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ABSTRACT

This paper studies second-order methods for convex-concave minimax optimiza-
tion. Monteiro & Svaiter (2012) proposed a method to solve the problem with
an optimal iteration complexity of O(ϵ−3/2) to find an ϵ-saddle point. However,
it is unclear whether the computational complexity, O((N + d2)dϵ−2/3), can be
improved. In the above, we follow Doikov et al. (2023) and assume the com-
plexity of obtaining a first-order oracle as N and the complexity of obtaining a
second-order oracle as dN . In this paper, we show that the computation cost
can be reduced by reusing Hessian across iterations. Our methods take the over-
all computational complexity of Õ((N + d2)(d + d2/3ϵ−2/3)), which improves
those of previous methods by a factor of d1/3. Furthermore, we generalize our
method to strongly-convex-strongly-concave minimax problems and establish the
complexity of Õ((N+d2)(d+d2/3κ2/3)) when the condition number of the prob-
lem is κ, enjoying a similar speedup upon the state-of-the-art method. Numerical
experiments on both real and synthetic datasets also verify the efficiency of our
method.

1 INTRODUCTION

We consider the following minimax optimization problem:

min
x∈Rdx

max
y∈Rdy

f(x,y), (1)

where we suppose f is (strongly-)convex in x and (strongly-)concave in y. This setting covers
many useful applications, including functionally constrained optimization (Xu, 2020), game the-
ory (Von Neumann & Morgenstern, 1947), robust optimization (Ben-Tal et al., 2009), fairness-aware
machine learning (Zhang et al., 2018), reinforcement learning (Du et al., 2017; Wang, 2017; Pater-
nain et al., 2022; Wai et al., 2018), decentralized optimization (Kovalev et al., 2021; 2020), AUC
maximization (Ying et al., 2016; Hanley & McNeil, 1982; Yuan et al., 2021).

First-order methods are widely studied for this problem. Classical algorithms include ExtraGradient
(EG) (Korpelevich, 1976; Nemirovski, 2004), Optimistic Gradient Descent Ascent (OGDA) (Popov,
1980; Mokhtari et al., 2020a;b), Hybrid Proximal Extragradient (HPE) (Monteiro & Svaiter, 2010),
and Dual Extrapolation (DE) (Nesterov & Scrimali, 2006; Nesterov, 2007). When the gradient of
f(·, ·) is L-Lipschitz continuous, these methods attain the rate of O(ϵ−1) under convex-concave
(C-C) setting and the rate of O((L/µ) log(ϵ−1)) when f(·, ·) is µ-strongly convex in x and µ-
strongly-concave in y (SC-SC) for µ > 0. They are all optimal under C-C and SC-SC setting due to
the lower bounds reported by (Nemirovskij & Yudin, 1983; Zhang et al., 2022a).

Second-order methods usually lead to faster rates than first-order methods when the Hessian of
f(·, ·) is ρ-Lipschitz continuous. A line of works (Nesterov & Scrimali, 2006; Huang et al., 2022)
extended the celebrated Cubic Regularized Newton (CRN) (Nesterov & Polyak, 2006) method
to minimax problems with local superlinear convergence rates and global convergence guarantee.
However, the established global convergence rates of O(ϵ−1) by Nesterov & Scrimali (2006) and
O((Lρ/µ2) log(ϵ−1)) by Huang et al. (2022) under C-C and SC-SC conditions are no better than
the optimal first-order methods. Another line of work generalizes the optimal first-order methods
to higher-order methods. Monteiro & Svaiter (2012) proposed the Newton Proximal Extragradient
(NPE) method with a global convergence rate of O(ϵ−2/3 log log(ϵ−1)) under the C-C conditions.
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This result nearly matches the lower bounds (Adil et al., 2022; Lin & Jordan, 2024), except an ad-
ditional O(log log(ϵ−1)) factor which is caused by the implicit binary search at each iteration. Re-
cently, Alves & Svaiter (2023) proposed a search-free NPE method to remove this O(log log(ϵ−1))
factor based on ideas from homotopy. Over the past decade, researchers also proposed various
second-order methods, in addition to the NPE framework (Monteiro & Svaiter, 2012), that achieve
the same convergence rate. This algorithms include the second-order extension of EG (Bullins &
Lai, 2022; Adil et al., 2022; Lin et al., 2022; Huang & Zhang, 2022) (which we refer to as EG-2,
Huang & Zhang (2022) call it ARE), that of OGDA (Jiang & Mokhtari, 2022; Jiang et al., 2024)
(which we refer to as OGDA-2), and that of DE (Lin & Jordan, 2024) (they name the method Pers-
esus). For SC-SC problems, Jiang & Mokhtari (2022) proved the OGDA-2 can converge at the rate
of O((ρ/µ)2/3 + log log(ϵ−1)), and Huang & Zhang (2022) proposed the ARE-restart with the rate
of O((ρ/µ)2/3 log log(ϵ−1)).

Although the aforementioned second-order methods Adil et al. (2022); Lin & Jordan (2024); Lin
et al. (2022); Jiang & Mokhtari (2022); Monteiro & Svaiter (2012) enjoy an improved convergence
rate over the first-order methods and have achieved optimal iteration complexities, they require
querying one new Hessian at each iteration and solving a matrix inversion problem at each Newton
step, which leads to a O(d3) computational cost per iteration. This becomes the main bottleneck
that limits the applicability of second-order methods. Liu & Luo (2022a) proposed quasi-Newton
methods for saddle point problems that access one Hessian-vector product instead of the exact Hes-
sian for each iteration. The iteration complexity is O(d2) for quasi-Newton methods. However, their
methods do not have a global convergence guarantee under general (S)C)-(S)C conditions.

In this paper, we propose a computation-efficient second-order method, which we call LEN (Lazy
Extra Newton method). In contrast to all existing second-order methods or quasi-Newton methods
for minimax optimization problems that always access new second-order information for the coming
iteration, LEN reuses the second-order information from past iterations. Specifically, LEN solves
a cubic regularized sub-problem using the Hessian from the snapshot point that is updated every
m iteration, then conducts an extra-gradient step by the gradient from the current iteration. We
provide a rigorous theoretical analysis of LEN to show it maintains fast global convergence rates
and goes beyond the optimal second-order methods Adil et al. (2022); Lin & Jordan (2024); Huang
& Zhang (2022); Lin et al. (2022); Alves & Svaiter (2023); Jiang et al. (2024) in terms of the overall
computational complexity. We summarize our contributions as follows.

• When the object function f(·, ·) is convex in x and concave in y, we propose LEN and
prove that it finds an ϵ-saddle point in O(m2/3ϵ−2/3) iterations. Under Assumption 3.4,
where the complexity of calculating F (z) is N and the complexity of calculating ∇F (z)
is dN , the optimal choice is m = Θ(d). In this case, LEN only requires a computational
complexity of Õ((N+d2)(d+d2/3ϵ−2/3)), which is strictly better than O((N+d2)dϵ−2/3)
for the existing optimal second-order methods by a factor of d1/3.

• When the object function f(·, ·) is µ-strongly-convex in x and µ-strongly-concave in y, we
apply the restart strategy on LEN and propose LEN-restart. We prove the algorithm can
find an ϵ-root with Õ((N + d2)(d + d2/3(ρ/µ)2/3)) computational complexity, where ρ
means the Hessian of f(·, ·) is ρ Lipschitz-continuous. Our result is strictly better than the
Õ((N + d2)d(ρ/µ)2/3) in prior works.

We compare our results with the prior works in Table 1.

2 RELATED WORKS AND TECHNICAL CHALLENGES

Lazy Hessian in minimization problems. The idea of reusing Hessian was initially presented by
Shamanskii (1967) and later incorporated into the Levenberg-Marquardt method, damped Newton
method, and proximal Newton method (Fan, 2013; Lampariello & Sciandrone, 2001; Wang et al.,
2006; Adler et al., 2020). However, the explicit advantage of lazy Hessian update over the ordinary
Newton(-type) update was not discovered until the recent work of (Doikov et al., 2023; Chayti et al.,
2023). Let M > 0 be a constant and π(t) = t− t mod m. They applied the following lazy Hessian
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Table 1: We compare the required computational complexity to achieve an ϵ-saddle point of the
proposed LEN with the optimal choice m = Θ(d) and other existing algorithms on both convex-
concave (C-C) and strongly-convex-strongly-concave (SC-SC) problems. Here, d = dx + dy is the
dimension of the problem. We assume the gradient is L-Lipschitz continuous for EG and the Hessian
is ρ-Lipschitz continuous for others. We count each gradient oracle call with N computational
complexity, and each Hessian oracle with dN computational complexity.

Setup Method Computational Cost

EG (Korpelevich, 1976) O((N + d)ϵ−1)

NPE (Monteiro & Svaiter, 2012) Õ((N + d2)dϵ−2/3)

search-free NPE (Alves & Svaiter, 2023) O((N + d2)dϵ−2/3)

C-C EG-2 (Adil et al., 2022) Õ((N + d2)dϵ−2/3)

Perseus (Lin & Jordan, 2024) Õ((N + d2)dϵ−2/3)

OGDA-2 (Jiang & Mokhtari, 2022) O((N + d2)dϵ−2/3)

LEN (Theorem 4.3) Õ((N + d2)(d+ d2/3ϵ−2/3))

EG (Korpelevich, 1976) Õ((N + d)(L/µ))

OGDA-2 (Jiang & Mokhtari, 2022) O((N + d2)d(ρ/µ)2/3)

SC-SC ARE-restart (Huang & Zhang, 2022) Õ((N + d2)d(ρ/µ))2/3)

Perseus-restart (Lin & Jordan, 2024) Õ((N + d2)d(ρ/µ)2/3)

LEN-restart (Corollary 4.1) Õ((N + d2)(d+ d2/3(ρ/µ)2/3))

update on cubic regularized Newton (CRN) methods (Nesterov & Polyak, 2006):

zt+1 = argmin
z∈Rd

{
⟨F (zt), z − zt⟩+

1

2
⟨∇F (zπ(t))(z − zt), z − zt⟩+

M

6
∥z − zt∥3

}
, (2)

where F : Rd → Rd is the gradient field of a convex function. They establish the convergence rates
of O(

√
mϵ−3/2) for nonconvex optimization (Doikov et al., 2023), and O(

√
mϵ−1/2) for convex

optimization (Chayti et al., 2023) respectively. Such rates lead to the total computational cost of
Õ((N + d2)(d+

√
dϵ−3/2)) and Õ((N + d2)(d+

√
dϵ−1/2)) by setting m = Θ(d), which strictly

improve the result by classical CRN methods by a factor of
√
d on both setups.

We have also observed that the idea of the “lazy Hessian” is widely used in practical second-order
methods. Sophia (Liu et al., 2023) estimates a diagonal Hessian matrix as a pre-conditioner, and to
reduce the complexity, the pre-conditioner is updated in a lazy manner. KFAC (Martens & Grosse,
2015; Grosse & Martens, 2016) approximates the Fisher information matrix, and it also uses an
exponential moving average (EMA) to update the estimate of the Fisher information matrix, which
can be viewed as a soft version of the lazy update.

Challenge of using lazy Hessian updates in minimax problems. In comparison to the previous
works on lazy Hessian, our methods LEN and LEN-restart demonstrate the advantage of using lazy
Hessian for a broader class of optimization problems, the minimax problems. Our analysis differs
from the ones in Doikov et al. (2023); Chayti et al. (2023). Their methods only take a lazy CRN
update (2) at each iteration, which makes it easy to bound the error of lazy Hessian updates using
Assumption 3.1 and the triangle inequality in the following way:

∥∇F (zt)−∇F (zπ(t))∥ ≤ ρ∥zπ(t) − zt∥ ≤ ρ

t−1∑
i=π(t)

∥zi − zi+1∥.

Our method, on the other hand, does not only take a lazy (regularized) Newton update but also
requires an extra gradient step (Line 3 in Algorithm 1). Thus, the progress of one Newton update
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{∥zi+1/2−zi∥}ti=π(t) cannot directly bound the error term ∥zt−zπ(t)∥ introduced by lazy Hessian
update. Moreover, for minimax problems the matrix ∇F (zπ(t)) is no longer symmetric, which leads
to different analysis and implementation of sub-problem solving (Section 4.3). We refer the readers
to Section 4.1 for more detailed discussions.

Notations. Throughout this paper, log is base 2 and log+( · ) := 1+log( · ). We use ∥ · ∥ to denote
the spectral norm and Euclidean norm of matrices and vectors, respectively. We denote π(t) = t−(t
mod m) when presenting the lazy updates.

3 PRELIMINARIES

In this section, we introduce notations and basic assumptions used in our work. We start with several
standard definitions for Problem (1).
Definition 3.1. We call a function f(x,y) : Rdx × Rdy → R has ρ-Lipschitz Hessians if we have

∥∇2f(x,y)−∇2f(x′,y′)∥ ≤ ρ

∥∥∥∥[x− x′

y − y′

]∥∥∥∥ , ∀(x,y), (x′,y′) ∈ Rdx × Rdy .

Definition 3.2. A differentiable function f(·, ·) is µ-strongly-convex-µ-strongly-concave for some
µ > 0 if

f(x′,y) ≥ f(x,y) + (x′ − x)⊤∇xf(x,y) +
µ

2
∥x− x′∥2, ∀x′,x ∈ Rdx ,y ∈ Rdy ;

f(x,y′) ≤ f(x,y) + (y′ − y)⊤∇yf(x,y)−
µ

2
∥y − y′∥2, ∀y′,y ∈ Rdy ,x ∈ Rdx .

We say f is convex-concave if µ = 0.

We are interested in finding a saddle point of Problem (1), formally defined as follows.
Definition 3.3. We call a point (x∗,y∗) ∈ Rdx ×Rdy a saddle point of a function f(·, ·) if we have

f(x∗,y) ≤ f(x∗,y∗) ≤ f(x,y∗), ∀x ∈ Rdx , y ∈ Rdy .

Next, we introduce all the assumptions made in this work. In this paper, we focus on Problem (1)
that satisfies the following assumptions.
Assumption 3.1. We assume the function f(·, ·) is twice continuously differentiable, has ρ-Lipschitz
continuous Hessians, and has at least one saddle point (x∗,y∗).

We will study convex-concave problems and strongly-convex-strongly-concave problems.
Assumption 3.2 (C-C setting). We assume the function f(·, ·) is convex in x and concave in y.
Assumption 3.3 (SC-SC setting). We assume the function f(·, ·) is µ-strongly-convex-µ-strongly-
concave. We denote the condition number as κ := ρ/µ

We let d := dx+dy and denote the aggregated variable z := (x,y) ∈ Rd. We also denote the GDA
field of f and its Jacobian as

F (z) :=

[
∇xf(x,y)
−∇yf(x,y)

]
, ∇F (z) :=

[
∇2

xxf(x,y) ∇2
xyf(x,y)

−∇2
yxf(x,y) −∇2

yyf(x,y)

]
. (3)

The GDA field of f(·, ·) has the following properties.
Lemma 3.1 (Lemma 2.7 Lin et al. (2022)). Under Assumptions 3.1 and 3.2, we have

1. F is monotone, i.e. ⟨F (z)− F (z′), z − z′⟩ ≥ 0, ∀z, z′ ∈ Rd.

2. ∇F is ρ-Lipschitz continuous, i.e. ∥∇F (z)−∇F (z′)∥ ≤ ρ∥z − z′∥, ∀z, z′ ∈ Rd.

3. F (z∗) = 0 if and only if z∗ = (x∗,y∗) is a saddle point of function f(·, ·).

Furthermore, if Assumption 3.3 holds, we have F (·) is µ-strongly-monotone, i.e.

⟨F (z)− F (z′), z − z′⟩ ≥ µ∥z − z′∥2, ∀z, z′ ∈ Rd.
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For the C-C case, the commonly used optimality criterion is the following restricted gap.

Definition 3.4 (Nesterov (2007)). Let Bβ(w) be the ball centered at w with radius β. Let (x∗,y∗)
be a saddle point of function f . For a given point (x̂, ŷ), we let β sufficiently large such that it holds

max {∥x̂− x∗∥, ∥ŷ − y∗∥} ≤ β,

we define the restricted gap function as

Gap(x̂, ŷ;β) := max
y∈Bβ(y∗)

f(x̂,y)− min
x∈Bβ(x∗)

f(x, ŷ),

We call (x̂, ŷ) an ϵ-saddle point if Gap(x̂, ŷ;β) ≤ ϵ and β = Ω(max{∥x0 − x∗∥, ∥y0 − y∗∥}).

For the SC-SC case, we use the following stronger notion.

Definition 3.5. Suppose that Assumption 3.3 holds. Let z∗ = (x∗,y∗) be the unique saddle point
of function f . We call ẑ = (x̂, ŷ) an ϵ-root if ∥ẑ − z∗∥ ≤ ϵ.

Most previous works only consider the complexity metric as the number of oracle calls, where an
oracle takes a point z ∈ Rd as the input and returns a tuple (F (z),∇F (z)) as the output. The
existing algorithms (Monteiro & Svaiter, 2012; Lin & Jordan, 2022; Adil et al., 2022; Alves &
Svaiter, 2023) have achieved optimal complexity regarding the number of oracle calls. In this work,
we focus on the computational complexity of the oracle. More specifically, we distinguish between
the different computational complexities of calculating the Hessian matrix ∇F (z) and the gradient
F (z). Formally, we make the following assumption as Doikov et al. (2023).

Assumption 3.4. We count the computational complexity of computing F (·) as N and the compu-
tational complexity of ∇F (·) as Nd.

Remark 3.1. Assumption 3.4 supposes the cost of computing ∇F (·) is d times that of computing
F (·). It holds in many practical scenarios as one Hessian oracle can be computed via d Hessian-
vector products on standard basis vectors e1, · · · , ed, and one Hessian-vector product oracle is
typically as expensive as one gradient oracle (Wright, 2006):

1. When the computational graph of f is obtainable, both F (z) and ∇F (z)v can be com-
puted using automatic differentiation with the same cost for any z,v ∈ Rd.

2. When f is a black box function, we can estimate the Hessian-vector ∇F (z)v via the finite-
difference uδ(z;v) = 1

δ (F (z + δv) − F (z − δv)) and we have limδ→0 uδ(z;v) =
∇F (z)v under mild conditions on F (·).

4 ALGORITHMS AND CONVERGENCE ANALYSIS

In this section, we present novel second-order methods for solving minimax optimization prob-
lems (1). We present LEN and its convergence analysis for convex-concave minimax problems in
Section 4.1. We generalize LEN for strongly-convex-strongly-concave minimax problems by pre-
senting LEN-restart in Section 4.2. We discuss the details of solving minimax cubic-regularized
sub-problem, present detailed implementation of LEN, and give the total computational complexity
of proposed methods in Section 4.3.

4.1 THE LEN ALGORITHM FOR CONVEX-CONCAVE PROBLEMS

We propose LEN for convex-concave problems in Algorithm 1. Our method builds on the recently
proposed optimal second-order methods ARE (Adil et al., 2022; Huang & Zhang, 2022) / Newton-
Minimax (Lin et al., 2022). The only change is that we reuse the Hessian from previous iterates, as
colored in blue. Each iteration of LEN contains the following two steps:

F (zt) +∇F (zπ(t))(zt+1/2 − zt) +M∥zt+1/2 − zt∥(zt+1/2 − zt) = 0, (Implicit Step)

zt+1 = zt −
F (zt+1/2)

M∥zt+1/2 − zt∥
. (Explicit Step)

(4)
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Algorithm 1 LEN(z0, T,m,M)

1: for t = 0, · · · , T − 1 do
2: Compute lazy cubic step, i.e. find zt+1/2 that satisfies

F (zt) = (∇F (zπ(t)) +M∥zt − zt+1/2∥Id)(zt − zt+1/2).

3: Compute γt = M∥zt − zt+1/2∥.
4: Compute extra-gradient step zt+1 = zt − γ−1

t F (zt+1/2).
5: end for
6: return z̄T = 1∑T−1

t=0 γ−1
t

∑T−1
t=0 γ−1

t zt+1/2.

The first step (implicit step) solves a cubic regularized sub-problem based on the ∇F (zπ(t)) com-
puted at the latest snapshot point and F (zt) at the current iteration point. This step is often viewed
as an oracle (Lin & Jordan, 2024; Nesterov, 2023; Lin et al., 2022; Adil et al., 2022) as there exists
efficient solvers, which will also be discussed in Section 4.3. The second one (explicit step) conducts
an extra gradient step based on F (zt+1/2).

Reusing the Hessian in the implicit step makes each iteration much cheaper, but would cause ad-
ditional errors compared to previous methods (Huang & Zhang, 2022; Lin et al., 2022; Adil et al.,
2022; Nesterov, 2023). The error resulting from the lazy Hessian updates is formally characterized
by the following theorem.
Lemma 4.1. Suppose that Assumption 3.1 and 3.2 hold. For any z ∈ Rd, Algorithm 1 ensures

γ−1
t ⟨F (zt+1/2), zt+1/2 − z⟩ ≤ 1

2
∥zt − z∥2 − 1

2
∥zt+1 − z∥2 − 1

2
∥zt+1/2 − zt+1∥2

− 1

2
∥zt − zt+1/2∥2 +

ρ2

2M2
∥zt − zt+1/2∥2 +

2ρ2

M2
∥zπ(t) − zt∥2︸ ︷︷ ︸

(∗)

.

Above, (*) is the error from lazy Hessian updates. Note that (*) vanishes when the current Hessian
is used. For lazy Hessian updates, the error would accumulate in the epoch.

The key step in our analysis shows that we can use the negative terms in the right-hand side of the
inequality in Lemma 4.1 to bound the accumulated error by choosing M sufficiently large, with the
help of the following technical lemma.
Lemma 4.2. For any sequence of positive numbers {rt}t≥0, it holds for any m ≥ 2 that∑m−1

t=1

(∑t−1
i=0 ri

)2
≤ m2

2

∑m−1
t=0 r2t .

When m = 1, the algorithm reduces to the EG-2 algorithm (Huang & Zhang, 2022; Lin et al., 2022;
Adil et al., 2022) without using lazy Hessian updates. When m ≥ 2, we use Lemma 4.2 to upper
bound the error that arises from lazy Hessian updates. Finally, we prove the following guarantee for
our proposed algorithm.
Theorem 4.1 (C-C setting). Suppose that Assumption 3.1 and 3.2 hold. Let z∗ = (x∗,y∗) be a
saddle point and β = ∥z0 − z∗∥. Set M ≥ 3ρm. The sequence of iterates generated by Algorithm
1 is bounded zt ∈ Bβ(z

∗), zt+1/2 ∈ B3β(z
∗), ∀t = 0, · · · , T − 1, and satisfies the following

ergodic convergence:

Gap(x̄T , ȳT ; 3β) ≤
16M∥z0 − z∗∥3

T 3/2
.

Let M = 3ρm. Algorithm 1 finds an ϵ-saddle point within O(m2/3ϵ−2/3) iterations.

Discussion on the computational complexity of the oracles. Theorem 4.1 indicates that LEN
requires O(m2/3ϵ−2/3) calls to F (·) and O(m2/3ϵ−2/3/m+ 1) calls to ∇F (·) to find the ϵ-saddle
point. Under Assumption 3.4, the computational cost to call the oracles F (·) and ∇F (·) is

Oracle Computational Cost = O
(
N ·m2/3ϵ−2/3 + (Nd) ·

(
ϵ−2/3

m1/3
+ 1

))
. (5)
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Algorithm 2 LEN-restart(z0, T,m,M, S)

1: z(0) = z0
2: for s = 0, · · · , S − 1
3: z(s+1) = LEN(z(s), T,m,M)

end for

Taking m = Θ(d) minimizes (5) to O(Nd + Nd2/3ϵ−2/3). In comparison to the state-of-the-art
second-order methods (Huang & Zhang, 2022; Lin et al., 2022; Adil et al., 2022), whose computa-
tional cost in terms of the oracles is O(Ndϵ−2/3) since they require to query ∇F (·) at each iteration,
our methods significantly improve their results by a factor of d1/3.

It is worth noticing that the computational cost of an algorithm includes both the computational cost
of calling the oracles, which we have discussed above, and the computational cost of performing
the updates (i.e. solving auxiliary problems) after accessing the required oracles. We will give an
efficient implementation of LEN and analyze the total computational cost later in Section 4.3.

4.2 THE LEN-RESTART ALGORITHM FOR STRONGLY-CONVEX-STRONGLY-CONCAVE
PROBLEMS

We generalize LEN to solve the strongly-convex-strongly-concave minimax optimization by incor-
porating the restart strategy introduced by Huang & Zhang (2022). We propose the LEN-restart in
Algorithm 2, which works in epochs. Each epoch of LEN-restart invokes LEN (Algorithm 1), which
gets z(s) as inputs and outputs z(s+1).

The following theorem shows that the sequence {z(s)} enjoys a superlinear convergence in epochs.
Furthermore, the required number of iterations in each epoch to achieve such a superlinear rate is
only a constant.
Theorem 4.2 (SC-SC setting). Suppose that Assumptions 3.1 and 3.3 hold. Let z∗ = (x∗,y∗) be the

unique saddle point. Set M = 3ρm as Theorem 4.1 and T =
(

2M∥z0−z∗∥
µ

)2/3
. Then the sequence

of iterates generated by Algorithm 2 converge to z∗ superlinearly as ∥z(s)−z∗∥2 ≤
(
1
2

)(3/2)s ∥z0−
z∗∥2. In particular, Algorithm 2 with M = 3ρm finds a point z(s) such that ∥z(s) − z∗∥ ≤ ϵ within
S = log3/2 log2(1/ϵ) epochs. The total number of inner loop iterations is given by

TS = O
(
m2/3κ2/3 log log(1/ϵ)

)
.

Under Assumption 3.4, Algorithm 2 with m = Θ(d) takes the computational complexity of O((Nd+
Nd2/3κ2/3) log log(1/ϵ)) to call the oracles F (·) and ∇F (·).

4.3 IMPLEMENTATION DETAILS AND COMPUTATIONAL COMPLEXITY ANALYSIS

We provide details of implementing the cubic regularized Newton oracle (Implicit Step, (4)). In-
spired by Monteiro & Svaiter (2012); Adil et al. (2022); Lin et al. (2022), we transform the sub-
problem into a root-finding problem for a univariate function.
Lemma 4.3 (Section 4.3 Lin et al. (2022)). Suppose Assumption 3.1 and 3.2 hold for function
f : Rdx × Rdy → R and let F be its GDA field. Define γt = M∥zt+1/2 − zt∥. The cubic
regularized Newton oracle (Implicit Step, (4)) can be rewritten as:

zt+1/2 = zt − (∇F (zπ(t)) + γtId)
−1F (zt),

which can be implemented by finding the root of the following univariate function:

ϕ(γ) := M ∥(∇F (zπ(t)) + γId)
−1F (zt)∥ − γ. (6)

Furthermore, the function ϕ(γ) is strictly decreasing when λ > 0.

From the above lemma, to implement the cubic regularized Newton oracle, it suffices to find the
root of a strictly decreasing function ϕ(γ), which can be solved within Õ(1) iteration. The main
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operation is to solve the following linear system:
(∇F (zπ(t)) + γId)h = F (zt). (7)

Naively solving this linear system at every iteration still results in an expensive computational com-
plexity of O(d3) per iteration.

We present a computationally efficient way to implement LEN by leveraging the Schur factorization
at the snapshot point ∇F (zπ(t)) = QUQ−1, where Q ∈ Cd is a unitary matrix and U ∈ Cd is an
upper-triangular matrix. Then we apply the following update

h = Q(U + γId)
−1Q−1F (zt) (8)

instead of solving the linear system (7) at each iteration. The final implementable algorithm is
presented in Algorithm 3.

Now, we are ready to analyze the total computational complexity of LEN, which can be divided into
the following two parts:

Computational Cost = Oracle Computational Cost + Update Computational Cost,
where the first part has been discussed in Section 4.1. As for the update computational cost, the
Schur decomposition with an O(d3) computational complexity is required once every m iterations.
After the Schur decomposition has been given at the snapshot point, the dominant part of the up-
date computational complexity is solving the linear system (7), which can be done efficiently by
solving the upper-triangular linear system (8) with the back substitution algorithm within O(d2)
computational complexity. Thus, we have

Update Computational Cost = Õ
(
d2 ·m2/3ϵ−2/3 + d3 ·

(
ϵ−2/3

m1/3
+ 1

))
, (9)

and the total computational cost of LEN is

Computational Cost
(5),(9)
= Õ

(
(d2 +N) ·m2/3ϵ−2/3 + (d3 +Nd) ·

(
ϵ−2/3

m1/3
+ 1

))
. (10)

By taking m = Θ(d), we obtain the best computational complexity in (10) of LEN, which is for-
mally stated in the following theorem.
Theorem 4.3 (C-C setting). Under the same setting of Theorem 4.1, Algorithm 3 with m = Θ(d)

finds an ϵ-saddle point with Õ((N + d2)(d+ d2/3ϵ−2/3) computational complexity.

We also present the total computational complexity of LEN-restart for SC-SC setting.
Corollary 4.1 (SC-SC setting). Under the same setting of Theorem 4.2, Algorithm 2 implemented
in the same way as Algorithm 3 with m = Θ(d) finds an ϵ-root with Õ((N + d2)(d + d2/3κ2/3)
computational complexity.

In both cases, our proposed algorithms improve the total computational cost of the optimal second-
order methods (Monteiro & Svaiter, 2012; Lin & Jordan, 2024; Adil et al., 2022; Jiang & Mokhtari,
2022) by a factor of d1/3.
Remark 4.1. In the main text, we assume the use of the classical algorithm for matrix inver-
sion/decomposition, which has a computational complexity of O(d3). The fast matrix multiplication
proposed by researchers in the field of theoretical computer science only requires a complexity of
dω , where the best-known ω is currently around 2.371552 (Williams et al., 2024). This also implies
faster standard linear algebra operators including Schur decomposition and matrix inversion (Dem-
mel et al., 2007). However, the large hidden constant factors in these fast matrix multiplication al-
gorithms mean that the matrix dimensions necessary for these algorithms to be superior to classical
algorithms are much larger than what current computers can effectively handle. Consequently, these
algorithms are not always used in practice. We present the computational complexity of using fast
matrix operations in Appendix G.

In Appendix H, we also extend our algorithms to allow inexact auxiliary CRN sub-problem solving
and analyze the total complexity. Specifically, we design an efficient sub-procedure (Algorithm
5) to solve the CRN sub-problem to desired accuracy in only O(log log(1/ϵ)) number of linear
system solving. It tightens the O(log(1/ϵ)) iteration complexity in (Bullins & Lai, 2022; Adil
et al., 2022). Additionally, (Bullins & Lai, 2022; Adil et al., 2022) requires additionally assume
σmin(∇F (z)) ≥ µ for some positive constant µ, which makes the problem similar to strongly-
convex(-strongly-concave) problems, while our analysis does not require such an assumption.
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Algorithm 3 Implementation of LEN (z0, T,m,M)

1: for t = 0, · · · , T − 1 do
2: if t mod m = 0 do
3: Compute the Schur decomposition such that ∇F (zt) = QUQ−1.
4: end if
5: Let ϕ( · ) defined as 6 and compute γt as its root by a binary search.
6: Compute lazy cubic step zt+1/2 = Q(U + γtId)

−1Q−1F (zt).

7: Compute extra-gradient step zt+1 = zt − γ−1
t F (zt+1/2).

8: end for
9: return z̄T = 1∑T−1

t=0 γ−1
t

∑T−1
t=0 γ−1

t zt+1/2.
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Figure 1: We demonstrate running time v.s. gradient norm ∥F (z)∥ and v.s. distance to saddle point
∥z − z∗∥ for Problem (11) with different sizes: n ∈ {10, 100, 200}.

5 NUMERICAL EXPERIMENTS

We conduct our algorithms on a regularized bilinear min-max problem and fairness-aware machine
learning tasks. We include EG (Korpelevich, 1976) and second-order extension of EG (Monteiro
& Svaiter, 2012; Adil et al., 2022; Bullins & Lai, 2022) (which is our algorithm with m = 1) as
the baselines since they are the optimal first-order and second-order methods for convex-concave
minimax problems, respectively. We run the programs on an AMD EPYC 7H12 64-Core Processor.

5.1 REGULARIZED BILINEAR MIN-MAX PROBLEM

We first conduct numerical experiments on the cubic regularized bilinear min-max problem consid-
ered in the literature (Alves & Svaiter, 2023; Huang & Zhang, 2022; Jiang et al., 2024):

min
x∈Rn

max
y∈Rn

f(x,y) =
ρ

6
∥x∥3 + y⊤(Ax− b). (11)

The function f(x,y) is convex-concave and has ρ-Lipschitz continuous Hessians. Moreover, the
unique saddle point z∗ = (x∗,y∗) of f(x,y) can be explicitly calculated as x∗ = A−1b and
y∗ = −ρ∥x∗∥2(A⊤)−1x∗/2, so we can compute the distance to z∗ to measure the performance of
algorithms. Following Lin et al. (2022), we generate each element in b as independent Rademacher
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Figure 2: We demonstrate running time v.s. gradient norm ∥F (z)∥ for fairness-aware machine
learning task (Problem (12)) on datasets “heart”, “adult”, and “law school”.

variables in {−1,+1}, set the regularization coefficient ρ = 1/(20n) and the matrix

A =


1 −1

. . . . . .
1 −1

1

 .

We compare our methods with the baselines on different sizes of problem: n ∈ {100, 200, 500}.
For EG, we tune the stepsize in {1, 0.1, 0.01, 0.001}. For LEN, we vary m in {1, 2, 10, 100}. The
results of running time against ∥F (z)∥ and ∥z − z∗∥ is presented in Figure 1.

5.2 FAIRNESS-AWARE MACHINE LEARNING

We then examine our algorithm in the task of fairness-aware machine learning. Let {ai, bi, ci}ni=1

be the training set, where ai ∈ Rdx denotes the features of the i-th sample, bi ∈ {−1,+1} is the
corresponding label, and ci ∈ {−1,+1} is an additional feature that is required to be protected and
debiased. For example, ci can denote the gender. Zhang et al. (2018) proposed to solve the following
minimax problem to mitigate unwanted bias of ci by adversarial learning:

min
x∈Rdx

max
y∈R

1

n

n∑
i=1

ℓ(bia
⊤
i x)− βℓ(ciya

⊤
i x) + λ∥x∥2 − γy2, (12)

where ℓ is the logit function such that ℓ(t) = log(1+exp(−t)). We set λ = γ = 10−4 and β = 0.5.
We conduct the experiments on datasets “heart” (n = 270, dx = 13) (Chang & Lin, 2011), “adult”
(n = 32, 561, dx = 123) (Chang & Lin, 2011) and “law school” (n = 20, 798, dx = 380) (Le Quy
et al., 2022). For all the datasets, we choose “gender” as the protected feature. For EG, we tune the
stepsize in {0.1, 0.01, 0.001}. For second-order methods (EG-2 and LEN), as we do not know the
value of ρ in advance, we view it as a hyperparameter and tune it in {1, 10, 100}. We set m = 10 for
LEN and we find this simple choice performs well in all the datasets we test. We show the results of
running time against gradient norm ∥F (z)∥ in Figure 2.

6 CONCLUSION AND FUTURE WORKS

In this paper, we propose LEN and LEN-restart for C-C and SC-SC min-max problems, respectively.
By using lazy Hessian updates, our methods improve the computational complexity of the current
best-known second-order methods by a factor of d1/3. Numerical experiments on both real and
synthetic datasets also verify the efficiency of our method.

For future works, it will be interesting to extend our idea to adaptive second-order methods (Doikov
et al., 2024; Carmon et al., 2022; Antonakopoulos et al., 2022; Liu & Luo, 2022b) or stochastic
problems with sub-sampled Newton methods (Lin et al., 2022; Chayti et al., 2023; Zhou et al., 2019;
Tripuraneni et al., 2018; Wang et al., 2019). Besides, our methods only focus on the convex-concave
case, it is also possible to reduce the Hessian oracle for the nonconvex-concave problems (Luo et al.,
2022; Lin et al., 2020; Zhang et al., 2022b) or study the structured nonconvex-nonconcave problems
(Zheng et al., 2024; Diakonikolas et al., 2021; Lee & Kim, 2021; Chen & Luo, 2022).

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Deeksha Adil, Brian Bullins, Arun Jambulapati, and Sushant Sachdeva. Optimal methods for higher-
order smooth monotone variational inequalities. arXiv preprint arXiv:2205.06167, 2022.

Ilan Adler, Zhiyue T. Hu, and Tianyi Lin. New proximal newton-type methods for convex optimiza-
tion. In CDC, 2020.

M. Marques Alves and Benar F. Svaiter. A search-free O(1/k3/2) homotopy inexact
proximal-newton extragradient algorithm for monotone variational inequalities. arXiv preprint
arXiv:2308.05887, 2023.

Kimon Antonakopoulos, Ali Kavis, and Volkan Cevher. Extra-newton: A first approach to noise-
adaptive accelerated second-order methods. In NeurIPS, 2022.

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization, volume 28.
Princeton university press, 2009.

Brian Bullins and Kevin A. Lai. Higher-order methods for convex-concave min-max optimization
and monotone variational inequalities. SIAM Journal on Optimization, 32(3):2208–2229, 2022.

Yair Carmon, Danielle Hausler, Arun Jambulapati, Yujia Jin, and Aaron Sidford. Optimal and
adaptive monteiro-svaiter acceleration. In NeurIPS, 2022.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

El Mahdi Chayti, Nikita Doikov, and Martin Jaggi. Unified convergence theory of stochastic and
variance-reduced cubic newton methods. arXiv preprint arXiv:2302.11962, 2023.

Lesi Chen and Luo Luo. Near-optimal algorithms for making the gradient small in stochastic mini-
max optimization. arXiv preprint arXiv:2208.05925, 2022.

James Demmel, Ioana Dumitriu, and Olga Holtz. Fast linear algebra is stable. Numerische Mathe-
matik, 108(1):59–91, 2007.

Jelena Diakonikolas, Constantinos Daskalakis, and Michael I. Jordan. Efficient methods for struc-
tured nonconvex-nonconcave min-max optimization. In AISTATS, 2021.

Nikita Doikov, El Mahdi Chayti, and Martin Jaggi. Second-order optimization with lazy hessians.
In ICML, 2023.

Nikita Doikov, Konstantin Mishchenko, and Yurii Nesterov. Super-universal regularized newton
method. SIAM Journal on Optimization, 34(1):27–56, 2024.

Simon S Du, Jianshu Chen, Lihong Li, Lin Xiao, and Dengyong Zhou. Stochastic variance reduction
methods for policy evaluation. In ICML, 2017.

Jinyan Fan. A shamanskii-like levenberg-marquardt method for nonlinear equations. Computational
Optimization and Applications, 56(1):63–80, 2013.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution
layers. In ICML, 2016.

James A Hanley and Barbara J McNeil. The meaning and use of the area under a receiver operating
characteristic (roc) curve. Radiology, 143(1):29–36, 1982.

Kevin Huang and Shuzhong Zhang. An approximation-based regularized extra-gradient method for
monotone variational inequalities. arXiv preprint arXiv:2210.04440, 2022.

Kevin Huang, Junyu Zhang, and Shuzhong Zhang. Cubic regularized newton method for the saddle
point models: A global and local convergence analysis. Journal of Scientific Computing, 91(2):
60, 2022.

Ruichen Jiang and Aryan Mokhtari. Generalized optimistic methods for convex-concave saddle
point problems. arXiv preprint arXiv:2202.09674, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ruichen Jiang, Ali Kavis, Qiujiang Jin, Sujay Sanghavi, and Aryan Mokhtari. Adaptive and optimal
second-order optimistic methods for minimax optimization. arXiv preprint arXiv:2406.02016,
2024.

Galina M Korpelevich. The extragradient method for finding saddle points and other problems.
Matecon, 12:747–756, 1976.
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A SOME USEFUL LEMMAS

Lemma A.1 (Proposition 2.8 Lin et al. (2022)). Let

x̄t =
1∑t−1

i=0 ηi

t−1∑
i=0

ηixi, ȳt =
1∑t−1

i=0 ηi

t−1∑
i=0

ηiyi.

Then under Assumption 3.2, for any z = (x,y), it holds that

f(x̄t,y)− f(x, ȳt) ≤
1∑t−1

i=0 ηi

t−1∑
i=0

ηi⟨F (zi), zi − z⟩.

B PROOF OF LEMMA 4.2

Proof. We prove the result by induction.

Apparently, it is true for m = 2, which is the induction base.

Assume that it holds for m ≥ 2. Then

m∑
t=1

(
t−1∑
i=0

ri

)2

=

m−1∑
t=1

(
t−1∑
i=0

ri

)2

+

(
m−1∑
i=0

ri

)2

≤ m2

2

m−1∑
t=0

r2t +m

m−1∑
t=0

r2t

≤
(
m2 + 2m

2

)m−1∑
t=0

r2t

≤ (m+ 1)2

2

m−1∑
t=0

r2t .

C PROOF OF LEMMA 4.1

Proof. Instead of directly providing a proof for Algorithm 1, we give the proof for the more general
inexact algorithm (Algorithm 4), which recovers Algorithm 1 if α = 1.

For convenience, we denote ηt = 1/γt.

For ant z ∈ Rd, we have

ηt⟨F (zt+1/2), zt+1/2 − z⟩
= ⟨zt − zt+1, zt+1/2 − z⟩
= ⟨zt − zt+1, zt+1 − z⟩+ ⟨zt − zt+1, zt+1/2 − zt+1⟩
= ⟨zt − zt+1, zt+1 − z⟩+ ⟨zt − zt+1/2, zt+1/2 − zt+1⟩+ ⟨zt+1/2 − zt+1, zt+1/2 − zt+1⟩

=
1

2
∥zt − z∥2 − 1

2
∥zt+1 − z∥2 −

XXXXXXX
1

2
∥zt − zt+1∥2

+
XXXXXXX
1

2
∥zt − zt+1∥2 −

1

2
∥zt+1/2 − zt+1∥2 −

1

2
∥zt − zt+1/2∥2 + ∥zt+1/2 − zt+1∥2.

(13)
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Note that by the updates of the algorithm, we have that
γt(zt − zt+1/2) = F (zt) +∇F (zπ(t))(zt+1/2 − zt),

γt(zt − zt+1) = F (zt+1/2).

It implies that
zt+1/2 − zt+1

= ηt(F (zt+1/2)− F (zt)−∇F (zπ(t))(zt+1/2 − zt)))

= ηt(F (zt+1/2)− F (zt)−∇F (zt)(zt+1/2 − zt)) + ηt(∇F (zπ(t)))−∇F (zt))(zt+1/2 − zt)
(14)

Note that ∇F is ρ-Lipschitz continuous. Taking norm on both sides of (14), we have that

∥zt+1/2 − zt+1∥ ≤ ρηt
2

∥zt+1/2 − zt∥2 + ρηt∥zπ(t) − zt∥∥zt+1/2 − zt∥

≤ ρ

2M
∥zt+1/2 − zt∥+

ρ

M
∥zπ(t) − zt∥,

where we use the condition M∥zt − zt+1/2∥ ≤ γt in the last step.

By Young’s inequality, this further means

∥zt+1/2 − zt+1∥2 ≤ ρ2

2M2
∥zt+1/2 − zt∥2 +

2ρ2

M2
∥zπ(t) − zt∥2.

Plug the above inequality into the last term in (13).
ηt⟨F (zt+1/2), zt+1/2 − z⟩

≤ 1

2
∥zt − z∥2 − 1

2
∥zt+1 − z∥2 − 1

2
∥zt+1/2 − zt+1∥2

− 1

2
∥zt − zt+1/2∥2 +

ρ2

2M2
∥zt − zt+1/2∥2 +

2ρ2

M2
∥zπ(t) − zt∥2.

D PROOF OF THEOREM 4.1

Proof. When m = 1, the algorithm reduces to the EG-2 algorithm (Huang & Zhang, 2022; Lin
et al., 2022; Adil et al., 2022). When m ≥ 2, we use Lemma 4.2 to bound the error that arises from
lazy Hessian updates.

Instead of directly providing a proof for Algorithm 1, we give the proof for the more general inexact
algorithm (Algorithm 4), which recovers Algorithm 1 if α = 1.

Define rt = ∥zt+1 − zt∥. By triangle inequality and Young’s inequality, we have
ηt⟨F (zt+1/2), zt+1/2 − z⟩

≤ 1

2
∥zt − z∥2 − 1

2
∥zt+1 − z∥2 −

(
1

4
− ρ2

2M2

)
∥zt − zt+1/2∥2

−

1

8
r2t −

2ρ2

M2

 t−1∑
i=π(t)

ri

2
 .

For any 1 ≤ s ≤ m. Telescoping over t = π(t), · · · , π(t) + s− 1, we have
π(t)+s−1∑
t=π(t)

ηt⟨F (zt+1/2), zt+1/2 − z⟩

≤ 1

2
∥zπ(t) − z∥2 − 1

2
∥zπ(t)+s − z∥2 −

(
1

4
− ρ2

2M2

) π(t)+s−1∑
t=π(t)

∥zt − zt+1/2∥2

−

1

8

π(t)+s−1∑
t=π(t)

r2t −
2ρ2

M2

π(t)+s−1∑
t=π(t)+1

 t−1∑
i=π(t)

ri

2
 .
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Applying Lemma 4.2, we further have
π(t)+s−1∑
t=π(t)

ηt⟨F (zt+1/2), zt+1/2 − z⟩

≤ 1

2
∥zπ(t) − z∥2 − 1

2
∥zπ(t)+s − z∥2 −

(
1

4
− ρ2

2M2

) π(t)+s−1∑
t=π(t)

∥zt − zt+1/2∥2

−
(
1

8
− ρ2s2

M2

) π(t)+s−1∑
t=π(t)

r2t .

Note that s ≤ m. Let M ≥ 3ρm. Then
π(t)+s−1∑
t=π(t)

ηt⟨F (zt+1/2), zt+1/2 − z⟩

≤ 1

2
∥zπ(t) − z∥2 − 1

2
∥zπ(t)+s − z∥2 − 1

8

π(t)+s−1∑
t=π(t)

∥zt − zt+1/2∥2.

Let s = m and further telescope over t = 0, · · · , T − 1. Then
T∑

t=0

ηt⟨F (zt+1/2), zt+1/2 − z⟩ ≤ 1

2
∥z0 − z∥2 − 1

2
∥zT − z∥2 − 1

8

T∑
t=0

∥zt − zt+1/2∥2. (15)

This inequality is the key to the convergence. It implies the following results. First, letting z = z∗

and using the fact that ⟨F (zt+1/2), zt+1/2−z∗⟩ ≥ 0 according to monotonicity of F , we can prove
the iterate is bounded

∥zt − z∗∥ ≤ ∥z0 − z∗∥, and ∥zt − zt+1/2∥ ≤ 2∥z0 − z∗∥, t = 0, · · · , T − 1. (16)

Then using triangle inequality, we obtain

∥zt+1/2 − z∗∥ ≤ 3∥z0 − z∗∥, ∀t = 0, · · · , T − 1.

Second, as (15) holds for all z ∈ B3β(z
∗), Lemma A.1 indicates

Gap(x̄T , ȳT ; 3β) ≤
maxz∈B3β(z∗) ∥z0 − z∥2

2
∑T−1

t=0 ηt
≤ 16∥z0 − z∗∥2

2
∑T−1

t=0 ηt
, (17)

where the last step uses ∥z0 − z∥ ≤ ∥z0 − z∗∥+ ∥z − z∗∥ ≤ 4β for any z ∈ B3β(z
∗).

Third, we can also use (15) to lower bound
∑T−1

t=0 ηt. (15) with z = z∗ implies
T∑

t=0

γ2
t ≤ 4α2M2∥z0 − z∗∥2,

where we use the condition γt ≤ αM∥zt − zt+1/2∥ in the last step. Then by Holder’s inequality,

T =

T−1∑
t=0

(ηt)
2/3 (

γ2
t

)1/3 ≤

(
T−1∑
t=0

ηt

)2/3(T−1∑
t=0

γ2
t

)1/3

.

Therefore,
T−1∑
t=0

ηt ≥
T 3/2

2αM∥z0 − z∗∥
. (18)

We plug in (18) to (17) and obtain that

Gap(x̄T , ȳT ;β) ≤
16αM∥z0 − z∗∥3

T 3/2
.

The desired theorem is the case α = 1.
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E PROOF OF THEOREM 4.2

Proof. Using the strongly monotonicity of operator F in (15), we obtain that

T∑
t=0

µηt∥zt+1/2 − z∗∥2 ≤ 1

2
∥z0 − z∗∥2 − 1

2
∥zT − z∗∥2.

Using Jensen’s inequality, for each epoch, we have

∥z̄T − z∗∥2 ≤ ∥z0 − z∗∥2

2µ
∑T−1

t=0 ηt
≤ M∥z0 − z∗∥3

µT 3/2
:= c∥z0 − z∗∥2.

Next, we consider the iterate {z(s)}S−1
s=0 . For the first epoch, the setting of T ensures c ≤ 1/2:

∥z(1) − z∗∥2 ≤ 1

2
∥z0 − z∗∥2.

Then for the second one, it is improved by

∥z(2) − z∗∥2 ≤ ∥z(1) − z∗∥3

2∥z0 − z∗∥
≤
(
1

2

)1+3/2

∥z0 − z∗∥2.

Keep repeating this process. We can get

∥z(s) − z∗∥2 ≤
(
1

2

)qs

∥z0 − z∗∥2,

where qs satisfies the recursion

qs =

{
1, s = 1;
3

2
qs−1 + 1, s ≥ 2.

This implies

∥z(s) − z∗∥2 ≤
(
1

2

)(3
2

)s−1

+1

∥z0 − z∗∥2.

Set m = Θ(d), LEAN-restart takes O(d2/3κ2/3 log log(1/ϵ)) oracle to F (·) and O((1 +
d−1/3κ2/3) log log(1/ϵ)) oracle to ∇F (·). Under Assumption 3.4, the computational complexities
of the oracles is

O
(
N · d2/3κ2/3 log log(1/ϵ) +Nd · (1 + d−1/3κ2/3) log log(1/ϵ)

)
= O

(
(Nd+Nd2/3κ2/3) log log(1/ϵ)

)
.

F PROOF OF COROLLARY 4.1

Proof. The computational complexity of inner loop can be directly obtained by replacing ϵ−1 by κ
in Theorem 4.3 such that

Inner Computational Complexity = Õ
(
(N + d2) · (d+ d2/3κ2/3)

)
.

The iterations of outer loop is S = log log(1/ϵ), thus, the total computational complexity of LEAN-
restart is

S · Inner Computational Complexity = Õ
(
(N + d2) · (d+ d2/3κ2/3)

)
.
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Algorithm 4 Inexact LEN(z0, T,m,M,α)

1: for t = 0, · · · , T − 1 do
2: Use Algorithm 5 to find (zt+1/2, γt) that satisfies

zt+1/2 = zt − (∇F (zπ(t)) + γtId)
−1F (zt)

and M∥zt − zt+1/2∥ ≤ γt ≤ αM∥zt − zt+1/2∥ for given α ≥ 1.
3: Compute extra-gradient step zt+1 = zt − γ−1

t F (zt+1/2).
4: end for
5: return z̄T = 1∑T−1

t=0 γ−1
t

∑T−1
t=0 γ−1

t zt+1/2.

G COMPUTATIONAL COMPLEXITY USING FAST MATRIX OPERATIONS

Theoretically, one may use fast matrix operations for Schur decomposition and matrix inver-
sion (Demmel et al., 2007), with a computational complexity of dω , where ω ≈ 2.371552 is the
matrix multiplication constant. In this case, the total computational complexity of Algorithm 3 is

Õ
((

Nd+ dω

m
+ d2 +N

)
m2/3ϵ−2/3

)
Setting the optimal m, we obtain the following complexity of Algorithm 3:

Õ(d
2
3 (ω+1)ϵ−2/3) (with m = dω−2), N ≲ dω−1

Õ(N2/3d4/3ϵ−2/3) (with m = N/d), dω−1 ≲ N ≲ d2

Õ(Nd2/3ϵ−2/3) (with m = d), d2 ≲ N.

Our result is always better than the O((Nd+ dω)ϵ−2/3) of existing optimal second-order methods.

H THE INEXACT ALGORITHM

Algorithm 1 requires a cubic regularized Newton (CRN) oracle (Implicit Step, (4)). We provide
implementation details for the CRN oracle in Section 4.3. One missing detail is that we can not
obtain the exact solution to the CRN oracle in practice. To make our result more rigorous, we
analyze the inexact LEN (Algorithm 1), which allows inexact sub-problem solving with a parameter
α ≥ 1. Note that this algorithm reduces to the exact version (Algorithm 1) when α = 1.

Below, we present the following theorem as the inexact version of Theorem 4.1.
Theorem H.1. Suppose that Assumption 3.1 and 3.2 hold. Let z∗ = (x∗,y∗) be a saddle point and
β = ∥z0 − z∗∥. Set M ≥ 3ρm. The sequence of iterates generated by Algorithm 4 is bounded zt ∈
Bβ(z

∗), zt+1/2 ∈ B3β(z
∗), ∀t = 0, · · · , T − 1, and satisfies the following ergodic convergence:

Gap(x̄T , ȳT ; 3β) ≤
16αM∥z0 − z∗∥3

T 3/2
.

Let M = 3ρm and α = 2. Algorithm 1 finds an ϵ-saddle point within O(m2/3ϵ−2/3) iterations.

Proof. See Section D.

The only remaining thing is to show how to compute γt in the auxiliary problem (Line 2 in Algorithm
4). Below, we present an efficient sub-procedure to achieve the desired goal using the standard
Newton step. We define the monotone operator At : Rd → Rd by

At(z) = F (zt) +∇F (zπ(t))(z − zt). (19)

Then we can write down the (regularized) Newton step as

zt+1/2(η; zt) := zt − (∇F (zπ(t)) + η−1Id)
−1)F (zt)

= (Id + ηAt)
−1(zt).

(20)
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Algorithm 5 Bracketing/Bisection Procedure(At, zt,M, α, η0t )

1: (Bracketing Stage) Compute z0
t+1/2 = (Id + η0tAt)

−1(zt) with one Newton step.
(1a) if η0t ∥z0

t+1/2 − zt∥ ∈ ( 1
αM , 1

M ), then let zt+1/2 = z0
t+1/2, ηt = η0t and go to Line 3.

(1b) if η0t ∥z0
t+1/2 − zt∥ < 1

αM , then set c−t = η0t and c+t = 1
M∥z0

t+1/2
−zt∥ ;

(1c) if ηt0∥z0
t+1/2 − zt∥ > 1

M , then set c−t = 1
αM∥z0

t+1/2
−zt∥ and c+t = η0t ;

2: (Bisection Stage)
(2a) set ηt =

√
c−t c

+
t and compute zt+1/2 = (Id + ηtAt)

−1(zt) with one Newton step;
(2b) if ηt∥zt+1/2 − zt∥ ∈ ( 1

αM , 1
M ), then go to Line 3;

(2c) if ηt∥zt+1/2 − zt∥ > 1
M , then set c+t = ηt; else set c−t = ηt;

(2d) go to step (2a).
3: return (zt+1/2, γt) that meets the requirement of Line 2 in Algorithm 4, where γt = 1/ηt .

And the inexact condition (Line 2 in Algorithm 4) is
1

αM
≤ ϕt(η; zt) ≤

1

M
, (21)

where ϕt(η; zt) is defined as ϕt(η; zt) := η∥zt+1/2(η; zt)− zt∥.

Note that a stepsize η that satisfies (21) directly implies γt = 1/η satisfies the requirement of Line
2 in Algorithm 4. Therefore, the main goal of this section is to design a sub-procedure that can
determine the stepsize η that satisfies (21).

A similar sub-procedure without using lazy Hessian updates has been proposed in (Monteiro &
Svaiter, 2012). Below, we show that we can use a similar sub-procedure for our algorithm. We
recall some useful lemmas in (Monteiro & Svaiter, 2012), which holds for any monotone operators
A. Below, we state their results when A = At.
Lemma H.1 (Lemma 4.3 and Lemma 4.4 (Monteiro & Svaiter, 2012)). Recall the definition of ϕt

right after (21). For any z ∈ Rd, the following statements hold:

1. For any η > 0, we have ϕt(η; z) > 0.

2. For any 0 < η′ ≤ η, we have that

η

η′
ϕt(η

′; z) ≤ ϕt(η; z) ≤
(
η

η′

)2

ϕt(η
′; z).

As a corollary, ϕt(η; z) is a continuous and strictly increasing function, which converges
to 0 or +∞ as η tends to 0 or +∞, respectively.

3. For any 0 < β− < β+, the set of all scalars η > 0 satisfying β− ≤ ϕt(η; z) ≤ β+ is a
closed interval [η−, η+] such that η+/η− ≥

√
β+/β−.

Algorithm 5 presents our sub-procedure to output the tuple (zt+1/2, γt) satisfying (21). Similar
to (Monteiro & Svaiter, 2012), the procedure consists of two stages. The first one is a bracketing
stage, which either outputs an acceptable solution or an initial interval [c−t , c

+
t ] that contains all the

η satisfying (21). The second one is a bisection stage, which uses binary search in the logarithmic
scale to find a stepsize η satisfying (21). Note that the log-scale binary search would finally lead to
a O(log log(1/ϵ)) iteration complexity, which improves the O(log(1/ϵ)) iteration complexity using
naive binary search in (Adil et al., 2022; Bullins & Lai, 2022).

Our first result of Algorithm 5 is the correctness of the bracketing stage, stated as follows.
Lemma H.2. Let [η−t , η

+
t ] be the interval that contains all the stepsizes satisfying (21). Compute

z0
t+1/2 = (Id + η0tAt)

−1(zt) with one Newton step as Algorithm 5. The following statements hold:

1. if η0t ∥z0
t+1/2 − zt∥ < 1

αM , then η0t < η−t and η+t ≤ 1
M∥z0

t+1/2
−zt∥ ;

2. if η0t ∥z0
t+1/2 − zt∥ > 1

M , then η+t < η0t and 1
αM∥z0

t+1/2
−zt∥ ≤ η−t .
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Proof. We only prove the first claim since the proof of the second claim follows in a similar manner.

Recall the definition of ϕt right after (21). The condition η0t ∥z0
t+1/2 − zt∥ < 1

αM is equivalent to
ϕt(η

0
t ; zt) < ϕt(η

−
t ; zt). Firstly. the fact that ϕt(η

−
t ; zt) is a strictly increasing function according

to the second statement in Lemma H.1, we know that η0t < η−t .

Secondly, using the inequality in the second statement of Lemma H.1, we know that

η+t ∥z0
t+1/2 − zt∥ =

η+t
η0t

ϕt(η
0
t ; zt) ≤ ϕt(η

+
t ; zt) =

1

M
,

which implies η+t ≤ 1
M∥z0

t+1/2
−zt∥ by rearranging.

Therefore, the bracketing stage can always output an interval that contains the acceptable stepsizes
η satisfying (21). Given such a valid initial interval, the bisection stage always find an acceptable
stepsize, stated as follows.
Lemma H.3. Consider Algorithm 5. If the bracketing stage outputs an interval [c−t , c

+
t ] containing

all the stepsizes η satisfying (21), which is then input to the bisection stage, then the number of
Newton step during the bisection stage is bounded by 1 + log(log(ht)/ logα)), where

ht = max

{
1

η0tM∥z0
t+1/2 − zt∥

, αMη0t ∥z0
t+1/2 − zt∥

}
(22)

is the maximal ratio of c+t /c
−
t .

Proof. After j steps of bisection iterations, we have that log c+t
c−t

= 1
2j log ht. In view of the third

statement in Lemma H.1, we know that c+t /c
−
t ≥

√
α. These two inequalities immediately imply

that the bisection stage would terminates in j ≤ 1 + log(log(ht)/ logα)) iterations.

Our goal from now on would be giving a uniform upper bound of ht all for t, which can imply the
total complexity of our algorithm. From the definition of ht in (22), we need to give both lower and
upper bounds of η0t ∥z0

t+1/2 − zt∥. We recall some technical lemmas in (Monteiro & Svaiter, 2012).

Lemma H.4 (Proposition 4.5 Monteiro & Svaiter (2012)). Let A : Rd → Rd be a monotone
operator. For a point z∗ ∈ Rd such that A(z∗) = 0, for any η > 0 and z ∈ Rd it holds that

max
{
∥(Id + ηA)−1z − z∗∥, ∥(Id + ηA)−1z − z∥

}
≤ ∥z − z∗∥.

From now on, we will fix all the η0t in all the iterations such that η0t = η̄ and analyze Algorithm 4.
The following lemma shows a uniform upper bound of ∥z0

t+1/2 − zt∥.

Lemma H.5 (Upper bound of ∥z0
t+1/2 − zt∥). Suppose that Assumption 3.1 and 3.2 hold. Let

z∗ = (x∗,y∗) be a saddle point. Set M = 3ρm as in Theorem 4.1. For all the iterations of
Algorithm 4, it holds that

∥z0
t+1/2 − zt∥ ≤ ∥z0 − z∗∥+ 5η̄ρ

2
∥z0 − z∗∥2. (23)

Proof. Let rt := F (z∗) −At(z
∗) and define the operator Ãt as Ãt(z) = At(z) + rt. From the

definition of Ãt we know that all any η > 0 and z ∈ Rd we have that
(Id + ηÃt)

−1(z + ηrt) = (Id + ηAt)
−1(z) (24)

Now we upper bound ∥z0
t+1/2 − zt∥ as follows.

∥z0
t+1/2 − zt∥

= ∥(Id + η̄At)
−1(zt)− zt∥

= ∥(Id + η̄Ãt)
−1(zt + η̄rt)− zt∥

≤ ∥(Id + η̄Ãt)
−1(zt)− zt∥+ ∥(Id + η̄Ãt)

−1(zt)− (Id + η̄Ãt)
−1(zt + η̄rt)∥

≤ ∥zt − z∗∥+ η̄∥rt∥,

(25)
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where in the last step we use Lemma H.4 to upper bound the first term and use the non-expansiveness
of resolvent (see i.e. (Rockafellar, 1976)) to upper bound the second term.

We continue to upper bound ∥rt∥. Recall the definition of At in (19), we know that
rt = F (z∗)− F (zt)−∇F (zπ(t))(z

∗ − zt)

= F (z∗)− F (zt)−∇F (zt)(z
∗ − zt) + (∇F (zt)−∇F (zπ(t))(z

∗ − zt)

Note that ∇F is ρ-Lipschitz continuous. Taking norm on both sides of the above identity, we have

∥rt∥ ≤ ρ

2
∥z∗ − zt∥2 + ρ∥zt − zπ(t)∥∥z∗ − zt∥

Recalling (16) that we have ∥zt−z∗∥ ≤ ∥z0−z∗∥ for all t, by the triangle inequality we also have
∥zt − zπ(t)∥ ≤ 2∥z0 − z∗∥. Therefore, we have that ∥rt∥ ≤ 5

2∥z0 − z∗∥2. Finally, we plug into
(25) to obtain the desired upper bound in (23).

Next, we give a uniform lower bound of ∥z0
t+1/2 − zt∥.

Lemma H.6 (Lower bound of ∥z0
t+1/2 − zt∥). Suppose that Assumption 3.1 and 3.2 hold. Let

z∗ = (x∗,y∗) be a saddle point and β = ∥z0 − z∗∥. Set M = 3ρm as in Theorem 4.1. If in all the
iterations of Algorithm 5 the point z0

t+1/2 is not an ϵ-solution, it holds that

η̄∥z0
t+1/2 − zt∥ ≥ ξt, (26)

where ξt = min
{
2β, η̄ϵ

6β(3η̄βρ+1)

}
.

Proof. We show a contradiction if (26) does not hold. Firstly, if z0
t+1/2 = (x0

t+1/2,y
0
t+1/2) is not

an ϵ-solution to the problem, then by Lemma A.1 we know that ∥F (z0
t+1/2)∥ must be large due to

ϵ ≤ Gap(x0
t+1/2,y

0
t+1/2; 3β) ≤ max

z∈B3β(z∗)
⟨F (z0

t+1/2), z
0
t+1/2 − z⟩ ≤ 6β∥F (z0

t+1/2)∥,

where the last step uses that ∥z0
t+1/2 − zt∥ ≤ 2β if (26) does not hold, ∥zt − z∗∥ ≤ β and the

triangle inequality. Therefore, we can conclude that

∥F (z0
t+1/2)∥ ≥ ϵ

6β
. (27)

Secondly, from the update of the algorithm, we have that
zt − z0

t+1/2 = η̄(F (zt) +∇F (zπ(t))(z
0
t+1/2 − zt))

Then we further know that
zt − z0

t+1/2 − F (z0
t+1/2)

= η̄(F (zt) +∇F (zπ(t))(z
0
t+1/2 − zt)− F (z0

t+1/2))

= η̄(F (zt) +∇F (zt)(z
0
t+1/2 − zt)− F (z0

t+1/2))

+ η̄(∇F (zt)−∇F (zπ(t)))(z
0
t+1/2 − zt).

Note that ∇F is ρ-Lipschitz continuous. Taking norm on both sides of the above identity, we have
∥zt − z0

t+1/2 − F (z0
t+1/2)∥

≤ η̄ρ

2
∥z0

t+1/2 − zt∥2 + η̄ρ∥zt − zπ(t)∥∥z0
t+1/2 − zt∥

≤ 3η̄βρ∥z0
t+1/2 − zt∥.

where the last step uses the triangle inequality, that ∥z0
t+1/2 − zt∥ ≤ 2β if (26) does not hold, and

that ∥zt − z∗∥ ≤ ∥z0 − z∗∥ by (16). Then we can know that

η̄∥F (z0
t+1/2)∥ ≤ ∥zt − z0

t+1/2 − η̄F (z0
t+1/2)∥+ ∥z0

t+1/2 − zt∥

≤ (3η̄βρ+ 1)∥z0
t+1/2 − zt∥.

Recalling (27), we know that this would contradict the hypothesis that (26) does not hold.
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Lemma H.5 and Lemma H.6 tell us that the ht defined in (22) is uniformly bounded for all t. Finally,
we obtain the following theorem by combining Theorem H.1 and Theorem H.3.
Theorem H.2. Suppose that Assumption 3.1 and 3.2 hold. Let z∗ = (x∗,y∗) be a saddle point and
β = ∥z0 − z∗∥. Set M ≥ 3ρm. The sequence of iterates generated by Algorithm 4 is bounded zt ∈
Bβ(z

∗), zt+1/2 ∈ B3β(z
∗), ∀t = 0, · · · , T − 1, and satisfies the following ergodic convergence:

Gap(x̄T , ȳT ; 3β) ≤
16αM∥z0 − z∗∥3

T 3/2
.

Let M = 3ρm and α = 2. Algorithm 1 finds an ϵ-saddle point within O(m2/3ϵ−2/3) iterations.

If we call the sub-procedure (Algorithm 5) wit fixed η0t = η̄, every call of this sub-procedure makes
at most O(log log(poly(m,β, ρ, η̄, 1/ϵ)) Newton steps.

The above theorem shows that the CRN sub-problem can be solved to guarantee the desired pre-
cision for target problem in O(log log(1/ϵ)) iterations, which tightens the O(log(1/ϵ)) iteration
complexity in (Bullins & Lai, 2022; Adil et al., 2022). Additionally, (Bullins & Lai, 2022; Adil
et al., 2022) requires additionally assume σmin(∇F (z)) ≥ µ for some positive constant µ, which
makes the problem similar to strongly-convex(-strongly-concave) problems, while our analysis does
not require such an assumption.
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