
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SECOND-ORDER MIN-MAX OPTIMIZATION WITH
LAZY HESSIANS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper studies second-order methods for convex-concave minimax optimiza-
tion. Monteiro & Svaiter (2012) proposed a method to solve the problem with
an optimal iteration complexity of O(ϵ−3/2) to find an ϵ-saddle point. However,
it is unclear whether the computational complexity, O((N + d2)dϵ−2/3), can be
improved. In the above, we follow Doikov et al. (2023) and assume the com-
plexity of obtaining a first-order oracle as N and the complexity of obtaining a
second-order oracle as dN . In this paper, we show that the computation cost
can be reduced by reusing Hessian across iterations. Our methods take the over-
all computational complexity of Õ((N + d2)(d + d2/3ϵ−2/3)), which improves
those of previous methods by a factor of d1/3. Furthermore, we generalize our
method to strongly-convex-strongly-concave minimax problems and establish the
complexity of Õ((N+d2)(d+d2/3κ2/3)) when the condition number of the prob-
lem is κ, enjoying a similar speedup upon the state-of-the-art method. Numerical
experiments on both real and synthetic datasets also verify the efficiency of our
method.

1 INTRODUCTION

We consider the following minimax optimization problem:

min
x∈Rdx

max
y∈Rdy

f(x,y), (1)

where we suppose f is (strongly-)convex in x and (strongly-)concave in y. This setting covers
many useful applications, including functionally constrained optimization (Xu, 2020), game the-
ory (Von Neumann & Morgenstern, 1947), robust optimization (Ben-Tal et al., 2009), fairness-aware
machine learning (Zhang et al., 2018), reinforcement learning (Du et al., 2017; Wang, 2017; Pater-
nain et al., 2022; Wai et al., 2018), decentralized optimization (Kovalev et al., 2021; 2020), AUC
maximization (Ying et al., 2016; Hanley & McNeil, 1982; Yuan et al., 2021).

First-order methods are widely studied for this problem. Classical algorithms include ExtraGradient
(EG) (Korpelevich, 1976; Nemirovski, 2004), Optimistic Gradient Descent Ascent (OGDA) (Popov,
1980; Mokhtari et al., 2020a;b), Hybrid Proximal Extragradient (HPE) (Monteiro & Svaiter, 2010),
and Dual Extrapolation (DE) (Nesterov & Scrimali, 2006; Nesterov, 2007). When the gradient of
f(·, ·) is L-Lipschitz continuous, these methods attain the rate of O(ϵ−1) under convex-concave
(C-C) setting and the rate of O((L/µ) log(ϵ−1)) when f(·, ·) is µ-strongly convex in x and µ-
strongly-concave in y (SC-SC) for µ > 0. They are all optimal under C-C and SC-SC setting due to
the lower bounds reported by (Nemirovskij & Yudin, 1983; Zhang et al., 2022a).

Second-order methods usually lead to faster rates than first-order methods when the Hessian of
f(·, ·) is ρ-Lipschitz continuous. A line of works (Nesterov & Scrimali, 2006; Huang et al., 2022)
extended the celebrated Cubic Regularized Newton (CRN) (Nesterov & Polyak, 2006) method
to minimax problems with local superlinear convergence rates and global convergence guarantee.
However, the established global convergence rates of O(ϵ−1) by Nesterov & Scrimali (2006) and
O((Lρ/µ2) log(ϵ−1)) by Huang et al. (2022) under C-C and SC-SC conditions are no better than
the optimal first-order methods. Another line of work generalizes the optimal first-order methods
to higher-order methods. Monteiro & Svaiter (2012) proposed the Newton Proximal Extragradient
(NPE) method with a global convergence rate of O(ϵ−2/3 log log(ϵ−1)) under the C-C conditions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

This result nearly matches the lower bounds (Adil et al., 2022; Lin & Jordan, 2024), except an ad-
ditional O(log log(ϵ−1)) factor which is caused by the implicit binary search at each iteration. Re-
cently, Alves & Svaiter (2023) proposed a search-free NPE method to remove this O(log log(ϵ−1))
factor based on ideas from homotopy. Over the past decade, researchers also proposed various
second-order methods, in addition to the NPE framework (Monteiro & Svaiter, 2012), that achieve
the same convergence rate. This algorithms include the second-order extension of EG (Bullins &
Lai, 2022; Adil et al., 2022; Lin et al., 2022; Huang & Zhang, 2022) (which we refer to as EG-2,
Huang & Zhang (2022) call it ARE), that of OGDA (Jiang & Mokhtari, 2022; Jiang et al., 2024)
(which we refer to as OGDA-2), and that of DE (Lin & Jordan, 2024) (they name the method Pers-
esus). For SC-SC problems, Jiang & Mokhtari (2022) proved the OGDA-2 can converge at the rate
of O((ρ/µ)2/3 + log log(ϵ−1)), and Huang & Zhang (2022) proposed the ARE-restart with the rate
of O((ρ/µ)2/3 log log(ϵ−1)).

Although the aforementioned second-order methods Adil et al. (2022); Lin & Jordan (2024); Lin
et al. (2022); Jiang & Mokhtari (2022); Monteiro & Svaiter (2012) enjoy an improved convergence
rate over the first-order methods and have achieved optimal iteration complexities, they require
querying one new Hessian at each iteration and solving a matrix inversion problem at each Newton
step, which leads to a O(d3) computational cost per iteration. This becomes the main bottleneck
that limits the applicability of second-order methods. Liu & Luo (2022a) proposed quasi-Newton
methods for saddle point problems that access one Hessian-vector product instead of the exact Hes-
sian for each iteration. The iteration complexity is O(d2) for quasi-Newton methods. However, their
methods do not have a global convergence guarantee under general (S)C)-(S)C conditions.

In this paper, we propose a computation-efficient second-order method, which we call LEN (Lazy
Extra Newton method). In contrast to all existing second-order methods or quasi-Newton methods
for minimax optimization problems that always access new second-order information for the coming
iteration, LEN reuses the second-order information from past iterations. Specifically, LEN solves
a cubic regularized sub-problem using the Hessian from the snapshot point that is updated every
m iteration, then conducts an extra-gradient step by the gradient from the current iteration. We
provide a rigorous theoretical analysis of LEN to show it maintains fast global convergence rates
and goes beyond the optimal second-order methods Adil et al. (2022); Lin & Jordan (2024); Huang
& Zhang (2022); Lin et al. (2022); Alves & Svaiter (2023); Jiang et al. (2024) in terms of the overall
computational complexity. We summarize our contributions as follows.

• When the object function f(·, ·) is convex in x and concave in y, we propose LEN and
prove that it finds an ϵ-saddle point in O(m2/3ϵ−2/3) iterations. Under Assumption 3.4,
where the complexity of calculating F (z) is N and the complexity of calculating ∇F (z)
is dN , the optimal choice is m = Θ(d). In this case, LEN only requires a computational
complexity of Õ((N+d2)(d+d2/3ϵ−2/3)), which is strictly better than O((N+d2)dϵ−2/3)
for the existing optimal second-order methods by a factor of d1/3.

• When the object function f(·, ·) is µ-strongly-convex in x and µ-strongly-concave in y, we
apply the restart strategy on LEN and propose LEN-restart. We prove the algorithm can
find an ϵ-root with Õ((N + d2)(d + d2/3(ρ/µ)2/3)) computational complexity, where ρ
means the Hessian of f(·, ·) is ρ Lipschitz-continuous. Our result is strictly better than the
Õ((N + d2)d(ρ/µ)2/3) in prior works.

We compare our results with the prior works in Table 1.

2 RELATED WORKS AND TECHNICAL CHALLENGES

Lazy Hessian in minimization problems. The idea of reusing Hessian was initially presented by
Shamanskii (1967) and later incorporated into the Levenberg-Marquardt method, damped Newton
method, and proximal Newton method (Fan, 2013; Lampariello & Sciandrone, 2001; Wang et al.,
2006; Adler et al., 2020). However, the explicit advantage of lazy Hessian update over the ordinary
Newton(-type) update was not discovered until the recent work of (Doikov et al., 2023; Chayti et al.,
2023). Let M > 0 be a constant and π(t) = t− t mod m. They applied the following lazy Hessian

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: We compare the required computational complexity to achieve an ϵ-saddle point of the
proposed LEN with the optimal choice m = Θ(d) and other existing algorithms on both convex-
concave (C-C) and strongly-convex-strongly-concave (SC-SC) problems. Here, d = dx + dy is the
dimension of the problem. We assume the gradient is L-Lipschitz continuous for EG and the Hessian
is ρ-Lipschitz continuous for others. We count each gradient oracle call with N computational
complexity, and each Hessian oracle with dN computational complexity.

Setup Method Computational Cost

EG (Korpelevich, 1976) O((N + d)ϵ−1)

NPE (Monteiro & Svaiter, 2012) Õ((N + d2)dϵ−2/3)

search-free NPE (Alves & Svaiter, 2023) O((N + d2)dϵ−2/3)

C-C EG-2 (Adil et al., 2022) Õ((N + d2)dϵ−2/3)

Perseus (Lin & Jordan, 2024) Õ((N + d2)dϵ−2/3)

OGDA-2 (Jiang & Mokhtari, 2022) O((N + d2)dϵ−2/3)

LEN (Theorem 4.3) Õ((N + d2)(d+ d2/3ϵ−2/3))

EG (Korpelevich, 1976) Õ((N + d)(L/µ))

OGDA-2 (Jiang & Mokhtari, 2022) O((N + d2)d(ρ/µ)2/3)

SC-SC ARE-restart (Huang & Zhang, 2022) Õ((N + d2)d(ρ/µ))2/3)

Perseus-restart (Lin & Jordan, 2024) Õ((N + d2)d(ρ/µ)2/3)

LEN-restart (Corollary 4.1) Õ((N + d2)(d+ d2/3(ρ/µ)2/3))

update on cubic regularized Newton (CRN) methods (Nesterov & Polyak, 2006):

zt+1 = argmin
z∈Rd

{
⟨F (zt), z − zt⟩+

1

2
⟨∇F (zπ(t))(z − zt), z − zt⟩+

M

6
∥z − zt∥3

}
, (2)

where F : Rd → Rd is the gradient field of a convex function. They establish the convergence rates
of O(

√
mϵ−3/2) for nonconvex optimization (Doikov et al., 2023), and O(

√
mϵ−1/2) for convex

optimization (Chayti et al., 2023) respectively. Such rates lead to the total computational cost of
Õ((N + d2)(d+

√
dϵ−3/2)) and Õ((N + d2)(d+

√
dϵ−1/2)) by setting m = Θ(d), which strictly

improve the result by classical CRN methods by a factor of
√
d on both setups.

We have also observed that the idea of the “lazy Hessian” is widely used in practical second-order
methods. Sophia (Liu et al., 2023) estimates a diagonal Hessian matrix as a pre-conditioner, and to
reduce the complexity, the pre-conditioner is updated in a lazy manner. KFAC (Martens & Grosse,
2015; Grosse & Martens, 2016) approximates the Fisher information matrix, and it also uses an
exponential moving average (EMA) to update the estimate of the Fisher information matrix, which
can be viewed as a soft version of the lazy update.

Challenge of using lazy Hessian updates in minimax problems. In comparison to the previous
works on lazy Hessian, our methods LEN and LEN-restart demonstrate the advantage of using lazy
Hessian for a broader class of optimization problems, the minimax problems. Our analysis differs
from the ones in Doikov et al. (2023); Chayti et al. (2023). Their methods only take a lazy CRN
update (2) at each iteration, which makes it easy to bound the error of lazy Hessian updates using
Assumption 3.1 and the triangle inequality in the following way:

∥∇F (zt)−∇F (zπ(t))∥ ≤ ρ∥zπ(t) − zt∥ ≤ ρ

t−1∑
i=π(t)

∥zi − zi+1∥.

Our method, on the other hand, does not only take a lazy (regularized) Newton update but also
requires an extra gradient step (Line 3 in Algorithm 1). Thus, the progress of one Newton update

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

{∥zi+1/2−zi∥}ti=π(t) cannot directly bound the error term ∥zt−zπ(t)∥ introduced by lazy Hessian
update. Moreover, for minimax problems the matrix ∇F (zπ(t)) is no longer symmetric, which leads
to different analysis and implementation of sub-problem solving (Section 4.3). We refer the readers
to Section 4.1 for more detailed discussions.

Notations. Throughout this paper, log is base 2 and log+(·) := 1+log(·). We use ∥ · ∥ to denote
the spectral norm and Euclidean norm of matrices and vectors, respectively. We denote π(t) = t−(t
mod m) when presenting the lazy updates.

3 PRELIMINARIES

In this section, we introduce notations and basic assumptions used in our work. We start with several
standard definitions for Problem (1).
Definition 3.1. We call a function f(x,y) : Rdx × Rdy → R has ρ-Lipschitz Hessians if we have

∥∇2f(x,y)−∇2f(x′,y′)∥ ≤ ρ

∥∥∥∥[x− x′

y − y′

]∥∥∥∥ , ∀(x,y), (x′,y′) ∈ Rdx × Rdy .

Definition 3.2. A differentiable function f(·, ·) is µ-strongly-convex-µ-strongly-concave for some
µ > 0 if

f(x′,y) ≥ f(x,y) + (x′ − x)⊤∇xf(x,y) +
µ

2
∥x− x′∥2, ∀x′,x ∈ Rdx ,y ∈ Rdy ;

f(x,y′) ≤ f(x,y) + (y′ − y)⊤∇yf(x,y)−
µ

2
∥y − y′∥2, ∀y′,y ∈ Rdy ,x ∈ Rdx .

We say f is convex-concave if µ = 0.

We are interested in finding a saddle point of Problem (1), formally defined as follows.
Definition 3.3. We call a point (x∗,y∗) ∈ Rdx ×Rdy a saddle point of a function f(·, ·) if we have

f(x∗,y) ≤ f(x∗,y∗) ≤ f(x,y∗), ∀x ∈ Rdx , y ∈ Rdy .

Next, we introduce all the assumptions made in this work. In this paper, we focus on Problem (1)
that satisfies the following assumptions.
Assumption 3.1. We assume the function f(·, ·) is twice continuously differentiable, has ρ-Lipschitz
continuous Hessians, and has at least one saddle point (x∗,y∗).

We will study convex-concave problems and strongly-convex-strongly-concave problems.
Assumption 3.2 (C-C setting). We assume the function f(·, ·) is convex in x and concave in y.
Assumption 3.3 (SC-SC setting). We assume the function f(·, ·) is µ-strongly-convex-µ-strongly-
concave. We denote the condition number as κ := ρ/µ

We let d := dx+dy and denote the aggregated variable z := (x,y) ∈ Rd. We also denote the GDA
field of f and its Jacobian as

F (z) :=

[
∇xf(x,y)
−∇yf(x,y)

]
, ∇F (z) :=

[
∇2

xxf(x,y) ∇2
xyf(x,y)

−∇2
yxf(x,y) −∇2

yyf(x,y)

]
. (3)

The GDA field of f(·, ·) has the following properties.
Lemma 3.1 (Lemma 2.7 Lin et al. (2022)). Under Assumptions 3.1 and 3.2, we have

1. F is monotone, i.e. ⟨F (z)− F (z′), z − z′⟩ ≥ 0, ∀z, z′ ∈ Rd.

2. ∇F is ρ-Lipschitz continuous, i.e. ∥∇F (z)−∇F (z′)∥ ≤ ρ∥z − z′∥, ∀z, z′ ∈ Rd.

3. F (z∗) = 0 if and only if z∗ = (x∗,y∗) is a saddle point of function f(·, ·).

Furthermore, if Assumption 3.3 holds, we have F (·) is µ-strongly-monotone, i.e.

⟨F (z)− F (z′), z − z′⟩ ≥ µ∥z − z′∥2, ∀z, z′ ∈ Rd.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

For the C-C case, the commonly used optimality criterion is the following restricted gap.

Definition 3.4 (Nesterov (2007)). Let Bβ(w) be the ball centered at w with radius β. Let (x∗,y∗)
be a saddle point of function f . For a given point (x̂, ŷ), we let β sufficiently large such that it holds

max {∥x̂− x∗∥, ∥ŷ − y∗∥} ≤ β,

we define the restricted gap function as

Gap(x̂, ŷ;β) := max
y∈Bβ(y∗)

f(x̂,y)− min
x∈Bβ(x∗)

f(x, ŷ),

We call (x̂, ŷ) an ϵ-saddle point if Gap(x̂, ŷ;β) ≤ ϵ and β = Ω(max{∥x0 − x∗∥, ∥y0 − y∗∥}).

For the SC-SC case, we use the following stronger notion.

Definition 3.5. Suppose that Assumption 3.3 holds. Let z∗ = (x∗,y∗) be the unique saddle point
of function f . We call ẑ = (x̂, ŷ) an ϵ-root if ∥ẑ − z∗∥ ≤ ϵ.

Most previous works only consider the complexity metric as the number of oracle calls, where an
oracle takes a point z ∈ Rd as the input and returns a tuple (F (z),∇F (z)) as the output. The
existing algorithms (Monteiro & Svaiter, 2012; Lin & Jordan, 2022; Adil et al., 2022; Alves &
Svaiter, 2023) have achieved optimal complexity regarding the number of oracle calls. In this work,
we focus on the computational complexity of the oracle. More specifically, we distinguish between
the different computational complexities of calculating the Hessian matrix ∇F (z) and the gradient
F (z). Formally, we make the following assumption as Doikov et al. (2023).

Assumption 3.4. We count the computational complexity of computing F (·) as N and the compu-
tational complexity of ∇F (·) as Nd.

Remark 3.1. Assumption 3.4 supposes the cost of computing ∇F (·) is d times that of computing
F (·). It holds in many practical scenarios as one Hessian oracle can be computed via d Hessian-
vector products on standard basis vectors e1, · · · , ed, and one Hessian-vector product oracle is
typically as expensive as one gradient oracle (Wright, 2006):

1. When the computational graph of f is obtainable, both F (z) and ∇F (z)v can be com-
puted using automatic differentiation with the same cost for any z,v ∈ Rd.

2. When f is a black box function, we can estimate the Hessian-vector ∇F (z)v via the finite-
difference uδ(z;v) = 1

δ (F (z + δv) − F (z − δv)) and we have limδ→0 uδ(z;v) =
∇F (z)v under mild conditions on F (·).

4 ALGORITHMS AND CONVERGENCE ANALYSIS

In this section, we present novel second-order methods for solving minimax optimization prob-
lems (1). We present LEN and its convergence analysis for convex-concave minimax problems in
Section 4.1. We generalize LEN for strongly-convex-strongly-concave minimax problems by pre-
senting LEN-restart in Section 4.2. We discuss the details of solving minimax cubic-regularized
sub-problem, present detailed implementation of LEN, and give the total computational complexity
of proposed methods in Section 4.3.

4.1 THE LEN ALGORITHM FOR CONVEX-CONCAVE PROBLEMS

We propose LEN for convex-concave problems in Algorithm 1. Our method builds on the recently
proposed optimal second-order methods ARE (Adil et al., 2022; Huang & Zhang, 2022) / Newton-
Minimax (Lin et al., 2022). The only change is that we reuse the Hessian from previous iterates, as
colored in blue. Each iteration of LEN contains the following two steps:

F (zt) +∇F (zπ(t))(zt+1/2 − zt) +M∥zt+1/2 − zt∥(zt+1/2 − zt) = 0, (Implicit Step)

zt+1 = zt −
F (zt+1/2)

M∥zt+1/2 − zt∥
. (Explicit Step)

(4)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 LEN(z0, T,m,M)

1: for t = 0, · · · , T − 1 do
2: Compute lazy cubic step, i.e. find zt+1/2 that satisfies

F (zt) = (∇F (zπ(t)) +M∥zt − zt+1/2∥Id)(zt − zt+1/2).

3: Compute γt = M∥zt − zt+1/2∥.
4: Compute extra-gradient step zt+1 = zt − γ−1

t F (zt+1/2).
5: end for
6: return z̄T = 1∑T−1

t=0 γ−1
t

∑T−1
t=0 γ−1

t zt+1/2.

The first step (implicit step) solves a cubic regularized sub-problem based on the ∇F (zπ(t)) com-
puted at the latest snapshot point and F (zt) at the current iteration point. This step is often viewed
as an oracle (Lin & Jordan, 2024; Nesterov, 2023; Lin et al., 2022; Adil et al., 2022) as there exists
efficient solvers, which will also be discussed in Section 4.3. The second one (explicit step) conducts
an extra gradient step based on F (zt+1/2).

Reusing the Hessian in the implicit step makes each iteration much cheaper, but would cause ad-
ditional errors compared to previous methods (Huang & Zhang, 2022; Lin et al., 2022; Adil et al.,
2022; Nesterov, 2023). The error resulting from the lazy Hessian updates is formally characterized
by the following theorem.
Lemma 4.1. Suppose that Assumption 3.1 and 3.2 hold. For any z ∈ Rd, Algorithm 1 ensures

γ−1
t ⟨F (zt+1/2), zt+1/2 − z⟩ ≤ 1

2
∥zt − z∥2 − 1

2
∥zt+1 − z∥2 − 1

2
∥zt+1/2 − zt+1∥2

− 1

2
∥zt − zt+1/2∥2 +

ρ2

2M2
∥zt − zt+1/2∥2 +

2ρ2

M2
∥zπ(t) − zt∥2︸ ︷︷ ︸

(∗)

.

Above, (*) is the error from lazy Hessian updates. Note that (*) vanishes when the current Hessian
is used. For lazy Hessian updates, the error would accumulate in the epoch.

The key step in our analysis shows that we can use the negative terms in the right-hand side of the
inequality in Lemma 4.1 to bound the accumulated error by choosing M sufficiently large, with the
help of the following technical lemma.
Lemma 4.2. For any sequence of positive numbers {rt}t≥0, it holds for any m ≥ 2 that∑m−1

t=1

(∑t−1
i=0 ri

)2
≤ m2

2

∑m−1
t=0 r2t .

When m = 1, the algorithm reduces to the EG-2 algorithm (Huang & Zhang, 2022; Lin et al., 2022;
Adil et al., 2022) without using lazy Hessian updates. When m ≥ 2, we use Lemma 4.2 to upper
bound the error that arises from lazy Hessian updates. Finally, we prove the following guarantee for
our proposed algorithm.
Theorem 4.1 (C-C setting). Suppose that Assumption 3.1 and 3.2 hold. Let z∗ = (x∗,y∗) be a
saddle point and β = ∥z0 − z∗∥. Set M ≥ 3ρm. The sequence of iterates generated by Algorithm
1 is bounded zt ∈ Bβ(z

∗), zt+1/2 ∈ B3β(z
∗), ∀t = 0, · · · , T − 1, and satisfies the following

ergodic convergence:

Gap(x̄T , ȳT ; 3β) ≤
16M∥z0 − z∗∥3

T 3/2
.

Let M = 3ρm. Algorithm 1 finds an ϵ-saddle point within O(m2/3ϵ−2/3) iterations.

Discussion on the computational complexity of the oracles. Theorem 4.1 indicates that LEN
requires O(m2/3ϵ−2/3) calls to F (·) and O(m2/3ϵ−2/3/m+ 1) calls to ∇F (·) to find the ϵ-saddle
point. Under Assumption 3.4, the computational cost to call the oracles F (·) and ∇F (·) is

Oracle Computational Cost = O
(
N ·m2/3ϵ−2/3 + (Nd) ·

(
ϵ−2/3

m1/3
+ 1

))
. (5)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2 LEN-restart(z0, T,m,M, S)

1: z(0) = z0
2: for s = 0, · · · , S − 1
3: z(s+1) = LEN(z(s), T,m,M)

end for

Taking m = Θ(d) minimizes (5) to O(Nd + Nd2/3ϵ−2/3). In comparison to the state-of-the-art
second-order methods (Huang & Zhang, 2022; Lin et al., 2022; Adil et al., 2022), whose computa-
tional cost in terms of the oracles is O(Ndϵ−2/3) since they require to query ∇F (·) at each iteration,
our methods significantly improve their results by a factor of d1/3.

It is worth noticing that the computational cost of an algorithm includes both the computational cost
of calling the oracles, which we have discussed above, and the computational cost of performing
the updates (i.e. solving auxiliary problems) after accessing the required oracles. We will give an
efficient implementation of LEN and analyze the total computational cost later in Section 4.3.

4.2 THE LEN-RESTART ALGORITHM FOR STRONGLY-CONVEX-STRONGLY-CONCAVE
PROBLEMS

We generalize LEN to solve the strongly-convex-strongly-concave minimax optimization by incor-
porating the restart strategy introduced by Huang & Zhang (2022). We propose the LEN-restart in
Algorithm 2, which works in epochs. Each epoch of LEN-restart invokes LEN (Algorithm 1), which
gets z(s) as inputs and outputs z(s+1).

The following theorem shows that the sequence {z(s)} enjoys a superlinear convergence in epochs.
Furthermore, the required number of iterations in each epoch to achieve such a superlinear rate is
only a constant.
Theorem 4.2 (SC-SC setting). Suppose that Assumptions 3.1 and 3.3 hold. Let z∗ = (x∗,y∗) be the

unique saddle point. Set M = 3ρm as Theorem 4.1 and T =
(

2M∥z0−z∗∥
µ

)2/3
. Then the sequence

of iterates generated by Algorithm 2 converge to z∗ superlinearly as ∥z(s)−z∗∥2 ≤
(
1
2

)(3/2)s ∥z0−
z∗∥2. In particular, Algorithm 2 with M = 3ρm finds a point z(s) such that ∥z(s) − z∗∥ ≤ ϵ within
S = log3/2 log2(1/ϵ) epochs. The total number of inner loop iterations is given by

TS = O
(
m2/3κ2/3 log log(1/ϵ)

)
.

Under Assumption 3.4, Algorithm 2 with m = Θ(d) takes the computational complexity of O((Nd+
Nd2/3κ2/3) log log(1/ϵ)) to call the oracles F (·) and ∇F (·).

4.3 IMPLEMENTATION DETAILS AND COMPUTATIONAL COMPLEXITY ANALYSIS

We provide details of implementing the cubic regularized Newton oracle (Implicit Step, (4)). In-
spired by Monteiro & Svaiter (2012); Adil et al. (2022); Lin et al. (2022), we transform the sub-
problem into a root-finding problem for a univariate function.
Lemma 4.3 (Section 4.3 Lin et al. (2022)). Suppose Assumption 3.1 and 3.2 hold for function
f : Rdx × Rdy → R and let F be its GDA field. Define γt = M∥zt+1/2 − zt∥. The cubic
regularized Newton oracle (Implicit Step, (4)) can be rewritten as:

zt+1/2 = zt − (∇F (zπ(t)) + γtId)
−1F (zt),

which can be implemented by finding the root of the following univariate function:

ϕ(γ) := M ∥(∇F (zπ(t)) + γId)
−1F (zt)∥ − γ. (6)

Furthermore, the function ϕ(γ) is strictly decreasing when λ > 0.

From the above lemma, to implement the cubic regularized Newton oracle, it suffices to find the
root of a strictly decreasing function ϕ(γ), which can be solved within Õ(1) iteration. The main

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

operation is to solve the following linear system:
(∇F (zπ(t)) + γId)h = F (zt). (7)

Naively solving this linear system at every iteration still results in an expensive computational com-
plexity of O(d3) per iteration.

We present a computationally efficient way to implement LEN by leveraging the Schur factorization
at the snapshot point ∇F (zπ(t)) = QUQ−1, where Q ∈ Cd is a unitary matrix and U ∈ Cd is an
upper-triangular matrix. Then we apply the following update

h = Q(U + γId)
−1Q−1F (zt) (8)

instead of solving the linear system (7) at each iteration. The final implementable algorithm is
presented in Algorithm 3.

Now, we are ready to analyze the total computational complexity of LEN, which can be divided into
the following two parts:

Computational Cost = Oracle Computational Cost + Update Computational Cost,
where the first part has been discussed in Section 4.1. As for the update computational cost, the
Schur decomposition with an O(d3) computational complexity is required once every m iterations.
After the Schur decomposition has been given at the snapshot point, the dominant part of the up-
date computational complexity is solving the linear system (7), which can be done efficiently by
solving the upper-triangular linear system (8) with the back substitution algorithm within O(d2)
computational complexity. Thus, we have

Update Computational Cost = Õ
(
d2 ·m2/3ϵ−2/3 + d3 ·

(
ϵ−2/3

m1/3
+ 1

))
, (9)

and the total computational cost of LEN is

Computational Cost
(5),(9)
= Õ

(
(d2 +N) ·m2/3ϵ−2/3 + (d3 +Nd) ·

(
ϵ−2/3

m1/3
+ 1

))
. (10)

By taking m = Θ(d), we obtain the best computational complexity in (10) of LEN, which is for-
mally stated in the following theorem.
Theorem 4.3 (C-C setting). Under the same setting of Theorem 4.1, Algorithm 3 with m = Θ(d)

finds an ϵ-saddle point with Õ((N + d2)(d+ d2/3ϵ−2/3) computational complexity.

We also present the total computational complexity of LEN-restart for SC-SC setting.
Corollary 4.1 (SC-SC setting). Under the same setting of Theorem 4.2, Algorithm 2 implemented
in the same way as Algorithm 3 with m = Θ(d) finds an ϵ-root with Õ((N + d2)(d + d2/3κ2/3)
computational complexity.

In both cases, our proposed algorithms improve the total computational cost of the optimal second-
order methods (Monteiro & Svaiter, 2012; Lin & Jordan, 2024; Adil et al., 2022; Jiang & Mokhtari,
2022) by a factor of d1/3.
Remark 4.1. In the main text, we assume the use of the classical algorithm for matrix inver-
sion/decomposition, which has a computational complexity of O(d3). The fast matrix multiplication
proposed by researchers in the field of theoretical computer science only requires a complexity of
dω , where the best-known ω is currently around 2.371552 (Williams et al., 2024). This also implies
faster standard linear algebra operators including Schur decomposition and matrix inversion (Dem-
mel et al., 2007). However, the large hidden constant factors in these fast matrix multiplication al-
gorithms mean that the matrix dimensions necessary for these algorithms to be superior to classical
algorithms are much larger than what current computers can effectively handle. Consequently, these
algorithms are not always used in practice. We present the computational complexity of using fast
matrix operations in Appendix G.

In Appendix H, we also extend our algorithms to allow inexact auxiliary CRN sub-problem solving
and analyze the total complexity. Specifically, we design an efficient sub-procedure (Algorithm
5) to solve the CRN sub-problem to desired accuracy in only O(log log(1/ϵ)) number of linear
system solving. It tightens the O(log(1/ϵ)) iteration complexity in (Bullins & Lai, 2022; Adil
et al., 2022). Additionally, (Bullins & Lai, 2022; Adil et al., 2022) requires additionally assume
σmin(∇F (z)) ≥ µ for some positive constant µ, which makes the problem similar to strongly-
convex(-strongly-concave) problems, while our analysis does not require such an assumption.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Algorithm 3 Implementation of LEN (z0, T,m,M)

1: for t = 0, · · · , T − 1 do
2: if t mod m = 0 do
3: Compute the Schur decomposition such that ∇F (zt) = QUQ−1.
4: end if
5: Let ϕ(·) defined as 6 and compute γt as its root by a binary search.
6: Compute lazy cubic step zt+1/2 = Q(U + γtId)

−1Q−1F (zt).

7: Compute extra-gradient step zt+1 = zt − γ−1
t F (zt+1/2).

8: end for
9: return z̄T = 1∑T−1

t=0 γ−1
t

∑T−1
t=0 γ−1

t zt+1/2.

0.0 2.5 5.0 7.5 10.0
time (s)

10−14

10−10

10−6

10−2

gr
ad

. n
or

m

EG
m=1
m=2
m=10
m=100

0 20 40
time (s)

10−11

10−7

10−3

101

gr
ad

. n
or

m
EG
m=1
m=2
m=10
m=100

0 20 40 60 80
time (s)

10−11

10−7

10−3

101

gr
ad

. n
or

m

EG
m=1
m=2
m=10
m=100

(a) n = 10 (b) n = 100 (c) n = 200

0.0 2.5 5.0 7.5 10.0
time (s)

10−14

10−10

10−6

10−2

di
st

. t
o

sa
dd

le

EG
m=1
m=2
m=10
m=100

0 20 40
time (s)

10−11

10−7

10−3

101

di
st

. t
o

sa
dd

le

EG
m=1
m=2
m=10
m=100

0 20 40 60 80
time (s)

10−11

10−7

10−3

101

di
st

. t
o

sa
dd

le

EG
m=1
m=2
m=10
m=100

(d) n = 10 (e) n = 100 (f) n = 200

Figure 1: We demonstrate running time v.s. gradient norm ∥F (z)∥ and v.s. distance to saddle point
∥z − z∗∥ for Problem (11) with different sizes: n ∈ {10, 100, 200}.

5 NUMERICAL EXPERIMENTS

We conduct our algorithms on a regularized bilinear min-max problem and fairness-aware machine
learning tasks. We include EG (Korpelevich, 1976) and second-order extension of EG (Monteiro
& Svaiter, 2012; Adil et al., 2022; Bullins & Lai, 2022) (which is our algorithm with m = 1) as
the baselines since they are the optimal first-order and second-order methods for convex-concave
minimax problems, respectively. We run the programs on an AMD EPYC 7H12 64-Core Processor.

5.1 REGULARIZED BILINEAR MIN-MAX PROBLEM

We first conduct numerical experiments on the cubic regularized bilinear min-max problem consid-
ered in the literature (Alves & Svaiter, 2023; Huang & Zhang, 2022; Jiang et al., 2024):

min
x∈Rn

max
y∈Rn

f(x,y) =
ρ

6
∥x∥3 + y⊤(Ax− b). (11)

The function f(x,y) is convex-concave and has ρ-Lipschitz continuous Hessians. Moreover, the
unique saddle point z∗ = (x∗,y∗) of f(x,y) can be explicitly calculated as x∗ = A−1b and
y∗ = −ρ∥x∗∥2(A⊤)−1x∗/2, so we can compute the distance to z∗ to measure the performance of
algorithms. Following Lin et al. (2022), we generate each element in b as independent Rademacher

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.0 2.5 5.0 7.5 10.0
time (s)

10−14

10−10

10−6

10−2

gr
ad

. n
or

m
EG
EG-2
LEN

0 200 400
time (s)

10−14

10−10

10−6

10−2

gr
ad

. n
or

m

EG
EG-2
LEN

0 2000 4000
time (s)

10−15

10−11

10−7

10−3

gr
ad

. n
or

m

EG
EG-2
LEN

(a) heart (b) adult (c) law school

Figure 2: We demonstrate running time v.s. gradient norm ∥F (z)∥ for fairness-aware machine
learning task (Problem (12)) on datasets “heart”, “adult”, and “law school”.

variables in {−1,+1}, set the regularization coefficient ρ = 1/(20n) and the matrix

A =


1 −1

.
1 −1

1

 .

We compare our methods with the baselines on different sizes of problem: n ∈ {100, 200, 500}.
For EG, we tune the stepsize in {1, 0.1, 0.01, 0.001}. For LEN, we vary m in {1, 2, 10, 100}. The
results of running time against ∥F (z)∥ and ∥z − z∗∥ is presented in Figure 1.

5.2 FAIRNESS-AWARE MACHINE LEARNING

We then examine our algorithm in the task of fairness-aware machine learning. Let {ai, bi, ci}ni=1

be the training set, where ai ∈ Rdx denotes the features of the i-th sample, bi ∈ {−1,+1} is the
corresponding label, and ci ∈ {−1,+1} is an additional feature that is required to be protected and
debiased. For example, ci can denote the gender. Zhang et al. (2018) proposed to solve the following
minimax problem to mitigate unwanted bias of ci by adversarial learning:

min
x∈Rdx

max
y∈R

1

n

n∑
i=1

ℓ(bia
⊤
i x)− βℓ(ciya

⊤
i x) + λ∥x∥2 − γy2, (12)

where ℓ is the logit function such that ℓ(t) = log(1+exp(−t)). We set λ = γ = 10−4 and β = 0.5.
We conduct the experiments on datasets “heart” (n = 270, dx = 13) (Chang & Lin, 2011), “adult”
(n = 32, 561, dx = 123) (Chang & Lin, 2011) and “law school” (n = 20, 798, dx = 380) (Le Quy
et al., 2022). For all the datasets, we choose “gender” as the protected feature. For EG, we tune the
stepsize in {0.1, 0.01, 0.001}. For second-order methods (EG-2 and LEN), as we do not know the
value of ρ in advance, we view it as a hyperparameter and tune it in {1, 10, 100}. We set m = 10 for
LEN and we find this simple choice performs well in all the datasets we test. We show the results of
running time against gradient norm ∥F (z)∥ in Figure 2.

6 CONCLUSION AND FUTURE WORKS

In this paper, we propose LEN and LEN-restart for C-C and SC-SC min-max problems, respectively.
By using lazy Hessian updates, our methods improve the computational complexity of the current
best-known second-order methods by a factor of d1/3. Numerical experiments on both real and
synthetic datasets also verify the efficiency of our method.

For future works, it will be interesting to extend our idea to adaptive second-order methods (Doikov
et al., 2024; Carmon et al., 2022; Antonakopoulos et al., 2022; Liu & Luo, 2022b) or stochastic
problems with sub-sampled Newton methods (Lin et al., 2022; Chayti et al., 2023; Zhou et al., 2019;
Tripuraneni et al., 2018; Wang et al., 2019). Besides, our methods only focus on the convex-concave
case, it is also possible to reduce the Hessian oracle for the nonconvex-concave problems (Luo et al.,
2022; Lin et al., 2020; Zhang et al., 2022b) or study the structured nonconvex-nonconcave problems
(Zheng et al., 2024; Diakonikolas et al., 2021; Lee & Kim, 2021; Chen & Luo, 2022).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Deeksha Adil, Brian Bullins, Arun Jambulapati, and Sushant Sachdeva. Optimal methods for higher-
order smooth monotone variational inequalities. arXiv preprint arXiv:2205.06167, 2022.

Ilan Adler, Zhiyue T. Hu, and Tianyi Lin. New proximal newton-type methods for convex optimiza-
tion. In CDC, 2020.

M. Marques Alves and Benar F. Svaiter. A search-free O(1/k3/2) homotopy inexact
proximal-newton extragradient algorithm for monotone variational inequalities. arXiv preprint
arXiv:2308.05887, 2023.

Kimon Antonakopoulos, Ali Kavis, and Volkan Cevher. Extra-newton: A first approach to noise-
adaptive accelerated second-order methods. In NeurIPS, 2022.

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization, volume 28.
Princeton university press, 2009.

Brian Bullins and Kevin A. Lai. Higher-order methods for convex-concave min-max optimization
and monotone variational inequalities. SIAM Journal on Optimization, 32(3):2208–2229, 2022.

Yair Carmon, Danielle Hausler, Arun Jambulapati, Yujia Jin, and Aaron Sidford. Optimal and
adaptive monteiro-svaiter acceleration. In NeurIPS, 2022.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

El Mahdi Chayti, Nikita Doikov, and Martin Jaggi. Unified convergence theory of stochastic and
variance-reduced cubic newton methods. arXiv preprint arXiv:2302.11962, 2023.

Lesi Chen and Luo Luo. Near-optimal algorithms for making the gradient small in stochastic mini-
max optimization. arXiv preprint arXiv:2208.05925, 2022.

James Demmel, Ioana Dumitriu, and Olga Holtz. Fast linear algebra is stable. Numerische Mathe-
matik, 108(1):59–91, 2007.

Jelena Diakonikolas, Constantinos Daskalakis, and Michael I. Jordan. Efficient methods for struc-
tured nonconvex-nonconcave min-max optimization. In AISTATS, 2021.

Nikita Doikov, El Mahdi Chayti, and Martin Jaggi. Second-order optimization with lazy hessians.
In ICML, 2023.

Nikita Doikov, Konstantin Mishchenko, and Yurii Nesterov. Super-universal regularized newton
method. SIAM Journal on Optimization, 34(1):27–56, 2024.

Simon S Du, Jianshu Chen, Lihong Li, Lin Xiao, and Dengyong Zhou. Stochastic variance reduction
methods for policy evaluation. In ICML, 2017.

Jinyan Fan. A shamanskii-like levenberg-marquardt method for nonlinear equations. Computational
Optimization and Applications, 56(1):63–80, 2013.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution
layers. In ICML, 2016.

James A Hanley and Barbara J McNeil. The meaning and use of the area under a receiver operating
characteristic (roc) curve. Radiology, 143(1):29–36, 1982.

Kevin Huang and Shuzhong Zhang. An approximation-based regularized extra-gradient method for
monotone variational inequalities. arXiv preprint arXiv:2210.04440, 2022.

Kevin Huang, Junyu Zhang, and Shuzhong Zhang. Cubic regularized newton method for the saddle
point models: A global and local convergence analysis. Journal of Scientific Computing, 91(2):
60, 2022.

Ruichen Jiang and Aryan Mokhtari. Generalized optimistic methods for convex-concave saddle
point problems. arXiv preprint arXiv:2202.09674, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ruichen Jiang, Ali Kavis, Qiujiang Jin, Sujay Sanghavi, and Aryan Mokhtari. Adaptive and optimal
second-order optimistic methods for minimax optimization. arXiv preprint arXiv:2406.02016,
2024.

Galina M Korpelevich. The extragradient method for finding saddle points and other problems.
Matecon, 12:747–756, 1976.

Dmitry Kovalev, Adil Salim, and Peter Richtárik. Optimal and practical algorithms for smooth and
strongly convex decentralized optimization. In NeurIPS, 2020.

Dmitry Kovalev, Elnur Gasanov, Alexander Gasnikov, and Peter Richtarik. Lower bounds and op-
timal algorithms for smooth and strongly convex decentralized optimization over time-varying
networks. In NeurIPS, 2021.

Francesco Lampariello and Marco Sciandrone. Global convergence technique for the newton
method with periodic hessian evaluation. Journal of optimization theory and applications, 111:
341–358, 2001.

Tai Le Quy, Arjun Roy, Vasileios Iosifidis, Wenbin Zhang, and Eirini Ntoutsi. A survey on datasets
for fairness-aware machine learning. Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, 12(3):e1452, 2022.

Sucheol Lee and Donghwan Kim. Fast extra gradient methods for smooth structured nonconvex-
nonconcave minimax problems. In NeurIPS, 2021.

Tianyi Lin and Michael I. Jordan. A control-theoretic perspective on optimal high-order optimiza-
tion. Mathematical Programming, 2022.

Tianyi Lin and Michael I Jordan. Perseus: A simple high-order regularization method for variational
inequalities. Mathematical Programming, pp. 1–42, 2024.

Tianyi Lin, Chi Jin, and Michael I Jordan. Near-optimal algorithms for minimax optimization. In
COLT, 2020.

Tianyi Lin, Panayotis Mertikopoulos, and Michael I Jordan. Explicit second-order min-max opti-
mization methods with optimal convergence guarantee. arXiv preprint arXiv:2210.12860, 2022.

Chengchang Liu and Luo Luo. Quasi-newton methods for saddle point problems. In NeurIPS,
2022a.

Chengchang Liu and Luo Luo. Regularized newton methods for monotone variational inequalities
with Holders continuous jacobians. arXiv preprint arXiv:2212.07824, 2022b.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Luo Luo, Yujun Li, and Cheng Chen. Finding second-order stationary points in nonconvex-strongly-
concave minimax optimization. In NeurIPS, 2022.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In ICML, 2015.

Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis of extra-gradient and
optimistic gradient methods for saddle point problems: Proximal point approach. In AISTATS,
2020a.

Aryan Mokhtari, Asuman E. Ozdaglar, and Sarath Pattathil. Convergence rate of O(1/k) for op-
timistic gradient and extragradient methods in smooth convex-concave saddle point problems.
SIAM Journal on Optimization, 30(4):3230–3251, 2020b.

Renato DC Monteiro and Benar F Svaiter. Iteration-complexity of a newton proximal extragra-
dient method for monotone variational inequalities and inclusion problems. SIAM Journal on
Optimization, 22(3):914–935, 2012.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Renato DC Monteiro and Benar Fux Svaiter. On the complexity of the hybrid proximal extragradient
method for the iterates and the ergodic mean. SIAM Journal on Optimization, 20(6):2755–2787,
2010.

Arkadi Nemirovski. Prox-method with rate of convergence O(1/t) for variational inequalities
with lipschitz continuous monotone operators and smooth convex-concave saddle point problems.
SIAM Journal on Optimization, 15(1):229–251, 2004.

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

Yurii Nesterov. Dual extrapolation and its applications to solving variational inequalities and related
problems. Mathematical Programming, 109(2-3):319–344, 2007.

Yurii Nesterov. High-order reduced-gradient methods for composite variational inequalities. arXiv
preprint arXiv:2311.15154, 2023.

Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method and its global perfor-
mance. Mathematical Programming, 108(1):177–205, 2006.

Yurii Nesterov and Laura Scrimali. Solving strongly monotone variational and quasi-variational
inequalities. 2006.

Santiago Paternain, Miguel Calvo-Fullana, Luiz FO Chamon, and Alejandro Ribeiro. Safe policies
for reinforcement learning via primal-dual methods. IEEE Transactions on Automatic Control,
68(3):1321–1336, 2022.

Leonid Denisovich Popov. A modification of the arrow-hurwicz method for search of saddle points.
Mathematical notes of the Academy of Sciences of the USSR, 28:845–848, 1980.

R. Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal on
control and optimization, 14(5):877–898, 1976.

VE Shamanskii. A modification of newton’s method. Ukrainian Mathematical Journal, 19(1):
118–122, 1967.

Nilesh Tripuraneni, Mitchell Stern, Chi Jin, Jeffrey Regier, and Michael I Jordan. Stochastic cubic
regularization for fast nonconvex optimization. In NeurIPS, 2018.

John Von Neumann and Oskar Morgenstern. Theory of games and economic behavior, 2nd rev.
1947.

Hoi-To Wai, Zhuoran Yang, Zhaoran Wang, and Mingyi Hong. Multi-agent reinforcement learning
via double averaging primal-dual optimization. In NeurIPS, 2018.

Chang-yu Wang, Yuan-yuan Chen, and Shou-qiang Du. Further insight into the shamanskii modifi-
cation of newton method. Applied mathematics and computation, 180(1):46–52, 2006.

Mengdi Wang. Primal-dual π-learning: Sample complexity and sublinear run time for ergodic
markov decision problems. arXiv preprint arXiv:1710.06100, 2017.

Zhe Wang, Yi Zhou, Yingbin Liang, and Guanghui Lan. Stochastic variance-reduced cubic regular-
ization for nonconvex optimization. In AISTATS, 2019.

Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for matrix
multiplication: from alpha to omega. In SODA, 2024.

Stephen J. Wright. Numerical optimization, 2006.

Yangyang Xu. Primal-dual stochastic gradient method for convex programs with many functional
constraints. SIAM Journal on Optimization, 30(2):1664–1692, 2020.

Yiming Ying, Longyin Wen, and Siwei Lyu. Stochastic online auc maximization. In NIPS, 2016.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhuoning Yuan, Yan Yan, Milan Sonka, and Tianbao Yang. Large-scale robust deep auc maxi-
mization: A new surrogate loss and empirical studies on medical image classification. In ICCV,
2021.

Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. Mitigating unwanted biases with adver-
sarial learning. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, pp.
335–340, 2018.

Junyu Zhang, Mingyi Hong, and Shuzhong Zhang. On lower iteration complexity bounds for the
convex concave saddle point problems. Mathematical Programming, 194(1-2):901–935, 2022a.

Xuan Zhang, Necdet Serhat Aybat, and Mert Gurbuzbalaban. SAPD+: An accelerated stochastic
method for nonconvex-concave minimax problems. In NeurIPS, 2022b.

Taoli Zheng, Linglingzhi Zhu, Anthony Man-Cho So, José Blanchet, and Jiajin Li. Universal gradi-
ent descent ascent method for nonconvex-nonconcave minimax optimization. In NeurIPS, 2024.

Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic variance-reduced cubic regularization meth-
ods. JMLR, 20(134):1–47, 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A SOME USEFUL LEMMAS

Lemma A.1 (Proposition 2.8 Lin et al. (2022)). Let

x̄t =
1∑t−1

i=0 ηi

t−1∑
i=0

ηixi, ȳt =
1∑t−1

i=0 ηi

t−1∑
i=0

ηiyi.

Then under Assumption 3.2, for any z = (x,y), it holds that

f(x̄t,y)− f(x, ȳt) ≤
1∑t−1

i=0 ηi

t−1∑
i=0

ηi⟨F (zi), zi − z⟩.

B PROOF OF LEMMA 4.2

Proof. We prove the result by induction.

Apparently, it is true for m = 2, which is the induction base.

Assume that it holds for m ≥ 2. Then

m∑
t=1

(
t−1∑
i=0

ri

)2

=

m−1∑
t=1

(
t−1∑
i=0

ri

)2

+

(
m−1∑
i=0

ri

)2

≤ m2

2

m−1∑
t=0

r2t +m

m−1∑
t=0

r2t

≤
(
m2 + 2m

2

)m−1∑
t=0

r2t

≤ (m+ 1)2

2

m−1∑
t=0

r2t .

C PROOF OF LEMMA 4.1

Proof. Instead of directly providing a proof for Algorithm 1, we give the proof for the more general
inexact algorithm (Algorithm 4), which recovers Algorithm 1 if α = 1.

For convenience, we denote ηt = 1/γt.

For ant z ∈ Rd, we have

ηt⟨F (zt+1/2), zt+1/2 − z⟩
= ⟨zt − zt+1, zt+1/2 − z⟩
= ⟨zt − zt+1, zt+1 − z⟩+ ⟨zt − zt+1, zt+1/2 − zt+1⟩
= ⟨zt − zt+1, zt+1 − z⟩+ ⟨zt − zt+1/2, zt+1/2 − zt+1⟩+ ⟨zt+1/2 − zt+1, zt+1/2 − zt+1⟩

=
1

2
∥zt − z∥2 − 1

2
∥zt+1 − z∥2 −

XXXXXXX
1

2
∥zt − zt+1∥2

+
XXXXXXX
1

2
∥zt − zt+1∥2 −

1

2
∥zt+1/2 − zt+1∥2 −

1

2
∥zt − zt+1/2∥2 + ∥zt+1/2 − zt+1∥2.

(13)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Note that by the updates of the algorithm, we have that
γt(zt − zt+1/2) = F (zt) +∇F (zπ(t))(zt+1/2 − zt),

γt(zt − zt+1) = F (zt+1/2).

It implies that
zt+1/2 − zt+1

= ηt(F (zt+1/2)− F (zt)−∇F (zπ(t))(zt+1/2 − zt)))

= ηt(F (zt+1/2)− F (zt)−∇F (zt)(zt+1/2 − zt)) + ηt(∇F (zπ(t)))−∇F (zt))(zt+1/2 − zt)
(14)

Note that ∇F is ρ-Lipschitz continuous. Taking norm on both sides of (14), we have that

∥zt+1/2 − zt+1∥ ≤ ρηt
2

∥zt+1/2 − zt∥2 + ρηt∥zπ(t) − zt∥∥zt+1/2 − zt∥

≤ ρ

2M
∥zt+1/2 − zt∥+

ρ

M
∥zπ(t) − zt∥,

where we use the condition M∥zt − zt+1/2∥ ≤ γt in the last step.

By Young’s inequality, this further means

∥zt+1/2 − zt+1∥2 ≤ ρ2

2M2
∥zt+1/2 − zt∥2 +

2ρ2

M2
∥zπ(t) − zt∥2.

Plug the above inequality into the last term in (13).
ηt⟨F (zt+1/2), zt+1/2 − z⟩

≤ 1

2
∥zt − z∥2 − 1

2
∥zt+1 − z∥2 − 1

2
∥zt+1/2 − zt+1∥2

− 1

2
∥zt − zt+1/2∥2 +

ρ2

2M2
∥zt − zt+1/2∥2 +

2ρ2

M2
∥zπ(t) − zt∥2.

D PROOF OF THEOREM 4.1

Proof. When m = 1, the algorithm reduces to the EG-2 algorithm (Huang & Zhang, 2022; Lin
et al., 2022; Adil et al., 2022). When m ≥ 2, we use Lemma 4.2 to bound the error that arises from
lazy Hessian updates.

Instead of directly providing a proof for Algorithm 1, we give the proof for the more general inexact
algorithm (Algorithm 4), which recovers Algorithm 1 if α = 1.

Define rt = ∥zt+1 − zt∥. By triangle inequality and Young’s inequality, we have
ηt⟨F (zt+1/2), zt+1/2 − z⟩

≤ 1

2
∥zt − z∥2 − 1

2
∥zt+1 − z∥2 −

(
1

4
− ρ2

2M2

)
∥zt − zt+1/2∥2

−

1

8
r2t −

2ρ2

M2

 t−1∑
i=π(t)

ri

2
 .

For any 1 ≤ s ≤ m. Telescoping over t = π(t), · · · , π(t) + s− 1, we have
π(t)+s−1∑
t=π(t)

ηt⟨F (zt+1/2), zt+1/2 − z⟩

≤ 1

2
∥zπ(t) − z∥2 − 1

2
∥zπ(t)+s − z∥2 −

(
1

4
− ρ2

2M2

) π(t)+s−1∑
t=π(t)

∥zt − zt+1/2∥2

−

1

8

π(t)+s−1∑
t=π(t)

r2t −
2ρ2

M2

π(t)+s−1∑
t=π(t)+1

 t−1∑
i=π(t)

ri

2
 .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Applying Lemma 4.2, we further have
π(t)+s−1∑
t=π(t)

ηt⟨F (zt+1/2), zt+1/2 − z⟩

≤ 1

2
∥zπ(t) − z∥2 − 1

2
∥zπ(t)+s − z∥2 −

(
1

4
− ρ2

2M2

) π(t)+s−1∑
t=π(t)

∥zt − zt+1/2∥2

−
(
1

8
− ρ2s2

M2

) π(t)+s−1∑
t=π(t)

r2t .

Note that s ≤ m. Let M ≥ 3ρm. Then
π(t)+s−1∑
t=π(t)

ηt⟨F (zt+1/2), zt+1/2 − z⟩

≤ 1

2
∥zπ(t) − z∥2 − 1

2
∥zπ(t)+s − z∥2 − 1

8

π(t)+s−1∑
t=π(t)

∥zt − zt+1/2∥2.

Let s = m and further telescope over t = 0, · · · , T − 1. Then
T∑

t=0

ηt⟨F (zt+1/2), zt+1/2 − z⟩ ≤ 1

2
∥z0 − z∥2 − 1

2
∥zT − z∥2 − 1

8

T∑
t=0

∥zt − zt+1/2∥2. (15)

This inequality is the key to the convergence. It implies the following results. First, letting z = z∗

and using the fact that ⟨F (zt+1/2), zt+1/2−z∗⟩ ≥ 0 according to monotonicity of F , we can prove
the iterate is bounded

∥zt − z∗∥ ≤ ∥z0 − z∗∥, and ∥zt − zt+1/2∥ ≤ 2∥z0 − z∗∥, t = 0, · · · , T − 1. (16)

Then using triangle inequality, we obtain

∥zt+1/2 − z∗∥ ≤ 3∥z0 − z∗∥, ∀t = 0, · · · , T − 1.

Second, as (15) holds for all z ∈ B3β(z
∗), Lemma A.1 indicates

Gap(x̄T , ȳT ; 3β) ≤
maxz∈B3β(z∗) ∥z0 − z∥2

2
∑T−1

t=0 ηt
≤ 16∥z0 − z∗∥2

2
∑T−1

t=0 ηt
, (17)

where the last step uses ∥z0 − z∥ ≤ ∥z0 − z∗∥+ ∥z − z∗∥ ≤ 4β for any z ∈ B3β(z
∗).

Third, we can also use (15) to lower bound
∑T−1

t=0 ηt. (15) with z = z∗ implies
T∑

t=0

γ2
t ≤ 4α2M2∥z0 − z∗∥2,

where we use the condition γt ≤ αM∥zt − zt+1/2∥ in the last step. Then by Holder’s inequality,

T =

T−1∑
t=0

(ηt)
2/3 (

γ2
t

)1/3 ≤

(
T−1∑
t=0

ηt

)2/3(T−1∑
t=0

γ2
t

)1/3

.

Therefore,
T−1∑
t=0

ηt ≥
T 3/2

2αM∥z0 − z∗∥
. (18)

We plug in (18) to (17) and obtain that

Gap(x̄T , ȳT ;β) ≤
16αM∥z0 − z∗∥3

T 3/2
.

The desired theorem is the case α = 1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

E PROOF OF THEOREM 4.2

Proof. Using the strongly monotonicity of operator F in (15), we obtain that

T∑
t=0

µηt∥zt+1/2 − z∗∥2 ≤ 1

2
∥z0 − z∗∥2 − 1

2
∥zT − z∗∥2.

Using Jensen’s inequality, for each epoch, we have

∥z̄T − z∗∥2 ≤ ∥z0 − z∗∥2

2µ
∑T−1

t=0 ηt
≤ M∥z0 − z∗∥3

µT 3/2
:= c∥z0 − z∗∥2.

Next, we consider the iterate {z(s)}S−1
s=0 . For the first epoch, the setting of T ensures c ≤ 1/2:

∥z(1) − z∗∥2 ≤ 1

2
∥z0 − z∗∥2.

Then for the second one, it is improved by

∥z(2) − z∗∥2 ≤ ∥z(1) − z∗∥3

2∥z0 − z∗∥
≤
(
1

2

)1+3/2

∥z0 − z∗∥2.

Keep repeating this process. We can get

∥z(s) − z∗∥2 ≤
(
1

2

)qs

∥z0 − z∗∥2,

where qs satisfies the recursion

qs =

{
1, s = 1;
3

2
qs−1 + 1, s ≥ 2.

This implies

∥z(s) − z∗∥2 ≤
(
1

2

)(3
2

)s−1

+1

∥z0 − z∗∥2.

Set m = Θ(d), LEAN-restart takes O(d2/3κ2/3 log log(1/ϵ)) oracle to F (·) and O((1 +
d−1/3κ2/3) log log(1/ϵ)) oracle to ∇F (·). Under Assumption 3.4, the computational complexities
of the oracles is

O
(
N · d2/3κ2/3 log log(1/ϵ) +Nd · (1 + d−1/3κ2/3) log log(1/ϵ)

)
= O

(
(Nd+Nd2/3κ2/3) log log(1/ϵ)

)
.

F PROOF OF COROLLARY 4.1

Proof. The computational complexity of inner loop can be directly obtained by replacing ϵ−1 by κ
in Theorem 4.3 such that

Inner Computational Complexity = Õ
(
(N + d2) · (d+ d2/3κ2/3)

)
.

The iterations of outer loop is S = log log(1/ϵ), thus, the total computational complexity of LEAN-
restart is

S · Inner Computational Complexity = Õ
(
(N + d2) · (d+ d2/3κ2/3)

)
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 4 Inexact LEN(z0, T,m,M,α)

1: for t = 0, · · · , T − 1 do
2: Use Algorithm 5 to find (zt+1/2, γt) that satisfies

zt+1/2 = zt − (∇F (zπ(t)) + γtId)
−1F (zt)

and M∥zt − zt+1/2∥ ≤ γt ≤ αM∥zt − zt+1/2∥ for given α ≥ 1.
3: Compute extra-gradient step zt+1 = zt − γ−1

t F (zt+1/2).
4: end for
5: return z̄T = 1∑T−1

t=0 γ−1
t

∑T−1
t=0 γ−1

t zt+1/2.

G COMPUTATIONAL COMPLEXITY USING FAST MATRIX OPERATIONS

Theoretically, one may use fast matrix operations for Schur decomposition and matrix inver-
sion (Demmel et al., 2007), with a computational complexity of dω , where ω ≈ 2.371552 is the
matrix multiplication constant. In this case, the total computational complexity of Algorithm 3 is

Õ
((

Nd+ dω

m
+ d2 +N

)
m2/3ϵ−2/3

)
Setting the optimal m, we obtain the following complexity of Algorithm 3:

Õ(d
2
3 (ω+1)ϵ−2/3) (with m = dω−2), N ≲ dω−1

Õ(N2/3d4/3ϵ−2/3) (with m = N/d), dω−1 ≲ N ≲ d2

Õ(Nd2/3ϵ−2/3) (with m = d), d2 ≲ N.

Our result is always better than the O((Nd+ dω)ϵ−2/3) of existing optimal second-order methods.

H THE INEXACT ALGORITHM

Algorithm 1 requires a cubic regularized Newton (CRN) oracle (Implicit Step, (4)). We provide
implementation details for the CRN oracle in Section 4.3. One missing detail is that we can not
obtain the exact solution to the CRN oracle in practice. To make our result more rigorous, we
analyze the inexact LEN (Algorithm 1), which allows inexact sub-problem solving with a parameter
α ≥ 1. Note that this algorithm reduces to the exact version (Algorithm 1) when α = 1.

Below, we present the following theorem as the inexact version of Theorem 4.1.
Theorem H.1. Suppose that Assumption 3.1 and 3.2 hold. Let z∗ = (x∗,y∗) be a saddle point and
β = ∥z0 − z∗∥. Set M ≥ 3ρm. The sequence of iterates generated by Algorithm 4 is bounded zt ∈
Bβ(z

∗), zt+1/2 ∈ B3β(z
∗), ∀t = 0, · · · , T − 1, and satisfies the following ergodic convergence:

Gap(x̄T , ȳT ; 3β) ≤
16αM∥z0 − z∗∥3

T 3/2
.

Let M = 3ρm and α = 2. Algorithm 1 finds an ϵ-saddle point within O(m2/3ϵ−2/3) iterations.

Proof. See Section D.

The only remaining thing is to show how to compute γt in the auxiliary problem (Line 2 in Algorithm
4). Below, we present an efficient sub-procedure to achieve the desired goal using the standard
Newton step. We define the monotone operator At : Rd → Rd by

At(z) = F (zt) +∇F (zπ(t))(z − zt). (19)

Then we can write down the (regularized) Newton step as

zt+1/2(η; zt) := zt − (∇F (zπ(t)) + η−1Id)
−1)F (zt)

= (Id + ηAt)
−1(zt).

(20)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 5 Bracketing/Bisection Procedure(At, zt,M, α, η0t)

1: (Bracketing Stage) Compute z0
t+1/2 = (Id + η0tAt)

−1(zt) with one Newton step.
(1a) if η0t ∥z0

t+1/2 − zt∥ ∈ (1
αM , 1

M), then let zt+1/2 = z0
t+1/2, ηt = η0t and go to Line 3.

(1b) if η0t ∥z0
t+1/2 − zt∥ < 1

αM , then set c−t = η0t and c+t = 1
M∥z0

t+1/2
−zt∥ ;

(1c) if ηt0∥z0
t+1/2 − zt∥ > 1

M , then set c−t = 1
αM∥z0

t+1/2
−zt∥ and c+t = η0t ;

2: (Bisection Stage)
(2a) set ηt =

√
c−t c

+
t and compute zt+1/2 = (Id + ηtAt)

−1(zt) with one Newton step;
(2b) if ηt∥zt+1/2 − zt∥ ∈ (1

αM , 1
M), then go to Line 3;

(2c) if ηt∥zt+1/2 − zt∥ > 1
M , then set c+t = ηt; else set c−t = ηt;

(2d) go to step (2a).
3: return (zt+1/2, γt) that meets the requirement of Line 2 in Algorithm 4, where γt = 1/ηt .

And the inexact condition (Line 2 in Algorithm 4) is
1

αM
≤ ϕt(η; zt) ≤

1

M
, (21)

where ϕt(η; zt) is defined as ϕt(η; zt) := η∥zt+1/2(η; zt)− zt∥.

Note that a stepsize η that satisfies (21) directly implies γt = 1/η satisfies the requirement of Line
2 in Algorithm 4. Therefore, the main goal of this section is to design a sub-procedure that can
determine the stepsize η that satisfies (21).

A similar sub-procedure without using lazy Hessian updates has been proposed in (Monteiro &
Svaiter, 2012). Below, we show that we can use a similar sub-procedure for our algorithm. We
recall some useful lemmas in (Monteiro & Svaiter, 2012), which holds for any monotone operators
A. Below, we state their results when A = At.
Lemma H.1 (Lemma 4.3 and Lemma 4.4 (Monteiro & Svaiter, 2012)). Recall the definition of ϕt

right after (21). For any z ∈ Rd, the following statements hold:

1. For any η > 0, we have ϕt(η; z) > 0.

2. For any 0 < η′ ≤ η, we have that

η

η′
ϕt(η

′; z) ≤ ϕt(η; z) ≤
(
η

η′

)2

ϕt(η
′; z).

As a corollary, ϕt(η; z) is a continuous and strictly increasing function, which converges
to 0 or +∞ as η tends to 0 or +∞, respectively.

3. For any 0 < β− < β+, the set of all scalars η > 0 satisfying β− ≤ ϕt(η; z) ≤ β+ is a
closed interval [η−, η+] such that η+/η− ≥

√
β+/β−.

Algorithm 5 presents our sub-procedure to output the tuple (zt+1/2, γt) satisfying (21). Similar
to (Monteiro & Svaiter, 2012), the procedure consists of two stages. The first one is a bracketing
stage, which either outputs an acceptable solution or an initial interval [c−t , c

+
t] that contains all the

η satisfying (21). The second one is a bisection stage, which uses binary search in the logarithmic
scale to find a stepsize η satisfying (21). Note that the log-scale binary search would finally lead to
a O(log log(1/ϵ)) iteration complexity, which improves the O(log(1/ϵ)) iteration complexity using
naive binary search in (Adil et al., 2022; Bullins & Lai, 2022).

Our first result of Algorithm 5 is the correctness of the bracketing stage, stated as follows.
Lemma H.2. Let [η−t , η

+
t] be the interval that contains all the stepsizes satisfying (21). Compute

z0
t+1/2 = (Id + η0tAt)

−1(zt) with one Newton step as Algorithm 5. The following statements hold:

1. if η0t ∥z0
t+1/2 − zt∥ < 1

αM , then η0t < η−t and η+t ≤ 1
M∥z0

t+1/2
−zt∥ ;

2. if η0t ∥z0
t+1/2 − zt∥ > 1

M , then η+t < η0t and 1
αM∥z0

t+1/2
−zt∥ ≤ η−t .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Proof. We only prove the first claim since the proof of the second claim follows in a similar manner.

Recall the definition of ϕt right after (21). The condition η0t ∥z0
t+1/2 − zt∥ < 1

αM is equivalent to
ϕt(η

0
t ; zt) < ϕt(η

−
t ; zt). Firstly. the fact that ϕt(η

−
t ; zt) is a strictly increasing function according

to the second statement in Lemma H.1, we know that η0t < η−t .

Secondly, using the inequality in the second statement of Lemma H.1, we know that

η+t ∥z0
t+1/2 − zt∥ =

η+t
η0t

ϕt(η
0
t ; zt) ≤ ϕt(η

+
t ; zt) =

1

M
,

which implies η+t ≤ 1
M∥z0

t+1/2
−zt∥ by rearranging.

Therefore, the bracketing stage can always output an interval that contains the acceptable stepsizes
η satisfying (21). Given such a valid initial interval, the bisection stage always find an acceptable
stepsize, stated as follows.
Lemma H.3. Consider Algorithm 5. If the bracketing stage outputs an interval [c−t , c

+
t] containing

all the stepsizes η satisfying (21), which is then input to the bisection stage, then the number of
Newton step during the bisection stage is bounded by 1 + log(log(ht)/ logα)), where

ht = max

{
1

η0tM∥z0
t+1/2 − zt∥

, αMη0t ∥z0
t+1/2 − zt∥

}
(22)

is the maximal ratio of c+t /c
−
t .

Proof. After j steps of bisection iterations, we have that log c+t
c−t

= 1
2j log ht. In view of the third

statement in Lemma H.1, we know that c+t /c
−
t ≥

√
α. These two inequalities immediately imply

that the bisection stage would terminates in j ≤ 1 + log(log(ht)/ logα)) iterations.

Our goal from now on would be giving a uniform upper bound of ht all for t, which can imply the
total complexity of our algorithm. From the definition of ht in (22), we need to give both lower and
upper bounds of η0t ∥z0

t+1/2 − zt∥. We recall some technical lemmas in (Monteiro & Svaiter, 2012).

Lemma H.4 (Proposition 4.5 Monteiro & Svaiter (2012)). Let A : Rd → Rd be a monotone
operator. For a point z∗ ∈ Rd such that A(z∗) = 0, for any η > 0 and z ∈ Rd it holds that

max
{
∥(Id + ηA)−1z − z∗∥, ∥(Id + ηA)−1z − z∥

}
≤ ∥z − z∗∥.

From now on, we will fix all the η0t in all the iterations such that η0t = η̄ and analyze Algorithm 4.
The following lemma shows a uniform upper bound of ∥z0

t+1/2 − zt∥.

Lemma H.5 (Upper bound of ∥z0
t+1/2 − zt∥). Suppose that Assumption 3.1 and 3.2 hold. Let

z∗ = (x∗,y∗) be a saddle point. Set M = 3ρm as in Theorem 4.1. For all the iterations of
Algorithm 4, it holds that

∥z0
t+1/2 − zt∥ ≤ ∥z0 − z∗∥+ 5η̄ρ

2
∥z0 − z∗∥2. (23)

Proof. Let rt := F (z∗) −At(z
∗) and define the operator Ãt as Ãt(z) = At(z) + rt. From the

definition of Ãt we know that all any η > 0 and z ∈ Rd we have that
(Id + ηÃt)

−1(z + ηrt) = (Id + ηAt)
−1(z) (24)

Now we upper bound ∥z0
t+1/2 − zt∥ as follows.

∥z0
t+1/2 − zt∥

= ∥(Id + η̄At)
−1(zt)− zt∥

= ∥(Id + η̄Ãt)
−1(zt + η̄rt)− zt∥

≤ ∥(Id + η̄Ãt)
−1(zt)− zt∥+ ∥(Id + η̄Ãt)

−1(zt)− (Id + η̄Ãt)
−1(zt + η̄rt)∥

≤ ∥zt − z∗∥+ η̄∥rt∥,

(25)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

where in the last step we use Lemma H.4 to upper bound the first term and use the non-expansiveness
of resolvent (see i.e. (Rockafellar, 1976)) to upper bound the second term.

We continue to upper bound ∥rt∥. Recall the definition of At in (19), we know that
rt = F (z∗)− F (zt)−∇F (zπ(t))(z

∗ − zt)

= F (z∗)− F (zt)−∇F (zt)(z
∗ − zt) + (∇F (zt)−∇F (zπ(t))(z

∗ − zt)

Note that ∇F is ρ-Lipschitz continuous. Taking norm on both sides of the above identity, we have

∥rt∥ ≤ ρ

2
∥z∗ − zt∥2 + ρ∥zt − zπ(t)∥∥z∗ − zt∥

Recalling (16) that we have ∥zt−z∗∥ ≤ ∥z0−z∗∥ for all t, by the triangle inequality we also have
∥zt − zπ(t)∥ ≤ 2∥z0 − z∗∥. Therefore, we have that ∥rt∥ ≤ 5

2∥z0 − z∗∥2. Finally, we plug into
(25) to obtain the desired upper bound in (23).

Next, we give a uniform lower bound of ∥z0
t+1/2 − zt∥.

Lemma H.6 (Lower bound of ∥z0
t+1/2 − zt∥). Suppose that Assumption 3.1 and 3.2 hold. Let

z∗ = (x∗,y∗) be a saddle point and β = ∥z0 − z∗∥. Set M = 3ρm as in Theorem 4.1. If in all the
iterations of Algorithm 5 the point z0

t+1/2 is not an ϵ-solution, it holds that

η̄∥z0
t+1/2 − zt∥ ≥ ξt, (26)

where ξt = min
{
2β, η̄ϵ

6β(3η̄βρ+1)

}
.

Proof. We show a contradiction if (26) does not hold. Firstly, if z0
t+1/2 = (x0

t+1/2,y
0
t+1/2) is not

an ϵ-solution to the problem, then by Lemma A.1 we know that ∥F (z0
t+1/2)∥ must be large due to

ϵ ≤ Gap(x0
t+1/2,y

0
t+1/2; 3β) ≤ max

z∈B3β(z∗)
⟨F (z0

t+1/2), z
0
t+1/2 − z⟩ ≤ 6β∥F (z0

t+1/2)∥,

where the last step uses that ∥z0
t+1/2 − zt∥ ≤ 2β if (26) does not hold, ∥zt − z∗∥ ≤ β and the

triangle inequality. Therefore, we can conclude that

∥F (z0
t+1/2)∥ ≥ ϵ

6β
. (27)

Secondly, from the update of the algorithm, we have that
zt − z0

t+1/2 = η̄(F (zt) +∇F (zπ(t))(z
0
t+1/2 − zt))

Then we further know that
zt − z0

t+1/2 − F (z0
t+1/2)

= η̄(F (zt) +∇F (zπ(t))(z
0
t+1/2 − zt)− F (z0

t+1/2))

= η̄(F (zt) +∇F (zt)(z
0
t+1/2 − zt)− F (z0

t+1/2))

+ η̄(∇F (zt)−∇F (zπ(t)))(z
0
t+1/2 − zt).

Note that ∇F is ρ-Lipschitz continuous. Taking norm on both sides of the above identity, we have
∥zt − z0

t+1/2 − F (z0
t+1/2)∥

≤ η̄ρ

2
∥z0

t+1/2 − zt∥2 + η̄ρ∥zt − zπ(t)∥∥z0
t+1/2 − zt∥

≤ 3η̄βρ∥z0
t+1/2 − zt∥.

where the last step uses the triangle inequality, that ∥z0
t+1/2 − zt∥ ≤ 2β if (26) does not hold, and

that ∥zt − z∗∥ ≤ ∥z0 − z∗∥ by (16). Then we can know that

η̄∥F (z0
t+1/2)∥ ≤ ∥zt − z0

t+1/2 − η̄F (z0
t+1/2)∥+ ∥z0

t+1/2 − zt∥

≤ (3η̄βρ+ 1)∥z0
t+1/2 − zt∥.

Recalling (27), we know that this would contradict the hypothesis that (26) does not hold.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Lemma H.5 and Lemma H.6 tell us that the ht defined in (22) is uniformly bounded for all t. Finally,
we obtain the following theorem by combining Theorem H.1 and Theorem H.3.
Theorem H.2. Suppose that Assumption 3.1 and 3.2 hold. Let z∗ = (x∗,y∗) be a saddle point and
β = ∥z0 − z∗∥. Set M ≥ 3ρm. The sequence of iterates generated by Algorithm 4 is bounded zt ∈
Bβ(z

∗), zt+1/2 ∈ B3β(z
∗), ∀t = 0, · · · , T − 1, and satisfies the following ergodic convergence:

Gap(x̄T , ȳT ; 3β) ≤
16αM∥z0 − z∗∥3

T 3/2
.

Let M = 3ρm and α = 2. Algorithm 1 finds an ϵ-saddle point within O(m2/3ϵ−2/3) iterations.

If we call the sub-procedure (Algorithm 5) wit fixed η0t = η̄, every call of this sub-procedure makes
at most O(log log(poly(m,β, ρ, η̄, 1/ϵ)) Newton steps.

The above theorem shows that the CRN sub-problem can be solved to guarantee the desired pre-
cision for target problem in O(log log(1/ϵ)) iterations, which tightens the O(log(1/ϵ)) iteration
complexity in (Bullins & Lai, 2022; Adil et al., 2022). Additionally, (Bullins & Lai, 2022; Adil
et al., 2022) requires additionally assume σmin(∇F (z)) ≥ µ for some positive constant µ, which
makes the problem similar to strongly-convex(-strongly-concave) problems, while our analysis does
not require such an assumption.

23

	Introduction
	Related Works and Technical Challenges
	Preliminaries
	Algorithms and convergence analysis
	The LEN algorithm for convex-concave problems
	The LEN-restart algorithm for strongly-convex-strongly-concave problems
	Implementation Details and computational complexity Analysis

	Numerical Experiments
	Regularized bilinear min-max problem
	Fairness-Aware Machine Learning

	Conclusion and future works
	Some Useful Lemmas
	Proof of Lemma 4.2
	Proof of Lemma 4.1
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Corollary 4.1
	Computational Complexity Using Fast Matrix Operations
	The Inexact Algorithm

