of the in-domain classifiers is promising because it
indicates that foundation models can form the basis
for what so-called ‘modular agents’. Such an agent
would consist of a core foundation model acting as
an orchestrator to bootstrap a set of smaller, spe-
cialist models. For future work we believe it would
be interesting to build a complete modular agent
for this benchmark that performs all the sub-tasks
at once.



8 Limitations

While we have shown that standard VLMs can per-
form reasonably well on the SD task of the WTaG
benchmark, we focused on single-frame VLMs
in this work. This makes image selection a chal-
lenge as we demonstrated that SD performance is
sensitive to image quality. Ideally, we would com-
pare our VLM results with a video-LLM baseline.
However, as mentioned previously this requires ex-
tensive compute, along with sufficiently capable
models that we observed were lacking. The second
limitation is that the structured CoT method we
propose for SD is static. In future it would be use-
ful if this process could be automatically optimised.
The fixed reasoning chain yields performance gains
but there is no guarantee that it is the ‘best’ series
of prompts that could elicit the most accurate step
predictions from Pixtral. Directions such as a dual-
LLM approach, where one LLM generates reason-
ing prompts and the other performs SD, would be
interesting methods of addressing this limitation.
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A Prompt Templates

A.1 Default

Instruction: An instructor is helping a user make a pinwheel. The ingredients required and the
steps to complete are:

Ingredients:

1 8-inch flour tortilla
Jar of nut butter

Jar of jelly

Recipe:

Step 1: Place a tortilla on the cutting board.

Step 2: Scoop and spread nut butter onto the tortilla.

Step 3: Clean the knife with a paper towel.

Step 4: Scoop and spread jelly over the nut butter.

Step 5: Clean the knife with a paper towel.

Step 6: Roll the tortilla from one end to the other into a log shape, about 1.5 inches thick.
Step 7: Secure the rolled tortilla by inserting 5 toothpicks about 1 inch apart.
Step 8: Trim the ends of the tortilla roll.

Step 9: Slide floss under the tortilla.

Step 10: Slice the tortilla roll with the floss.

Step 11: Continue slicing with floss to create 5 pinwheels.

Step 12: Place the pinwheels on a plate.

The following is a summary of the current situation:
Instructor: oh we’ll be trimming the edges with a butter knife
User: ok got it

User: do we have any scissors? oh i see them

Instructor: what would you need the scissors for?

User: place the scissors halfway between two toothpicks
Instructor: oh we’ll be using dental floss to cut the pinwheel
User: OK

User: OK cut through the roll

User: done

Instructor: nice

<OPTIONAL IMAGE CAPTION>

Based on the image you see and the situation described, which step of the recipe do you think the
user is currently on? Explain why.
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A.2 Socratic

Turn 1: You will be presented with different pieces of evidence and your task is to predict which
step the user is most likely completing based on this evidence. Initially, all steps are equally
likely but you will need to update these probabilities when given evidence. You don’t need to
give explicit probabilities, just one of either very low, low, high, or very high. Also assume that
the steps are usually executed in order. Given this dialogue history update the step probabilities
accordingly. <DIALOGUE HISTORY>

Turn 2: Which step is the user currently performing? Give an initial guess and explain why.

Example initial guess: Step 2. The evidence provided indicates that the user has the tortilla and
the nut butter. These ingredients are specifically required for Step 2, which involves spreading the
nut butter onto the tortilla.

Turn 3: Given your current guess, if the step was successfully completed, what would you expect
to see?

Turn 4: Now, consider this image of the current scene as evidence. Is the user actively interacting
with any objects in the scene with their hands? If so, do these align with your previous
expectations? If the image is irrelevant or unhelpful to your deduction, say so. Update the step
probabilities accordingly. <SCENE IMAGE>

Turn 5: Therefore, combine this information with the dialogue history provided and give a
final guess for which step the user is currently performing. Provide the final guess only in your

response.

Example final guess: Step 5.

A.3 Socratic w/ Classifier

Turn 1: You will be presented with different pieces of evidence and your task is to predict which
step the user is most likely completing based on this evidence. Initially, the step probabilities are:
Step 1: Low

Step 2: Low

Step 3: Very High

Step 4: Low

Step 5: Low

Step 6: Low

Step 7: Low

Step 8: Low

Step 9: Low

Step 10: Low

Step 11: Low

Step 12: Low

The first piece of evidence is this dialogue history between the instructor and user. Update the step
probabilities accordingly. <DIALOGUE HISTORY>

Continue as in standard Socratic setup.
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B Hand-selected Images

B.1 Pinwheel

| N

(a) Step 2: Scoop and spread nut butter (b) Step 8: Trim the ends of the tortilla (c) Step 12: Place the pinwheels on a
onto the tortilla. roll. plate.

Figure 4: Hand-selected images for Steps 2, 8 and 12 for the pinwheel task.

B.2 Coffee

a8

(a) Step 1: Measure 12 ounces of cold (b) Step 3: Place the filter cone in the
water and transfer to a kettle. dripper. mug.

Figure 5: Hand-selected images for Steps 1, 3 and 8 for the coffee task.

B.3 Cake

(c) Step 12: Apply the frosting around

— 7 —

(a) Step 4: Add oil, water, and vanilla (b) Step 8: Check that the cake is done
to the mixing bowl. with a toothpick. the base of the cake.

Figure 6: Hand-selected images for Steps 4, 8 and 12 for the cake task.

C Training Hyperparameters

Hyperparameter Value
Learning rate le-4
Batch size 32
Epochs 10
LoRA r 8
LoRA « 8

Table 4: Training hyperparameters for the ViT step classifier models.
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