
Connect the Dots: Zero-Shot Step Detection with Foundation Models

Anonymous ARR 2025 submission

Abstract
When performing a task such as making a cup001
of coffee or replacing a bicycle tyre, an indi-002
vidual or ‘User’ might seek further guidance003
to ensure that the task is completed correctly.004
Foundation models are suitable candidates to005
provide this guidance automatically. However,006
a model must first be able to grasp a given situa-007
tion to provide situated guidance. This work fo-008
cuses on ‘Step Detection’ (SD), where a model009
is asked to detect which step of a task a User010
is performing given a dialogue history and an011
image of the current scene. We leverage open-012
access language and vision-language founda-013
tion models to perform zero-shot SD on the014
Watch, Talk and Guide benchmark. We show015
that current publicly available models achieve016
up to 54.40 F1, outperforming ChatGPT-3.5 by017
12%. To enhance the performance of VLMs018
on SD, we propose to apply ‘structured Chain019
of Thought (CoT)’. This approach guides the020
model through a multi-turn interaction to steer021
it to the correct answer. We demonstrate that022
structured CoT can lead to significant improve-023
ments when scene images are clear and relevant.024
We also demonstrate that leveraging predictions025
from an image classifier trained on in-domain026
data yields further performance gains.027

1 Introduction028

As large-scale foundation models rapidly develop,029

we begin to consider their applicability to tasks that030

require knowledge of the physical world. Recent031

multimodal foundation models such as Gemini 2.0032

(Georgiev et al., 2024) and GPT-4 (Achiam et al.,033

2023) have been able to demonstrate increasingly034

complex capabilities across multiple modalities,035

making them suitable candidates to form the back-036

bone of next-generation virtual and embodied as-037

sistants. However, to serve as reliable assistants038

these models must first be able to perceive a real-039

world environment and interpret the current situa-040

tion. One specific aspect of situational understand-041

ing is detecting which step of a procedural task042

an individual is performing. This step detection 043

problem is one that requires models to relate vari- 044

ous sources of information, such as the immediate 045

scene or a short video leading up to the scene, an in- 046

dividual’s previous utterances and prior (potentially 047

pre-trained) knowledge of the task at hand. 048

Much of the work in the area of virtual assis- 049

tants is conducted in well-controlled virtual envi- 050

ronments where interactions are often simulated. 051

While this is practical and cost effective, it remains 052

useful to benchmark models against real-world set- 053

tings to obtain a more realistic account of how 054

they would perform in practice. The recently re- 055

leased Watch, Talk and Guide (WTaG) benchmark 056

(Bao et al., 2023) provides first-person videos of 057

individuals performing relatively simple kitchen 058

tasks alongside transcriptions of their real-time in- 059

teractions with a human instructor. This dataset 060

provides a suitable sandbox to investigate different 061

strategies of performing zero-shot step detection 062

with foundation models. So far, only ChatGPT 3.5 063

has been evaluated on WTaG (Bao et al., 2023). 064

We believe that benchmarking more recent publicly 065

available multimodal foundation models would be 066

useful to the wider community, not only to assess 067

the readiness of these models in real-world appli- 068

cations but also to improve the accessibility and 069

reproducibility of our experiments. 070

This work makes two key contributions, both 071

with the aim of extracting useful insights for build- 072

ing practical applications with foundation mod- 073

els. The first is a focused evaluation of a range 074

of open access foundation models on the Step De- 075

tection (SD) sub-task of the WTaG benchmark. 076

We choose this task because it requires process- 077

ing of both video and transcript, making it an ideal 078

task-oriented benchmark for multimodal founda- 079

tion models. We study two methods of combin- 080

ing information from different modalities, namely 081

captioning and direct multimodal processing. Our 082

experiments show that captioning generally leads 083
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to better results than direct multimodal process-084

ing. Moreover, our results support the intuition that085

selecting a relevant, representative image of the086

current scene is central to achieving strong perfor-087

mance.088

Our second contribution is to enhance SD per-089

formance on WTaG by applying ‘structured’ CoT090

as an alternative method to standard CoT. Instead091

of prompting a model in the usual way, structured092

CoT conducts a guided interaction consisting of093

static prompts in an attempt to steer the model to094

systematically deduce the correct answer. We find095

that structured CoT can indeed yield gains in per-096

formance, provided that there is already a relevant097

image of the scene available. We also demonstrate098

that these gains are sensitive to task complexity.099

Finally, we extend the CoT setting to incorporate100

probability distribution outputs from an in-domain101

image classifier, and observe further improvements.102

This suggests that strong assistive agents can po-103

tentially be bootstrapped by composing a simple104

system like an image classifier with a powerful105

VLM.106

In the following sections, we introduce the107

WTaG benchmark (Section 2) and the experimental108

setup we adopt to produce results for open-access109

models on this benchmark (Section 3). We consider110

using standard LLMs, the same LLMs equipped111

with a caption of the current scene and VLMs that112

can directly process multimodal inputs. In Section113

4, we elaborate on the proposed structured CoT114

approach to improve SD performance. The results115

and the corresponding discussions from all our ex-116

periments are subsequently covered in Section 5.117

2 Dataset118

The WTaG dataset consists of 48 publicly available119

first-person videos in a real (i.e. non-simulated)120

environment. The videos show a User following121

a recipe to make either a pinwheel pastry (similar122

to a peanut butter and jelly sandwich), a cup of123

coffee or a small cake. The videos range from 5124

to 18 minutes in length. The median video length125

is 10 minutes. In total, the dataset contains 4,233126

English dialogue utterances (Bao et al., 2023).127

Throughout a video, the User is verbally guided128

by a human Instructor. Both User and Instructor129

utterances are manually transcribed and the tran-130

scription is aligned with the video. The WTaG131

benchmark is constructed by extracting a set of132

‘query points’ (QPs) from these videos. A QP can133

Pinwheel Coffee Cake Total
User 501 567 930 1998

Instructor 429 472 698 1599
Wait 490 599 581 1670
Total 1420 1638 2209 5267

Table 1: Distribution of QPs across the WTaG bench-
mark across task and query type.

be thought of as a situational snapshot at a point in 134

time that is used to make a prediction (step of the 135

recipe, whether to speak, etc.). The features asso- 136

ciated with this point, including the text transcript 137

of the interaction, and visual information, can be 138

used as input to the model that makes a predic- 139

tion. For each QP, the LLM/VLM is queried with a 140

prompt that broadly follows the same structure as 141

the template described in Bao et al. (2023). This 142

template includes the recipe of the task the User is 143

performing as well as the running dialogue history 144

in order to contextualise the current situation. Fol- 145

lowing Bao et al. (2023), three different types of 146

QPs are extracted whenever one of the following 147

conditions is satisfied: 1) the User speaks, 2) the 148

Instructor speaks and 3) Neither User or Instructor 149

have spoken for 10 seconds. 150

Extracting QPs across all the raw videos results 151

in the final WTaG benchmark that consists of 5267 152

total QPs, roughly distributed across the 3 tasks. 153

Table 1 shows the exact breakdown of the QPs in 154

the benchmark. In the full benchmark, a founda- 155

tion model can in principle be evaluated against 156

7 tasks such as ‘User Intent Prediction’, ‘Mistake 157

Detection’, or ‘Step Detection’. In this work, as a 158

first step towards a situational assistant, we focus 159

on Step Detection, which relies both on informa- 160

tion from the video and dialogue history. Instructor 161

and User Intent Prediction for instance rely less on 162

visual information and can be optimised with text 163

information alone. 164

Formally, we define a query for a QP Qi as either 165

a text prompt HL, which includes the dialogue his- 166

tory up until the QP occurs, or a tuple that contains 167

HL and a paired image HV, which is a still frame 168

from a WTaG video. We do not consider multiple 169

frames due to compute requirements and our initial 170

observations that current publicly accessible video 171

LLMs such as Video-LLaMA (Zhang et al., 2023a) 172

and LLaVA-NeXT Interleave (Li et al., 2024a) do 173

not yet have strong reasoning skills compared to 174

standard VLMs. 175
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Qi =

{
(HL,HV) if HV ̸= null,
HL otherwise.

176

Suppose we are given a QP Qi, an autoregressive177

foundation model Pθ and a description of a physical178

task with K steps. The task of Pθ is to classify Qi179

to the correct step k. This is referred to as ‘Step180

Detection’ in Bao et al. (2023). We then evaluate181

Pθ across the 3 tasks in WTaG. For reference, the182

pinwheel and cake tasks consist of 12 steps, while183

the coffee task consists of 8.184

3 Evaluating Open-Access Models on185

Step Detection186

We run a range of experiments to benchmark sev-187

eral foundation models on the SD task in WTaG.188

We extend the original evaluation framework 1 to189

handle more models and experiment setups. These190

experiments are designed to evaluate current open-191

access models against the closed-source ChatGPT-192

3.5 baseline and to yield practical insights about193

how foundation models combine multimodal infor-194

mation. In particular, we implement the following195

experimental setups:196

• Blind LLM , where a model Pθ only has ac-197

cess to the textual context HL of a QP.198

• Blind LLM w/ Caption , where Pθ is a lan-199

guage model augmented with a text caption200

representing HV.201

• Single-Frame VLM , where Pθ is a multi-202

modal model that can natively handle text-203

image pairs (HL,HV).204

The above nomenclature is loosely adopted from205

Majumdar et al. (2024) and (Zeng et al., 2022). We206

consider two families of open access models, based207

on the popular LLaMA-2 (Touvron et al., 2023)208

and Mistral (Jiang et al., 2023) models. For the209

LLaMA-based models, we consider the 7B and210

13B instruction-tuned variants of LLaMA-2, as211

well as Vicuna (Chiang et al., 2023) and LLaVA-212

NeXT (Liu et al., 2024a). Vicuna is initialised as213

the base LLaMA-2 model but is further fine-tuned214

on instruction-following data generated by Chat-215

GPT, procured through the ShareGPT platform2.216

LLaVA-NeXT is a VLM that is a successor to the217

1https://github.com/sled-group/Watch-Talk-and-Guide
2https://sharegpt.com/

popular LLaVA model (Liu et al., 2024b) that uses 218

Vicuna as its language backbone. We also consider 219

the recently released Pixtral model (Agrawal et al., 220

2024), which is based on a bespoke vision encoder 221

Pixtral-ViT and the Mistral-NeMo LLM, designed 222

to natively handle images of different resolutions 223

and aspect ratios. The parameters of all the models 224

are frozen across all experiments. 225

For the Blind LLM w/ Caption setup, we con- 226

sider Pixtral and Vicuna as the blind models to be 227

augmented. When captioning HV, we adopt a ‘self- 228

captioning’ approach. For Pixtral, this means that 229

we run the model with text-only input, but augment 230

this input with a caption generated by running the 231

model separately as a Single-Frame VLM. Because 232

Vicuna is a text-only model, we instead append cap- 233

tions to the default prompt template. The captions 234

are generated by LLaVA-NeXT, as Vicuna forms 235

the backbone for this model. 236

Importantly, for the settings where an image 237

is required i.e. Blind LLM w/ Caption and 238

Single-Frame VLM , we examine two scenarios. 239

The first is the default scenario described in Bao 240

et al. (2023), where HV is selected simply as the 241

video frame corresponding to the timestamp at 242

which a given Qi occurs. Under this approach, im- 243

age quality can be volatile; frames could be blurry, 244

irrelevant or unhelpful to the model since the User 245

could turn their heads, get distracted and focus their 246

gaze on a region of the scene that is unhelpful to 247

the Instructor, etc. Thus, we examine a second sce- 248

nario, ‘fixed image’, where we hand-pick K frames 249

(one representative of each step in a task) that are 250

clearly discernable by humans and use these as 251

the accompanying image to HL. Under this set- 252

ting, many QPs will share the same visual informa- 253

tion, but differ in their text components. We con- 254

sider this setting an upper bound on performance 255

as we effectively guarantee that the models see a 256

‘clear and representative’ image. In real-world ap- 257

plications, efficient algorithms to select meaningful 258

frames would be necessary. Note that we could 259

not run exhaustive combinations of experimental 260

settings due to constraints on compute. 261

4 Structured Chain of Thought 262

To further improve SD performance for VLMs we 263

explore structured Chain of Thought (CoT) (Wei 264

et al., 2022). Under standard CoT, rationales are 265

generated in one step, usually with the command 266

‘think step by step’, making each intermediate rea- 267
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soning stage implicit and uncontrollable. Models268

are also expected to have emergent few-shot in-269

context learning abilities which have been shown270

to be more limited in smaller scale models (Brown271

et al., 2020).272

In the structured CoT approach we propose, ra-273

tionales are instead generated iteratively, through a274

multi-turn interaction where at each turn, the model275

is prompted to reason by looking at the output of276

the previous turn and the provided evidence (see277

Figure 1). The exact prompts are included in Ap-278

pendix A.2. These prompts attempt to simulate how279

a human would reason about a multimodal situation280

and ‘connect the dots’ in order to systematically281

deduce the correct answer. The hypothesis is that282

this explicit reasoning chain will allow us to steer283

the model towards the correct answer. Through our284

preliminary experiments, we observed that LLaVA-285

NeXT does not have the base reasoning capabilities286

to benefit from this approach. Thus, we opt to study287

Pixtral only for these experiments.288

Figure 1: Schematic diagram of structured CoT. The
step classifier P

(T )
ψ is an optional component of the

setup and is shown with dotted lines.

The deductive process begins with a prompt to289

contextualise the task (this is similar to the prompt290

used in the original WTaG setup) and another to291

record the model’s initial guess, k̂0. Given k̂0, D292

follow-up prompts are passed. These are designed293

to elicit a set of expectations from the model based294

on its initial guess. Then, the model is instructed295

to identify any evidence in the given scene that 296

contradicts its initial expectations. The idea is to 297

elicit the model to update its current guess if the 298

evidence it has been provided is inconsistent with 299

its expectations. 300

4.1 Leveraging In-Domain Classifiers 301

While structured CoT has potential to improve per- 302

formance, we also investigate the direction of lever- 303

aging bespoke image classifiers for the SD task. In 304

this case, we train a set of in-domain classifiers for 305

each (physical) task in WTaG, and use their out- 306

puts for zero-shot step detection with a VLM. The 307

idea here is to steer the model towards steps that 308

are deemed more probable by an external expert 309

model. In other words, we can think of this process 310

as biasing the prior knowledge of the model with 311

task-specific knowledge of which steps are more or 312

less likely given the current scene. Under this setup, 313

the in-domain classifiers encode domain-specific 314

knowledge about the WTaG tasks, which the VLM 315

should be able to exploit to improve performance. 316

Formally, our objective is to train a simple im- 317

age classifier P (T )
ψ (k|HV), where T is one of the 318

WTaG tasks. We choose a standard ViT (Dosovit- 319

skiy, 2020) as P
(T )
ψ . However, once we have ob- 320

tained this distribution the question becomes: how 321

should P
(T )
ψ be leveraged by the foundation model, 322

Pθ? In this work, we opt for the cheap-and-cheerful 323

method of encoding the classifier distribution in the 324

setup prompt as a string (see Appendix A.3). We 325

do not pass the raw probabilities but rather ordinal 326

categories (i.e. Very Low, Low, Medium, High, 327

Very High) as we found that Pixtral struggled with 328

comparing numerical values. These categories are 329

split at uniform intervals. 330

5 Results 331

This section summarises the key findings from our 332

experiments. Regarding implementation details, 333

we extended the WTaG evaluation framework to 334

conduct our experiments. Experiments were run on 335

a single A100 GPU, or 4 V100 GPUs. To train 336

the in-domain classifiers, we subsampled 1 fps 337

from the WTaG videos and obtain datasets of 7509, 338

8011 and 9546 images for the pinwheel, coffee 339

and cake tasks respectively. We then fine-tuned 3 340

vanilla ViT models with LoRA (Hu et al., 2021) 341

via the AdapterHub framework and use the recom- 342

mended hyperparameters for image classification 343

(Poth et al., 2023) (see Appendix C for details). 344

4



Model Type Model Model Size Pinwheel F1 Coffee F1 Cake F1 Overall F1

Blind LLM

ChatGPT-3.5 - 42.09 47.27 38.23 42.53

Vicuna 13B 31.06 53.54 50.38 44.99
LLaMA-2 7B 29.37 19.11 23.90 24.13
LLaMA-2 13B 26.27 45.91 36.76 36.31

Mixtral 47B 38.45 47.07 55.32 46.95
Pixtral 12B 42.32 53.17 60.25 51.91

Blind LLM w/ Caption

ChatGPT-3.5+BLIP-2 - 37.99 48.64 41.75 42.79

Vicuna+LLaVA-NeXT 13B 28.59 50.18 49.75 42.84
Pixtral+Pixtral 12B 45.00 56.47 61.74 54.40

Pixtral+Pixtral (Fixed image) 12B 58.59 56.78 65.91 60.43

Single-Frame VLM

LLaVA-NeXT 13B 28.73 53.79 51.34 44.62
LLaVA-NeXT (Fixed image) 13B 30.63 55.31 53.06 46.33

Pixtral 12B 38.80 55.07 55.82 49.90
Pixtral (Fixed image) 12B 55.21 54.40 59.17 56.26

Table 2: Summary of key results from the various benchmarking experiments we conducted. Best F1 scores among the open
access models (regardless of type) are shown in bold. The ChatGPT-3.5 results are as reported in Bao et al. (2023).

Training was seeded and took about 20 minutes for345

each classifier. Inference was much more expen-346

sive, with some experiments taking up to 20 hours.347

As a result, the results presented for each task con-348

sist of single runs. The mean of these scores are349

then presented as the overall F1 for that model and350

experiment setup.351

5.1 Language-Only Baselines352

From Table 2 we observe that the Blind LLM353

baselines are strong, with Vicuna, Mixtral and354

Pixtral outperforming the reported ChatGPT-3.5355

results. This demonstrates that dialogue cues alone356

provide significant information for models to de-357

tect the step. This observation agrees with similar358

findings from Majumdar et al. (2024).359

Further, we find that certain steps in a task are360

more strongly signalled than others. Figure 2 shows361

that Steps 2, 6 and 10 of the pinwheel task are well362

signalled and are often correctly classified by mod-363

els. We call such steps ‘landmark’ steps. The risk364

of landmark steps is that they are ‘sticky’, meaning365

a model may fixate on them, misclassifying the366

following steps (as seen in Figure 2a). Pixtral’s367

superior performance can thus be attributed to its368

ability to identify more ‘in-between’ steps and mit-369

igate the risk of fixation on landmarks as seen in370

2b where steps 4, 7, 8 and 9 are better classified by371

the model.372

Regarding scale, LLaMA-2 7B is outperformed373

by all larger models, suggesting that SD is diffi-374

cult and requires a certain base level of reasoning375

to perform well. However, Pixtral exhibits higher376

F1 scores than both ChatGPT-3.5 and Mixtral (as-377

suming the former has a similar size to GPT 3 378

(Brown et al., 2020)). This shows that models also 379

do not need to be exceedingly large to perform 380

SD; a medium-sized model with a strong language 381

backbone (in this case Mistral-NeMo) is sufficient. 382
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Figure 2: Confusion matrices of Vicuna 13B (top) and
Pixtral (bottom) for the pinwheel task, using only the
dialogue history as context.
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5.2 Effectiveness of Scene Captions383

As for the Blind LLM w/ Caption setup, we ob-384

tain the intuitive results that 1) image information385

can improve SD performance and 2) caption386

quality is important for achieving strong SD387

performance. Captions generated with LLaVA-388

NeXT consistently degrade the relative base ‘blind’389

performance of Vicuna 13B (see Blind Vicuna v.390

Vicuna+LLaVA-NeXT), while the captions gener-391

ated with Pixtral lead to gains relative to the blind392

performance for all 3 tasks (see Blind Pixtral v.393

Pixtral+Pixtral).394

Table 2 also demonstrates that captioning gen-395

erally performs better than processing the scene396

information jointly with the dialogue history, as the397

scores for Single-Frame VLM are lower than the398

scores of LLM with caption. In other words, us-399

ing Pθ to map HV to language space first is more400

helpful than passing HV as is to the model and401

predicting the target step in the following way:402

k̂ = argmax
k∈K

[Pθ(k|HL,HV)]403

Where k̂ is the predicted step. We hy-404

pothesise that the drop in performance on the405

Single-Frame VLM setting is due to 1) the mod-406

els struggling to focus on aspects of the full scene407

that are relevant to inferring the current step, 2)408

the models not having enough context to deduce409

the current step and 3) excessive hallucinations i.e.410

‘seeing’ the scene inaccurately, leading to derailed411

rationales and incorrect predictions. While caption-412

ing is also prone to hallucination, it would seem413

that models can more easily attend to relevant in-414

formation and disregard irrelevant cues when the415

given scene is represented as text.416

5.3 Representative Fixed Images417

The results obtained from the ‘fixed image’ exper-418

iments demonstrate that passing a representative419

image of a step to a model is crucial to achiev-420

ing strong performance on SD. Across all mod-421

els, experimental setups and tasks, the ‘fixed im-422

age’ setting generally leads to improved SD per-423

formance, with the Pixtral+Pixtral (Fixed image)424

setup performing the best overall. We also find that425

F1 scores increase the most on the pinwheel task426

when fixing HV (consider the 14.59% relative gain427

for Pixtral+Pixtral), showing that this task is highly428

sensitive to accurate visual information, for reasons429

related to task complexity discussed in Section 5.6.430

5.4 Structured Chain of Thought 431

Table 3 shows our results for the structured CoT 432

experiments with Pixtral. F1 scores are computed 433

after the model’s initial guess and after its final 434

guess. This is done to determine the effects of both 435

the visual information and the deductive process on 436

overall performance. It should be noted that since 437

the initial context prompt for these experiments 438

differs slightly from the previous experiments, the 439

‘initial guess’ results do not exactly match the blind 440

scores of Pixtral in Table 2. 441

Previously we have shown that using an LLM 442

with captioned image information outperforms 443

VLMs that process the raw image jointly with the 444

dialogue history, even when this scene is expected 445

to be informative as in the ‘Fixed image’ setting. 446

We find that performing structured CoT addresses 447

these weaknesses. Under the ‘Naive image’ setting 448

we observe that CoT hurts overall performance, 449

but with the ideal ‘Fixed’ image it increases sig- 450

nificantly, thus demonstrating the importance of 451

selecting the right image when performing the SD 452

task. 453

The Socratic VLM results show that struc- 454

tured CoT leads to large performance gains on the 455

pinwheel and coffee tasks, given that HV is rele- 456

vant to the task at hand. Interestingly, scores for 457

the cake task improve marginally, but not as much 458

as the captioning setup, which yielded a score of 459

65.91%. 460

5.5 In-Domain Classifiers for Structured CoT 461

The trends observed for the Socratic VLM 462

results are even more pronounced for the 463

Socratic VLM w/ Classifier setting. Between 464

the initial blind guess and the final guess, the scores 465

on the pinwheel and coffee tasks improve by 22.75 466

and 25.4 absolute points respectively. These im- 467

provements suggest that Pixtral was successfully 468

steered by the task-specific knowledge of the clas- 469

sifier to improve SD during the deductive process. 470

It should be noted that the classifier for the cof- 471

fee images performed best on the SD task and thus 472

yielded the most gain for the VLM since it provided 473

more accurate step distributions at each QP. 474

5.6 The Effect of Task Complexity 475

Interestingly, we observe that the scores for the 476

cake task do not increase significantly with the 477

deductive process, or even when leveraging the 478

outputs from the in-domain image classifier. This 479
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Model Type Prompt Type Pinwheel F1 Coffee F1 Cake F1 Overall F1

Socratic VLM
Initial guess 45.99 48.78 61.57 52.11

Final guess (Fixed) 60.28 60.62 63.51 61.47
Final guess (Naive) 46.76 48.17 58.17 51.03

Socratic VLM w/ Classifier
Initial guess 46.48 49.45 61.11 52.35

Final guess (Fixed) 69.23 74.85 61.79 68.62

Table 3: F1 scores for the structured CoT or ‘Socratic’ experiments for Pixtral 12B, assuming the image of the scene HV is
hand-selected. The best VLM scores are in boldface. The ‘naive image’ results are included for reference.
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Socratic VLM
Socratic VLM w/ Classifier

Figure 3: Breakdown of the proportions of reasoning
chains (out of the total 5267) that were fixed or derailed
by the different structured CoT experimental setups.
‘C’ stands for Correct and ‘W’ stands for Wrong. For
example, ‘W->C’ means that the initial guess was wrong,
but the final guess was correct.

indicates that the deductive process benefits certain480

tasks more than others.481

To understand why this is the case, we consider482

the cake task in more detail. According to Table 1,483

the cake task has the most utterances overall. One484

explanation for this is that making a cake is a more485

complex task than making a pinwheel (similar to486

a peanut butter sandwich) or a cup of coffee. As487

such, people are less likely to be familiar with the488

intermediate steps of the cake task. This results489

in more User utterances (and by extension a lower490

proportion of Wait QPs) because they will seek491

more guidance from the Instructor, thus reducing492

the utility of visual information since the dialogue493

history contains sufficient information to determine494

the step. In fact, at times this visual information495

could risk causing a model to ‘overthink’, where496

the gains from multi-turn reasoning diminish and497

instead confuse the model, leading to lower per-498

formance. Comparing the Pixtral+Pixtral (Fixed499

image) and Socratic VLM F1 scores for the cake500

tasks, we find that while both lead to improvements501

over the text-only baselines, captioning slightly out-502

performs structured CoT, which we believe is due 503

to overthinking. 504

Conversely, the pinwheel and coffee tasks have 505

fewer dialogue utterances (as evidenced by a higher 506

proportion of Wait QPs) since Users do not have to 507

ask for guidance as often. Therefore, these tasks are 508

inherently more reliant on the scene information. 509

Since structured CoT is designed to make the most 510

out of this information, we obtain the substantial 511

performance gains observed in Table 3. In sum, we 512

believe that the lack of improvement in F1 scores 513

for the cake task despite using structured CoT is 514

due to the abundance of dialogue cues (as a result 515

of task simplicity) that makes scene information 516

more redundant and less useful to the model. 517

5.7 Does Structured CoT Derail, Correct or 518

Reinforce the First Guess? 519

Finally, we further analyse the reasoning chains 520

generated by Pixtral when undergoing structured 521

CoT. Using the initial and final guesses of the 522

model, we measure the rates at which the deductive 523

process is helpful or harmful to the final predic- 524

tion. Specifically, we compute the percentage of 525

Pixtral’s reasoning chains (one for each QP) that 526

fall under one of four scenarios: either the first 527

and final guesses are both correct or wrong, or 528

one of either the first and final guesses are correct 529

while the other is wrong. From Figure 3 we ob- 530

serve that including the step probabilities from the 531

task-specific classifiers in the deductive prompts 532

has a slightly higher risk of derailing a reasoning 533

chain than when these probabilities are omitted 534

(see the ‘C->C’ and ‘C->W’ scenarios). However, 535

this trade-off is acceptable given that the step prob- 536

abilities correct a much larger proportion of rea- 537

soning chains (over 20%). The performance gain 538

for Socratic VLM w/ Classifier can therefore be 539

attributed to the reasoning chains that are corrected 540

as a result of the information provided by the im- 541

age classifiers. Pixtral’s ability to self-correct is 542

7



encouraging, as self-correction is key for making543

future agents that are robust to reasoning errors and544

the unpredictability of real-world environments.545

6 Related Work546

6.1 Step Detection as Embodied Question547

Answering548

As previously established, step detection can be549

performed as a text-only or vision-language task.550

SD is essentially a procedural segmentation task551

(Zhou et al., 2018), but it can also be framed as an552

(E)mbodied QA (EQA) problem, where an agent553

is tasked with answering a question that requires554

egocentric perception of an environment. In our555

case, the model is asked which step of a task556

a User is actively performing. Much work has557

been done on EQA (Bohus et al., 2024; Das et al.,558

2018; Schoonbeek et al., 2024; Yu et al., 2019; Li559

et al., 2024b), though a recent major contribution560

in this area is OpenEQA (Majumdar et al., 2024).561

OpenEQA is a large-scale benchmark that covers562

a broad range of questions about realistic environ-563

ments that extend beyond step detection. However,564

they focus on multi-frame VLMs (i.e. VLMs that565

can handle video) rather than single-frame VLMs566

where only one frame of the scene is passed. We567

also study the utility of structured CoT rather than568

scene-graph captions. Another closely related work569

is SuccessVQA (Du et al., 2023). This work stud-570

ies whether VLMs can serve as reward models by571

leveraging Flamingo (Alayrac et al., 2022) as a572

binary classifier to determine whether or not an573

action was completed successfully. However, Suc-574

cessVQA does not consider the setting where the575

guidance system has access to dialogue history, nor576

does it study the impact of CoT on classification577

performance.578

6.2 Chain of Thought for Vision-Language579

Reasoning580

Regarding vision-language reasoning, there have581

been substantial efforts in this direction (Amizadeh582

et al., 2020; Hu et al., 2024; Xu et al., 2024a; Zeng583

et al., 2022). Zhang et al. (2023b) in particular584

tackle the popular ScienceVQA benchmark by gen-585

erating CoT rationales that exploit the multimodal586

information in a given problem, thereby grounding587

a model and providing hallucinations that should588

be less prone to hallucination. In this work we in-589

stead study structured CoT, where the model is in-590

stead guided through a fixed reasoning chain rather591

than generating the rationale itself. We believe 592

that manually injecting this human ‘know-how’ of 593

combining multimodal clues can lead to more con- 594

sistent and explainable rationales. C4MMD (Xu 595

et al., 2024b) adopts a similar approach as well, 596

but instead applies the technique to the problem of 597

metaphor detection, which is a binary classification 598

task rather than the multiclass tasks we examine. 599

Another related work is Inner Monologue (Huang 600

et al., 2022), which explores the use of an LLM as 601

a planner for an embodied agent. As part of the 602

evidence provided to the planner, Inner Monologue 603

leverages a small success detection model that first 604

determines the likelihood that the current action 605

was completed before passing this information to 606

the agent. This is similar to the ‘step classifiers’ 607

that we trained for the WTaG tasks. 608

7 Conclusion 609

In conclusion, this paper studied a range of meth- 610

ods of combining visual and text information to 611

perform zero-shot step detection with open access 612

foundation models. The aim was to extract insights 613

for building task guidance agents powered by such 614

models. First, we found that dialogue cues are cru- 615

cial to correctly detecting the current step, since 616

the text-only baselines performed well alone. Next, 617

we empirically observed that image captioning gen- 618

erally outperforms direct processing, even when a 619

relevant image of a given scene is provided. 620

We found that structured CoT successfully 621

guided Pixtral to make full use of the visual in- 622

formation available and led to substantial gains in 623

F1. We also observed an interesting interaction 624

between performance and task complexity, in that 625

tasks that are more complex may cause the User to 626

ask for more guidance and render visual informa- 627

tion less useful. This effectively limits our ability to 628

generalise structured CoT to other tasks. However, 629

the fact that Pixtral was able to leverage the outputs 630

of the in-domain classifiers is promising because it 631

indicates that foundation models can form the basis 632

for what so-called ‘modular agents’. Such an agent 633

would consist of a core foundation model acting as 634

an orchestrator to bootstrap a set of smaller, spe- 635

cialist models. For future work we believe it would 636

be interesting to build a complete modular agent 637

for this benchmark that performs all the sub-tasks 638

at once. 639
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8 Limitations640

While we have shown that standard VLMs can per-641

form reasonably well on the SD task of the WTaG642

benchmark, we focused on single-frame VLMs643

in this work. This makes image selection a chal-644

lenge as we demonstrated that SD performance is645

sensitive to image quality. Ideally, we would com-646

pare our VLM results with a video-LLM baseline.647

However, as mentioned previously this requires ex-648

tensive compute, along with sufficiently capable649

models that we observed were lacking. The second650

limitation is that the structured CoT method we651

propose for SD is static. In future it would be use-652

ful if this process could be automatically optimised.653

The fixed reasoning chain yields performance gains654

but there is no guarantee that it is the ‘best’ series655

of prompts that could elicit the most accurate step656

predictions from Pixtral. Directions such as a dual-657

LLM approach, where one LLM generates reason-658

ing prompts and the other performs SD, would be659

interesting methods of addressing this limitation.660
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A Prompt Templates 825

A.1 Default 826

Instruction: An instructor is helping a user make a pinwheel. The ingredients required and the
steps to complete are:

Ingredients:
1 8-inch flour tortilla
Jar of nut butter
Jar of jelly

Recipe:
Step 1: Place a tortilla on the cutting board.
Step 2: Scoop and spread nut butter onto the tortilla.
Step 3: Clean the knife with a paper towel.
Step 4: Scoop and spread jelly over the nut butter.
Step 5: Clean the knife with a paper towel.
Step 6: Roll the tortilla from one end to the other into a log shape, about 1.5 inches thick.
Step 7: Secure the rolled tortilla by inserting 5 toothpicks about 1 inch apart.
Step 8: Trim the ends of the tortilla roll.
Step 9: Slide floss under the tortilla.
Step 10: Slice the tortilla roll with the floss.
Step 11: Continue slicing with floss to create 5 pinwheels.
Step 12: Place the pinwheels on a plate.

The following is a summary of the current situation:
Instructor: oh we’ll be trimming the edges with a butter knife
User: ok got it
User: do we have any scissors? oh i see them
Instructor: what would you need the scissors for?
User: place the scissors halfway between two toothpicks
Instructor: oh we’ll be using dental floss to cut the pinwheel
User: OK
User: OK cut through the roll
User: done
Instructor: nice

<OPTIONAL IMAGE CAPTION>

Based on the image you see and the situation described, which step of the recipe do you think the
user is currently on? Explain why.

827
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A.2 Socratic828

Turn 1: You will be presented with different pieces of evidence and your task is to predict which
step the user is most likely completing based on this evidence. Initially, all steps are equally
likely but you will need to update these probabilities when given evidence. You don’t need to
give explicit probabilities, just one of either very low, low, high, or very high. Also assume that
the steps are usually executed in order. Given this dialogue history update the step probabilities
accordingly. <DIALOGUE HISTORY>

Turn 2: Which step is the user currently performing? Give an initial guess and explain why.

Example initial guess: Step 2. The evidence provided indicates that the user has the tortilla and
the nut butter. These ingredients are specifically required for Step 2, which involves spreading the
nut butter onto the tortilla.

Turn 3: Given your current guess, if the step was successfully completed, what would you expect
to see?

Turn 4: Now, consider this image of the current scene as evidence. Is the user actively interacting
with any objects in the scene with their hands? If so, do these align with your previous
expectations? If the image is irrelevant or unhelpful to your deduction, say so. Update the step
probabilities accordingly. <SCENE IMAGE>

Turn 5: Therefore, combine this information with the dialogue history provided and give a
final guess for which step the user is currently performing. Provide the final guess only in your
response.

Example final guess: Step 5.
829

A.3 Socratic w/ Classifier830

Turn 1: You will be presented with different pieces of evidence and your task is to predict which
step the user is most likely completing based on this evidence. Initially, the step probabilities are:
Step 1: Low
Step 2: Low
Step 3: Very High
Step 4: Low
Step 5: Low
Step 6: Low
Step 7: Low
Step 8: Low
Step 9: Low
Step 10: Low
Step 11: Low
Step 12: Low

The first piece of evidence is this dialogue history between the instructor and user. Update the step
probabilities accordingly. <DIALOGUE HISTORY>

Continue as in standard Socratic setup.
831
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B Hand-selected Images 832

B.1 Pinwheel 833

(a) Step 2: Scoop and spread nut butter
onto the tortilla.

(b) Step 8: Trim the ends of the tortilla
roll.

(c) Step 12: Place the pinwheels on a
plate.

Figure 4: Hand-selected images for Steps 2, 8 and 12 for the pinwheel task.

B.2 Coffee 834

(a) Step 1: Measure 12 ounces of cold
water and transfer to a kettle.

(b) Step 3: Place the filter cone in the
dripper.

(c) Step 8: Drain the coffee into the
mug.

Figure 5: Hand-selected images for Steps 1, 3 and 8 for the coffee task.

B.3 Cake 835

(a) Step 4: Add oil, water, and vanilla
to the mixing bowl.

(b) Step 8: Check that the cake is done
with a toothpick.

(c) Step 12: Apply the frosting around
the base of the cake.

Figure 6: Hand-selected images for Steps 4, 8 and 12 for the cake task.

C Training Hyperparameters 836

Hyperparameter Value

Learning rate 1e-4
Batch size 32
Epochs 10
LoRA r 8
LoRA α 8

Table 4: Training hyperparameters for the ViT step classifier models.
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