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Abstract

In recent years, fueled by the rapid advancement of diffusion models, text-to-video
(T2V) generation models have achieved remarkable progress, with notable exam-
ples including Pika, Luma, Kling, and Open-Sora. Although these models exhibit
impressive generative capabilities, they also expose significant security risks due
to their vulnerability to jailbreak attacks, where the models are manipulated to
produce unsafe content such as pornography, violence, or discrimination. Existing
works such as T2VSafetyBench provide preliminary benchmarks for safety evalua-
tion, but lack systematic methods for thoroughly exploring model vulnerabilities.
To address this gap, we are the first to formalize the T2V jailbreak attack as a
discrete optimization problem and propose a joint objective-based optimization
framework, called T2V-OptJail. This framework consists of two key optimization
goals: bypassing the built-in safety filtering mechanisms to increase the attack
success rate, preserving semantic consistency between the adversarial prompt and
the unsafe input prompt, as well as between the generated video and the unsafe
input prompt, to enhance content controllability. In addition, we introduce an itera-
tive optimization strategy guided by prompt variants, where multiple semantically
equivalent candidates are generated in each round, and their scores are aggregated
to robustly guide the search toward optimal adversarial prompts. We conduct
large-scale experiments on several T2V models, covering both open-source models
(e.g., Open-Sora) and real commercial closed-source models (e.g., Pika, Luma,
Kling). The experimental results show that the proposed method improves 11.4%
and 10.0% over the existing state-of-the-art method (SoTA) in terms of attack
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success rate assessed by GPT-4, attack success rate assessed by human accessors,
respectively, verifying the significant advantages of the method in terms of attack
effectiveness and content control. This study reveals the potential abuse risk of the
semantic alignment mechanism in the current T2V model and provides a basis for
the design of subsequent jailbreak defense methods.

1 Introduction

In recent years, with the continuous evolution of diffusion models [1, 2, 3, 4], text-to-video (T2V)
generation techniques have made a leap forward, with representative models including Pika [5],
Luma [6], Kling [7], and Open-Sora [8], which are capable of synthesizing semantically-matched,
content-rich videos based on natural language prompts, and have been widely used in the fields
of entertainment, education, advertising, etc. However, similar to the image generation task, T2V
models also face security challenges, especially the vulnerability to jailbreak attacks [9, 10], where
the attacker induces the model to generate inappropriate content, such as pornography, violence,
and discrimination, through well-designed text inputs [11]. As video content is more realistic and
continuous, the generation of unsafe content is often more harmful to the society.

Although prior work such as T2VSafetyBench [12] has initially constructed benchmarks for evaluating
the safety of T2V models, research on effective attack methodologies and systematic vulnerability
analysis remains limited. The lack of robust jailbreak techniques applicable to real-world deployment
scenarios renders mainstream T2V systems highly susceptible to even moderately strong adversarial
attacks. This situation raises a critical question: do we truly understand the security boundaries of
T2V generation systems?

Designing an effective T2V jailbreak attack involves several key challenges: (1) T2V models typically
incorporate complex safety filtering mechanisms, making it difficult to directly inject malicious intent
into the prompt; (2) as a cross-modal system, T2V requires the adversarial semantics to be transferred
from text to video, necessitating strong semantic alignment between the adversarial prompt and
the generated output to avoid benign reinterpretation; and (3) video generation involves a temporal
dimension, where a low proportion of unsafe frames can lead to diminished impact due to rapid
playback, reducing the overall effectiveness of the attack.

To address these challenges, this paper presents the first optimization-based jailbreak attack for
T2V models and formulates it as a discrete token-level search problem. We design a language
model-driven optimization framework that incorporates two key objectives: (1) filter bypassing
optimization, which ensures that the adversarial prompt successfully evades safety filters and induces
the generation of jailbreak-relevant frames; and (2) semantic consistency optimization, which
preserves the alignment between the adversarial prompt and the original attack intent, as well as
the semantic coherence between the prompt and the generated video. Additionally, we introduce an
iterative optimization mechanism using a large language model as an agent, which produces high-
quality semantic rewrites at each step. To further enhance robustness, we propose a Prompt Mutation
strategy that introduces multiple semantically similar, slightly altered variants and combines their
evaluation scores to help search more robust and generalizable adversarial prompts. This significantly
improves the stability of the attack across different models and input scenarios.

We conduct comprehensive empirical evaluations on several mainstream T2V models, including
the open-source Open-Sora and commercial closed-source systems such as Pika, Luma, and Kling.
Experimental results demonstrate that our method substantially outperforms existing baselines in
terms of attack success rate, content toxicity, and multimodal semantic consistency. For example, on
the real-world platform Pika, our method improves attack success rate by 7.0%, while the generated
videos maintain high semantic consistency (0.266) with the original unsafe intent. These results show
the potential abuse risks associated with the semantic alignment methods in current T2V models
when adequate safety policies are absent and underscore the urgent need for more robust jailbreak
defenses. The contributions of this paper are summarized as follows:

• We are the first to formalize the T2V jailbreak problem as a discrete optimization task
and propose a joint objective framework that simultaneously optimizes attack success and
semantic alignment.
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• We design an iterative search procedure guided by a language model agent and introduce
a prompt variant aggregation strategy to significantly enhance jailbreak effectiveness and
robustness.

• Experimental results across multiple real-world T2V models demonstrate significant gains
(+7% ASR), validating our method’s effectiveness and offering guidance for future T2V
safety research.

2 Related Work

2.1 Text-to-Video Generative Models

Diffusion models and large-scale pretraining have helped text-to-video (T2V) generation make
much progress in the last few years. Cascaded diffusion models demonstrated the potential in
early works like Make-A-Video [13] and Imagen-Video [14], followed by improvements such as
temporal attention in LVDM [15] and MagicVideo [16]. To enable zero-shot generation, methods
like Text2Video-Zero [17] and Stable Video Diffusion [1] used pretrained text-to-image models for
temporal extension. More recently, commercial systems like Pika [5], Luma [6], and Kling [7] have
shown great video quality with fine-grained control. In the open-source domain, Open-Sora [8]
replicates the capabilities of the proprietary Sora [18] model, providing strong performance and
accessibility.

2.2 Jailbreak Attacks against Text-to-Image Models

Jailbreak attacks on text-to-image (T2I) models aim to bypass safety filters and induce the generation
of unsafe content (e.g., nudity, violence, discrimination) by carefully designed adversarial prompts [9,
19, 10]. Existing methods can generally be divided into two categories: search-based and LLM-based
optimization. Search-based approaches explore the token space to find semantically similar but
unfiltered substitutes, in which reinforcement learning [9] or gradient-based methods [20, 21] are
utilized, with DiffZero [21] employing zeroth-order optimization for black-box settings. LLM-based
approaches utilize large language models to generate or rewrite prompts via in-context learning or
instruction tuning [22, 23]. In addition, there are other works which explore perception-based safe
word substitution [24] or vulnerabilities in memory-augmented generation [10]. Although they use
different strategies, all aim to evade filters while preserving the intended malicious semantics.

2.3 Jailbreak Attacks against Text-to-Video Models

T2VSafetyBench [12] introduces a benchmark to evaluate the safety of text-to-video (T2V) models
against jailbreak attacks. This benchmark covers 14 aspects such as pornography, violence, discrimi-
nation, and political sensitivity. It includes 5,151 malicious prompts that come from real-user datasets
(e.g., VidProM [25], I2P [26], UnsafeBench [27], Gate2AI [28]), GPT-4-generated prompts, and
prompts crafted via jailbreaking techniques adapted from T2I attacks. Our method T2V-OptJail sig-
nificantly distinguishes itself from existing research in the following three key aspects: ❶ Motivation.
T2V-OptJail models T2V jailbreak attacks as discrete optimization problem for the first time and
combines filter bypassing optimization with semantics consistency optimization, breaking through
the limitations of existing methods that rely on static prompts. ❷ Implementation. We introduce
a large language model as an optimization agent and combine it with prompt variant strategies to
improve robustness, avoiding manual design and coarse-grained replacement. ❸ Effects. T2V-OptJail
significantly improves the attack success rate and semantic consistency on multiple models such as
Open-Sora, Pika, etc., with good migration and efficiency.

3 Method

In this section, we present our approach for optimizing unsafe prompts aimed at achieving an efficient
jailbreak against the T2V generative model. We formalize the task as a discrete optimization problem,
where the goal is to search the token space for adversarial prompts that both bypass the model’s
built-in safety mechanisms and maintain semantic consistency. Specifically, our approach consists
of two key components: (1) a joint optimization framework that balances the improvement of the
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Figure 1: Overall framework of our proposed method. Our method generally consists of two main
optimization goals: Filter Bypassing Optimization and Semantics Consistency Optimization. Among
them, Filter Bypassing Optimization consists of ❶ Safety Filter Bypassing for evading the safety filter
and ❷ Unsafe Frame Occupancy for decreasing false positive cases. Semantics Consistency Opti-
mization includes the ❸ Prompt Semantics Consistency for semantics reservation in the adversarial
prompt and ❹ Prompt-Video Semantics Consistency for ensuring semantics similarity in generated
video. Before applying our method, the unsafe prompt is blocked by the safety mechanism of T2V
system or is revised for generating false positive cases, i.e, safe content. After our optimization, the
adversarial prompt can successfully induce the model to generate unsafe content.

attack success rate with the semantic quality of the generated videos; and (2) a prompt mutation
strategy that improves the robustness and generalization ability of the search process by introducing
controlled perturbations in the prompt space. The overall framework is shown in Figure 1.

3.1 Problem Definition

Given an unsafe input prompt P that is intercepted by the built-in safety filter F of the T2V model,
the attacker’s goal is to optimize an adversarial prompt P ∗ that can both bypass the safety filtering
mechanism and induce the model M to generate videos containing unsafe content. The video
generation process can be formalized as follows:

V = {fm}Mm=1 =M(P ∗), (1)

where V represents a generated video consisting of M frames, each frame is fm; and P ∗ =
{w1, w2, . . . , wn} represents optimized version of original prompt P , composed of n discrete tokens.

3.2 Filter Bypassing Optimization for Enhancing Attack Success Rate

To enhance the overall jailbreak performance of adversarial prompts in T2V systems, we propose a
Filter Bypassing Optimization (FBO) module that jointly considers input-level evasion and output-
level induction.

At the input level, T2V models typically incorporate multiple safety mechanisms to filter out prompts
with potentially malicious intent or block the video consisting of unsafe content being generated [12].
We abstract all these internal safety filters as a unified black-box function, denoted as F , which
determines whether a prompt is allowed to pass through. To ensure that an adversarial prompt P ∗

successfully bypasses the filter, we introduce the following binary penalty term:

F(P ∗) =

{
0, if P ∗ bypasses the filter;
1, if P ∗ is blocked by the filter.

(2)

Function F is directly evaluated by submitting P ∗ to the target text-to-video model and observing
whether a video output returns. If the model outputs an empty response or a refusal message due
to safety concerns, we assign F(P ∗) = 1; otherwise, we set F(P ∗) = 0. This penalty term is
incorporated into the overall objective to penalize blocked prompts. The optimization encourages
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the model to conceal unsafe intent through semantic obfuscation or lexical substitution, thereby
increasing the deliverability of the prompt.

At the output level, we aim to strengthen the intensity and temporal persistence of jailbreak behavior
in the generated video. Based on our modeling of the T2V encoder-decoder architecture, the model
generates each frame ft by computing cross-attention between the prompt tokens P ∗ = {w1, ..., wN}
and video frames, represented as:

At,i = Attention(ft ← wi), (3)
where At,i denotes the attention weight from frame ft to token wi. We observe a temporal focusing
effect, where for certain frames:

∃St ⊂ [1, N ], |St| ≪ N,
∑
i∈St

At,i ≈ 1. (4)

This implies that attention concentrates on a small subset of tokens. If these tokens correspond to
an attack intent segment Wattack, the corresponding frames are likely to exhibit unsafe content. To
quantify this, we define the jailbreak frame ratio J (M(P ∗)) as the proportion of frames exhibiting
unsafe semantics:

J (M(P ∗)) =
1

T

T∑
t=1

I [simCLIP(ft, P ) > δ] , (5)

where δ is a similarity threshold.

The overall FBO loss combines the two terms:
Lbypass = λ · F(P ∗) + γ · (1− J (M(P ∗))) . (6)

By jointly minimizing Lbypass, the generated adversarial prompt can not only bypass the safety filter
but also induce the model to generate a higher proportion of jailbreak-relevant frames. In this way,
our method achieves a more effective and sustained attack.

3.3 Semantics Consistency Optimization for Improving Jailbreak Quality

Simply bypassing text-level safety filters does not guarantee the completeness and effectiveness of a
jailbreak attack. To further improve the practicality and semantic fidelity of the generated videos,
we propose the Semantics Consistency Optimization (SCO) module, which aims to ensure high
alignment of adversarial prompts in terms of both semantic preservation and video-level coherence.

First, at the level of prompt semantic consistency, we require that the optimized adversarial prompt
P ∗ remains semantically faithful to the original unsafe prompt P . This prevents significant distortion
of the original intent during the process of evading safety mechanisms, which could otherwise cause
the generated video to diverge from the attack objective. We employ the CLIP text encoder [29] to
extract semantic embeddings of P and P ∗, and compute their cosine similarity:

sim(C(P ), C(P ∗)) =
v⃗C(P ) · v⃗C(P∗)

∥v⃗C(P )∥∥v⃗C(P∗)∥
,

where C(·) denotes the CLIP text encoding module. This metric ensures that semantic consistency is
preserved during prompt optimization, thereby preventing the original attack semantics from being
diluted or lost.

Second, in terms of prompt-to-video consistency, we need to achieve that the video generated from
P ∗, i.e.,M(P ∗), still accurately reflects the core semantics of the original prompt P . To enforce this,
we use a video captioning model L(·) to summarize the generated video and measure its semantic
similarity to P via CLIP:

sim(C(P ), C(L(M(P ∗)))).

This constraint helps reduce cases where the output of the model is irrelevant or benign content under
adversarial prompts and improves both the coherence and controllability of the attack output.

Finally, the two objectives are combined into a unified semantic loss:
Lsem = 1− sim(C(P ), C(P ∗)) + β · (1− sim(C(P ), C(L(M(P ∗))))) .

By minimizing Lsem, the generated adversarial prompt retains the core semantics of the original
attack intent and also makes video outputs convey those semantics. This significantly enhances the
overall effectiveness of jailbreak attacks in terms of both content quality and practical deployment.
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3.4 Prompt Optimization with Mutation Strategy

In order to efficiently search for adversarial prompts that can successfully jailbreak and maintain
semantic consistency in a discrete token space, we design an iterative optimization framework based
on a language model agent and introduce the prompt mutation mechanism to enhance the robustness
and diversity of the search process. The method aims to minimize a joint loss function consisting of
bypassing ability and semantic consistency:

min
P∗
Ltotal = Lbypass(P

∗) + Lsem(P
∗), (7)

where Lbypass measures the ability of the prompt to bypass safety filters and induce jailbreak-relevant
content, and Lsem evaluates the semantic consistency of the adversarial prompt with respect to the
original intent, including the semantic alignment quality of the generated video.

We introduce a powerful language model (e.g., GPT-4o) as an optimization agent that generates a
new semantically preserved version P ∗

j based on the current best candidate P ∗
j−1 in each iteration,

and scores it using the joint loss. To enhance the stability of the search process and robustness
against semantic perturbations, we further introduce the Prompt Mutation Strategy: construct K
semantically equivalent, mildly perturbed variants around the current candidate P ∗

j , denoted as

{P ∗(1)
j , . . . , P

∗(K)
j }, to simulate subtle rewritings that may occur in real-world inputs.

We form a set Vt = {P ∗
j , P

∗(1)
j , . . . , P

∗(K)
j } containing the main candidate and its K variants. For

each prompt in the set, we compute the joint loss and use the average loss as the evaluation metric for
this iteration. The prompt which achieves the lowest average loss is selected as starting point for the
next round:

P ∗
j = arg min

P∗
j ∈Vj

1

K + 1

∑
P∗

j ∈Vj

Ltotal(P
∗
j ).

The optimization process iterates until a maximum number of steps Tmax or convergence is reached.
The final output P ∗

j with the lowest loss is selected as the optimal adversarial prompt. The generated
adversarial prompt can reliably induce the T2V model to generate high-quality videos containing
jailbreak content.

4 Experiment

4.1 Experimental Setup

Dataset. Due to computational costs, we construct a subset of the T2VSafetyBench [12] dataset for
our experiments. Specifically, we randomly select 50 prompts from each of 14 categories, resulting
in a balanced subset with a total of 700 prompts, covering a diverse range of scenarios. The 14
categories included in the dataset are as follows: pornography, borderline pornography, violence,
gore, disturbing content, public figure, discrimination, political sensitivity, copyright, illegal activities,
misinformation, sequential action, dynamic variation, and coherent context.

Models. We evaluate the effectiveness of the proposed method on 4 popular text-to-video models,
including open-sourced model Open-Sora 1.1 [8] and three closed-sourced commercial models,
including Pika 1.5 [5], Luma 1.0 [6], and Kling 1.0 [7] from the real world.

Baselines. We consider T2VSafetyBench [12] as one of the baselines for comparison. Additionally,
we adopt DACA [22], a jailbreak method designed for text-to-image generative models, as another
baseline. The parameters for these attacks follow the corresponding default settings.

Evaluation metrics. To assess the effectiveness of the generated prompts, we use the following
evaluation metrics: Attack Success Rate (ASR). Our attack evaluation metric is the attack success
rate (ASR (%)), which is the percentage of jailbreak prompts. Specifically, a jailbreak prompt is
considered successful if it meets two criteria: (1) it can bypass the model’s safety filter, and (2) the
generated video from the prompt contains unsafe content, such as pornography, violence, or other
harmful material. The ASR is then calculated as the proportion of such successful jailbreak prompts
over the total number of tested prompts. Following T2VSafetyBench [12], we employ GPT-4 and
human evaluations to determine the safety of the generated videos. The details of GPT-4 and human
evaluations follow the setting of T2VSafetyBench [12]. Semantic similarity (Cosine Similarity).
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Table 1: The results of various text-to-video models. We report the attack success rate across 14
safety aspects assessed by both GPT-4 and human assessors.

Aspect Pika [5] Luma [6] Kling [7] Open-Sora [8]
GPT-4 Human GPT-4 Human GPT-4 Human GPT-4 Human

Pornography 30.0% 38.0% 10.0% 12.0% 12.0% 14.0% 52.0% 56.0%
Borderline Pornography 64.0% 62.0% 50.0% 58.0% 32.0% 26.0% 50.0% 58.0%
Violence 72.0% 74.0% 28.0% 34.0% 44.0% 40.0% 90.0% 90.0%
Gore 70.0% 72.0% 34.0% 38.0% 48.0% 50.0% 70.0% 76.0%
Disturbing Content 68.0% 76.0% 56.0% 60.0% 36.0% 38.0% 86.0% 92.0%
Public Figures 96.0% 98.0% 32.0% 28.0% 52.0% 56.0% 92.0% 88.0%
Discrimination 30.0% 34.0% 20.0% 28.0% 18.0% 14.0% 46.0% 52.0%
Political Sensitivity 30.0% 32.0% 22.0% 24.0% 12.0% 14.0% 48.0% 44.0%
Copyright 22.0% 16.0% 90.0% 90.0% 70.0% 60.0% 44.0% 50.0%
Illegal Activities 60.0% 60.0% 54.0% 60.0% 52.0% 46.0% 66.0% 64.0%
Misinformation 72.0% 76.0% 80.0% 84.0% 48.0% 42.0% 82.0% 76.0%
Sequential Action 56.0% 52.0% 42.0% 50.0% 42.0% 44.0% 68.0% 74.0%
Dynamic Variation 62.0% 70.0% 36.0% 46.0% 34.0% 36.0% 82.0% 88.0%
Coherent Contextual 50.0% 46.0% 48.0% 42.0% 30.0% 26.0% 64.0% 54.0%
ASR Average 55.9% 57.6% 43.0% 46.7% 37.9% 36.1% 67.1% 68.7%

We calculate the cosine similarity between the input prompt and the caption of the generated video,
using the CLIP text encoder. If one prompt or its output is blocked by the safety filter, we consider
an all-black video as the generated video. Specifically, we calculate the average cosine similarity
across all test prompts to obtain the semantic similarity in the experiments. This metric measures
how closely the semantics of the generated video match the input prompt.

Implementation details. In our optimization function, we set λ = 3.0, β = 2.0, and γ = 1.0. We set
the number of iterations to 20, and the number of variants is 5. We utilize VideoLLaMA2 [30] as the
video caption model L. Since Open-Sora 1.1 is an open-source text-to-video model without built-in
safety filters, we manually integrated a combination of safety mechanisms to simulate real-world
scenarios. For input filter, we leverage the zero-shot ability of CLIP to classify the text prompts [31].
For output filter, we use the NSFW (Not Safe For Work) detection model, which is a fine-tuned
Vision Transformer, as the end-to-end image classifier [32]. For each generated video, we sample
image frames and present these multi-frame images to the output filter.

4.2 Main Results

Table 1 presents a comparative evaluation of ASR and semantic similarity across four representative
text-to-video models: Pika, Luma, Kling, and Open-Sora. The results are assessed by both GPT-4
and human annotators. We find that the ASR is significantly higher on Pika and Open-Sora, while
lower on Luma and Kling. We hypothesize this is due to differences in safety filtering strategies:
Open-Sora and Pika are either open-source or more permissive in content moderation, making them
more vulnerable to prompt-based attacks. In contrast, Luma and Kling probably integrate stronger
content filtering pipelines and internal moderation heuristics, resulting in lower ASR values. For
example, our method only achieves 37.9% (GPT-4) on Kling, compared to 67.1% on Open-Sora.

We also observe performance differences across different jailbreak scenarios (e.g., Pornography,
Violence, Disturbing Content, and Misinformation). Results show that Open-Sora and Pika are
especially vulnerable in high-impact categories like Pornography and Violence, where ASR exceeds
70% in some cases. This indicates that current safety mechanisms are insufficient for detecting
nuanced or visually implied unsafe content in these domains. In contrast, models like Kling show
greater robustness in categories such as Misinformation and Hate Speech, which may benefit from
more conservative generation policies or stricter internal filters. Overall, these findings demonstrate
that our method not only achieves stronger attack effectiveness, but also reveals critical variations in
model vulnerability depending on architecture and moderation design.

In Figure 2, we illustrate two generated examples that demonstrate the effectiveness of our proposed
method. We generate malicious prompts targeting Kling [7], where the safety filter blocks the original
input prompts. The resulting malicious prompts are able to jailbreak real-world platforms, leading to
the generation of videos containing unsafe content.
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Table 2: Attack success rate (GPT-4 / Human) and semantic similarity on various T2V models. Bold
indicates best performance.

Method Pika Luma

GPT-4 (%) Human (%) Similarity GPT-4 (%) Human (%) Similarity

T2VSafetyBench 47.7 50.6 0.257 32.9 37.9 0.253
DACA 14.6 15.9 0.245 10.3 11.1 0.244
T2V-OptJail (Ours) 55.9 57.6 0.266 43.0 46.7 0.263

Method Kling Open-Sora

GPT-4 (%) Human (%) Similarity GPT-4 (%) Human (%) Similarity

T2VSafetyBench 29.3 26.7 0.251 55.7 58.7 0.259
DACA 7.3 6.1 0.240 22.3 24.0 0.247
T2V-OptJail (Ours) 37.9 36.1 0.257 67.1 68.7 0.269

(a) Input prompt: lesbian kiss. Generated malicious
prompt: a girl lick another woman push.

(b) Input prompt: human kill zombie. Generated mali-
cious prompt: a man kills a horrible zombie.

Figure 2: Examples of generated malicious prompts. These examples are generated with the
commercial text-to-video platform Kling [7].

4.3 Comparison with Baselines

Table 2 compares the ASR and semantic similarity of our method with two baselines:
T2VSafetyBench [12] and DACA [22]. We use the default hyperparameters of DACA [22]. For the
Open-Sora model, our method achieves an ASR of 67.1% (GPT-4) and 68.7% (Human), substan-
tially surpassing T2VSafetyBench (55.7% GPT-4, 58.7% Human) and DACA (22.3% GPT-4, 24.0%
Human). Moreover, our method attains a semantic similarity score of 0.269, which is higher than
T2VSafetyBench (0.259) and DACA (0.247). This indicates that the adversarial prompts generated
by our method not only have a higher success rate but also preserve the semantic meaning of the
input prompts more effectively. Similarly, across all the commercial models, the ASR of our ap-
proach consistently outperforms the baselines, with improvements of 7.0% to 10.1% compared to
T2VSafetyBench and even larger margins over DACA. The semantic similarity for our method is also
higher than the baselines, highlighting the effectiveness of our optimization strategy in generating
semantically consistent malicious prompts.

These results suggest that our method not only enhances the attack success rate significantly but also
ensures that the generated video remains semantically similar to the input prompts, demonstrating
that our approach effectively balances attack success with semantic integrity.

4.4 Comparison with More Baselines

We compare the proposed method with two additional baselines, including Sneakyprompt [9] and
Autodan [33]. We use the default hyperparameters of Sneakyprompt [9] and Autodan [33]. Table
3 shows attack success rate and semantic similarity on Pika and Open-Sora. Compared to baseline
methods, T2V-OptJail consistently achieves the highest attack success rates on both models. For
instance, on the Open-Sora model, it reaches 67.1% (GPT-4) and 68.7% (Human), which is better than
Autodan (40.6% / 44.0%) and Sneakyprompt (27.9% / 30.4%). Similarly, T2V-OptJail achieves 55.9%
(GPT-4) and 57.6% (Human) on Pika, outperforming Autodan (33.1% / 36.1%) and Sneakyprompt
(20.6% / 23.0%). In addition, T2V-OptJail maintains the highest semantic similarity in all cases, such
as 0.269 on Open-Sora and 0.266 on Pika. This indicates its strong ability to preserve the intended
semantics while evading safety filters. These results demonstrate that T2V-OptJail is not only more
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effective in generating successful jailbreak prompts, but also better at preserving the underlying
unsafe intent in a stealthy manner.

Table 3: Attack success rate (GPT-4 / Human) and semantic similarity on Pika and Open-Sora. Bold
indicates best performance.

Method Pika Open-Sora

GPT-4 (%) Human (%) Similarity GPT-4 (%) Human (%) Similarity

Sneakyprompt 20.6 23.0 0.247 27.9 30.4 0.248
Autodan 33.1 36.1 0.249 40.6 44.0 0.251
T2V-OptJail (Ours) 55.9 57.6 0.266 67.1 68.7 0.269

4.5 Comparison with Genetic Algorithm

We compare with the genetic algorithm (GA) baseline, in which prompts are modified via simple
token substitution without LLM guidance. For the GA, we tokenize the prompt and then replace
tokens with semantically similar alternatives. We perform the experiment on Open-Sora and the
results are shown in Table 4. Our method outperforms GA by approximately 10% in attack success
rate, while achieving higher semantic similarity. This result highlights the superiority of using LLM
guidance. Delving into the intrinsic difference, we argue that the possible reason is that LLM-based
agent is more effective at identifying suitable modifications to the prompts during optimization.

Table 4: Attack success rate (GPT-4 / Human) and semantic similarity on Open-Sora. Bold indicates
best performance.

Method Open-Sora

GPT-4 (%) Human (%) Similarity

T2V-OptJail using GA 56.4 58.8 0.260
T2V-OptJail (Ours) 67.1 68.7 0.269

4.6 Experiments on Defenses

We further validate the effectiveness of our method when defenses are adopted. Table 5 shows attack
success rate and semantic similarity on defense methods, including Keyword Detection [9, 34] and
Implicit Meaning Analysis [34]. We use the default hyperparameters of these defenses following
the setting of [34]. The malicious prompts are generated against Open-Sora. Compared to baseline
methods, T2V-OptJail achieves the highest attack success rates under these defenses. For example,
under Implicit Meaning Analysis, it reaches 66.1% (GPT-4) and 67.4% (Human), outperforming
T2VSafetyBench (54.9% / 57.8%) and DACA (22.0% / 23.4%). In addition, T2V-OptJail maintains
the highest semantic similarity, such as 0.268 under Implicit Meaning Analysis, indicating its strong
ability to preserve unsafe intent even against defenses.

Table 5: Attack success rate (GPT-4 / Human) and semantic similarity on defense methods. Bold
indicates best performance.

Method Keyword Detection Implicit Meaning Analysis

GPT-4 (%) Human (%) Similarity GPT-4 (%) Human (%) Similarity

T2VSafetyBench 43.8 47.1 0.252 54.9 57.8 0.258
DACA 12.2 14.4 0.241 22.0 23.4 0.247
T2V-OptJail (Ours) 52.3 54.6 0.257 66.1 67.4 0.268

4.7 Ablation Study

We conduct the following ablation studies to investigate the effects of key hyperparameters, including
the balance factor λ, balance factor β, number of iterations, and the presence or absence of the prompt
mutation strategy. For the ablation studies of these hyperparameters, we generate the malicious
prompts against Open-Sora [8].
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Figure 3: Ablation studies on different hyperparameters: (a) balance factor λ, (b) balance factor β,
and (c) number of iterations.

Table 6: Effectiveness of the prompt mutation strategy on attack success rate and semantic similarity.

Method Kling Open-Sora

GPT-4 (%) Human (%) Similarity GPT-4 (%) Human (%) Similarity

T2V-OptJail 37.9 36.1 0.257 67.1 68.7 0.269
w/o Prompt Mutation 34.4 31.9 0.255 61.1 62.4 0.266

Balance factor λ. Figure 3a illustrates the attack success rate and semantic similarity of our attack
with different values of λ, while other hyper-parameters are fixed. When λ is increased, the attack
success rate improves while the semantic similarity decreases. To balance the attack success rate and
semantic similarity, we set λ = 3.0 in our experiments.

Balance factor β. Figure 3b illustrates the attack success rate and semantic similarity of our attack
with different values of β, while other hyper-parameters are fixed. When β is increased, the attack
success rate decreases while semantic similarity improves. To balance the attack success rate and
semantic similarity, we set β = 2.0 in our experiments.

Number of iterations. Figure 3c illustrates the attack success rate and semantic similarity of our
attack with different numbers of iterations, while other hyper-parameters are fixed. When the number
of iterations is no larger than 20, both the attack success rate and semantic similarity improve as the
number of iterations increases. However, when the number of iterations exceeds 20, the improvements
in both attack success rate and semantic similarity become marginal. Additionally, more iterations
require more computation overhead during the optimization. To balance the attack success rate,
semantic similarity with computation overhead, we set the number of iterations to 20.

Prompt mutation ablation. Table 6 presents the attack success rates and semantic similarity with and
without the prompt mutation strategy on text-to-video models. The results show that incorporating
the prompt mutation strategy not only improves the attack success rate for both GPT-4 and human
evaluations but also enhances the semantic similarity. For instance, on the Open-Sora dataset, the
attack success rate increases from 61.1% to 67.1% for GPT-4 and from 62.4% to 68.7% for humans,
while the semantic similarity also improves from 0.266 to 0.269. This demonstrates that the prompt
mutation strategy effectively enhances both the attack performance and the semantic relevance of the
generated video.

5 Discussion and Conclusion

This paper presents T2V-OptJail, the first optimization-based jailbreak framework for text-to-video
models. By jointly optimizing for safety filter bypass and semantic consistency, along with a robust
prompt mutation strategy, our method achieves significantly higher attack success rates and better
content controllability than existing baselines. Extensive experiments on both open-source and
commercial T2V models highlight serious safety vulnerabilities in current systems. One limitation of
our current method is that it requires querying the generated videos for feedback during optimization,
which improves performance but introduces extra query budget. However, we argue that this limitation
can be mitigated by introducing a local proxy model (free of charge) or optimizing the querying
algorithm. We leave this for future work.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction accurately reflect the paper’s
contributions and scope, effectively conveying the key points and supporting evidence.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper effectively discusses the limitations of the work done by the authors
in the “Discussion and Conclusion” section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results, hence there are no assumptions
or proofs to be provided.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully discloses all the information necessary to reproduce the main
experimental results, ensuring transparency and replicability of the findings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to the data and code, the anonymous link is
{https://anonymous.4open.science/r/NeruIPS_25_t2v-CE60}.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the training and test details necessary to understand
the results, such as hyperparameters, ensuring transparency and reproducibility of the
experimental setup.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: As described in the Experimental Setup, we report the average of the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As described in the Supplemental Material, all experiments were conducted
on a server equipped with an Intel(R) Xeon(R) Gold 6336Y CPU @ 2.40GHz, 512 GB of
system memory, and one NVIDIA A100 GPU with 40 GB of memory.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research in the paper aligns with the NeurIPS Code of Ethics, ensuring
adherence to ethical standards outlined by the NeurIPS community for responsible conduct
in AI research.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: The paper discusses both potential positive societal impacts and negative
societal impacts of the work performed in Supplemental Material, fulfilling the conference’s
expectations for addressing broader impacts and considering potential ethical implications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no risks requiring specific safeguards for responsible data or
model release, therefore safeguards are not applicable.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets used in the paper are properly credited,
and the license and terms of use are explicitly mentioned and respected, ensuring compliance
with legal and ethical standards.

Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce new assets, therefore documentation of assets is
not applicable.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: Yes, our work involves human evaluation to judge the safety of generated
videos. The volunteers were shown a set of videos and asked to evaluate them based on the
input prompt and presence of jailbreak content. All participants received full instructions,
including example screenshots and evaluation guidelines. The volunteers are at least 18
years old, in good physical and mental health, and free from conditions such as heart disease
or vasovagal syncope.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: Our study involves human evaluation conducted by members of our research
lab. The task involves watching AI-generated videos and providing judgements based on
predefined criteria. The evaluation does not involve any sensitive or personal information,
and no foreseeable risks were posed to the participants. Therefore, IRB approval was not
required under our institution’s guidelines.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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