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Abstract
As LLMs continue to become more powerful
and versatile, human evaluation has become in-
tractable at scale and reliance on automatic met-
rics has become the norm. Recently, it has been
shown that LLMs are themselves state-of-the-art
evaluators for many tasks. These Autoraters are
typically designed so that they generalize to new
systems and test sets. In practice, however, evalua-
tion is performed on a small set of fixed, canonical
test sets, which are carefully curated to measure
the capabilities of interest and are not changed fre-
quently. In this work, we design a method which
specializes a prompted Autorater to a given test
set, by leveraging historical ratings on the test set
to construct in-context learning (ICL) examples.
We evaluate our Specialist method on the task of
fine-grained machine translation evaluation, and
show that it dramatically outperforms the state-
of-the-art XCOMET metric by 54% and 119%
on the WMT’23 and WMT’24 test sets, respec-
tively. We also evaluate our method on the task
of open-ended story generation evaluation, where
we show that it outperforms the non-specialized
baseline by 31% on the HANNA benchmark. We
perform extensive analyses to understand the rep-
resentations learned by our Specialist metrics, and
how variability in rater behavior affects their per-
formance. We also verify the generalizability and
robustness of our Specialist method across differ-
ent numbers of ICL examples, LLM backbones,
systems to evaluate, and evaluation tasks.

1. Introduction
While evaluation of natural language generation (NLG) sys-
tems has been a long-standing challenge, its importance
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has come to the fore in the era of large language models
(LLMs). Moreover, while human evaluation has historically
been considered the gold standard for measuring model
quality, it has become a key bottleneck during model devel-
opment. In addition to being costly, slow, and difficult to
scale, human evaluation is also limited by subjectivity (Kr-
ishna et al., 2023) and high variability in judgments across
human raters (Karpinska et al., 2021; Riley et al., 2024;
Zhang et al., 2024b). Increasingly, automatic metrics are
replacing human evaluation for measuring the quality of
generative models, and LLMs themselves have been shown
to be state-of-the-art evaluators (also known as Autoraters)
across a range of capabilities (Kim et al., 2023; 2024; Vu
et al., 2024; Li et al., 2023).

The race to build ever-more-performant LLMs has acceler-
ated not only this shift from human to automatic evaluation,
but has also brought demand for standard test sets on which
LLM quality is measured and compared (Hendrycks et al.,
2020; Liang et al., 2022; Zheng et al., 2023a;b). Evaluat-
ing new systems on a fixed set of benchmarks, which are
carefully curated to measure certain capabilities of interest
and are not changed frequently, allows for fair comparison
against previous work and is the standard in the literature.
Thus, while automatic metrics are typically designed so that
they generalize to new systems and test sets, in practice, it
is very important that the evaluation metric being used work
well across systems on the given test set, and less important
that the metric generalize to other, unseen and unused test
sets. In this work, we propose a simple and highly effective
method to build LLM-based Autoraters which are special-
ized to a given test set, by leveraging historical ratings on
the test set to construct ICL examples.

Our contributions can be summarized as follows:

• We propose a novel method for constructing LLM-
based Autoraters for NLG evaluation, which are spe-
cialized to a given test set (see Figure 1a). This method
only requires multi-shot prompting (no finetuning).

• We show that this method can be used to create an
automatic metric for fine-grained machine translation
(MT) evaluation (called Specialist AutoMQM) which
dramatically outperforms the existing state-of-the-art,
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(a) Specialist Method (b) AutoMQM Task

Figure 1. (a) Illustration of the Specialist method, compared against the Fixed, different source baseline, for prompting an
LLM-based Autorater. Both methods construct a unique set of ICL examples for every test set example, consisting of ratings of historical
system outputs for some fixed source. The difference between these methods is that the Specialist ICL examples consist of ratings of
outputs from the same source as the test example. (b) Illustration of the AutoMQM task for fine-grained MT evaluation.

achieving character-level F1 improvements of 54% and
119% on the WMT’23 and WMT’24 test sets, respec-
tively, relative to XCOMET (Guerreiro et al., 2023).

• We perform extensive ablations and analyses to ver-
ify that the representations that Specialist AutoMQM
learns from the ICL examples are non-trivial. We also
show that the Specialist method is robust to the choice
of LLM and to the systems being evaluated, and that
this method generalizes to the different, but related,
task of score prediction for machine translation.

• We investigate how variability in judgments across dif-
ferent human raters affects performance of Specialist
AutoMQM, and conclude that this metric specializes
not only to the test set, but also to the rater.

2. Related Work
LLM-as-a-Judge Autoraters Recently, it has been
shown that, for many NLG tasks, LLMs are themselves
state-of-the-art evaluators (Kim et al., 2023; 2024; Vu et al.,
2024; Li et al., 2023). Some of these “LLM-as-a-Judge”
Autoraters are finetuned on human judgements (Kim et al.,
2023; 2024; Vu et al., 2024; Li et al., 2023), while others
are simply prompted (Kocmi & Federmann, 2023a; Yuan
et al., 2023). Prompting LLMs with in-context learning
(ICL) examples is a common approach for eliciting their rea-
soning and instruction-following capabilities (Tanzer et al.,
2023; Yan et al., 2023). While traditional automatic metrics
predict scalar quality scores, the transition towards gener-
ative Autoraters for evaluation opens up the possibility to
elicit feedback more flexibly, including fine-grained and
interpretable feedback (Fernandes et al., 2023; Kocmi &
Federmann, 2023a). However, Kamoi et al. (2024) showed
that GPT-4 and Claude-3 have low recall in detecting errors

made by LLMs, and their explanations are unreliable.

Modeling Rater Behavior For many (NLG) tasks on
which LLMs are evaluated, there is high variability in judg-
ments across human raters (Karpinska et al., 2021; Riley
et al., 2024). For some (open-ended text generation) tasks,
the evaluation criteria have some degree of subjectivity (Kr-
ishna et al., 2023). Especially for expert-level evaluation
tasks, differences in rater quality and conscientiousness can
manifest as inter-annotator disagreement (Karpinska et al.,
2021). Raters can also have different stylistic preferences,
and some grade more leniently or harshly than others (Ri-
ley et al., 2024). Given these differences in rater behavior,
several recent studies have sought to model behavior of mul-
tiple raters when designing automatic metrics (Zhang et al.,
2024b; Geva et al., 2019; Chen et al., 2024; Golazizian et al.,
2024). In this work, we instead investigate whether our pro-
posed method effectively specializes to a single rater. In
practice, modeling a single, high-quality rater is often more
desirable than modeling multiple, noisy raters.

Machine Translation Evaluation In this work, we focus
on the task of MT evaluation to investigate the effective-
ness of our Specialist method. MT is a core NLG task, and
automatic MT evaluation is one of the most well-studied
evaluation problems in NLP (Callison-Burch et al., 2008;
Freitag et al., 2023). In line with broader trends, research in
automatic MT evaluation has recently shifted towards the
LLM-as-a-Judge paradigm. Kocmi & Federmann (2023b)
showed that LLMs prompted to predict scalar scores are
state-of-the-art evaluators of MT quality at the system level
(though still lag behind finetuned MT evaluation metrics at
the segment level). While these score-based metrics have
high correlation with human judgments, the scores that they
produce are difficult to interpret, and do not provide ac-
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tionable insights into the limitations of the model being
evaluated or how to improve it (Xu et al., 2024; Zhang et al.,
2024a). Recent work in creating interpretable automatic MT
metrics has built upon an existing, state-of-the-art frame-
work for interpretable human evaluation of translation qual-
ity: the Multidimensional Quality Metrics (MQM; Lommel
et al., 2014; Freitag et al., 2021) framework, in which profes-
sional annotators are asked to identify and label individual
error spans in MT outputs, along with the corresponding
error category (e.g., fluency, accuracy, etc.) and severity
(minor, major, or critical). Fernandes et al. (2023) and
Kocmi & Federmann (2023a) showed that LLMs can be
few-shot prompted to provide MQM error annotations of
MT outputs. However, these prompted Autoraters still un-
derperform (Freitag et al., 2023) XCOMET (Guerreiro et al.,
2023), an encoder model finetuned on human-generated
MQM data, which predicts both scalar quality scores (with
a regression head) and error spans (non-generatively) via
token-level tagging.

3. Specialist Method
In this work, we propose the Specialist method for develop-
ment of a prompted LLM-as-a-Judge metric, which special-
izes the metric to a given test set based on the ICL examples
provided. This method will be phrased in terms of the MT
evaluation task, but its formulation generalizes to any NLG
evaluation task (i.e., any task which evaluates output from
generative models).

Prerequisites First, we establish some basic terminology.
The objective is to evaluate the performance of an MT sys-
tem (i.e., model) M on a fixed test set. A test set simply
consists of a set of sources X , which are the inputs to the
system(s) to be evaluated. (In this setting, we do not require
access to gold reference translations of these sources.) The
translations YM are the outputs of M on the test set: that is,
YM = {M(x) : x ∈ X}. Evaluation of system M on the
test set (whether by MQM, AutoMQM, score prediction,
etc.) produces a set of ratings RM = {rating(y) : y ∈ YM}
for the translations YM .

Specialist Algorithm The Specialist method can be sum-
marized as follows: Given access to a test set X augmented
with historical translation quality ratings from multiple sys-
tems, and given the predictions of a new translation system
M∗ which we want to evaluate on this test set, the Specialist
metric evaluates the quality of M∗(x) for every x ∈ X by
prompting an LLM with ICL examples constructed from all
ratings of historical translations of the same input x. See
Figure 1a for an illustration of the Specialist method.

More formally, Algorithm 1 outlines the details of this
method, which requires access to multiple (historical) sets

of (human-generated) ratings RMj
(from different transla-

tion systems Mj) on the same test set. The pseudo-SxS
setting primarily considered in this work has the additional
requirement that, for each test set example xi, all ratings{
RMj [i]

}N

j=1
be performed by a fixed rater. In this work,

the different translations for each input example come from
different translation systems, but they could in principle
also be sampled from a single model (e.g., using a diversity-
promoting sampling algorithm). The Specialist method
constructs ICL examples to be used for prompting an LLM-
as-a-Judge on a per-example basis, so that ICL examples
are unique for every example in the test set. In particular,
for a given input xi in the test set, the ICL examples are con-
structed from all of the (historical) ratings of translations of
this same input (line 9 in Algorithm 1). That is, given a new
translation system M∗ to evaluate on the test set, the ICL
examples used to evaluate the translation Y i

M∗ = M∗(xi)

are given by
{
RMj [i]

}N

j=1
. Once the ICL examples are con-

structed, the LLM is prompted with these demonstrations,
as well as the corresponding source xi and model translation
Y i
M∗ to evaluate (line 13 in Algorithm 1).

Algorithm 1 Specialist Method for Automatic Evaluation
Given:

1: Test set X = {xi}Ki=1

2: Translation system M∗ to evaluate
Require:

3: Off-the-shelf LLM E to use as the prompted Autorater
4: Set R of ratings on X for N translation systems: R ={

RMj

}N

j=1
, where Mj 6= M∗ for all j ∈ {1, . . . , N}.

Pseudo-SxS Constraint: For each i, ratings{
RMj

[i]
}N

j=1
were performed by a single rater.

Ensure: Ratings RM∗ of system M∗ on test set X
5: RM∗ ← []
6: # Iterate over examples in the test set
7: for i← 1 to K do
8: # Construct ICL examples from all historical ratings

for the same input xi

9: (ICL examples)i =
{
RMj

[i]
}N

j=1

10: # Compute output of M∗ on this test set example
11: Y i

M∗ = M∗(xi)
12: # Prompt E to evaluate the translation of the new

system M∗ of input xi, given the historical ratings
13: Ri

M∗ = E
(
(ICL examples)i , xi, Y

i
M∗

)
14: Append Ri

M∗ to RM∗

15: end for
16: Return RM∗

Specialist Method in Practice The main constraint in de-
velopment of a Specialist metric is the availability of ratings
to use as ICL examples for the given test set. However, note
that it is much more efficient to collect a set of ratings from a
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few translation systems for a test set as a one-off investment,
than to repeatedly depend on human annotators for evalua-
tion of new translation models (e.g., throughout the model
development process). Performance of Specialist metrics as
a function of the number of ratings will be explored in §5.3,
where we show that ratings from only 3 translation systems
are sufficient to exceed the state-of-the-art.

4. Experimental Setup
4.1. Evaluation Task: AutoMQM

In this work, we develop a Specialist metric for MT evalua-
tion based on the Multidimensional Quality Metrics (MQM;
Lommel et al., 2014; Freitag et al., 2021) protocol (see
Section 2). We refer to any automatic evaluation metric
which performs the task of MQM as AutoMQM. That is,
an AutoMQM metric predicts error spans, and identifies
corresponding error categories and severities, according to
the MQM framework (Figure 1b). In §5.6, we also evaluate
our proposed Specialist method on the task of MT evalu-
ation via direct assessment (scalar score prediction). The
instructions used to prompt our AutoMQM and direct as-
sessment metrics are shown in Figures 5 and 6 in Appendix
A, respectively. The AutoMQM prompt was adapted from
the GEMBA instructions (Kocmi & Federmann, 2023a).
As indicated in the prompt, the output (and ICL examples)
are expected to be provided in JSON format, with each er-
ror having span, severity, and category fields. See
Table 7 in Appendix A for an example AutoMQM output.

4.2. Models

We use the Gemini 1.5 Pro model (Gemini Team, 2024) as
the prompted LLM Autorater for all experiments (unless
otherwise indicated; see §5.1).

4.2.1. BASELINES

We compare our proposed Specialist AutoMQM metric
against the following baselines:

XCOMET (Guerreiro et al., 2023) State-of-the-art auto-
matic metric for span-based MT evaluation.

GEMBA-MQM (Kocmi & Federmann, 2023a) Closest
precedent to our proposed metric, which also prompts an
LLM (GPT-4) for the task of MQM prediction. GEMBA
uses a fixed set of 3 (English-German, English-Czech, and
Chinese-English) ICL examples.

MetricX (Juraska et al., 2024) State-of-the-art automatic
metric for MT evaluation and winner of the WMT’24 Met-
rics Shared Task (Freitag et al., 2024). This model is used
as a baseline for the Specialist Scorer experiments in §5.6.

Shuffled sources The same global set of ICL examples
(per test set) as the Specialist model is used, but these ICL

examples are shuffled across test examples.

Fixed, different source The same global set of ICL ex-
amples (per test set) as the Specialist model is used, but
these are permuted so that, for a given test example, its ICL
examples come from a fixed source, which is strictly differ-
ent than that of the test example, but has the same rater. See
Figure 1a for an illustration of this setup vs the Specialist.

For the “Shuffled sources” and “Fixed, different source”
baselines, the following constraint is enforced: The ICL
examples for a given test example cannot include any trans-
lations, whether from the same or different source, produced
by the same system as that which produced the test transla-
tion. Moreover, both of these baselines use the same number
of ICL examples per test example as the Specialist model.

4.3. Test Sets

The Specialist method (described in §3) depends on having
access to a test set augmented with multiple ratings (of dif-
ferent translations) for each input. Such ratings have already
been collected as part of the Conference on Machine Trans-
lation (WMT) Metrics Shared Tasks in 2023 (Freitag et al.,
2023) and 2024 (Freitag et al., 2024). We will refer to these
datasets as WMT’23 and WMT’24, respectively. We use the
WMT’23 MQM ratings for English-German (en→de) and
Chinese-English (zh→en), and the WMT’24 MQM ratings
for English-German (en→de), English-Spanish (en→es),
and Japanese-Chinese (ja→zh). We exclude the human-
generated references, so that our metrics are reference-free
(i.e., QE). See Table 8 in Appendix B for the number of
translation systems per language pair. Except for the en→es
WMT’24 dataset, all ratings were collected in a pseudo-SxS
fashion (Riley et al., 2024), which means that a fixed rater
was assigned to rate all translations of a given input.

4.3.1. ADDITIONAL ROUNDS OF RATINGS

In order to better understand how inter-rater variability af-
fects the performance of the Specialist metric, we take ad-
vantage of additional rounds of MQM ratings (see §5.5).

WMT’23 Round2 and Round3 Two additional rounds
of WMT’23 MQM ratings, rated by the same set of raters
as in the first round, but with individual translations being
assigned to strictly different raters in each round. As with
the first round, the second two rounds of ratings were also
collected in a pseudo-SxS fashion.

WMT’23 Multi-Rater Subset An extension to the
(Round1) WMT’23 zh→en MQM ratings, whereby 10%
of the test set (18 source segments × 15 systems = 270
examples) was rated by all 8 raters.
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Character-level F1 Same source as test Fixed source Same rater WMT’23 WMT’24
Baselines

1a) XCOMET-XXL-QE — — — 33.50 16.23
1b) GEMBA-MQM-QE 7 7 7 31.99 —
1c) Shuffled sources 7 7 7 34.65 24.46
1d) Fixed, different source 7 3 3 27.06 19.96

2a) Specialist 3 3 3 51.59∗ 35.59∗

Table 1. Character-level F1 on the WMT’23 and WMT’24 test sets, for Baseline and Specialist metrics (see §4.2 for metric descriptions),
averaged over all language pairs per test set. See Table 11 in Appendix B for F1, precision, and recall, broken out by language pair. For
WMT’23, the “Shuffled sources” and “Fixed, different source” results are computed as the average over 10 runs with different random
seeds. See Table 12 in Appendix B for the variance across runs. Asterisks (∗) indicate scores which are statistically significantly better
than XCOMET (row 1a), according to a paired permutation test.

4.4. Creation of Specialist ICL examples

The Specialist metric (as described in §3) evaluates the qual-
ity of a single translation system M∗ given known ratings
for a set of N other translation systems {Mj}Nj=1. Here,
for each test set (WMT’23 and WMT’24), we have access
to ground-truth ratings for all system outputs. In order to
meta-evaluate the Specialist AutoMQM metric, we first col-
lect predictions from this metric for each system, via hold-
one-out prompting; that is, for whichever system we are
evaluating, we exclude that system’s ratings from the ICL
examples and prompt with the ratings from the remaining
systems. Then, we gather the Specialist AutoMQM predic-
tions across all systems to perform meta-evaluation of this
metric over the entire test set of interest. (Note that we also
include a performance breakdown by system in §5.2.) See
Tables 9 (WMT’23) and 10 (WMT’24) in Appendix B for
the average number of ICL examples and average number
of total errors across ICL examples per test example.

4.5. Meta-evaluation

To meta-evaluate Specialist AutoMQM, we compute the
character-level precision, recall, and F1 span tagging evalu-
ation metrics (Blain et al., 2023). Given gold and predicted
ratings, these metrics compute the precision, recall, and F1
of predicting whether a character in the hypothesis transla-
tion is included in an error span or not. Partial credit of 0.5
is given if the predicted rating correctly marks a character as
an error but predicts the incorrect severity. To meta-evaluate
the Specialist Scorer (which is not a span-based metric) in
§5.6, we report segment-level pairwise accuracy with tie
calibration (Acc23; Deutsch et al. (2023)), which was used
to evaluate WMT’23 and WMT’24 Metrics Shared Task
submissions. Acc23 rewards metrics for correctly ranking
translations and correctly predicting ties, in combination
with a tie calibration procedure that introduces ties into
metric scores so that the meta-evaluation is fairer.

5. Results and Discussion
The main results are shown in Table 1. First note that the
“Shuffled sources” baseline (row 1c) already performs (at
least) on par with the state-of-the-art AutoMQM models
(XCOMET in row 1a and GEMBA in row 1b). Also note
that the “Fixed, different source” baseline (row 1d) under-
performs “Shuffled sources”, which suggests that special-
izing to a different input is worse than no specialization.
In contrast, the “Specialist” metric (row 2a) dramatically
outperforms all of the baselines, with a 54% improvement in
F1 score relative to XCOMET on WMT’23, and a 119% rel-
ative improvement on WMT’24. Recall that the difference
between the “Specialist” setting and the “Fixed, different
source” setting is that, in the former, ratings from transla-
tions of the same source as the test example are provided
as demonstrations. Thus, same-source demonstrations are
crucial to the success of our method, and its success cannot
be attributed only to (i) providing demonstrations of ratings
from different translations of some fixed source, or (ii) pro-
viding demonstrations from the same rater as the test rating
ground truth.

5.1. Is Specialist AutoMQM Robust to the Choice of
LLM?

The results reported in Table 1 used the Gemini 1.5 Pro LLM.
To investigate whether gains from this method generalize to
other LLMs, we also performed the same comparison using
GPT-4o (Achiam et al., 2023) and Claude 3.5 Sonnet (Bai
et al., 2022). As shown in Table 2, Specialist AutoMQM
also substantially outperforms Shuffled AutoMQM when
prompting these other LLMs. Moreover, note that Spe-
cialist AutoMQM with the GPT-4o backbone outperforms
GEMBA (which is also a prompted GPT-4 model, albeit
an earlier version) by an even larger margin. This supports
the effectiveness of our approach over baselines using ex-
ternal (different-source) ICL examples. In the remaining
experiments, we continue to use the Gemini 1.5 Pro LLM.
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(a) WMT’23 en-de (b) WMT’23 zh-en

Figure 2. Specialist AutoMQM performance per WMT’23 translation system. The Specialist and Shuffled baseline models from Table 1
(rows 2a and 1c, respectively) are compared. The average MQM score of each system, along with its name, is shown on the x-axis. The
average character-level F1 of the AutoMQM model when evaluating this system only is shown on the y-axis.

Character-level F1 en→de zh→en
Baselines

XCOMET-XXL-QE 32.71 34.29
GEMBA-MQM-QE 29.80 34.17

Gemini-AutoMQM

Shuffled sources 31.49 37.80
Specialist AutoMQM 45.71 57.47

GPT-4o-AutoMQM

Shuffled sources 33.58 38.38
Specialist AutoMQM 48.32 56.78

Claude-3.5-Sonnet-AutoMQM

Shuffled sources 35.02 40.86
Specialist AutoMQM 48.49 56.13

Table 2. Comparison of Specialist AutoMQM vs the shuffled base-
line (WMT’23 test set) for three different LLMs: Gemini 1.5 Pro,
GPT-4o, and Claude-3.5-Sonnet. For all three LLMs, Specialist
AutoMQM substantially outperforms the shuffled baseline.

5.2. How Does Specialist AutoMQM Performance Vary
Across Translation Systems?

In practice, the Specialist AutoMQM metric would likely
be used to evaluate the quality of new translation system(s),
given ratings from historical systems. The WMT’23 and
WMT’24 datasets contain rated translations from at least a
dozen systems per language pair (Table 8). These systems
are of varying quality, and aggregate meta-evaluation of
AutoMQM (Table 1) could hide per-system differences in
metric performance. Here, we compare performance of Spe-
cialist AutoMQM against the “Shuffled sources” baseline
on a per-system basis for WMT’23. As shown in Figure
2, Specialist AutoMQM outperforms the shuffled baseline
for every zh→en system, and for every en→de system ex-
cept the lowest-quality one. Thus, Specialist AutoMQM
outperformance is consistent for translation systems across
the quality spectrum, and cannot be explained by gains only

for a certain quality tier. Note that both the Specialist and
shuffled baseline AutoMQM models tend to perform worse
on the highest-quality systems (e.g. GPT4-5shot), likely
due to limitations in the underlying translation capabilities
of the backbone language model used for AutoMQM.

5.3. How Does Specialist AutoMQM Performance
Scale as a Function of Number of ICL Examples?

The most expensive and time-consuming step in the devel-
opment of a Specialist metric is collecting ratings to use as
demonstrations. Thus, it is useful to understand the marginal
improvements in performance that can be expected as a re-
sult of collecting additional ratings. In this ablation, we
randomly select subsets of Specialist AutoMQM ICL exam-
ples in the range [1, num systems - 1]. While scaling ICL
examples, we incrementally add a single new example to the
existing set (for each test example), so that every set of ICL
examples of a given size n is a superset of the ICL examples
for all sizes less than n. Note that when the number of
ICL examples reaches its maximum (of num systems - 1),
this corresponds to the results reported in row 2a of Table
1. As shown in Figure 3, increasing the number of ICL
examples improves character-level F1 monotonically up to
7 ICL examples for en→de, and up to 12 ICL examples for
zh→en. We see that only 3 ICL examples are needed for
Specialist AutoMQM to outperform the XCOMET baseline
(for both en→de and zh→en) and that Specialist AutoMQM
outperforms the “Shuffled sources” setting (Table 1, row 1c)
at every ICL example set size.

5.4. Is Specialist AutoMQM Simply Copying Errors
From ICL Examples?

5.4.1. LEARNING WHEN TO ABSTAIN

In view of the results from §5.3, i.e., that increasing the
number of ICL examples improves performance of Spe-
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(a) WMT’23 en-de (b) WMT’23 zh-en

Figure 3. Specialist AutoMQM performance as a function of number of ICL examples used. For comparison, XCOMET performance, as
well as ICL example scaling for the “Shuffled sources” baseline (Table 1, row 1c), are also shown.

cialist AutoMQM, this raises the question of whether the
gains are simply due to the model copying errors that it
is shown in the ICL examples. As shown in Table 14 in
Appendix B (left two columns), when comparing Specialist
AutoMQM prompted with 3 versus 11 ICL examples, the
AutoMQM system prompted with 11 ICL examples predicts
fewer errors which are direct copies of spans from all 11 ICL
examples, than the AutoMQM system prompted with 3 ICL
examples. The comparison is even more pronounced when
comparing the “Shuffled Sources” baseline against Special-
ist AutoMQM with 11 ICL examples (right two columns
of Table 14). After removing errors predicted by both sys-
tems, the shuffled baseline predicts 6,374 errors which are
direct copies of spans from Specialist ICL examples, while
Specialist AutoMQM only predicts 494 such errors (even
though Specialist AutoMQM predicts more total errors than
the shuffled baseline). Thus, Specialist AutoMQM is ab-
staining from predicting errors that it is shown via ICL
examples, while the shuffled baseline, which has not been
shown these errors, is predicting them more liberally.

5.4.2. PARROT MODEL BASELINE

To quantify how much of Specialist AutoMQM’s perfor-
mance can be attributed to error copying from ICL exam-
ples, we construct an artificial baseline, which we call the
“Parrot”. This model has access to the same ICL examples
as Specialist AutoMQM, and makes predictions as follows:
For every error present in ICL examples for which there is a
matching span in the test translation, predict this as an error.
As shown in Table 3, there is a large gap in character-level F1
between the Parrot model and Specialist AutoMQM (27.6
vs 45.7 for WMT’23 en→de, and 36.5 to 57.5 for WMT’23
zh→en). Thus, the performance of Specialist AutoMQM
cannot be solely explained by naive copying behavior. The
large gap in recall between the Parrot model and Special-
ist AutoMQM (see Table 15 in Appendix B) quantifies the
extent to which Specialist AutoMQM correctly identifies
errors not present in ICL examples. Examples of such Au-
toMQM predictions are shown in Table 16 (Appendix B).

The gap in precision, on the other hand, quantifies the ex-
tent to which Specialist AutoMQM correctly abstains from
predicting errors present in ICL examples. See examples of
such predictions in Table 17 (Appendix B).

Character-level F1 en→de zh→en

Shuffled sources 31.49 37.80
Parrot 27.59 36.52
Specialist AutoMQM 45.71 57.47

Table 3. “Parrot” vs Specialist AutoMQM performance (WMT’23).

5.5. Is Specialist AutoMQM Specialized Only to Test
Sets, or Also to Raters?

By construction, Specialist AutoMQM is specialized to a
test set. Since the WMT’23 and WMT’24 test sets are con-
structed in a pseudo-SxS fashion (with the exception of
WMT’24 en→es), Specialist AutoMQM is also prompted
with ICL examples rated by the same rater as the test rating
ground truth. Here, we seek to understand whether Spe-
cialist AutoMQM also specializes to the rater. To answer
this question, we take advantage of the additional rounds of
WMT’23 MQM ratings, as described in §4.3.1.

Character-level F1 en→de zh→en
Human agreement

1a) Round2 34.91 38.68
1b) Round3 38.46 39.16

Specialist

2a) Round1 ICL 45.71 57.47
2b) Round2 ICL 30.80 38.83

Table 4. Specialist AutoMQM performance when prompting and
evaluating using different raters (WMT’23 test set). Results are
reported using the official Round1 test set.

Prompting with Different Raters In the first set of exper-
iments, we use the Specialist AutoMQM set-up, but prompt
with ICL examples from Round2 (rather than Round1) rat-
ings. We always evaluate using the official Round1 ratings.

7
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(a) AutoMQM Character F1 (b) Inter-Annotator Character F1

Figure 4. Cross-rater performance of AutoMQM and human annotators on the zh→en WMT’23 Multi-Rater Subset (§4.3.1). In Figure (a),
Specialist AutoMQM is prompted with ICL examples from the icl rater id rater (vertical axis), and evaluated using the ratings from the
test rater id rater (horizontal axis). In Figure (b), the matrix of character-level F1 scores between all pairs of human annotators is shown.

As shown in Table 4 (row 2b), performance drops to that
of the “Shuffled sources” baseline (Table 1, row 1c). Thus,
Specialist AutoMQM also specializes to the rater (on a per-
example basis; recall that with the pseudo-SxS setup, raters
can still vary across different inputs). This is not surprising,
since there are large (and often competing) differences in
behavior across raters: See rows 1a) and 1b) in Table 4
for the inter-annotator agreement across rounds. Note that
the Round2 Specialist (row 2b) performs on par with the
inter-annotator agreement for zh→en, and the Round1 Spe-
cialist (row 2a) outperforms the inter-annotator agreement
for both language pairs, likely because it is able to match
specific rater behavior from the ICL examples. In a follow-
up experiment, we provide merged ratings from Round2
and Round3 as ICL examples. As shown in Table 18 in
Appendix B, merging ratings (row 2c) improves recall at
the cost of lower precision. The drop in precision likely rep-
resents not an actual quality drop, but under-annotation of
errors (low recall) by the Round1 raters (used as the ground
truth). It remains an open question how to combine ratings
from multiple raters to create a better ground truth.

ICL Rater×Test Set Rater Comparison The aggregate
results reported in Table 4 could mask individual cross-
rater dynamics. While we do not have access to ratings
from all raters for every system output across all test set
examples, we do have access to the WMT’23 Multi-Rater
Subset ratings (§4.3.1), for which all 8 raters rated 10%
of the zh→en dataset. We use this WMT’23 Multi-Rater
Subset to understand AutoMQM performance for all pairs
of raters (where one rater is the ICL example annotator and
the other rates the test set example), by computing the entire
num raters × num raters matrix of F1 scores for every (ICL
rater, test set rater) pair. These results are shown in Figure
4(a). As expected, the F1 scores on the matrix diagonal are
highest (though note that rater2 and rater4 also have high
agreement). For comparison against AutoMQM, Figure
4(b) shows the inter-annotator agreement (character-level
F1) over the same WMT’23 Multi-Rater Subset. Observe

that when prompting and evaluating with different raters,
on average Specialist AutoMQM agrees with the raters as
much as the raters agree with each other.

WMT’23 WMT’24

Segment-level Acc23 en→de zh→en en→de en→es ja→zh

MetricX-24-QE 59.44 54.48 52.45 68.48 52.69
AutoMQM

Shuffled sources 53.55 49.62 50.39 68.21 51.57
Specialist 58.13 57.79 60.38 68.91 55.01
Score Prediction

Shuffled sources 52.32 49.32 47.96 68.43 52.58
Specialist 56.77 55.93 56.78 68.58 56.56

Table 5. Comparison of Specialist AutoMQM vs the Specialist
Scorer, on the WMT’23 and WMT’24 test sets.

5.6. Does the Specialist Method Generalize to Other
Automatic Evaluation Tasks?

Translation Direct Assessment We have seen that the
Specialist method for prompting LLMs-as-Judges achieves
state-of-the-art performance for the task of AutoMQM.
Here, we consider the task of scoring translation quality
(without providing error annotations). In this task, we
prompt the LLM to generate a float quality score on a scale
from 0-100. (See Figure 6 in Appendix A for the prompt
used.) As shown in Table 5, the task of score prediction also
benefits substantially from the Specialist method (relative
to the shuffled baseline). Here, we report segment-level
accuracy, and also compare against MetricX-24 (Juraska
et al., 2024), the state-of-the-art automatic score prediction
metric for machine translation. Also note that Specialist Au-
toMQM has a quality advantage over the Specialist Scorer,
while also offering the added benefit of interpretability (per-
haps because LLMs are better at natural language text gen-
eration versus generation of numbers). Finally, observe that

8
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Relevance (excl. HS) Relevance (incl. HS) Average (excl. HS) Average (incl. HS)

Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman

Shuffled baseline 43.71 41.51 59.58 52.88 36.74 32.35 54.32 44.40
Specialist 49.01 46.99 63.76 57.90 46.34 42.36 66.16 54.78

Table 6. Story-level Pearson and Spearman correlations of the Shuffled baseline vs Specialist metric, evaluated on the HANNA benchmark.
We report results for both the relevance criterion and the average over all criteria, both with human stories included (indicated in table by
incl. HS) and without human stories (excl. HS).

both Specialist models outperform MetricX-24 across all
WMT’23 and WMT’24 language pairs except WMT’23
en→de.

Long-Form Story Generation Assessment Both tasks
considered so far have evaluated translation quality (via
either error annotation or direct assessment). To validate
the generalization of the Specialist method, here we con-
sider the task of story generation, which is an open-ended
NLG task with fundamentally different characteristics from
translation evaluation. To evaluate story generation, we
use the HANNA benchmark (Chhun et al., 2022), which
satisfies the requirements of the Specialist method since
it contains outputs from multiple systems for every input
prompt, augmented with human annotations. While the an-
notations were not collected in pseudo-SxS fashion (§4.3),
each output was annotated by three human raters, and (fol-
lowing Chhun et al., 2022) we average over these ratings
during meta-evaluation to smooth out inter-rater variability.
The annotations evaluate each story according to six crite-
ria: relevance, coherence, empathy, surprise, engagement,
and complexity. We evaluate our baseline and Specialist
metrics on the first criterion (relevance) and on the average
score over all criteria (which represents an overall indication
of the story’s quality), and report story-level Pearson and
Spearman correlations.

We follow the same experimental methodology as described
in Section 4.4, and construct Specialist ICL examples for
each test example via hold-one-system-out prompting: that
is, for whichever system output we are evaluating, we ex-
clude that system’s ratings from the ICL examples and
prompt with the ratings from the remaining systems. This
simulates the real-world use case of evaluating a new sys-
tem. Moreover, as described in Section 4.2, we enforce the
following constraint when constructing ICL examples for
the Shuffled baseline: The ICL examples for a given test
example cannot include any outputs, whether from the same
or different prompt, produced by the same system as that
which produced the test output. We evaluate both with and
without human stories included, since the HANNA paper
(Chhun et al., 2022) excluded human stories in its meta-
evaluation (as these were considered outliers), while some

follow-up papers, such as Yuan et al. (2023), included them.

As shown in Table 6, the Specialist metric beats the Shuffled
baseline according to both criteria (relevance and average
score) and both meta-evaluation metrics (story-level Pearson
and Spearman correlations). For average score prediction
(excluding human stories), the Specialist metric outperforms
the Shuffled baseline by 26.1% according to Pearson corre-
lation, and by 30.9% according to Spearman correlation.

6. Conclusion
In this work, we have proposed the Specialist method for
development of automatic evaluation metrics which are spe-
cialized to a given test set. We have shown that Special-
ist AutoMQM dramatically outperforms all existing state-
of-the-art span-based MT evaluation metrics, on both the
WMT’23 and WMT’24 test sets. Specialist evaluators are
easy to implement, as they are simply multi-shot prompted
LLMs. Moreover, the Specialist method is task-agnostic,
and an immediate avenue for future work would be to ap-
ply this method to development of metrics for other NLG
tasks. These Specialist metrics could serve as a power-
ful alternative to human judges in evaluating LLM quality
across a wide range of capabilities. Another avenue for
future work is to better understand how to combine ratings
from multiple raters, both for creation of ICL examples
for Specialist metrics, and for creation of more trustworthy
test sets (which are capable of measuring super-human per-
formance). Finally, the Specialist method as framed here
requires human-generated ratings to be used as ICL exam-
ples, but future work could explore whether LLMs are also
capable of generating these ratings.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Implementation Details
Figure 5 shows the AutoMQM prompt template, Table 7 shows an example AutoMQM output, and Figure 6 shows the direct
assessment scoring prompt template.

AutoMQM Prompt Template

You are an annotator for the quality of machine translation. Your task is to
identify errors and assess the quality of the translation.
Based on the source segment and machine translation surrounded with triple
backticks, identify error types in the translation and classify them. The
categories of errors are: accuracy (addition, mistranslation, omission,
untranslated text), fluency (character encoding, grammar, inconsistency,
punctuation, register, spelling), style (awkward), terminology (inappropriate
for context, inconsistent use), non-translation, other, or no-error.
Each error is classified as one of three severities: critical, major, and
minor. Critical errors inhibit comprehension of the text. Major errors disrupt
the flow, but what the text is trying to say is still understandable. Minor
errors are technically errors, but do not disrupt the flow or hinder
comprehension.

Make sure your response is a strict and valid json object that could be parsed
with json.loads() in python.

ICL examples
{source_language} source:
‘‘‘{source}‘‘‘
{target_language} translation:
‘‘‘{translation}‘‘‘
{errors in JSON format}

{source_language} source:
‘‘‘{source}‘‘‘
{target_language} translation:
‘‘‘{translation}‘‘‘
{errors in JSON format}

Test example
{source_language} source:
‘‘‘{source}‘‘‘
{target_language} translation:
‘‘‘{translation}‘‘‘

Figure 5. AutoMQM prompt, with placeholders for {source language}, {source} (for both ICL examples and the test example),
{target language}, {translation} (again, for both ICL examples and the test example), and {errors in JSON format}
(for ICL examples only).
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Source 害得我，从外地驱车200公里赶回来取货！
Hypothesis I’m sorry that we had to drive 200 kilometers from the country to pick up my goods!

Output [{"span": "I’m sorry that", "severity": "minor", "category": "style/unnatural or awkward"},
{"span": "we", "severity": "minor", "category": "accuracy/mistranslation"},
{"span": "the country", "severity": "major", "category": "accuracy/mistranslation"}]

Table 7. Example Specialist AutoMQM output (from the WMT’23 zh→en test set). As per the AutoMQM prompt (Figure 5 in Appendix
A), the output is in JSON format, with fields for error span, severity, and category. The highlighting is added to the hypothesis
for illustrative purposes, to indicate the locations of the predicted major (dark red) and minor (light red) errors.

Direct Assessment Scoring Prompt Template

You are a judge for the quality of machine translation. Based on the
source segment and machine translation surrounded with triple backticks,
your task is to assess the quality of the machine translation on a
continuous scale from 0 to 100. A score of 0 means "No meaning preserved",
then the scale goes through "Some meaning preserved", to "Most meaning
preserved and few grammar mistakes", up to a score of 100, which means
"Perfect meaning and grammar".

ICL examples
{source_language} source:
‘‘‘{source}‘‘‘
{target_language} translation:
‘‘‘{translation}‘‘‘
Score: [[{score}]]

{source_language} source:
‘‘‘{source}‘‘‘
{target_language} translation:
‘‘‘{translation}‘‘‘
Score: [[{score}]]

Test example
{source_language} source:
‘‘‘{source}‘‘‘
{target_language} translation:
‘‘‘{translation}‘‘‘

Figure 6. Direct Assessment prompt, with placeholders for {source language}, {source} (for both ICL examples and the test
example), {target language}, {translation} (again, for both ICL examples and the test example), and {score} (for ICL
examples only).
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B. Supplemental Results
B.1. Additional Figures and Tables

B.1.1. EXPERIMENTAL SETUP

Number of systems WMT’23 WMT’24

en→de 12 17
zh→en 15 N/A
en→es N/A 13
ja→zh N/A 13

Table 8. Number of translation systems for each language pair (WMT’23 and WMT’24)

Avg # ICL examples /
Avg # errors per test example en→de zh→en

No filtering 11.0/34.8 14.0/30.7
Filtered 10.5/27.4 13.3/25.8

Table 9. Average number of ICL examples and average number of total errors in ICL examples, per test example (WMT’23 test set). The
filtered setting removes all translations from ICL examples which are exact matches to the test translation, and removes all individual
errors from ICL examples which exactly match a ground-truth error span in the test translation.

Avg # ICL examples /
Avg # errors per test example en→de en→es ja→zh

No filtering 17.0/22.8 13.0/5.8 13.1/13.3
Filtered 16.0/19.4 12.4/5.6 12.8/12.8

Table 10. Average number of ICL examples and average number of total errors in ICL examples, per test example (WMT’24 test set). The
filtered setting removes all translations from ICL examples which are exact matches to the test translation, and removes all individual
errors from ICL examples which exactly match a ground-truth error span in the test translation.

B.1.2. MAIN RESULTS

en→de zh→en

F1 Precision Recall F1 Precision Recall
Baselines

1a) XCOMET-XXL-QE 32.71 28.66 38.10 34.29 39.70 30.18
1b) GEMBA-MQM-QE 29.80 32.04 27.85 34.17 39.87 29.89
1c) Shuffled sources 31.49 28.34 35.45 37.80∗ 32.79∗ 44.62∗

1d) Fixed, different source 22.85 26.08 20.35 31.27 34.54 28.58
Specialist

2a) Specialist 45.71∗ 45.04∗ 46.40∗ 57.47∗ 54.05∗ 61.36∗

2b) Specialist + Filter 38.32∗ 39.05∗ 37.61∗ 50.72∗ 49.32∗ 52.21∗

Table 11. Specialist AutoMQM results on the WMT’23 test set. See §4.2 for a description of all of the Baseline and Specialist systems,
and see §B.2.1 for a description of the filtered setting. Results for the “Shuffled sources” and “Fixed, different source” baselines are
reported as the average over 10 runs with different random seeds. See Table 12 for the variance across runs. Asterisks (∗) indicate scores
which are statistically significantly better than XCOMET (row 1a), according to a paired permutation test.
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en→de zh→en

F1 Precision Recall F1 Precision Recall

Shuffled sources AVG 31.49 28.34 35.45 37.80 32.79 44.62
Shuffled sources STDEV 0.71 0.62 1.01 0.33 0.33 0.50

Fixed, different source AVG 22.85 26.08 20.35 31.27 34.54 28.58
Fixed, different source STDEV 0.76 0.93 0.97 0.48 0.57 0.67

Table 12. Average (AVG) character-level F1, precision, and recall over 10 runs of the “Shuffled sources” and “Fixed, different source”
baselines with different random seeds. Standard deviation (STDEV) over the 10 runs is also reported.

en→de en→es ja→zh

F1 Precision Recall F1 Precision Recall F1 Precision Recall
Baselines

1a) XCOMET-XXL-QE 24.28 19.63 31.83 10.11 6.02 31.42 14.30 11.80 18.16
1b) Shuffled sources 26.12 19.67 38.84 26.12∗ 19.67∗ 38.84∗ 26.44∗ 32.46∗ 22.30∗

1c) Fixed, different source 18.23 19.82 16.87 14.89 11.09 22.65 26.77∗ 32.25∗ 22.89∗

Specialist

2a) Specialist 43.04∗ 39.16∗ 47.76∗ 26.58∗ 20.05∗ 39.43∗ 37.16∗ 38.06∗ 36.30∗

2b) Specialist + Filter 32.83∗ 31.07∗ 34.79∗ 25.58∗ 19.34∗ 37.79∗ 35.73∗ 36.83∗ 34.69∗

Table 13. Specialist AutoMQM results on the WMT’24 test set. Note that en→es ratings were not collected in a pseudo-SxS fashion (see
§4.3), which explains the smaller performance delta between the Specialist method and the baselines for this language pair. See §4.2 for a
description of all of the Baseline and Specialist systems, and see §B.2.1 for a description of the filtered setting. Asterisks (∗) indicate
scores which are statistically significantly better than XCOMET (row 1a), according to a paired permutation test. Note: The en→es MQM
data was not collected in a pseudo-SxS fashion, so ratings from different raters were presented as ICL examples in the Specialist setup for
this language pair.

B.1.3. ERROR COPYING ABLATIONS

3 ICL Examples 11 ICL Examples Shuffled 11 ICL Examples

1) Total predicted error count 14,539 14,481 10,298 14,481
2) Disjoint error count 9,185 9,127 7,913 12,096
3) Disjoint error count with exact match to ICL example errors 4,142 2,327 6,374 494

Table 14. Pairwise comparison of predicted errors copied from ICL examples, for different AutoMQM systems. The left two columns
show a comparison of the Specialist AutoMQM (Table 1, row 2a) prompted with 3 vs 11 ICL examples, and the right two columns show a
comparison of the latter against the shuffled baseline (Table 1, row 1c). Row 1 shows the total predicted error count over the full WMT’23
en→de test set, row 2 shows the number of errors predicted by the given system which were not predicted by the other system being
compared, and row 3 shows the subset of these errors which are exact matches to errors from all 11 (same-source) ICL examples.

en→de zh→en

F1 Precision Recall F1 Precision Recall

Shuffled sources 31.49 28.34 35.45 37.80 32.79 44.62
Parrot 27.59 25.62 29.88 36.52 34.92 38.27
Specialist AutoMQM 45.71 45.04 46.40 57.47 54.05 61.36

Table 15. “Parrot model” vs Specialist AutoMQM performance (WMT’23 test set). The Parrot has access to the same ICL examples as
Specialist AutoMQM, and makes predictions as follows: For every error present in ICL examples for which there is a matching span in
the test translation, predict this as an error.
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Source 34CM的床垫不是一般的厚，不要床直接睡床垫都可以了。

Test Example Hypothesis A 34CM mattress is not usually thick, so it is not necessary to place the bed directly
on the mattress.

ICL Examples A 34cm mattress is not typically thick, you could even sleep directly on the mattress
without a bed.
The 34CM mattress is not generally thick, and you can sleep directly on the mattress
without a bed.
The 34CM mattress is unusually thick, you can sleep directly on the mattress without
a bed.
34CM mattress is not generally thick, do not sleep directly on the mattress can be.
The 34cm mattress is not usually thick, so you can sleep directly on the mattress
without the bed.
34 cm mattress is not as thick as usual, but the beds can be used directly.
The 34CM mattress is not so thick, you can just sleep on the mattress without the bed.
. . .

Source 吓得我把收藏夹里的其乐都删了。

Test Example Hypothesis I was so scared that I deleted all the games from my favorites.
ICL Example Errors I was so scared that I deleted all the music in my favorites.

I was so scared that I deleted all the fun in my favorites.
I’m afraid I deleted all the music from my collection.
I was in the middle of a conversation.
I am so scared to remove all the items in my collection.
Scared me so much I deleted all my favorites of its music.
. . .

Table 16. Examples of where Specialist AutoMQM predicts errors not present in ICL examples (WMT’23 zh→en test set). Green
highlighting in the Test Example Hypothesis shows where Specialist AutoMQM correctly predicted an error span that was not present in
the ICL examples, while red highlighting indicates a span (correctly) copied from ICL examples. Red highlighting in the ICL Examples
indicates the error spans that were marked by human MQM annotators (and provided to Specialist AutoMQM as demonstrations).

Source 标题上还是顾客,正文中就变成客户了。

ICL Example Hypothesis The title is still a customer, but the text becomes a customer.

Test Example Hypothesis The title still refers to the customer, but in the body of the text, it has changed to client.

Source 让一个身上3处伤口的老人下床开门收快递还要找零钱付费！

ICL Example Hypothesis Let an old man with 3 wounds get out of bed and open the door to receive the courier
and change to pay!

Test Example Hypothesis To get an old man with 3 wounds on his body to get out of bed and open the door to
receive the package, he still has to find change to pay!

Table 17. Examples of where Specialist AutoMQM correctly abstains from copying errors in ICL examples (WMT’23 zh→en test set).
Red highlighting indicates that the span was marked as an error by the human MQM annotators, and green highlighting indicates that the
span was not marked as an error.
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B.1.4. RATER ABLATIONS

en→de zh→en

F1 Precision Recall F1 Precision Recall
Human agreement

1a) Round2 34.91 38.16 32.17 38.68 39.00 38.36
1b) Round3 38.46 40.26 36.82 39.16 40.06 38.29

Specialist

2a) Round1 ICL 45.71 45.04 46.40 57.47 54.05 61.36
2b) Round2 ICL 30.80 30.87 30.74 38.83 36.65 41.30
2c) Round2 | Round3 ICL 30.83 26.65 36.56 38.48 29.91 53.93

Table 18. Specialist AutoMQM performance when prompting and evaluating using different raters (WMT’23 test set). “Round 2 | Round3”
indicates that ratings from these rounds were merged. Results are reported using the official Round1 test set.

Round1 ICL Examples Round2 ICL examples

test set rater id icl rater id F1 icl rater id F1 num examples

rater1 rater1 0.39 rater8 0.30 672
rater2 rater2 0.50 rater6 0.35 540
rater3 rater3 0.45 rater1 0.33 564
rater4 rater4 0.46 rater10 0.33 552
rater5 rater5 0.46 rater7 0.26 588
rater6 rater6 0.51 rater4 0.36 540
rater7 rater7 0.46 rater9 0.29 492
rater8 rater8 0.37 rater2 0.27 528
rater9 rater9 0.48 rater3 0.34 528
rater10 rater10 0.51 rater5 0.26 516

Table 19. Specialist AutoMQM performance on WMT’23 en→de Round1, when prompting using Round1 vs Round2 ICL examples,
broken out by rater split. In each round of WMT’23 ratings, there are a total of 10 en→de raters. The examples in the test set are then
approximately split evenly across all raters (such that all translations of the same source segment are allocated to the same rater). Note
that the variance across raters when using different-rater (Round2) ICL examples is not very high, and using Round1 ICL examples
outperforms Round2 ICL examples for every split

B.2. Additional Ablations

B.2.1. FILTERING ICL EXAMPLES TO REMOVE EXACT-MATCH ERRORS

Here, we isolate the effect on performance of showing Specialist AutoMQM errors in ICL examples which are an exact
match to a ground-truth error in the test translation. In particular, we filter ICL examples to i) remove errors with the same
span (but not necessarily the same category or severity) as ground-truth errors present in the test translation, and ii) entirely
exclude all translations (rather than just removing exact-match errors) in ICL examples which are exact matches to the test
translation.

As expected, filtering the ICL examples by removing all error spans present in the ground truth (“Specialist + Filter” setting,
row 2b in Tables 11 and 13 for WMT’23 and WMT’24, respectively) does incur some degradation in performance relative
to the “Specialist”, but still significantly outperforms all baselines, including the state-of-the-art XCOMET and “Shuffled
source” models. Also note that filtering to remove individual errors from ICL examples in some sense unfairly disadvantages
the model, since this procedure excludes real errors from the demonstrations, and these are, in fact, exactly those errors
which would be correct for the model to predict.

For this filtered Specialist AutoMQM, we computed exact match rates with respect to i) ground truth errors spans in the test
translations and ii) error spans present in ICL examples. The results are shown in Table 20. Observe that, even though the
model was not shown any of the ground truth errors in the provided demonstrations, 17.1% (for en→de) and 23.7% (for
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Exact Match Error % en→de zh→en

1) Ground Truth 17.10 22.70
2) ICL Examples 27.52 26.10
3) ICL Examples
(incl. sub-span + super-span) 65.25 68.79

Table 20. Exact match error rate of Specialist AutoMQM predictions, as a percentage of total predicted errors, with respect to the ground
truth error spans (row 1) and error spans present in ICL examples (row 2). Row 3 shows the match rate when predicted error spans which
are either sub-spans or super-spans of errors present in ICL examples are also counted as matches. Results are presented for “Specialist +
Filter” WMT’23 en→de Specialist AutoMQM (Table 13, row 2b), so the model is not shown demonstrations of any errors with exact
match to the ground truth errors in the test translation.

zh→en) of the errors that it predicts are exact matches to the ground truth, while 26-27% of the errors that it predicts are
exact matches to ICL example errors spans. If predicted error spans which are either sub-spans or super-spans of errors
present in ICL examples are also counted as matches, then the match rate more than doubles, to 65-68%. This suggests that
Specialist AutoMQM is also taking into account the semantics of the errors in the ICL examples, and is able to generalize its
predictions to account for modified versions of these errors present in the test translations.

B.2.2. CAN WE DO BETTER? AUGMENTING SPECIALIST AUTOMQM WITH MORE ICL EXAMPLES

Specialist AutoMQM only uses the same-source ratings from the test set as ICL examples, which limits the number of
ICL examples to num systems - 1. Modern LLMs can handle much longer context than these examples occupy, so in
this ablation, we investigate whether augmenting the same-source ICL examples provided to Specialist AutoMQM with
other ICL examples from the test set can further enhance performance. In particular, for each test set example, we first
provide the ICL examples from the shuffled baseline, then concatenate the ICL examples from Specialist AutoMQM. As
shown in Table 21, augmenting Specialist AutoMQM with additional examples results in a small drop in character-level
F1, due to lower recall (despite a small improvement in precision). Recall that in Figure 3, we also saw that Specialized
AutoMQM performance saturates at around 10 (same-source) ICL examples. This suggests that there is not substantial
headroom to improve AutoMQM’s performance by filling up the LLM’s long context window, either with same-source or
difference-source ICL examples.

en→de zh→en

F1 Precision Recall F1 Precision Recall

Shuffled sources 31.12 27.93 35.13 37.62 32.45 44.74
Specialist AutoMQM 45.71 45.04 46.40 57.47 54.05 61.36
Shuffled Sources + Specialist AutoMQM 44.75 46.17 43.42 57.36 55.79 59.02

Table 21. Comparison of prompting with i) only shuffled sources, ii) only same-source examples, or iii) both. Adding additional ICL
examples gives higher precision at the cost of lower recall.
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