
Dynamic Stashing Quantization for Efficient Transformer Training
Guo Yang

University of Cambridge
Cambridge, UK

gy261@cam.ac.uk

Daniel Lo
Microsoft Research

Redmond, Washington, USA
dlo@microsoft.com

Robert D. Mullins
University of Cambridge

Cambridge, UK
robert.mullins@cl.cam.ac.uk

Yiren Zhao
Imperial College London

London, UK
a.zhao@imperial.ac.uk

Abstract
Large Language Models (LLMs) have demon-
strated impressive performance on a range of
Natural Language Processing (NLP) tasks. Un-
fortunately, the immense amount of computa-
tions and memory accesses required for LLM
training makes them prohibitively expensive in
terms of hardware cost, and thus challenging to
deploy in use cases such as on-device learning.

In this paper, motivated by the observation that
LLM training is memory-bound, we propose
a novel dynamic quantization strategy, termed
Dynamic Stashing Quantization (DSQ), that
puts a special focus on reducing the mem-
ory operations, but also enjoys the other ben-
efits of low precision training, such as the re-
duced arithmetic cost. We conduct a thorough
study on two translation tasks (trained-from-
scratch) and three classification tasks (fine-
tuning). DSQ reduces the amount of arith-
metic operations by 20.95× and the number
of DRAM operations by 2.55× on IWSLT17
compared to the standard 16-bit fixed-point.

1 Introduction

Large Language Models (LLMs) based on the
Transformer architectures (Vaswani et al., 2017)
are currently seen as the foundation models (Bom-
masani et al., 2021). The pre-train and then fine-
tune paradigm has shown promising results for
a variety of Natural Language Processing (NLP)
tasks (Liu et al., 2019; Raffel et al., 2020; Brown
et al., 2020). However, the training of LLM is both
computationally and memory intensive, posing a
significant challenge for their deployment.

In the hardware world, the Roofline model
demonstrates that there is an optimal balance of
processor and memory performance. The metric
used to assess performance is referred to as the op-
erational intensity, which is calculated as the ratio
of arithmetic intensity to memory bandwidth:

Hea
vy

Qua
nti

za
tio

n

Attainable
Performance

P

I
Operational

Intensity

Maximum 
Attainable

Performance

π

β
Maximum 
Memory

Bandwidths

Iopt 
Optimal 

Operational
Intensity

Memory Bound Compute Bound

FLOP/s

FLOP/Byte

1

2

3

Figure 1: The Roofline model with operational intensity
(I) and attainable performance (P ). 1 is non-quantized,
2 is a standard quantization and 3 is DSQ.

Operational Intensity =
Number of Operations

DRAM traffic

The Roofline model has enabled us to identify
the sweet spot (Iopt) for a processor to reach its
peak arithmetic performance (Williams et al., 2009;
Ding et al., 2022). As illustrated in Figure 1, as
operational intensity (I) increases, the maximum
attainable performance rises at a linear rate initially
before reaching a constant value. The region to the
left of the turning point is limited by the available
memory bandwidth; the region to the right is con-
strained by the processor’s arithmetic computing
capability. Training Transformer models, as shown
by Ivanov et al. (2021), is memory-bound, which
means it sits at the left quadrant in the Roofline
model (I < Iopt). Consequently, the performance
of LLM training on modern hardware is signifi-
cantly hindered by the inadequate bandwidth, as
the amount of data movements to and from DRAM
is the major performance bottleneck.

For this reason, researchers have sought to accel-
erate the training process of Transformers through



quantization. This approach aims to reduce mem-
ory consumption by decreasing the precision of
parameters. Prior work has looked into the effect
of quantization on Transformer models, a majority
of which focus on the forward pass of model infer-
ence with fixed weights (Zhang et al., 2020; Bai
et al., 2020; Tao et al., 2022). A number of studies
have also investigated low-precision training for
Transformers (Sun et al., 2019, 2020). Although
works have demonstrated the effectiveness of quan-
tization, they typically assume a single precision
level, either per neural network layer or per net-
work, which over-simplifies the hardware target.
When viewed from a Roofline model perspective,
existing quantization methods attempt to optimize
both compute complexity and memory bandwidth
requirement, and then fail to recognize that the
workload is heavily memory-bound.

Motivated by this observation, we propose
a novel quantization strategy for LLM training
named Dynamic Stashing Quantization (DSQ). We
identify the most memory-intensive part of LLM
training – the communication between the forward
and backward passes, and define stashing as the
process of storing intermediate results in a memory
buffer (in a normal case, DRAM) for later use. The
proposed quantization places an emphasis on this
communication, and dynamically quantize the in-
termediate results between forward and backward
passes for a significant reduction of the DRAM
traffic. As illustrated in Figure 1, this reduction
of DRAM bandwidth helps DSQ to move closer
to the optimal operational intensity. We have the
following contributions:

• We propose Dynamic Stashing Quantization
(DSQ) for LLM training. DSQ not only quan-
tizes operations for the entire training process,
but also employs a more aggressive quanti-
zation for intermediate results between the
forward and backward passes to drastically
minimize DRAM traffic.

• DSQ follows a time-adaptive principle for
stashing, which involves starting with lower
precision at the beginning of the training pro-
cess and gradually increasing the precision as
it progresses. DSQ has been demonstrated to
provide a higher performance compared to its
fixed-precision counterpart.

• We evaluate the proposed strategy on a variety
of tasks and setups, including training from
scratch and fine-tuning. DSQ achieves up to a

2.55× increase in arithmetic performance and
a 20.95× reduction in DRAM requirement
compared to 16-bit fixed-point training.

2 Related Work

Quantization has been studied in detail for infer-
ence. These include using uniform (Zafrir et al.,
2019; Bhandare et al., 2019) and non-uniform (Sun
et al., 2019; Darvish Rouhani et al., 2020) quanti-
zation methods. Specifically, uniform quantization
methods such as fixed-point (Zafrir et al., 2019;
Bhandare et al., 2019; Lin et al., 2020), ternary
(Zhang et al., 2020), or even binary (Bai et al.,
2020) number formats have been applied to infer-
ence of Transformer models. In this work, we
focus on quantization for LLM training which in-
troduces new challenges such as the large dynamic
range needed during the backward pass for loss-
less training (Sun et al., 2019) where non-uniform
quantization methods have seen more success.

Training LLM models is approximately 3× more
expensive than running inference for the same
model. Thus, quantizing all operations during train-
ing has been an area of active research (Sun et al.,
2019, 2020; Yang et al., 2019; Fu et al., 2020; Fox
et al., 2020; Kalamkar et al., 2019). Most of these
methods use non-uniform quantization to handle
larger dynamic range needed for gradient updates
(Kalamkar et al., 2019). Floating-point arithmetic
and its variants have become a popular method
for low-precision training (e.g. fewer than 8 bits).
Mini-floats with extremely small exponents (e.g. 1
bit or 2 bits) have been demonstrated to be effec-
tive in small language models, such as LSTMs (Sun
et al., 2019, 2020). Block floating-point or block
mini-floats, where an exponent is shared between
a set of values, has become popular in quantized
training (Yang et al., 2019; Drumond et al., 2018;
Fox et al., 2020) as it allows for a large dynamic
range while approximating the cost of integer for-
mats for multiplication. Specifically, Draumond
et al. utilized block floating-point with roughly 24
bits to perform lossless training on vision tasks
(Drumond et al., 2018). Fox et al. demonstrated
that 8-bit training is possible with an around 0.5
BLEU score degradation on machine translation
(Fox et al., 2020). Our work extends these formats
to Large Language Models, includes quantization
of stashed weights, and introduces a dynamic as-
pect to further reduce the required bit widths. The
idea of stashing has also been explored before by



Jain et al. (2018), although they only focused on
applying lossless encoding methods on single pre-
cision numbers (Float16). However, in this paper
we show a more aggressive stashing techniques
(e.g. on average less than 4 bits per number) that
is time-adaptive for LLM training. Fractrain (Fu
et al., 2020), to our knowledge, is the only work
that applied the idea of dynamic quantization on
standard training, but was primarily focusing on vi-
sion tasks. Our work extends dynamic quantization
to encompass stashed values and evaluates these ef-
fects on LLMs. Prior research on distributed train-
ing has looked at reducing the communication cost
(Alistarh et al., 2017; Hönig et al., 2022), where
Honig et al. also investigate how a time-adaptive
quantization would help federated systems to learn.
These works focused on device-to-device traffic
while our work focuses on reducing DRAM traffic.

3 Method

Figure 2 provides a high-level illustration of the
DSQ flow. We consider the inputs xl of a neural
network layer with parameters wl, and the output
of the layer is xl+1. In the backward pass, we con-
sider the partial derivatives dxl of the input and
also the gradient of the weights dwl. Naturally, a
single training step requires three GEMMs as illus-
trated in Figure 2. We illustrate four quantization
opportunities in this training step and their effects:

• q0: mainly affects the arithmetic density of
forward pass, notice it is possible for xl and
wl to use different precisions, but this opti-
mization is not the focus of our work.

• q1: affects the DRAM memory bandwidth,
one key point in our work is that we show q1
can be different from q0 and in fact can be a
very aggressive, dynamic quantization.

• q2: affects mainly the computation complexity
of the first GEMM in the backward pass.

• q3: affects the DRAM bandwidth and also
the computation complexity of the second
GEMM in the backward pass.

In our knowledge, we are the first to systemati-
cally illustrate the potential effects, both on com-
pute and off-chip memory bandwidth, of various
quantization opportunities within a standard train-
ing pass. The two GEMMs in the backward pass
can be potentially fused (e.g. pipelined), and in that
case dxl does not have to be written to and then
read from the DRAM. In our cost model estima-
tion, we use a conservative strategy and assume

this tensor is always flushed to DRAM. In DSQ,
we use Block Floating Point as the quantizer for q0,
q1, q2 and q3, since this quantizer is shown supe-
rior to fixed-point quantization (Darvish Rouhani
et al., 2020). We also use a time-adaptive quanti-
zation strategy, this means the quantization uses
a different quantization level qti for each round t
of the training. We design DSQ to monotonically
increase qti as a function of t and use the valida-
tion loss to inform this increase. This monotonic
increase strategy has been proven more effective
than other complex scheduling methods in Hönig
et al. (2022). Through extensive tuning and ex-
perimentation, we also notice that it is important
to keep q3 ≥ 16 through the entire training pro-
cess, and Appendix C studies the effect of different
quantization levels for q3.

4 Evaluation

We evaluate the effectiveness of DSQ on two dif-
ferent translation tasks, WMT14 EN-DE (Bojar
et al., 2014) (in Appendix D) and IWSLT17 EN-
DE (Cettolo et al., 2017), and two tasks from the
GLUE benchmark (Wang et al., 2018), the details
of these datasets are in Appendix A. We used the
Adam optimizer and the details for all the learning
rate and batch size selections are in Appendix B.
For the translation tasks, we use a classic 6-layer
transformer model (Vaswani et al., 2017) and the
RoBERTa-base model (Liu et al., 2019) for the
GLUE tasks. All tasks are executed on systems
that have 2 AMD EPYC 7763 64-Core Processors
1.8GHz (128 cores in total), and 4 NVIDIA A100-
SXM-80GB GPUs, with 1000 GiB RAM. We are
interested in understanding the costs of arithmetic
operations, as well as the number of memory reads
and writes. To this end, we have built a hardware
performance modeling framework to estimate the
training cost. Our cost model is similar to Sun et al.
(2020) and Samajdar et al. (2018), but our numbers
are derived from a production hardware system,
taking the numbers reported in Darvish Rouhani
et al. (2020), to provide a higher-fidelity estimation.

Table 1 presents the results of our study com-
paring different quantization strategies. We com-
pare popular low-latency training baselines and
Block floating-point (BFP) (Darvish Rouhani et al.,
2020; Fox et al., 2020) with different precisions.
For all BFP implementations considered in this
paper, we keep the exponent bitwidth to be 8
and the bounding-box size to be 16 following



GEMM GEMM GEMM

DRAM DRAM

Forward Pass Backward Pass
DRAM Reads and Writes

GEMM: General Matrix Multiply

Figure 2: An illustration of the DSQ flow for a single linear layer. The training is viewed as a combination of a
forward pass and a backward pass. q0, q1, q2 and q3 define where the tensors are quantized, we use [q0, q1, q2, q3] to
describe the DSQ configuration. DSQ ensures all GEMM inputs are quantized. Notice for the second and third
GEMMs, dxl+1, xl and dxl are the quantized version fetched from the DRAM, the fact that these values are heavily
quantized helps us to save DRAM bandwidth.

Table 1: The performance of Machine Translation trained with a 6-layer Transformer architecture, the model is
assessed using numbers reported as percentages. ∆ shows the performance difference compared to the floating-point
32-bit baseline.

Dataset and Model Method Precision Setup Acc / BLEU (∆) Arith Ops (↓) DRAM R/W (↓)

IWSLT2017 DE-EN
Transformer (6-layer)

Floating-point [32, 32, 32, 32] 35.22 - -
Fixed-point [32, 32, 32, 32] 34.47 (−0.75) 1.00× 1.00×
Fixed-point [16, 16, 16, 16] 32.59 (−2.63) 0.25× 0.50×
Block FP [32, 32, 32, 32] 34.56 (−0.66) 0.56× 1.13×
Block FP [16, 16, 16, 16] 34.30 (−0.92) 0.18× 0.63×
Stashing (Fixed) [16, 4, 4, 16] 25.50 (−9.72) 0.13× 0.31×
Stashing (BFP) [16, 4, 4, 16] 34.78 (−0.44) 0.10× 0.45×
DSQ (BFP) − 34.81 (−0.41) 0.012× 0.20×

GLUE MNLI
RoBERTa-base

Floating-point [32, 32, 32, 32] 87.6 - -
Fixed-point [32, 32, 32, 32] 87.9 (+0.3) 1.00× 1.00×
Fixed-point [16, 16, 16, 16] 87.9 (+0.3) 0.25× 0.50×
Block FP [32, 32, 32, 32] 87.8 (+0.2) 0.56× 1.13×
Block FP [16, 16, 16, 16] 87.8 (+0.2) 0.18× 0.63×
Stashing (Fixed) [16, 4, 4, 16] 82.8 (−4.8) 0.13× 0.32×
Stashing (BFP) [16, 4, 4, 16] 87.8 (+0.2) 0.10× 0.45×
DSQ (BFP) − 87.8 (+0.2) 0.043× 0.26×

GLUE QNLI
RoBERTa-base

Floating-point [32, 32, 32, 32] 92.8 - -
Fixed-point [32, 32, 32, 32] 92.6 (−0.2) 1.00× 1.00×
Fixed-point [16, 16, 16, 16] 92.6 (−0.2) 0.25× 0.50×
Block FP [32, 32, 32, 32] 92.7 (−0.1) 0.56× 1.13×
Block FP [16, 16, 16, 16] 92.5 (−0.3) 0.18× 0.63×
Stashing (Fixed) [16, 4, 4, 16] 89.5 (−3.3) 0.13× 0.32×
Stashing (BFP) [16, 4, 4, 16] 92.6 (−0.2) 0.10× 0.45×
DSQ (BFP) − 92.7 (−0.1) 0.043× 0.26×

Darvish Rouhani et al. (2020). In addition, we
compare static stashing strategies that are based on
either fixed-point (Fixed) or BFP. In Table 1, we use
the hardware cost of fixed-point 32-bit computation
as 1× since this is a stronger baseline. The results
demonstrate that DSQ has a comparable accuracy
and BLEU score compared to 16-bit fixed-point for
training while having a 20.95× reduction in arith-
metic complexity and a 2.55× decrease in DRAM
R/W. DSQ also shows very competitive accuracy
on fine-tuning RoBERta on GLUE while having a
much smaller hardware utilization.

5 Conclusion
In this paper, we propose Dynamic Stashing Quanti-
zation (DSQ) for LLM training. This new quantiza-
tion strategy applies a more aggressive quantization
for intermediate results between the forward and
backward passes generated during training, thereby
reducing DRAM traffic. Specifically, our approach
uses a low precision at the beginning of training,
and then gradually increases the precision level, to
reduce the effect of round-off errors introduced by
quantization. We demonstrate the effectiveness of
DSQ by showing how it can reduce both the com-
putation cost and DRAM bandwidth requirement
on machine translation and LLM fine-tuning tasks.



6 Limitation

• DSQ precision configurations are decided
through experimentation on the IWSLT
dataset. The precision for different stages is
scheduled based on the validation loss value,
the precision would increase if the validation
loss becomes ‘flat’ (non-decreasing). In our
particular method, if our validation loss has
been non-decreasing for a fixed number of N
epochs, we then move to the next quantiza-
tion level, following a setup similar to that
proposed by Hönig et al. (2022). We find that
setting N = 5 is sufficient for all test sce-
narios. The choice of this free parameter is a
limitation in our paper and will be investigated
in further research. The same precision con-
figuration setup is used for all other datasets.

• Language models that are larger than classic
Transformer and RoBERTa have been devel-
oped in recent works. Due to limited resouces
we have, we choose to work on smaller mod-
els as an exemplar. While we have tested on
larger LMs like OPT-1.3B (in Appendix E)
to show large LLMs today are also memory-
bound, additional experimentation is expected
to be conducted to enhance the robustness and
precision of our findings.

References
Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka,

and Milan Vojnovic. 2017. Qsgd: Communication-
efficient sgd via gradient quantization and encoding.
Advances in neural information processing systems,
30.

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing
Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin
King. 2020. Binarybert: Pushing the limit of bert
quantization. arXiv preprint arXiv:2012.15701.

Aishwarya Bhandare, Vamsi Sripathi, Deepthi Karkada,
Vivek Menon, Sun Choi, Kushal Datta, and Vikram
Saletore. 2019. Efficient 8-bit quantization of trans-
former neural machine language translation model.
arXiv preprint arXiv:1906.00532.

Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve Saint-
Amand, et al. 2014. Findings of the 2014 workshop
on statistical machine translation. In Proceedings of
the ninth workshop on statistical machine translation,
pages 12–58.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Mauro Cettolo, Marcello Federico, Luisa Bentivogli,
Niehues Jan, Stüker Sebastian, Sudoh Katsuitho,
Yoshino Koichiro, and Federmann Christian. 2017.
Overview of the iwslt 2017 evaluation campaign. In
International Workshop on Spoken Language Trans-
lation, pages 2–14.

Bita Darvish Rouhani, Daniel Lo, Ritchie Zhao, Ming
Liu, Jeremy Fowers, Kalin Ovtcharov, Anna Vino-
gradsky, Sarah Massengill, Lita Yang, Ray Bittner,
et al. 2020. Pushing the limits of narrow precision in-
ferencing at cloud scale with microsoft floating point.
Advances in neural information processing systems,
33:10271–10281.

Nan Ding, Muaaz Awan, and Samuel Williams. 2022.
Instruction roofline: An insightful visual perfor-
mance model for gpus. Concurrency and Compu-
tation: Practice and Experience, 34(20):e6591.

Mario Drumond, Tao Lin, Martin Jaggi, and Babak Fal-
safi. 2018. Training dnns with hybrid block floating
point. Advances in Neural Information Processing
Systems, 31.

Sean Fox, Seyedramin Rasoulinezhad, Julian Faraone,
Philip Leong, et al. 2020. A block minifloat rep-
resentation for training deep neural networks. In
International Conference on Learning Representa-
tions.

Yonggan Fu, Haoran You, Yang Zhao, Yue Wang, Chao-
jian Li, Kailash Gopalakrishnan, Zhangyang Wang,
and Yingyan Lin. 2020. Fractrain: Fractionally
squeezing bit savings both temporally and spatially
for efficient dnn training. Advances in Neural Infor-
mation Processing Systems, 33:12127–12139.

Robert Hönig, Yiren Zhao, and Robert Mullins.
2022. Dadaquant: Doubly-adaptive quantization for
communication-efficient federated learning. In In-
ternational Conference on Machine Learning, pages
8852–8866. PMLR.

Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang
Li, and Torsten Hoefler. 2021. Data movement is
all you need: A case study on optimizing transform-
ers. Proceedings of Machine Learning and Systems,
3:711–732.



Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia
Tang, and Gennady Pekhimenko. 2018. Gist: Effi-
cient data encoding for deep neural network train-
ing. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), pages
776–789. IEEE.

Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellem-
pudi, Dipankar Das, Kunal Banerjee, Sasikanth Avan-
cha, Dharma Teja Vooturi, Nataraj Jammalamadaka,
Jianyu Huang, Hector Yuen, et al. 2019. A study of
bfloat16 for deep learning training. arXiv preprint
arXiv:1905.12322.

Ye Lin, Yanyang Li, Tengbo Liu, Tong Xiao, Tongran
Liu, and Jingbo Zhu. 2020. Towards fully 8-bit in-
teger inference for the transformer model. arXiv
preprint arXiv:2009.08034.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Ananda Samajdar, Yuhao Zhu, Paul Whatmough,
Matthew Mattina, and Tushar Krishna. 2018. Scale-
sim: Systolic cnn accelerator simulator. arXiv
preprint arXiv:1811.02883.

Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang
Wang, Swagath Venkataramani, Vijayalakshmi Viji
Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash
Gopalakrishnan. 2019. Hybrid 8-bit floating point
(hfp8) training and inference for deep neural net-
works. Advances in neural information processing
systems, 32.

Xiao Sun, Naigang Wang, Chia-Yu Chen, Jiamin Ni,
Ankur Agrawal, Xiaodong Cui, Swagath Venkatara-
mani, Kaoutar El Maghraoui, Vijayalakshmi Viji
Srinivasan, and Kailash Gopalakrishnan. 2020. Ultra-
low precision 4-bit training of deep neural networks.
Advances in Neural Information Processing Systems,
33:1796–1807.

Chaofan Tao, Lu Hou, Wei Zhang, Lifeng Shang,
Xin Jiang, Qun Liu, Ping Luo, and Ngai Wong.
2022. Compression of generative pre-trained lan-
guage models via quantization. arXiv preprint
arXiv:2203.10705.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Samuel Williams, Andrew Waterman, and David Pat-
terson. 2009. Roofline: an insightful visual perfor-
mance model for multicore architectures. Communi-
cations of the ACM, 52(4):65–76.

Guandao Yang, Tianyi Zhang, Polina Kirichenko, Jun-
wen Bai, Andrew Gordon Wilson, and Chris De Sa.
2019. Swalp: Stochastic weight averaging in low
precision training. In International Conference on
Machine Learning, pages 7015–7024. PMLR.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. In
2019 Fifth Workshop on Energy Efficient Machine
Learning and Cognitive Computing-NeurIPS Edition
(EMC2-NIPS), pages 36–39. IEEE.

Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao
Chen, Xin Jiang, and Qun Liu. 2020. Ternarybert:
Distillation-aware ultra-low bit bert. arXiv preprint
arXiv:2009.12812.

A Datasets

Four datasets are used: translation WMT14 EN-DE
and IWSLT2017 EN-DE for machine translation
tasks, QNLI and MNLI for textual entailment tasks.
Table 2 presents details for the datasets.

B Hyperparameters

The training hyperparamters, such as learning rates,
are picked following standard benchmarks and
open implementaitons (Liu et al., 2019; Vaswani
et al., 2017). We summarize them in Table 3 for
repeatability. We use the Adam optimizer with
β1 = 0.9, β2 = 0.98 for both training and finetun-
ing models. The learning rate schedule is Inverse
Square Root for training models, and Polynomial
Decay for finetuning models. Dropout with rates of
PIWSLT = 0.3 and PWMT = 0.2, label smooth-
ing with value ϵ = 0.1 are applied to train models.

DSQ precision configurations are decided
through experimentation on the IWSLT dataset as
discussed in section 6 Limitations. Table 4 shows
a collection of tuning runs we had, we found that
heavily quantized models still work at the start of
training stage, and [16, 4, 4, 16] quantized BFP
model works as well as less aggressive ones. This
indicates that DSQ should start with heavily ag-
gressive precision setup (we pick [2, 2, 2, 16] for
IWSLT14 DE-EN), and jump to [16, 4, 4, 16] when
needed during training process.



Table 2: Details for each dataset, including the number of classes, a description and the source.

Name # Class Description

WMT14 EN-DE -
A text translation task on English-German sentence pairs from
The The Stanford Natural Language Processing Group.

IWSLT2017 DE-EN -
A text translation task on German-English sentence pairs from
The International Conference on Spoken Language Translation.

QNLI 2
A binary textual entailment task on question-answer pairs from
the Stanford Question Answering database. The objective is to
determine whether a pair is an entailment or not.

MNLI 3

A multi-class (i.e., entailment, neutral, contradiction) textual en-
tailment task on premise-hypothesis pairs from the Multi-genre
Natural Language Inference corpus. Matched version only pre-
serves pairs within the same genre (e.g., government report, sci-
ence fiction, speech).

Table 3: Details of the optimal hyper-parameters including batch size, learning rate and weight decay values for
each set of experiments with the same dataset and prompting model.

Dataset Batch size Max tokens Learning rate Weight decay

WMT14 EN-DE - 4096 5e-4 0.0
IWSLT2017 DE-EN - 4096 5e-4 1e-4

QNLI 32 4400 1e-5 0.1
MNLI 32 4400 1e-5 0.1

Table 4: Tests on stashing precision setup. The models are trained on IWSLT14 DE-EN. ∆ shows the performance
difference compared to the floating-point 32-bit baseline.

Dataset and Model Method Precision Setup Acc / BLEU (∆)

IWSLT14 DE-EN
Transformer (6-layer)

Stashing (BFP) [2, 2, 2, 16] 17.45 (−17.77)
Stashing (BFP) [4, 2, 2, 16] 33.51 (−1.71)
Stashing (BFP) [4, 4, 4, 16] 34.47 (−0.75)
Stashing (BFP) [8, 4, 4, 16] 34.47 (−0.75)
Stashing (BFP) [8, 8, 8, 16] 34.65 (−0.57)
Stashing (BFP) [16, 4, 4, 16] 34.78 (−0.44)
Stashing (BFP) [16, 8, 8, 16] 34.47 (−0.75)

C The effect of q3

The gradient output (dxl) plays an important role in
the performance of fixed-point quantization. Notice
in table Table 5, gradient output quantized to 8 bits
leads to training failure for fixed-point quantization.
In order to focus on the idea of stashing, we apply
16 bits quantization of gradient output for all our
stashing precision setups.

D Additional results on WMT14

We also train the model on WMT14 EN-DE dataset,
the BLEU scores we gain are relatively low com-
pared to the 27.3 BLEU score achieved by Vaswani
et al. (2017) because we only trained the models
for 15 epochs. Table 6 presents the results.

E Memory-bound verification on
OPT-1.3B

we have also tested on larger LMs like OPT-1.3B
to show large LLMs today are also memory-bound
so that dynamic stashing will serve as a useful tech-
nique for reducing the DRAM traffic and compute.
We run a similar analysis to Ivanov et al. (2021).
Table 7 presents the results. The analysis agrees
with the conclusion of Ivanov et al. (2021). This
may be of interest to the community in understand-
ing the memory-bound nature of current LLMs.



Table 5: Tests on gradient output precision setup. The models are trained on IWSLT14 DE-EN.

Dataset and Model Method Precision Setup Acc / BLEU (∆)

IWSLT14 DE-EN
Transformer (6-layer)

Stashing (Fixed) [8, 8, 8, 32] 34.08
Stashing (Fixed) [8, 8, 8, 16] 31.94
Stashing (Fixed) [8, 8, 8, 8] Failed

Table 6: The performance of Machine Translation trained on WMT14 EN-DE with a 6-layer Transformer architecture
(Vaswani et al., 2017), the model is assessed using numbers reported as percentages. ∆ shows the performance
difference compared to the floating-point 32-bit baseline.

Dataset and Model Method Precision Setup Acc / BLEU (∆) Arith Ops DRAM R/W

WMT14 EN-DE
Transformer (6-layer)

Floating-point [32, 32, 32, 32] 25.79 - -
Fixed-point [32, 32, 32, 32] 25.41 (−0.38) 1.00× 1.00×
Fixed-point [16, 16, 16, 16] 23.40 (−2.39) 0.25× 0.50×
Block FP [32, 32, 32, 32] 25.76 (−0.03) 0.56× 1.13×
Block FP [16, 16, 16, 16] 25.61 (−0.18) 0.18× 0.63×
Stashing (Fixed) [16, 4, 4, 16] 21.86 (−3.93) 0.13× 0.31×
Stashing (BFP) [16, 4, 4, 16] 25.24 (−0.55) 0.10× 0.20×

Table 7: Bound type analysis of OPT-1.3B based on computational complexity and latency fraction

Model Attention Layers FC Layers Others

OPT-1.3B
Latency Fraction 47.93% 32.20% 19.87%
Bound Type Memory-bound Compute-bound Memory-bound


