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Abstract
Recent work has shown that forward- and reverse-
mode automatic differentiation (AD) over the
reals is almost always correct in a mathemati-
cally precise sense. However, actual programs
work with machine-representable numbers (e.g.,
floating-point numbers), not reals. In this paper,
we study the correctness of AD when the param-
eter space of a neural network consists solely of
machine-representable numbers. In particular, we
analyze two sets of parameters on which AD can
be incorrect: the incorrect set on which the net-
work is differentiable but AD does not compute
its derivative, and the non-differentiable set on
which the network is non-differentiable. For a
neural network with bias parameters, we first
prove that the incorrect set is always empty. We
then prove a tight bound on the size of the non-
differentiable set, which is linear in the number of
non-differentiabilities in activation functions, and
give a simple necessary and sufficient condition
for a parameter to be in this set. We further prove
that AD always computes a Clarke subderivative
even on the non-differentiable set. We also extend
these results to neural networks possibly without
bias parameters.

1. Introduction
Forward- and reverse-mode automatic differentiation (AD)
are popular algorithms for computing the derivative of a
function represented by a program (Griewank & Walther,
2008). Diverse practical systems for AD have been devel-
oped for general-purpose programs (Baydin et al., 2016;
Hascoët & Pascual, 2013; Maclaurin et al., 2015; Pearl-
mutter & Siskind, 2008; Revels et al., 2016; Slusanschi &
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Dumitrel, 2016; Walther & Griewank, 2012), and particu-
larly for machine-learning programs (Bergstra et al., 2010;
Collobert et al., 2011; Jia et al., 2014; Seide & Agarwal,
2016; Tokui et al., 2019; van Merrienboer et al., 2018), in-
cluding TensorFlow (Abadi et al., 2016), PyTorch (Paszke
et al., 2017), and JAX (Frostig et al., 2018). The develop-
ment of such AD systems has been a driving force of the
rapid advances in deep learning (and machine learning in
general) in the past 10 years (Baydin et al., 2017; LeCun
et al., 2015; Schmidhuber, 2015).

Recently, the correctness of AD has been actively studied
for various types of programs. For programs that only use
differentiable functions, AD is correct everywhere, i.e., it
computes the derivative of a given program at all inputs
(Abadi & Plotkin, 2020; Barthe et al., 2020; Brunel et al.,
2020; Elliott, 2018; Huot et al., 2020; Krawiec et al., 2022;
Radul et al., 2023; Smeding & Vákár, 2023; Vákár, 2021).
On the other hand, for programs that use non-differentiable
functions (e.g., ReLU1), AD can be incorrect at some inputs
(Kakade & Lee, 2018).

There are two cases where AD is incorrect. The first case
is when the function f represented by a given program is
differentiable at some x, but AD returns a value different
from the derivative of f at x. For instance, consider a
program2 that represents the identity function, defined as
ReLU(x)− ReLU(−x). If AD uses zero as a “derivative”
of ReLU at x = 0, as is standard (e.g., in TensorFlow
and PyTorch), it returns zero for this program at x = 0
while the true derivative is one. The second case is when
f is non-differentiable at some x, but AD does not return a
generalized notion of derivative (e.g., Clarke subdifferential)
of f at x. For example, ReLU(x)− 1

2ReLU(−x) represents
a function that is non-differentiable at x = 0 with the Clarke
subdifferential [ 1

2 , 1], but AD outputs 0 at x = 0.

Although AD can be incorrect, recent works show that for a
large class of programs using non-differentiable functions,
AD is correct almost everywhere, i.e., it is incorrect at most
on a Lebesgue measure-zero subset of the input domain of a
program (Bolte & Pauwels, 2020a;b; Huot et al., 2023; Lee

1ReLU(x) , max{x, 0}.
2It appeared in Kakade & Lee (2018).
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et al., 2020; Mazza & Pagani, 2021).

These prior works, however, have a limitation: they con-
sider AD over the real numbers, but in practice, inputs to a
program are always machine-representable numbers such
as 32-bit floating-point numbers. Since the set of machine-
representable numbers is countable (and usually finite), it is
always a Lebesgue measure-zero subset of the real numbers.
Hence, AD could be incorrect on all machine-representable
inputs according to prior works, and this is indeed possible.
Consider a program3 for a function from R to R, defined as∑
c∈M

[
λx+

( 1

|M|
− λ
)(

ReLU(x− c)− ReLU(−x+ c)
)]
,

where M ⊆ R is a finite set of machine-representable num-
bers and λ ∈ R \ {1} is an arbitrary constant. Then, the
program represents the affine function x 7→ x + a for
a = (λ− 1

|M| )×
∑
c∈M c, but AD incorrectly computes its

derivative at any x ∈ M as λ (the arbitrarily chosen value)
if zero is used as a “derivative” of ReLU at 0 as before.4

Given these observations, we raise the following questions:
for a program that represents a neural network, at which
machine-representable inputs to the program (i.e., param-
eters to the network) can AD be incorrect, and how many
such inputs can there be? In this work, we tackle these ques-
tions and present the first theoretical results. In particular,
we study the two sets of machine-representable parameters
of a neural network on which AD can be incorrect: the in-
correct set, on which the network is differentiable but AD
does not compute its derivative, and the non-differentiable
set, on which the network is non-differentiable.

Summary of results. We focus on neural networks con-
sisting of alternating analytic pre-activation functions (e.g.,
fully-connected and convolution layers) and pointwise con-
tinuous activation functions (e.g., ReLU and Sigmoid). The
first set of our results (§3) is for such networks with bias
parameters at every layer, and is summarized as follows.

• We prove that the incorrect set is always empty, not only
over machine-representable parameters but also over real-
valued ones. To our knowledge, this is the first result
showing that the incorrect set can be empty for a class of
neural networks using possibly non-differentiable func-
tions; prior works only bounded the measure of this set.

• On the other hand, the non-differentiable set can be non-
empty. We give a tight bound on its density over all
machine-representable parameters, which has the form
n/|M| where n is the total number of non-differentiable

3Inspired by Bolte & Pauwels (2020b); Mazza & Pagani (2021).
4We can even make AD return different values at different

x ∈ M, by using a different λi for each ci ∈ M. Similarly, we can
also construct a program such that at all machine-representable
numbers M, the program is non-differentiable and AD returns
arbitrary values.

points in activation functions. This result implies that in
practice, the non-differentiable set often has a low density,
especially if we use high-precision parameters (e.g., use
32-bit floating-point numbers for M, where |M| ≈ 232).
• To better describe the non-differentiable set, we provide

a simple, easily verifiable necessary and sufficient con-
dition for a parameter to be in the non-differentiable set.
Given that deciding the non-differentiability of a neural
network is NP-hard in general (Bolte et al., 2023), our
result is surprising: having bias parameters is sufficient
to efficiently decide the non-differentiability.

• Given that the non-differentiable set can be non-empty,
a natural question arises: what does AD compute on
this set? We prove that AD always computes a Clarke
subderivative (a generalized derivative) even on the non-
differentiable set. That is, AD is an efficient algorithm
for computing a Clarke subderivative in this case.

The second set of our results (§4) extends the above results
to neural networks possibly without bias parameters at some
layers, and is summarized as follows.

• As we observed in the ReLU(x)− ReLU(−x) example,
the incorrect set can be non-empty in this case. Thus, we
prove tight bounds on the density of both the incorrect
and non-differentiable sets, which have the form n′/|M|
where n′ is linear in the total number of non-differentiable
points in activation functions as well as the total number
of boundary points in activation functions’ zero sets.

• We provide simple, easily verifiable sufficient conditions
on parameters under which AD computes the standard
derivative or a Clarke subderivative.

Our theoretical results carry two main practical implica-
tions: AD for neural networks is correct on most machine-
representable parameters, and it is correct more often with
bias parameters. For networks with bias parameters at all
layers, our results further provide an exact characterization
of when AD is correct and what it computes.

We remark that many of our results, especially all the re-
sults not about the density of certain sets, hold not only for
machine-representable parameters but also for real-valued
ones. On the other hand, our results may not be directly ap-
plicable to neural networks with non-analytic pre-activation
functions or non-pointwise activation functions; we discuss
such limitations in §6.

Organization. We first introduce notation and the problem
setup (§2). We then present our main results for neural
networks with bias parameters (§3) and extend them to
neural networks possibly without bias parameters (§4). We
conclude the paper with related work and discussion (§5–7).
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2. Problem Setup
2.1. Notation and Definitions

We use the following notation and definitions. Let N and
R be the sets of positive integers and real numbers, re-
spectively. For n ∈ N, we use [n] , {1, 2, . . . , n} and
~0n , (0, . . . , 0) ∈ Rn, and often drop n from ~0n when
the subscript is clear from context. For x = (x1, . . . ,
xn) ∈ Rn, we use x−i , (x1, . . . , xi−1, xi+1, . . . , xn).
We call A ⊆ R an interval if it is [a, b], [a, b), (a, b],
or (a, b) for some a, b ∈ R ∪ {±∞}. For A ⊆ Rn,
1A : Rn → {0, 1} denotes the indicator function of A.
We say that f : Rn → Rm is analytic if it is infinitely differ-
entiable and its Taylor series at any x ∈ Rn converges to f
on some neighborhood of x. For any f : Rn → Rm,

Df : Rn → Rm×n ∪ {⊥}

denotes the standard derivative of f , where f(x) = ⊥ de-
notes that f is non-differentiable at x. Lastly, for f : R→ R,

ndf(f) , {x ∈ R | f is non-differentiable at x},
bdz(f) , bd({x ∈ R | f(x) = 0})

denote the set of non-differentiable points of f and the
boundary of the zero set of f , respectively.

2.2. Neural Networks

We define a neural network as follows. Given the number
of layers L ∈ N, let N0 ∈ N be the dimension of input
data, Nl ∈ N and Wl ∈ N ∪ {0} be the number of neurons
and the number of parameters at layer l ∈ [L], and N ,
N1 + · · · + NL and W , W1 + · · · + WL. Further, for
each l ∈ [L], let τl : RNl−1 × RWl → RNl be an analytic
pre-activation function and σl : RNl → RNl be a pointwise,
continuous activation function, i.e.,

σl(x1, . . . , xNl) ,
(
σl,1(x1), . . . , σl,Nl(xNl)

)
for some continuous σl,i : R → R. Under this setup,
we define a neural network as a function of model pa-
rameters: given input data c ∈ RN0 , a neural network
zL( · ; c) : RW → RNL is defined as

zL(w; c) , (σL ◦ τ 〈wL〉L ◦ · · · ◦ σ1 ◦ τ 〈w1〉
1 )(c), (1)

where w , (w1, . . . , wL), wl , (wl,1, . . . , wl,Wl
) ∈ RWl ,

and τ 〈wl〉l (x) , τl(x,wl). We say such zL has L layers, N
neurons, and W parameters.

We next define the activation neurons zl( · ; c) : RW → RNl

and the pre-activation values yl( · ; c) : RW → RNl at layer
l ∈ [L], as we defined zL above:

zl(w; c) , (σl ◦ τ 〈wl〉l ◦ · · · ◦ σ1 ◦ τ 〈w1〉
1 )(c),

yl(w; c) , τ
〈wl〉
l (zl−1(w; c)),

where z0(w; c) , c. Since the input data c is fixed while
we compute the derivative of zL with respect to w (e.g., in
order to train zL), we often omit c and simply write zl(w)
and yl(w) to denote zl(w; c) and yl(w; c), respectively.

For the set of all indices of neurons

Idx , {(l, i) | l ∈ [L], i ∈ [Nl]}

and for each (l, i) ∈ Idx, we use yl,i, zl,i : RW → R and
τl,i : RNl−1 × RWl → R to denote the functions that take
only the i-th output component of yl, zl, and τl, respectively.
Note that we defined σl,i above in a slightly different way:
its domain is not RNl (i.e., the domain of σl) but R.

Finally, we introduce the notion of piecewise-analytic5 to
consider possibly non-differentiable activation functions.

Definition 2.1. A function f : R→ R is piecewise-analytic
if there exist n ∈ N, a partition {Ai}i∈[n] of R consisting
of non-empty intervals, and analytic functions {fi : R →
R}i∈[n] such that f = fi on Ai for all i ∈ [n].

Assumption. σl,i is piecewise-analytic for all (l, i) ∈ Idx.

The class of piecewise-analytic functions includes not only
all analytic functions but also many non-differentiable
functions widely used in neural networks such as ReLU,
LeakyReLU, and HardSigmoid. Hence, our definition of
neural networks includes a rich class of practical networks:
τl can be any analytic function (e.g., a fully-connected,
convolution, or normalization layer), and σl can be any
pointwise continuous and piecewise-analytic function (e.g.,
ReLU, LeakyReLU, or HardSigmoid).

In practice, we often apply AD to the composition of a neu-
ral network zL and a loss function ` (e.g., Softmax followed
by CrossEntropy), to compute the derivative of the loss value
of zL with respect to its parameters. We emphasize that all
of our results except for lower bounds (i.e., Theorems 3.4,
4.3, and 4.5) continue to hold even if we replace zL in their
conclusions by ` ◦ zL for any analytic ` : RNL → Rm. For
simplicity, however, we state our results only for zL and not
for ` ◦ zL.

2.3. Automatic Differentiation

Given a program that represents a neural network zL as in
Eq. (1), AD essentially computes the function

DADzL : RW → RNL×W

by applying the chain rule of differentiation to Eq. (1).
That is, DADzL is defined as the product of DADτl,i and
DADσl,i for (l, i) ∈ Idx, where DADτl,i : RNl−1 × RWl →

5It is inspired by the notion of PAP in Lee et al. (2020).
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R1×(Nl−1+Wl) and DADσl,i : RNl → R1×Nl denote the
“derivatives” of τl,i and σl,i that AD uses in its computation
(see Appendix A.3 for more details). Here DADzL, DADτl,i,
and DADσl,i can be different from the standard derivatives
DzL, Dτl,i, and Dσl,i, partly because the former never
return ⊥ even at non-differentiable points while the latter al-
ways return⊥ at those points. We note thatDADzL expresses
what practical AD systems (e.g., TensorFlow, PyTorch) es-
sentially compute in both forward-mode and reverse-mode.

By definition, the output DADzL of AD depends on the
choice of DADτl,i and DADσl,i. To focus on the standard
choices made by practical AD systems, we introduce the
notion of an extended derivative.

Definition 2.2. A function g : Rn → Rm×n is an extended
derivative of f : Rn → Rm if for all x ∈ Rn with Df(x) 6=
⊥, it holds that g(x) = Df(x).

Assumption. DADf is an extended derivative of f for all
f ∈ {τl,i, σl,i | (l, i) ∈ Idx}.

We note that a differentiable function f has a unique ex-
tended derivative which is the standard derivative Df of f .
In contrast, a non-differentiable function f has (uncount-
ably) many extended derivatives: e.g., 1(0,∞) + c · 1{0} is
an extended derivative of ReLU for all c ∈ R, where 1A
denotes the indicator function of a set A.

Among many extended derivatives, some of them are used
more frequently in practice, which we characterize as con-
sistency.

Definition 2.3. For f : Rn → Rm, an extended derivative
g of f is consistent if for all x ∈ Rn with Df(x) = ⊥, it
holds that g(x) = limk→∞Df(xk) for some xk → x.6

For instance, 1(0,∞) and 1[0,∞) are consistent extended
derivatives of ReLU but 1(0,∞)+c·1{0} is not for all c ∈ R\
{0, 1}; among them, DADReLU = 1(0,∞) is typically used
by popular AD systems (e.g., TensorFlow and PyTorch).
Although DADf is usually consistent in practice, we do not
assume it by default (and explicitly assume it only when
necessary) to make our results as general as possible, and
to study whether the values of extended derivatives at non-
differentiable points matter to AD.

2.4. Incorrect and Non-Differentiable Sets

In practice, the parameters of a neural network cannot be
arbitrary real numbers (as machines cannot represent them),
but can only be machine-representable numbers M ⊆ R,
where M is often chosen as the set of all 32-bit floating-point
numbers. To this end, we consider

Ω , MW ⊆ RW ,

6Any consistent extended derivative of f is an element of the
so-called Bouligand subdifferential of f (Cui & Pang, 2021). But
the converse does not hold in general.

the set of parameters that a neural network zL : RW → RNL

can take in practice. We assume that M is an arbitrary finite
subset of R throughout the paper; e.g., it can be the set of
n-bit floating-point (or fixed-point) numbers for any n ∈ N.

To better understand the correctness of AD, we study the
following two disjoint subsets of Ω on which AD can return
an incorrect output.

Definition 2.4. For a neural network zL, define the incor-
rect set and the non-differentiable set of zL as

incΩ(zL) , {w ∈ Ω | DzL(w) 6=⊥, DADzL(w) 6=DzL(w)},
ndfΩ(zL) , {w ∈ Ω | DzL(w) =⊥}.

These two sets correspond to the two cases when AD can be
incorrect: on the incorrect set incΩ(zL), zL is differentiable
but AD does not compute its standard derivative; on the non-
differentiable set ndfΩ(zL), zL is non-differentiable and AD
may not compute a generalized notion of derivative (e.g.,
Clarke subdifferential). Here ndfΩ(zL) ⊆ Ω is different
from ndf(f) ⊆ R, which was defined in §2.1 for f : R→ R.

3. Correctness of Automatic Differentiation for
Neural Networks with Bias Parameters

Our main objective is to understand the incorrect and non-
differentiable sets. In particular, we focus on neural net-
works with bias parameters (defined below) in this section
and consider more general neural networks in §4. For the
former class of neural networks, we characterize the incor-
rect and non-differentiable sets in §3.1 and §3.2, and estab-
lish a connection between AD and Clarke subderivatives (a
generalized notion of derivative) in §3.3.

We start by defining neural networks with bias parameters.

Definition 3.1. A pre-activation function τl : RNl−1 ×
RWl → RNl of a neural network has bias parameters if
Wl ≥ Nl and there exist f1, . . . , fNl : RNl−1 ×RWl−Nl →
R such that

τl,i(x, (u, v)) = fi(x, u) + vi

for all i ∈ [Nl] and (x, u, v) ∈ RNl−1×RWl−Nl×RNl . Here
vi is called the bias parameter of τl,i. A neural network zL
has bias parameters if τl has bias parameters for all l ∈ [L].

Many popular pre-activation functions are typically imple-
mented with bias parameters. For example, fully-connected
layers, attention layers (e.g., MultiheadAttention), and some
normalization layers (e.g., LayerNorm) do so. Yet not
all pre-activation functions have bias parameters in prac-
tice. For instance, convolutional layers and other normaliza-
tion layers (e.g., BatchNorm) usually do not satisfy Defini-
tion 3.1: they do contain some bias terms, but each of these
terms is used to compute multiple output values (instead of
a single output value as in our definition).
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3.1. Characterization of the Incorrect Set

We first show that the incorrect set of a neural network is
always empty if the network has bias parameters, i.e., AD
computes the standard derivative wherever the network is
differentiable.

Theorem 3.2. If a neural network zL has bias parameters,
then for all w ∈ RW at which zL is differentiable,

DADzL(w) = DzL(w). (2)

This implies that |incΩ(zL)| = 0.

It should be emphasized that Eq. (2) is not only for machine-
representable parameters, but also for any real-valued pa-
rameters. Compared to existing results, this result is sur-
prising. For instance, Bolte & Pauwels (2020b); Lee et al.
(2020) show that the incorrect set over Rn (not over Mn) has
Lebesgue measure zero for some classes of programs, but
they do not give any results on whether the set can be empty.
In contrast, Theorem 3.2 states that the incorrect set over
Rn is empty for a smaller, yet still large class of programs,
i.e., neural networks with bias parameters.

In Theorem 3.2, the condition that zL has bias parameters
plays a crucial role. Namely, Theorem 3.2 does not hold if
this condition is dropped. For instance, consider a neural
network zL : R → R that is essentially the same as f :
R → R with f(w) = ReLU(w) − ReLU(−w) (which we
discussed in §1). Then, zL does not have bias parameters,
and incΩ(zL) is non-empty if DADReLU = 1(0,∞) is used.

The proof of Theorem 3.2 consists of the following two
arguments: for all w ∈ RW with DzL(w) 6= ⊥,

(i) if yl,i(w) ∈ ndf(σl,i), then ∂zL/∂zl,i = ~0 at w, and
(ii) if (i) holds, then DADzL(w) = DzL(w).

That is, (i) if a pre-activation value yl,i touches a non-differ-
entiable point of its activation function σl,i, then the deriva-
tive of zL with respect to zl,i should always be zero; and (ii)
Theorem 3.2 follows from (i). We point out that the proof of
(i) relies heavily on the bias parameter condition. For more
details, see Appendix C.

3.2. Characterization of the Non-Differentiable Set

We next show that if a neural network has bias parameters,
then the density of the non-differentiable set in Ω is bounded
by n/|M|, where n is the total number of non-differentiable
points in activation functions.

Theorem 3.3. If a neural network zL has bias parameters,

|ndfΩ(zL)|
|Ω|

≤ 1

|M|
∑

(l,i)∈Idx

|ndf(σl,i)|

where ndf(f) is the set of non-differentiable points of f .

In many practical settings, the bound in Theorem 3.3 is of-
ten small, especially under high-precision parameters. For
example, M is frequently chosen as the set of 32-bit floating-
point numbers so |M| ≈ 232, while |Idx| (the number of
neurons) is often smaller than 232 and |ndf(σl,i)| is typi-
cally small (e.g., 0 for differentiable σl,i, 1 for ReLU, and
2 for HardSigmoid). This implies that in practice, the non-
differentiable set often has a low density in Ω. We remark,
however, that the bound in Theorem 3.3 can grow large
in low-precision settings (e.g., when parameters are repre-
sented by ≤ 16-bit numbers).

Although the bound in Theorem 3.3 can be large in some
cases (e.g., when |M| is small), we prove that the bound is
in general tight up to a constant multiplicative factor.

Theorem 3.4. For any M ⊆ R and n, α ∈ N with 1 ≤
|M| < ∞, n ≥ 2, and α ≤ |M|/(n − 1), there is a neural
network zL : RW → R with bias parameters that satisfies

|ndfΩ(zL)|
|Ω|

≥ 1

2
· 1

|M|
∑

(l,i)∈Idx

|ndf(σl,i)|

and the following: zL has n+1 neurons and |ndf(σ1,i)| = α
for all i ∈ [N1].

In Theorem 3.4, the condition α ≤ |M|/(n − 1) is for
achieving the constant 1/2 in the bound. A similar bound
can be derived for a larger α (i.e., α > |M|/(n − 1)) but
with a constant smaller than 1/2.

Theorems 3.3 and 3.4 describe how large the non-differ-
entiable set ndfΩ(zL) can be, but give no clue about exactly
which parameters constitute this set. To better understand
this, we present an easily verifiable necessary and sufficient
condition for characterizing ndfΩ(zL).

Theorem 3.5. If a neural network zL has bias parameters,
then the following are equivalent for all w ∈ RW .

• zL is non-differentiable at w.
• yl,i(w) ∈ ndf(σl,i) and ∂ADzL/∂zl,i 6= ~0 at w for

some (l, i) ∈ Idx.

Here ∂ADzL/∂zl,i denotes the partial derivative of zL with
respect to zl,i that reverse-mode AD (e.g., backpropagation)
computes as a byproduct of computing DADzL (see Ap-
pendix E.2 for more details). Hence, Theorem 3.5 implies
that we can efficiently7 decide whether a neural network
with bias parameters is non-differentiable at a (real-valued)
parameter or not. This result is surprising given a recent,
relevant result that deciding such non-differentiability is
NP-hard in general (Bolte et al., 2023).

We now sketch the proof of Theorem 3.3, to explain how we
obtain the bound in the theorem and where we use the bias

7inO(NLT ) time for a neural network zL :RW →RNL where
T is the time to evaluate zL(w), because reverse-mode AD takes
O(NLT ) time to compute DADzL(w).
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parameter condition. First, we prove that if yl,i(w) does not
touch any non-differentiable point of σl,i for all (l, i) ∈ Idx,
then zL is differentiable at w. In other words,

ndfΩ(zL) ⊆
⋃

(l,i)∈Idx

⋃
c∈ndf(σl,i)

{w ∈ Ω | yl,i(w) = c}. (3)

Second, we prove that for all (l, i) ∈ Idx and c ∈ R,∣∣{w ∈ Ω | yl,i(w) = c}
∣∣ ≤ |M|W−1. (4)

This inequality is invalid in general, but is valid when τl
has bias parameters. If the parameter w has a value v =
(v1, . . . , vW ) and its j-th entry vj corresponds to the bias
parameter of τl,i, then yl,i(v) = f(v−j) + vj for some
function f . Hence, for any v−j ∈ MW−1, there is at most
one vj ∈ M achieving yl,i(v) = c, and this implies the above
inequality. Finally, we prove that Theorem 3.3 follows from
the above two results. The full proofs of Theorems 3.3–3.5
are presented in Appendices B, D, and E, respectively.

3.3. Connection to Clarke Subderivatives

We have so far observed that with bias parameters, the incor-
rect set is always empty but the non-differentiable set may
not be. A natural question is then: what does AD compute
on the non-differentiable set? We answer this question by
showing that AD computes a Clarke subderivative8 every-
where (including on the non-differentiable set), if it uses
consistent extended derivatives for activation functions.

Theorem 3.6. If a neural network zL has bias parameters
and DADσl,i is consistent for all (l, i) ∈ Idx, then for all
w ∈ RW ,

DADzL(w) =


DzL(w) if DzL(w) 6= ⊥
limn→∞DzL(w′n)

for some w′n → w
if DzL(w) = ⊥.

This implies that DADzL is a Clarke subderivative of zL.

Theorem 3.6 is not only a new result about AD, but also
gives a positive answer to a long-standing open question
about Clarke subgradients (Bolte et al., 2023; Clarke, 1975;
Kakade & Lee, 2018): are there a sufficiently large class
F of scalar functions and a deterministic algorithm A
that computes a Clarke subgradient (i.e., subderivative) of
f ∈ F at x ∈ Rn efficiently (i.e., in time O(T ) that is
independent of n, where T is time to evaluate f(x))? In
other words, is there a so-called “Cheap Subgradient Prin-
ciple”? For instance, Kakade & Lee (2018) propose an
efficient algorithm A′ (for some F ′) but A′ is not determin-
istic, whereas Barton et al. (2018); Khan & Barton (2015)

8The Clarke subdifferential of f : Rn→ Rm at x ∈ Rn refers
to the convex hull of {limn→∞Df(xn) | xn → x, Df(xn) 6=
⊥} ⊆ Rm×n, and an element of the Clarke subdifferential is called
a Clarke subderivative (Clarke, 1990; Kakade & Lee, 2018).

propose deterministic algorithms A′′ (for some F ′′) but A′′
are not efficient. In contrast, Theorem 3.6 implies that for
neural networks with bias parameters, a Clarke subgradient
at any (real-valued) parameter can be computed determin-
istically and efficiently, even by the vanilla reverse-mode
AD. In this sense, we provide a new understanding on the
computational aspects of Clarke subgradients.

We note that Theorem 3.6 no longer holds without any of
its conditions: having bias parameters and using consis-
tent extended derivatives. One can confirm this using the
following examples: zL(w) = ReLU(w) − ReLU(−w)
with DADReLU = 1(0,∞) (in which zL does not have bias
parameters as observed in §3.1), and ẑL(w) = ReLU(w)
with DADReLU = 1(0,∞) + c · 1{0} for any c ∈ R \ [0, 1]
(in which DADReLU is not consistent). For the proof of
Theorem 3.6, see Appendix F.

4. Correctness of Automatic Differentiation for
Neural Networks without Bias Parameters

In this section, we investigate the correctness of AD for
neural networks that may or may not have bias parameters.
For such general networks, however, considering only the
properties of activation functions such as ndf(σl,i) (as we
did in §3) is insufficient to derive non-trivial bounds on the
size of the incorrect and non-differentiable sets, as long as
general pre-activation functions are used.

To illustrate this, consider neural networks zL, ẑL : R→ R
that are essentially the same as f, f̂ : R→ R with f(w) =
ReLU(h(w))−ReLU(−h(w)) and f̂(w) = ReLU(h(w)),
where h : R → R is some analytic pre-activation function
satisfying h(x) = 0 and Dh(x) = 1 for all x ∈ M. Sup-
pose that DADReLU = 1(0,∞). Then, we have incΩ(zL) =
ndfΩ(ẑL) = Ω even though zL and ẑL have only ≤ 2 non-
differentiable points in their activation functions. The main
culprit of having such large incΩ(zL) and ndfΩ(ẑL), even
with a tiny number of non-differentiable points in activation
functions, is that zL and ẑL use the unrealistic pre-activation
function h which does not have bias parameters.

To exclude such extreme cases and focus on realistic neural
networks, we will often consider well-structured biaffine pre-
activation functions when they do not have bias parameters.

Definition 4.1. A pre-activation function τl : RNl−1 ×
RWl → RNl is well-structured biaffine if there are Mi ∈
RNl−1×Wl and ci ∈ R for all i ∈ [Nl] such that

τl,i(x, u) = xTMiu+ ci

and each column of Mi has at most one non-zero entry.

Any fully-connected or convolution layers are well-
structured biaffine when they do not have bias parameters.
Thus, a large class of neural networks is still under our

6



On the Correctness of Automatic Differentiation for Neural Networks with Machine-Representable Parameters

consideration even after we impose the above restriction.
Yet some pre-activation functions (e.g., normalization and
attention layers) are not well-structured biaffine whether or
not they have bias parameters.

We now present our results for neural networks possibly
without bias parameters, extending Theorems 3.2–3.6.

4.1. Bounds for Non-Differentiable and Incorrect Sets

We first bound the density of the non-differentiable and
incorrect sets in Ω, extending Theorem 3.3.

Theorem 4.2. If a pre-activation function τl has bias pa-
rameters or is well-structured biaffine for all l ∈ [L], then

|ndfΩ(zL) ∪ incΩ(zL)|
|Ω|

≤ 1

|M|
∑

(l,i)∈Idx

∣∣∣ndf(σl,i) ∪ (bdz(σl,i) ∩ Sl+1

)∣∣∣,
where bdz(f) is the boundary of f ’s zero set (see §2.1), and

Sl ,

{
∅ if l > L or τl has bias parameters
R otherwise.

We note that if zL has bias parameters, Theorem 4.2 reduces
to Theorem 3.3 since incΩ(zL) = ∅ (by Theorem 3.2) and
Sl = ∅ for all l (by its definition) in such a case.

As in Theorem 3.3, the bound in Theorem 4.2 is often small
for neural networks that use practical activation functions,
since |ndf(σl,i)∪ bdz(σl,i)| is typically small for those acti-
vation functions (e.g., 1 for ReLU and 2 for HardSigmoid).

We now show that the additional term bdz(σl,i) in Theo-
rem 4.2 is indeed necessary by providing a matching lower
bound up to a constant factor.

Theorem 4.3. For any M ⊆ R and n, α ∈ N with 1 ≤
|M| < ∞, n ≥ 4, and α ≤ |M|/(n − 1), there is a neural
network zL : RW → R that satisfies

|ndfΩ(zL)|
|Ω|

≥ 1

9
· 1

|M|
∑

(l,i)∈Idx

∣∣∣ndf(σl,i) ∪ bdz(σl,i)
∣∣∣

and the following: (i) τl is well-structured biaffine without
bias parameters for all l < L, and has bias parameters for
l = L; (ii) zL has n+ 1 neurons; and (iii) |ndf(σ1,i)| = α
and |bdz(σ1,i)| = 0 for all i. We obtain the same result for
(i), (ii’), and (iii’): (ii’) zL has 2n + 1 neurons; and (iii’)
|ndf(σ1,i)| = 0 and |bdz(σ1,i)| = α for all i.

We next give an intuition for why the zero set of σl,i (from
which the additional term bdz(σl,i) is defined) appears in
Theorem 4.2, by examining its proof. The proof consists of

two main parts that extend Eqs. (3) and (4) from the proof
sketch of Theorem 3.3: we first show

ndfΩ(zL) ∪ incΩ(zL) ⊆
⋃

(l,i)∈Idx, c∈ndf(σl,i)

{w ∈ Ω | yl,i(w) = c}

and then find a reasonable bound on |Λl,i,c| for Λl,i,c ,
{w ∈ Ω | yl,i(w) = c}, the set of parameters on which
the pre-activation value yl,i touches the non-differentiable
point c of σl,i. Among the two parts, the zero set of σl,i
arises from the second part (i.e., bounding |Λl,i,c|), espe-
cially when τl does not have bias parameters and is well-
structured biaffine. For simplicity, assume that τl is a
fully-connected layer with constant biases, i.e., yl,i(w) =∑
j∈[Nl−1] zl−1,j(w) · wj+a + b for some constants a, b.

Based on this, we decompose Λl,i,c into Λ′ ∪ Λ′′:

Λ′ , {w ∈ Ω | yl,i(w) = c, zl−1,j(w) 6= 0 for some j},
Λ′′ , {w ∈ Ω | yl,i(w) = c, zl−1,j(w) = 0 for all j}.

Then, we can show |Λ′| ≤ |M|W−1 as in Eq. (4), sincewj+a
acts like a bias parameter of yl,i for any j with zl−1,j(w) 6=
0. To bound |Λ′′|, however, we cannot apply a similar ap-
proach due to the lack of j with zl−1,j(w) 6= 0. Instead, we
directly count the number of parameters w ∈ Ω achieving
zl−1,j(w) = 0 for all j (i.e., σl−1,j(yl−1,j(w)) = 0 for
all j), and this requires the zero set of σl−1,j . For the full
proofs of Theorems 4.2 and 4.3, see Appendices B and D.

4.2. Bounds for the Incorrect Set

For the non-differentiable set, Theorems 4.2 and 4.3 provide
tight bounds on its size. For the incorrect set, it turns out
that we can further improve the upper bound in Theorem 4.2
and get a similar lower bound to Theorem 4.3.

Theorem 4.4. If a pre-activation function τl has bias pa-
rameters or is well-structured biaffine for all l ∈ [L], then

|incΩ(zL)|
|Ω|

≤ 1

|M|
∑

(l,i)∈Idx

∣∣∣(ndf(σl,i) ∩ Sl)
∪
(
bdz(σl,i) ∩ Sl+1

)∣∣∣,
where Sl is defined as in Theorem 4.2.

Theorem 4.5. For any M ⊆ R and n, α ∈ N with 1 ≤
|M| < ∞, n ≥ 4, and α ≤ |M|/(n − 1), there is a neural
network zL : RW → R that satisfies

|incΩ(zL)|
|Ω|

≥ 1

13
· 1

|M|
∑

(l,i)∈Idx

∣∣∣ndf(σl,i) ∪ bdz(σl,i)
∣∣∣

and the following: (i) τl is well-structured biaffine without
bias parameters for all l < L, and has bias parameters for
l = L; (ii) zL has 2n+ 1 neurons; and (iii) |ndf(σ1,i)| = α
and |bdz(σ1,i)| = 0 for all i. We obtain the same result for
(i), (ii’), and (iii’): (ii’) zL has 3n + 1 neurons; and (iii’)
|ndf(σ1,i)| = 0 and |bdz(σ1,i)| = α for all i.
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We note that if zL has bias parameters, Theorem 4.4 reduces
to |incΩ(zL)| = 0 as in Theorem 3.2 since Sl = ∅ for
all l in the case. On the other hand, if zL does not have
bias parameters, then the incorrect set can be non-empty
as discussed in §3.1, and more importantly, its size can
be bounded by Theorem 4.4. To see why the bounds on
|incΩ(zL)| depend on both ndf(σl,i) and bdz(σl,i), refer to
the proofs of Theorems 4.4 and 4.5 in Appendices C and D.

4.3. Sufficient Conditions for Computing
Standard Derivatives and Clarke Subderivatives

We extend Theorems 3.5 and 3.6 to general neural networks
without the well-structured biaffinity restriction, by char-
acterizing two sufficient conditions on parameters under
which AD computes the standard derivative or a Clarke
subderivative.

Theorem 4.6. Let w ∈ RW . If yl,i(w) /∈ ndf(σl,i) for all
(l, i) ∈ Idx such that τl does not have bias parameters or
∂ADzL/∂zl,i 6= ~0 at w, then

DADzL(w) = DzL(w) 6= ⊥.

Theorem 4.7. Let w ∈ RW . Assume that DADσl,i is con-
sistent for all (l, i) ∈ Idx. If yl,i(w) /∈ ncdf(σl,i) for all
(l, i) ∈ Idx such that τl does not have bias parameters, then

DADzL(w) =


DzL(w) if DzL(w) 6= ⊥
limn→∞DzL(w′n)

for some w′n → w
if DzL(w) = ⊥

and soDADzL(w) is a Clarke subderivative of zL atw. Here
ncdf(f) denotes the set of real numbers at which f : R→ R
is not continuously differentiable.

The two sufficient conditions on w given in Theorems 4.6
and 4.7 are simple enough to be checked efficiently in prac-
tice; thus, we can use them to validate whether the output of
AD is the standard derivative or a Clarke subderivative. If w
does not satisfy either of the sufficient conditions, AD may
not compute the standard derivative or a Clarke subderiva-
tive; the first example discussed in §3.3 illustrates both cases.
We remark that the sufficient condition in Theorem 4.7 in-
volves ncdf(σl,i) (not ndf(σl,i)), since we use continuous
differentiability (not differentiability) in the proof to prop-
erly handle the limit of derivativesDzL(w′n). For the proofs
of Theorems 4.6 and 4.7, see Appendices E and F.

5. Related Work
The correctness of AD has been extensively studied, espe-
cially in the past few years. When a program uses only
differentiable functions, AD is shown to compute its stan-
dard derivative at all real-valued inputs (Abadi & Plotkin,
2020; Barthe et al., 2020; Brunel et al., 2020; Elliott, 2018;

Huot et al., 2020; Krawiec et al., 2022; Radul et al., 2023;
Smeding & Vákár, 2023; Vákár, 2021). In contrast, when
a program uses non-differentiable functions, the program
itself can be non-differentiable, and AD can return a value
different from its standard derivative, at some real-valued
inputs. Nevertheless, for a large class of programs, such
inputs are shown to be in a Lebesgue measure-zero subset
of the real-valued input domain (Bolte & Pauwels, 2020a;b;
Huot et al., 2023; Lee et al., 2020; Mazza & Pagani, 2021).
All these works consider the case when inputs to AD are
real-valued, while our work focuses on the case when the
inputs are machine-representable.

The Clarke subdifferential and its connection to AD have
been studied for decades. Some classes of functions (e.g.,
subdifferentially regular or strictly differentiable) are shown
to admit exact chain rules for the Clarke subdifferential
(e.g., Theorems 2.3.9, 2.3.10, and 2.6.6 of Clarke (1990)
and Theorem 10.6 of Rockafellar & Wets (1998)), and this
implies that AD always computes a Clarke subderivative
for a certain class of programs. However, this class of pro-
grams is restrictive, excluding even simple neural networks
(e.g., (1−ReLU(x))2) (Davis et al., 2020). In contrast,
our Theorem 3.6 shows that AD always computes a Clarke
subderivative of neural networks with bias parameters. For
piecewise differentiable functions, the Clarke subdifferential
can be expressed in terms of the standard derivatives of un-
derlying differentiable functions (e.g., Proposition 4.3.1 of
Scholtes (2012)), but this result is not directly related to AD.

A variety of algorithms (other than AD) have been pro-
posed to compute a Clarke subgradient of a scalar program,
correctly and efficiently. For a large class of programs
f : Rn → R and an input x ∈ Rn, the algorithm by Kakade
& Lee (2018) computes a Clarke subgradient of f at x in
time O(T ) almost surely, while the algorithms by Barton
et al. (2018); Khan & Barton (2015) compute the quantity
in time O(nT ) deterministically, where T denotes time to
evaluate f(x). Our Theorem 3.6 provides a relevant result
as described above, but we point out that our work is about
analyzing the correctness of vanilla (forward/reverse-mode)
AD, not about proposing a new algorithm.

Recently, Bertoin et al. (2021) empirically studied how the
choice of DADReLU(0) changes the output of AD and the
training of neural networks. In contrast, our work theoret-
ically studies the correctness of AD. Further connections
between this and our work are discussed in §6.

6. Discussion
Connections to Bertoin et al. (2021). Bertoin et al. empir-
ically studied the bifurcation zone of a neural network with
ReLU, given an input dataset: the set of the network param-
eters on which the output of AD using DADReLU(0) = 0 is
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different from that using DADReLU(0) = 1 for some input
data. The bifurcation zone is closely related to the non-
differentiable and incorrect sets as follows: the bifurcation
zone (over machine-representable parameters) is always a
subset of the union of the non-differentiable set and two
incorrect sets (one for DADReLU(0) = 0 and the other for
DADReLU(0) = 1) over all input data in the given dataset.

For various neural networks (MLP, VGG, ResNet) and
datasets (MNIST, CIFAR10, SVHN, ImageNet), Bertoin
et al. estimated the density of the bifurcation zone over
32-bit floating-point parameters (i.e., the number of 32-bit
parameters in the bifurcation zone over the total number
of 32-bit parameters) using Monte Carlo sampling. They
reported two results among many others: when AD uses
64-bit precision in its computation, the estimated density is
exactly 0 in all cases they considered; and when AD uses
32- or 16-bit precision, the estimated density is often large
and even goes up to 1. The first result is consistent with our
results: if we use 32-bit parameters, the non-differentiable
and incorrect sets would often have small densities in prac-
tice. Meanwhile, the second result does not contradict our
results, since our results assume that AD computes its out-
put without any rounding errors. Given these observations,
it would be an interesting direction to rigorously study the
correctness of AD under floating-point operations.

Extensions. As mentioned in §2.2, all our theorems except
for those on lower bounds (i.e., Theorems 3.4, 4.3, and 4.5)
continue to hold even if we replace zL in their conclusions
by `◦zL for any analytic ` : RNL → Rm. Among them, The-
orems 3.3 and 4.2 are easily extended to a more general case
with multiple input data: they remain valid even if we re-
place zL in their conclusions by `(zL(·;x1), . . . , zL(·;xk))
for any x1, . . . , xk ∈ RN0 and analytic ` : RNL → Rm,
where we need to multiply k to the upper bounds in the theo-
rems. The remaining theorems (i.e., Theorems 3.2, 3.5, 3.6,
4.4, 4.6, and 4.7), on the other hand, are not easily extended
to the case with multiple input data, at least based on our
current proofs. Studying such extensions could be another
interesting future direction.

Limitations. Our results have some limitations. For ex-
ample, all of our results are for a class of neural networks
consisting of alternating analytic pre-activation functions
and pointwise continuous activation functions. Hence, if a
network contains non-pointwise activation functions (e.g.,
MaxPool) or a residual connection bypassing a non-analytic
activation function (e.g., ReLU), then our results may not
be directly applicable. Our results for general neural net-
works (e.g., Theorems 4.2 and 4.4) additionally assume
pre-activation functions to have bias parameters or to be
well-structured biaffine, which does not allow, e.g., Batch-
Norm layers and attention layers without bias parameters.
Nevertheless, we believe that our results still cover a large

class of neural networks, especially compared to prior works
studying theoretical aspects of neural networks (Jacot et al.,
2018; Kidger & Lyons, 2020; Laurent & von Brecht, 2018;
Lu et al., 2017; Park et al., 2021). We believe extending
our work to more general neural networks is an interesting
direction for future work.

7. Conclusion
In this paper, we theoretically study for the first time
the correctness of AD for neural networks with machine-
representable parameters. In particular, we provide various
theoretical results on the incorrect and non-differentiable
sets of a neural network, as well as closely related ques-
tions such as when AD is correct and what it computes.
Our results have two major practical implications: AD is
correct at most machine-representable parameters when ap-
plied to neural networks, and it is correct more often if more
layers of the network have bias parameters. Furthermore,
our theoretical analyses suggest new applications of AD
for identifying differentiability and computing Clarke sub-
derivatives, not only for machine-representable parameters
but also for any real-valued ones.
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A. Formal Setup
In the appendix, we use the following notation. For A ⊆ Rn, int(A) and bd(A) denote the interior and the boundary of A.

A.1. Piecewise-Analytic Functions

Definition A.1. For A ⊆ Rn, define pbd(A) as

pbd(A) , A \ int(A).

We call pbd(A) the proper boundary of A. Note that pbd(A) = bd(A) ∩A holds for any A.

Definition A.2. A function f : R → R is piecewise-differentiable (or piecewise-C1) if there exist n ∈ N, a partition
{Ai}i∈[n] of R consisting of non-empty intervals, and differentiable (or C1) functions {fi : R → R}i∈[n] such that
f = fi on Ai for all i ∈ [n]. We call such {(Ai, fi)}i∈[n] a piecewise-differentiable (or piecewise-C1) representation of f .
Moreover, for an extended derivative g : R→ R of f , we say that the representation {(Ai, fi)}i∈[n] defines g if g = Dfi on
Ai for all i ∈ [n]. We define a piecewise-analytic representation of f in a similar way.

Lemma A.3. Let {Ai}i∈S be any partition of Rn. Then,⋃
i∈S

bd(Ai) =
⋃
i∈S

pbd(Ai). (5)

Proof. The direction ⊇ is clear, since pbd(X) ⊆ bd(X) for any X ⊆ Rn. To prove the other direction ⊆, it suffices to show
that for any i ∈ S and x ∈ bd(Ai), we have x ∈ pbd(Aj) for some j ∈ S. Here we assume x /∈ Ai; if not, choosing j = i
completes the proof. Let j ∈ S be the index with x ∈ Aj , where such j always exists since {Ai}i∈S is a partition of R.
Then, it suffices to show x ∈ bd(Aj), because this and x ∈ Aj implies x ∈ pbd(Aj). To prove x ∈ bd(Aj), consider any
open neighborhood U ⊆ Rn of x. Then, there is x′ ∈ U ∩Ai (by x ∈ bd(Ai) and x /∈ Ai). This implies that x′ /∈ U ∩Aj
(by Ai ∩Aj = ∅ from i 6= j) and x ∈ U ∩Aj (by x ∈ Aj). Hence, we have x ∈ bd(Aj) as desired.

Theorem A.4. Let f : R→ R be a continuous, piecewise-analytic function, and g : R→ R be an extended derivative of f .
Then, the following hold.

(i) There is a piecewise-differentiable representation {(Ai, fi)}i∈[n] of f that defines g and satisfies the following:⋃
i∈[n]

bd(Ai) =
⋃
i∈[n]

pbd(Ai) = ndf(f).

(ii) If g is consistent, there is a piecewise-C1 representation {(Ai, fi)}i∈[n] of f that defines g and satisfies the following:⋃
i∈[n]

bd(Ai) =
⋃
i∈[n]

pbd(Ai) = ncdf(f), int(Ai) 6= ∅ for all i ∈ [n],

where ncdf(f) ⊆ R denotes the set of real numbers at which f : R→ R is not continuously differentiable.

Proof. We prove the two claims as follows. Note that by Lemma A.3, we do not need to prove the equality between the
union of bd(Ai) and that of pbd(Ai) in the claims.

Claim (i). Let {(Ãi, f̃ i)}i∈[ñ] be a piecewise-analytic representation of f that defines g and satisfies

(Ã1, . . . , Ãñ) =
(

(x0, x1), . . . , (xk, xk+1), {x1}, . . . , {xk}
)

for some −∞ = x0 < x1 < · · · < xk < xk+1 =∞. Such a representation always exists, because f is piecewise-analytic
and g is an extended derivative of f . Note that ndf(f) ⊆ {x1, . . . , xk} because f is differentiable on (xi−1, xi) for all
i ∈ [k + 1] (since f̃ i is analytic and it coincides with f on Ãi = (xi−1, xi)). We then construct {(Ai, fi)}i∈[n] from
{(Ãi, fi)}i∈[ñ], by merging all adjacent intervals Ãi (and associated functions f̃ i) into a single interval (and a single
function) such that the class of the singleton interval in {Ai} are the same as {{x} | x ∈ ndf(f)}. Then,⋃

i∈[n]

pbd(Ai) =
⋃

x∈ndf(f)

{x} = ndf(f)
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by construction; fi is differentiable for all i ∈ [n]; and {(Ai, fi)}i∈[n] defines g since g is an extended derivative of f . Hence,
{(Ai, fi)}i∈[n] is a piecewise-differentiable representation of f that defines g and satisfies the equation in the statement.

Claim (ii). By a similar argument, there is a piecewise-C1 representation {(Ãi, f̃ i)}i∈[ñ] of f that defines g and satisfies⋃
i∈[ñ]

pbd(Ãi) = ncdf(f).

Note that here we need ncdf(f) (instead of ndf(f)) in the above equation, to obtain a piecewise-C1 (instead of piecewise-
differentiable) representation of f . We then construct {(Ai, fi)}i∈[n] from {(Ãi, f̃ i)}i∈[ñ], by merging each singleton
interval Ãi (and the associated function f̃ i) with one of the two adjacent intervals (and its associated function) such that
{(Ai, fi)}i∈[n] defines g. Such a construction always exists, because f is continuous, g is consistent, and f̃ i is C1 for all
i ∈ [ñ]. Then, ⋃

i∈[n]

pbd(Ai) = ncdf(f), int(Ai) 6= ∅ for all i ∈ [n]

by construction; and fi is C1 for all i ∈ [ñ] since f is continuous. Hence, {(Ai, fi)}i∈[n] is a piecewise-C1 representation
of f that defines g and satisfies the equation given in the statement.

A.2. Neural Networks

Definition A.5. For each (l, i) ∈ Idx, let
{(Ikl,i, σkl,i)}k∈[Kl,i]

be a piecewise-differentiable representation of σl,i : R→ R that defines DADσl,i (an extended derivative of σl,i defined in
§2.3), where Kl,i ∈ N, Ikl,i ⊆ R, and σkl,i : R→ R. We assume that the representation satisfies the following:⋃

k∈[Kl,i]

bd(Ikl,i) =
⋃

k∈[Kl,i]

pbd(Ikl,i) = ndf(σl,i).

Note that such a representation always exists by Theorem A.4.

Definition A.6. Define Γ, the set of indices denoting which piece of each activation function is used, as

Γ , {γ : Idx→ N | γ(l, i) ∈ [Kl,i] for all (l, i) ∈ Idx}.

Definition A.7. Let γ ∈ Γ and l ∈ [L]. DefineRγ ⊆ RW , yγl , z
γ
l : RW → RNl , σγl : RNl → RNl as:

Rγ , {w ∈ RW | yl,i(w) ∈ Iγ(l,i)
l,i for all (l, i) ∈ Idx},

yγl (w) , τl
(
zγl−1(w), πl(w)

)
, zγl (w) , σγl

(
yγl (w)

)
,

σγl (x) ,
(
σ
γ(l,1)
l,1 (x1), . . . , σ

γ(l,Nl)
l,Nl

(xNl)
)
,

where πl : RW → RWl denotes the projection function that extracts wl ∈ RWl from (w1, . . . , wL) ∈ RW , and zγ0 : RW →
RN0 is defined as zγ0 , z0.

Lemma A.8. {Rγ}γ∈Γ is a partition of RW .

Proof. This follows immediately from that {Ikl,i}k∈[Kl,i] is a partition of R for all (l, i) ∈ Idx (since {(Ikl,i, σkl,i)}k∈[Kl,i] is
a representation of σl,i).

Lemma A.9. For all l ∈ [L] and γ ∈ Γ, yl and zl are continuous, and yγl and zγl are differentiable.

Proof. The continuity of yl and zl follows directly from that τl′ , πl′ , and σl′,i′ are continuous for all (l′, i′) ∈ Idx. Similarly,
the differentiability of yγl and zγl follows directly from that τl′ , πl′ , and σk

′

l′,i′ are differentiable for all (l′, i′) ∈ Idx and
k′ ∈ [Kl′,i′ ].

Lemma A.10. Let γ ∈ Γ. Then,

Rγ = {w ∈ RW | yγl,i(w) ∈ Iγ(l,i)
l,i for all (l, i) ∈ Idx}.

Note that the RHS uses yγl,i instead of yl,i.

14



On the Correctness of Automatic Differentiation for Neural Networks with Machine-Representable Parameters

Proof. Let γ ∈ Γ. DefineRγ≤l,S
γ
≤l ⊆ RW for l ∈ [L] as

Rγ≤l , {w ∈ RW | yl′,i(w) ∈ Iγ(l′,i)
l′,i for all (l′, i) ∈ Idx with l′ ≤ l},

Sγ≤l , {w ∈ RW | yγl′,i(w) ∈ Iγ(l′,i)
l′,i for all (l′, i) ∈ Idx with l′ ≤ l}.

It suffices to show the following claim which generalizes this lemma: all l ∈ [L],

yl(w) = yγl (w) for all w ∈ Rγ≤l−1, Rγ≤l = Sγ≤l.

We prove this claim by induction on l.

Case l = 1. Since z0 = zγ0 , we have the first claimed equation:

y1(w) = τ1(z0(w), w1) = τ1(zγ0 (w), w1) = yγ1 (w)

for all w ∈ RW . From this, we have the second claimed equation:

Rγ≤1 =
⋂

i∈[N1]

{w ∈ RW | y1,i(w) ∈ Iγ(1,i)
1,i } =

⋂
i∈[N1]

{w ∈ RW | yγ1,i(w) ∈ Iγ(1,i)
1,i } = Sγ≤1.

Case l > 1. We obtain the first claimed equation as follows: for all w ∈ Rγ≤l−1,

yγl (w) = τl
(
σγl−1(yγl−1(w)), πl(w)

)
= τl

(
σγl−1(yl−1(w)), πl(w)

)
= τl

(
σl−1(yl−1(w)), πl(w)

)
= yl(w).

Here the second line uses yγl−1(w) = yl−1(w), which holds by induction hypothesis on l−1 withw ∈ Rγ≤l−1 ⊆ R
γ
≤l−2. And

the third line uses σγ(l−1,i)
l−1,i (yl−1,i(w)) = σl−1,i(yl−1,i(w)) for all i ∈ [Nl−1], which holds because yl−1,i(w) ∈ Iγ(l−1,i)

l−1,i

(by w ∈ Rγ≤l−1) and {(Ikl−1,i, σ
k
l−1,i)}k∈[Kl−1,i] is a representation of σl−1,i. Using this result, we obtain the second

claimed equation as follows:

Rγ≤l = Rγ≤l−1 ∩
⋂

i∈[Nl]

{w ∈ Rγ≤l−1 | yl,i(w) ∈ Iγ(l,i)
l,i }

= Rγ≤l−1 ∩
⋂

i∈[Nl]

{w ∈ Rγ≤l−1 | y
γ
l,i(w) ∈ Iγ(l,i)

l,i }

= Sγ≤l−1 ∩
⋂

i∈[Nl]

{w ∈ Sγ≤l−1 | y
γ
l,i(w) ∈ Iγ(l,i)

l,i } = Sγ≤l,

where the second line uses yγl,i(w) = yl,i(w) for all w ∈ Rγ≤l−1, which we already proved, and the third line uses
Rγ≤l−1 = Sγ≤l−1, which holds by induction hypothesis on l − 1.

Lemma A.11. Let γ ∈ Γ. Then, for all l ∈ [L] and w ∈ Rγ ,

yγl (w) = yl(w), zγl (w) = zl(w).

Proof. Let γ ∈ Γ. The claim shown in the proof of Lemma A.10 implies the first part of the conclusion (sinceRγ≤l−1 ⊇ Rγ):
for all l ∈ [L] and w ∈ Rγ , yγl (w) = yl(w). From this, we obtain the second part of the conclusion: for all l ∈ [L] and
w ∈ Rγ ,

zγl (w) = σγl (yγl (w)) = σγl (yl(w)) = σl(yl(w)) = zl(w),

where the second equality follows from the first part of the conclusion, and the third equality from σ
γ(l,i)
l,i (yl,i(w)) =

σl,i(yl,i(w)) which holds because yl,i(w) ∈ Iγ(l,i)
l,i (by w ∈ Rγ) and {(Ikl,i, σkl,i)}k∈[Kl,i] is a representation of σl,i.
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A.3. Automatic Differentiation

As discussed in §1, AD operates not on mathematical functions, but on programs that represent those functions. To this end,
we define a program P that represents a function from RW to R as follows:

P ::= r | wl,j | f(P1, . . . ,Pn)

where r ∈ R, l ∈ [L], j ∈ [Wl], f ∈ {τl,i, σl,i | (l, i) ∈ Idx}, and n ∈ N. This definition says that a program P can be either
a real-valued constant r, a real-valued parameter wl,j , or the application of a function f : Rn → R to subprograms P1, . . . ,Pn.
In this paper, we focus on particular programs Pyl,i and Pzl,i that represent the functions yl,i( · ; c), zl,i( · ; c) : RW → R and
are defined in a canonical way as follows:

Pyl,i , τl,i(Pzl−1,1
, . . . ,Pzl−1,Nl−1

,wl,1, . . . ,wl,Wl
),

Pzl,i , σl,i(Pyl,i),

where Pz0,i′ , ci′ for i′ ∈ [N0] represents the constant function z0,i′( · ; c) : RW → R.

Given a program P, we define JPK : RW → R as the function represented by P, and JPKAD : RW → R1×W as the function
that AD essentially computes when applied to P. These functions are defined inductively as follows (Abadi & Plotkin, 2020;
Baydin et al., 2017; Lee et al., 2020):

JrK(w) , r,

Jwl,jK(w) , wl,j ,

Jf(P1, . . . ,Pn)K(w) , f
(
JP1K(w), . . . , JPnK(w)

)
,

JrKAD(w) , 0,

Jwl,jKAD(w) , 1l,j ,

Jf(P1, . . . ,Pn)KAD(w) , DADf
(
JP1K(w), . . . , JPnK(w)

)
·
[
JP1KAD(w)

/
· · ·
/

JPnKAD(w)
]
.

Here wl,j ∈ R is defined as (w1,1, w1,2 . . . , wL,WL
) , w, 0,1l,j ∈ R1×W denote the zero matrix and the matrix whose

entries are all zeros except for a single one at the (W1 + · · · + Wl−1 + j)-th entry, DADf : Rn → R1×n denotes a
“derivative” of f used by AD, and [M1 / · · · /Mn] denotes the matrix that stacks up matrices M1, . . . ,Mn vertically. Note
that Jf(P1, . . . ,Pn)KAD captures the essence of AD: it computes derivatives based on the chain rule for differentiation.

Using the above definitions, we define DADzL : RW → RNL×W as what AD essentially computes when applied to a
program that canonically represents a neural network zL : RW → RNL :

DADzL(w) ,
[
JPzL,1K

AD(w)
/
· · ·
/

JPzL,NL KAD(w)
]
.

Note that DADzL depends on the “derivative” of (pre-)activation functions (i.e., DADσl,i and DADτl,i) used by AD.

Lemma A.12. For any γ ∈ Γ and w ∈ Rγ ,

DADzL(w) = DzγL(w).

Proof. Let γ ∈ Γ. We prove the following claim: for all l ∈ [L] ∪ {0}, i ∈ [Nl], and w ∈ Rγ ,

Dzγl,i(w) = JPzl,iK
AD(w).

Note that this claim implies the conclusion since

DzγL(w) = [DzγL,1(w) / · · · /DzγL,NL(w)] = [JPzL,1K
AD(w) / · · · / JPzL,NL KAD(w)] = DADzL(w).

We prove the claim by induction on l.

Case l = 0. Let i ∈ [Nl] and w ∈ Rγ . Since Pz0,i is a constant program, Dzγ0,i(w) = 0 = JPz0,iKAD(w) as desired.

Case l > 0. Let i ∈ [Nl] and w ∈ Rγ . Observe that

JPyl,iK
AD(w) = Jτl,i(Pzl−1,1

, . . . ,Pzl−1,Nl−1
,wl,1, . . . ,wl,Wl

)KAD(w)
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= Dτl,i
(
JPzl−1,1

K(w), . . . , JPzl−1,Nl−1
K(w), Jwl,1K(w), . . . , Jwl,NlK(w)

)
·
[
JPzl−1,1

KAD(w) / · · · / JPzl−1,Nl−1
KAD(w) / Jwl,1KAD(w) / · · · / Jwl,Wl

KAD(w)
]

= Dτl,i
(
zl−1(w), πl(w)

)
·
[
Dzγl−1,1(w) / · · · /Dzγl−1,Nl−1

(w) / 1l,1 / · · · / 1l,Nl
]

= Dτl,i
(
zl−1(w), πl(w)

)
·
[
Dzγl−1(w) /Dπl(w)

]
= Dτl,i

(
(zl−1, πl)(w)

)
·D(zγl−1, πl)(w), (6)

where (f, g) : Rn → Rm1+m2 is defined as (f, g)(x) , (f(x), g(x)) for f : Rn → Rm1 and g : Rn → Rm2 . Here the
third line uses JPzl−1,i′ K(w) = zl−1,i′(w) and JPzl−1,i′ K

AD(w) = Dzγl−1,i′(w) for all i′ ∈ [Nl−1], where the latter holds by
induction hypothesis on l − 1.

Using the observation above, we obtain the claim:

JPzl,iK
AD(w) = Jσl,i(Pyl,i)KAD(w)

= DADσl,i
(
JPyl,iK(w)

)
· JPyl,iKAD(w)

= DADσl,i
(
yl,i(w)

)
·Dτl,i

(
(zl−1, πl)(w)

)
·D(zγl−1, πl)(w)

= Dσγl,i
(
yl,i(w)

)
·Dτl,i

(
(zl−1, πl)(w)

)
·D(zγl−1, πl)(w)

= Dσγl,i
(
(τl,i ◦ (zγl−1, πl))(w)

)
·Dτl,i

(
(zγl−1, πl)(w)

)
·D(zγl−1, πl)(w)

= D(σγl,i ◦ τl,i ◦ (zγl−1, πl))(w)

= Dzγl,i(w).

Here the third line uses JPyl,iK(w) = yl,i(w) and Eq. (6), and the fourth line uses DADσl,i(yl,i(w)) = Dσ
γ(l,i)
l,i (yl,i(w)),

which holds because yl,i(w) ∈ Iγ(l,i)
l,i (by w ∈ Rγ) and {(Ikl,i, σkl,i)}k∈[Kl,i] defines DADσl,i. The fifth line uses yl,i(w) =

yγl,i(w) and zl−1(w) = zγl−1(w) (by Lemma A.11 with w ∈ Rγ), and the sixth line uses the chain rule, which is applicable
to (σγl,i ◦ τl,i ◦ (zγl−1, πl)) because σγl,i, τl,i, z

γ
l−1, and πl are differentiable (as zγl−1 is differentiable by Lemma A.9).
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B. Upper Bounds on |ndfΩ(zL) ∪ incΩ(zL)|
B.1. Lemmas (Basic)

Lemma B.1. For any A,B ⊆ Rn,

pbd(A ∪B) ⊆ pbd(A) ∪ pbd(B), pbd(A ∩B) ⊆ pbd(A) ∪ pbd(B).

Proof. Let A,B ⊆ Rn. Then, int(A∪B) ⊇ int(A)∪ int(B) and int(A∩B) = int(A)∩ int(B). Using these, we obtain:

pbd(A ∪B) = (A ∪B) \ int(A ∪B)

= (A \ int(A ∪B)) ∪ (B \ int(A ∪B))

⊆ (A \ int(A)) ∪ (B \ int(B))

= pbd(A) ∪ pbd(B),

pbd(A ∩B) = (A ∩B) \ int(A ∩B)

= (A ∩B) \ (int(A) ∩ int(B))

= ((A ∩B) \ int(A)) ∪ ((A ∩B) \ int(B))

⊆ (A \ int(A)) ∪ (B \ int(B))

= pbd(A) ∪ pbd(B).

Lemma B.2. Let f : Rn → R be a function defined as f(x) = g(x−n) + c · xn for any g : Rn → R and c ∈ R \ {0}, where
x−n denotes (x1, . . . , xn−1). Then, ∣∣{x ∈ Mn | f(x) = 0}

∣∣ ≤ |M|n−1.

Proof. Using the definition of f and c 6= 0, we obtain the conclusion:∣∣{x ∈ Mn | f(x) = 0}
∣∣ =

∣∣{(x−n, xn) ∈ Mn−1 × M | f(x−n, xn) = 0}
∣∣

=
∑
x−n∈Mn−1

∣∣{xn ∈ M | xn = −g(x−n)/c}
∣∣

≤
∑
x−n∈Mn−1 1 = |M|n−1.

B.2. Lemmas (Technical: Part 1)

Definition B.3. For a neural network zL : RW → RNL , define the incorrect set and the non-differentiable set of zL over
RW (not over Ω) as:

incR(zL) , {w ∈ RW | DzL(w) 6= ⊥, DADzL(w) 6= DzL(w)},
ndfR(zL) , {w ∈ RW | DzL(w) = ⊥}.

Lemma B.4. We have

ndfR(zL) ∪ incR(zL) ⊆
⋃
γ∈Γ

pbd(Rγ).

Proof. First, observe that for all γ ∈ Γ,

DADzL(w) = DzγL(w) = DzL(w) for all w ∈ int(Rγ),

where the first equality is by Lemma A.12, and the second equality is obtained by applying the following fact to
(zγL, zL, int(Rγ)): for any f, g : Rn → Rm and open U ⊆ Rn, if f is differentiable on U and f = g on U , then
g is differentiable on U and Df = Dg on U . Note that the previous fact is applicable since int(Rγ) is open, zγL is
differentiable (by Lemma A.9), and zγL = zL on int(Rγ) by Lemma A.11.

From the above equation, we have ⋃
γ∈Γ

int(Rγ) ⊆ RW \
(
ndfR(zL) ∪ incR(zL)

)
.
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From this, we obtain the conclusion:

ndfR(zL) ∪ incR(zL) ⊆ RW \
⋃
γ∈Γ

int(Rγ)

=
( ⋃
γ∈Γ

Rγ
)
\
( ⋃
γ∈Γ

int(Rγ)
)

=
⋃
γ∈Γ

(
Rγ \ int(Rγ)

)
=
⋃
γ∈Γ

pbd(Rγ),

where the first equality is by Lemma A.8, and the last equality is by the definition of pbd(−).

Lemma B.5. We have ⋃
γ∈Γ

pbd(Rγ) ⊆
⋃

(l,i)∈Idx

⋃
c∈ndf(σl,i)

pbd
(
{w ∈ RW | yl,i(w) = c}

)
.

Proof. First, we have ⋃
γ∈Γ

pbd(Rγ) =
⋃
γ∈Γ

pbd
( ⋂

(l,i)∈Idx

{w ∈ RW | yl,i(w) ∈ Iγ(l,i)
l,i }

)
⊆

⋃
γ∈Γ

⋃
(l,i)∈Idx

pbd
(
{w ∈ RW | yl,i(w) ∈ Iγ(l,i)

l,i }
)

=
⋃

(l,i)∈Idx

⋃
γ∈Γ

pbd
(
{w ∈ RW | yl,i(w) ∈ Iγ(l,i)

l,i }
)

=
⋃

(l,i)∈Idx

⋃
k∈[Kl,i]

pbd
(
{w ∈ RW | yl,i(w) ∈ Ikl,i}

)
, (7)

where the first line uses the definition ofRγ , the second line uses Lemma B.1, and the last line uses that {γ(l, i) | γ ∈ Γ} =
[Kl,i] for all (l, i). Note that in the last two lines, we change the way we count the proper boundary of all subregions: from
per subregion to per activation neuron.

Next, for any (l, i) ∈ Idx and k ∈ [Kl,i], we have

pbd
(
{w ∈ RW | yl,i(w) ∈ Ikl,i}

)
= pbd

(
{w ∈ RW | yl,i(w) ∈ pbd(Ikl,i)} ∪ {w ∈ RW | yl,i(w) ∈ int(Ikl,i)}

)
⊆ pbd

(
{w ∈ RW | yl,i(w) ∈ pbd(Ikl,i)}

)
∪ pbd

(
{w ∈ RW | yl,i(w) ∈ int(Ikl,i)}

)
= pbd

(
{w ∈ RW | yl,i(w) ∈ pbd(Ikl,i)}

)
, (8)

where the third line is by Lemma B.1 and the last line is by the following: pbd(A) = ∅ for any open A ⊆ Rn; and
{w ∈ RW | yl,i(w) ∈ int(Ikl,i)} is open, because yl,i is continuous (by Lemma A.9) and the inverse image of an open set
by a continuous function is open.

Finally, combining the above results, we obtain the conclusion:⋃
γ∈Γ

pbd(Rγ) ⊆
⋃

(l,i)∈Idx

⋃
k∈[Kl,i]

pbd
(
{w ∈ RW | yl,i(w) ∈ pbd(Ikl,i)}

)
⊆

⋃
(l,i)∈Idx

⋃
c∈ndf(σl,i)

pbd
(
{w ∈ RW | yl,i(w) = c}

)
,

where the first line uses Eqs. (7) and (8), and the second line uses
⋃
k∈[Kl,i]

pbd(Ikl,i) = ndf(σl,i) (by Definition A.5)

B.3. Theorem 3.3 (Main Lemmas)

Lemma B.6. We have

ndfΩ(zL) ∪ incΩ(zL) ⊆
⋃

(l,i)∈Idx

⋃
c∈ndf(σl,i)

{w ∈ Ω | yl,i(w) = c}.
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Proof. We obtain the conclusion by chaining Lemma B.4, Lemma B.5, and the following: pbd(A) ⊆ A for any A ⊆ RW ,
and ndfΩ(zL) ∪ incΩ(zL) =

(
ndfR(zL) ∪ incR(zL)

)
∩ Ω.

Lemma B.7. Let (l, i) ∈ Idx and c ∈ R. Suppose that τl has bias parameters. Then, for S = {w ∈ Ω | yl,i(w) = c},

|S| ≤ |M|W−1.

Proof. Suppose that τl has bias parameters and S is given as above. Then, by the definition of having bias parameters,
Wl ≥ Nl and there is τ ′l,i : RNl−1 × RWl−Nl → R for all i ∈ [Nl] such that

τl,i(x, (u, v)) = τ ′l,i(x, u) + vi for all (u, v) ∈ RWl−Nl × RNl .

From this, we have

yl,i(w) = τl,i(zl−1(w), wl) = τ ′l,i
(
zl−1(w1,1, . . . , wl−1,Wl−1

, 0, . . . , 0), (wl,1, . . . , wl,Wl−Nl)
)

+ wl,Wl−Nl+i,

where we also use that zl−1 depends only on w1, . . . , wl−1. Note that the function f : RW → R defined by f(w) ,
yl,i(w)− c satisfies the preconditions of Lemma B.2 (after reordering the input variables of f ) due to the term wl,Wl−Nl+i.
Using this, we obtain the desired result:

|S| = |{w ∈ Ω | f(w) = 0}| ≤ |M|W−1,

where the inequality is by Lemma B.2 applied to f .

B.4. Theorem 3.3 (Main Proof)

Theorem B.8. If zL has bias parameters, then

|ndfΩ(zL) ∪ incΩ(zL)|
|Ω|

≤ 1

|M|
∑

(l,i)∈Idx

|ndf(σl,i)|.

Proof. Observe that

ndfΩ(zL) ∪ incΩ(zL) ⊆
⋃

(l,i)∈Idx

⋃
c∈Al,i

Bl,i(c), |Bl,i(c)| ≤ |M|W−1, (9)

where Al,i , ndf(σl,i) and Bl,i(c) , {w ∈ Ω | yl,i(w) = c}. Here the first equation is by Lemma B.6, and the second
equation is by Lemma B.7 (which is applicable since τl has bias parameters by assumption). Combining the above
observations, we obtain the conclusion:

|ndfΩ(zL) ∪ incΩ(zL)|
|Ω|

≤
∑

(l,i)∈Idx

∑
c∈Al,i

|Bl,i(c)|
|Ω|

≤
∑

(l,i)∈Idx

|ndf(σl,i)| ·
|M|W−1

|M|W
,

where the two inequalities use Eq. (9).

Remark B.9. Theorem 3.3 is a direct corollary of Theorem B.8 and Theorem 3.2 (which we prove in §C).

B.5. Lemmas (Technical: Part 2)

Lemma B.10. Let l ∈ [L]. Suppose that τl : RNl−1 × RWl → RNl is well-structured biaffine. Then, for every i ∈ [Nl],
there is a partial map φl,i : [Wl] ⇀ [Nl−1] and associated matrix M ∈ RNl−1×Wl and constant d ∈ R such that

yl,i(w) = d+
∑

j∈dom(φl,i)

zl−1,φl,i(j)(w) ·Mφl,i(j),j · wl,j

and Mφl,i(j),j 6= 0 for all j ∈ dom(φl,i).
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Proof. Let l ∈ [L], τl : RNl−1 × RWl → RNl be a well-structured biaffine function, and i ∈ [Nl]. Then, there is a matrix
M ∈ RNl−1×Wl and a constant d ∈ R such that τl,i(x, u) = xTMu+ d for all (x, u) and each column of M has at most
one non-zero entry. Define a partial map φl,i : [Wl] ⇀ [Nl−1] as:

φl,i(j) ,

{
i′ if Mi′,j 6= 0 for some i′ ∈ [Nl−1]

undefined otherwise.

Here φl,i is well-defined because M−,j contains at most one non-zero entry for all j ∈ [Wl]. We claim that φl,i, M , and d
satisfy the conditions in this lemma. First, by the definition of φl,i, Mφl,i(j),j 6= 0 for all j ∈ dom(φl,i). Also, we have the
desired equation as follows:

yl,i(w) = τl,i(zl−1(w), wl)

= d+ (zl−1(w)TM) · wl
= d+ (v1, . . . , vWl−1

)T · wl
= d+

∑
j∈[Wl−1] vj · wl,j

= d+
∑
j∈dom(φl,i)

zl−1,φl,i(j)(w) ·Mφl,i(j),j · wl,j ,

where vj ∈ R is defined as vj , zl−1,φl,i(j)(w) ·Mφl,i(j),j if j ∈ dom(φl,i), and vj , 0 otherwise. Here the second line
uses the definition of M and d, and the third and last lines use the definition of vj . This concludes the proof.

Lemma B.11. For every (l, i) ∈ Idx and c ∈ R, let Al,i ⊆ R be any set and Bl,i(c) ⊆ RW be the set {w ∈ RW | yl,i(w) =
c}. Suppose that for every l ∈ [L], one of the following holds:

(a) τl has bias parameters, or
(b) τl is well-structured biaffine.

In the case of (b), let φl,i be the partial map described in Lemma B.10 for all i ∈ [Nl]. Then,⋃
(l,i)∈Idx

⋃
c∈Al,i

pbd(Bl,i(c)) ⊆
⋃

(l,i)∈Idx

⋃
c′∈A′l,i

B′l,i(c
′),

where A′l,i ⊆ R and B′l,i(c
′) ⊆ RW are defined as

A′l,i ,

{
Al,i if τl+1 satisfies the condition (a) or l = L

Al,i ∪ bdz(σl,i) if τl+1 satisfies the condition (b),

B′l,i(c
′) ,

{
Bl,i(c

′) if τl satisfies the condition (a)
Bl,i(c

′) ∩
⋃
j∈dom(φl,i)

{w ∈ RW | zl−1,φl,i(j)(w) 6= 0} if τl satisfies the condition (b).

Proof. We claim that the following holds: for all l ∈ [L], i ∈ [Nl], and c ∈ A′l,i,

pbd(Bl,i(c)) ⊆
⋃

(l′,i′)∈Idx

⋃
c′∈A′

l′,i′

B′l′,i′(c
′). (10)

This claim implies the conclusion because Al,i ⊆ A′l,i for all (l, i) ∈ Idx (by the definition of A′l,i). We prove the claim by
induction on l.

Case l = 1. Let i ∈ [Nl] and c ∈ A′l,i. We prove Eq. (10) by case analysis on τl.

Subcase 1: τl satisfies the condition (a). In this subcase, Eq. (10) holds since

pbd(Bl,i(c)) ⊆ Bl,i(c) = B′l,i(c), c ∈ A′l,i,

where the equality uses the definition of B′l,i.

Subcase 2: τl satisfies the condition (b). In this subcase, we have

pbd(Bl,i(c)) = pbd
((
Bl,i(c) ∩

⋃
j∈dom(φl,i)

{w ∈ RW | zl−1,φl,i(j)(w) 6= 0}
)
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∪
(
Bl,i(c) ∩

⋂
j∈dom(φl,i)

{w ∈ RW | zl−1,φl,i(j)(w) = 0}
))

⊆ pbd
(
Bl,i(c) ∩

⋃
j∈dom(φl,i)

{w ∈ RW | zl−1,φl,i(j)(w) 6= 0}
)

∪ pbd
(
Bl,i(c) ∩

⋂
j∈dom(φl,i)

{w ∈ RW | zl−1,φl,i(j)(w) = 0}
)
,

where the inclusion uses Lemma B.1. To prove Eq. (10), it suffices to show that the two terms in the last two lines are
contained in the RHS of Eq. (10). The first term does so because

pbd
(
Bl,i(c) ∩

⋃
j∈dom(φl,i)

{w ∈ RW | zl−1,φl,i(j)(w) 6= 0}
)

= pbd(B′l,i(c)) ⊆ B′l,i(c), c ∈ A′l,i,

where the equality is by the definition of B′l,i and that τl does not have bias parameters. The second term is also contained in
the RHS of Eq. (10) as follows. Let S ,

⋂
j∈dom(φl,i)

{w ∈ RW | zl−1,φl,i(j)(w) = 0}, and M ∈ RNl−1×Wl and d ∈ R be
a matrix and a constant associated with φl,i that are described in Lemma B.10. Then,

Bl,i(c) ∩ S =

{
S if c = d

∅ if c 6= d,

because w ∈ S implies yl,i(w) = d +
∑
j∈dom(φl,i)

zl−1,φl,i(j)(w) ·Mφl,i(j),j · wl,j = d by Lemma B.10 (which is
applicable since τl is well-structured biaffine by assumption). From this, we have

pbd
(
Bl,i(c) ∩

⋂
j∈dom(φl,i)

{w ∈ RW | zl−1,φl,i(j)(w) = 0}
)

= pbd(Bl,i(c) ∩ S) ⊆ pbd(S) ∪ pbd(∅).

Hence, it suffices to show that pbd(S) is contained in the RHS of Eq. (10) (since pbd(∅) = ∅). Using l = 1, we obtain this:

pbd(S) ⊆ pbd(RW ) ∪ pbd(∅) = ∅,

where the inclusion follows from S ∈ {RW , ∅} which holds because zl−1,φl,i(j) is a constant function for all j ∈ [Nl−1] (by
l = 1 and the assumption on z0).

Case l > 1. Let i ∈ [Nl] and c ∈ A′l,i. We prove Eq. (10) in the exact same way as we did for the case l = 1. Note that the
above proof for the previous case (l = 1) applies directly to the current case (l > 1), except for the following subclaim: if τl
does not have bias parameters, then pbd(S) is contained in the RHS of Eq. (10). This subclaim holds also for l > 1, as
follows:

pbd(S) = pbd
( ⋂
j∈dom(φl,i)

{w ∈ RW | zl−1,φl,i(j)(w) = 0}
)

⊆
⋃

j∈dom(φl,i)

pbd
(
{w ∈ RW | zl−1,φl,i(j)(w) = 0}

)
=

⋃
j∈dom(φl,i)

pbd
({
w ∈ RW

∣∣ yl−1,φl,i(j)(w) ∈ pbd
(
σ−1
l−1,φl,i(j)

(0)
)}

∪
{
w ∈ RW

∣∣ yl−1,φl,i(j)(w) ∈ int
(
σ−1
l−1,φl,i(j)

(0)
)})

⊆
⋃

j∈dom(φl,i)

pbd
({
w ∈ RW

∣∣ yl−1,φl,i(j)(w) ∈ pbd
(
σ−1
l−1,φl,i(j)

(0)
)})

∪ pbd
({
w ∈ RW

∣∣ yl−1,φl,i(j)(w) ∈ int
(
σ−1
l−1,φl,i(j)

(0)
)})

=
⋃

j∈dom(φl,i)

pbd
({
w ∈ RW

∣∣ yl−1,φl,i(j)(w) ∈ pbd
(
σ−1
l−1,φl,i(j)

(0)
)})

=
⋃

j∈dom(φl,i)

⋃
b∈bdz(σl−1,φl,i(j)

)

pbd(Bl−1,φl,i(j)(b)),
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pbd(Bl−1,φl,i(j)(b)) ⊆
⋃

(l′,i′)∈Idx

⋃
c′∈A′

l′,i′

B′l′,i′(c
′) for all j ∈ dom(φl,i) and b ∈ bdz(σl−1,φl,i(j)).

Here the first and second inclusions use Lemma B.1, and the second last equality uses that yl−1,φl,i(j) is continuous (by
Lemma A.9). The last equality uses pbd(σ−1

l−1,φl,i(j)
(0)) = bdz(σl−1,φl,i(j)) (which holds since σl−1,φl,i(j) is continuous

and the preimage of a closed set by a continuous map is closed), and the definition ofBl−1,φl,i(j). The last inclusion is by the
induction hypothesis applied to (l− 1, j, b) for j ∈ dom(φl,i) and b ∈ bdz(σl−1,φl,i(j)), together with dom(φl,i) ⊆ [Nl−1]
and bdz(σl−1,φl,i(j)) ⊆ A′l−1,φl,i(j)

(which holds by the definition of A′l−1,φl,i(j)
with l − 1 6= L and that τl does not have

bias parameters). Hence, Eq. (10) holds for l > 1, and this concludes the proof.

B.6. Theorem 4.2 (Main Lemmas)

Lemma B.12. For every l ∈ [L], suppose that τl satisfies either the condition (a) or (b) in Lemma B.11. Then,

ndfΩ(zL) ∪ incΩ(zL) ⊆
⋃

(l,i)∈Idx

⋃
c∈Al,i

Bl,i(c),

where Al,i ⊆ R and Bl,i(c) ⊆ Ω are defined as

Al,i ,

{
ndf(σl,i) if τl+1 satisfies the condition (a) or l = L

ndf(σl,i) ∪ bdz(σl,i) if τl+1 satisfies the condition (b),

Bl,i(c) ,

{
{w ∈ Ω | yl,i(w) = c} if τl satisfies the condition (a)
{w ∈ Ω | yl,i(w) = c ∧

∨
j∈dom(φl,i)

zl−1,φl,i(j)(w) 6= 0} if τl satisfies the condition (b).

Proof. We obtain the conclusion by chaining Lemma B.4, Lemma B.5, Lemma B.11 (which is applicable by assumption),
and ndfΩ(zL) ∪ incΩ(zL) =

(
ndfR(zL) ∪ incR(zL)

)
∩ Ω.

Lemma B.13. Let (l, i) ∈ Idx and c ∈ R. Suppose that τl is well-structured biaffine. Consider S = {w ∈ Ω | yl,i(w) =
c ∧
∨
j∈dom(φl,i)

zl−1,φl,i(j)(w) 6= 0}, where φl,i denotes the partial map described in Lemma B.10. Then,

|S| ≤ |M|W−1.

Proof. Suppose that τl is well-structured biaffine, and S is given as above. We make three observations. First,

S =
{

(u, v) ∈ MW
′
× MW−W

′ ∣∣ (∃j ∈ dom(φl,i). zl−1,φl,i(j)(u, 0, . . . , 0) 6= 0
)
∧ yl,i(u, v) = c}

=
⋃
u∈U

⋃
v∈MW−W ′

{(u, v) | yl,i(u, v) = c}, (11)

where the first line uses W ′ , W1 + · · · + Wl−1 and that zl−1 depends only on w1, . . . , wl−1, and the second line uses
U , {u ∈ MW

′ | ∃j ∈ dom(φl,i). zl−1,φl,i(j)(u, 0, . . . , 0) 6= 0}. Second, by Lemma B.10 (which is applicable since τl is
well-structured biaffine by assumption), there are M ∈ RNl−1×Wl and d ∈ R such that Mφl,i(j),j 6= 0 for all j ∈ φl,i, and

yl,i(u, v) = d+
∑

j∈dom(φl,i)

zl−1,φl,i(j)(u, v) ·Mφl,i(j),j · vj

= d+
∑

j∈dom(φl,i)

zl−1,φl,i(j)(u, 0, . . . , 0) ·Mφl,i(j),j · vj (12)

for all (u, v) ∈ RW
′ × RW−W

′
, where the second equality uses that zl−1 depends only on u. Third, for any u ∈ U , the

function fu : RW−W
′ → R defined by fu(v) , yl,i(u, v)− c satisfies the preconditions of Lemma B.2 (after reordering

the input variables of fu) due to the following: zl−1,φl,i(j)(u, 0, . . . , 0) 6= 0 for some j ∈ dom(φl,i) since u ∈ U ; and the
coefficient of vj in fu(v) is zl−1,φl,i(j)(u, 0, . . . , 0) ·Mφl,i(j),j 6= 0 by Eq. (12) and Mφl,i(j),j 6= 0.

By combining the above observations, we obtain the conclusion:

|S| =
∣∣∣ ⋃
u∈U

⋃
v∈MW−W ′

{(u, v) | yl,i(u, v) = c}
∣∣∣
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=
∑
u∈U

∣∣∣ ⋃
v∈MW−W ′

{(u, v) | yl,i(u, v) = c}
∣∣∣

=
∑
u∈U

∣∣{v ∈ MW−W
′
| fu(v) = 0}

∣∣
≤ |M|W

′
· |M|W−W

′−1 = |M|W−1,

where the first line uses Eq. (11), the third line uses the definition of fu, and the last line uses Lemma B.2 applied to fu.

B.7. Theorem 4.2 (Main Proof)

Theorem 4.2. If τl either has bias parameters or is well-structured biaffine for all l ∈ [L], then

|ndfΩ(zL) ∪ incΩ(zL)|
|Ω|

≤ 1

|M|
∑

(l,i)∈Idx

∣∣∣ndf(σl,i) ∪ (bdz(σl,i) ∩ Sl+1

)∣∣∣,
where Sl ⊆ R is defined by

Sl ,

{
∅ if l > L or τl has bias parameters
R otherwise.

Proof. Observe that

ndfΩ(zL) ∪ incΩ(zL) ⊆
⋃

(l,i)∈Idx

⋃
c∈Al,i

Bl,i(c), |Bl,i(c)| ≤ |M|W−1, (13)

where Al,i ⊆ R and Bl,i(c) ⊆ Ω are defined as in Lemma B.12. Here the first equation is by Lemma B.12 and the second
equation is by Lemmas B.7 and B.13, where these lemmas are applicable by the definition of Bl,i(c) and because τl either
has bias parameters or is well-structured biaffine (both by assumption). Observe further that

Al,i = ndf(σl,i) ∪ (bdz(σl,i) ∩ Sl+1) (14)

by the definition of Al,i and Sl, where Sl is defined in the statement of this theorem. Combining the above observations, we
obtain the conclusion:

|ndfΩ(zL) ∪ incΩ(zL)|
|Ω|

≤
∑

(l,i)∈Idx

∑
c∈Al,i

|Bl,i(c)|
|Ω|

≤
∑

(l,i)∈Idx

∣∣ndf(σl,i) ∩ (bdz(σl,i) ∩ Sl+1)
∣∣ · |M|W−1

|M|W
,

where the first inequality is by Eq. (13) and the second inequality is by Eqs. (13) and (14).
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C. Upper Bounds on |incΩ(zL)|
In the rest of the appendix, we use the following notation. For a vector v ∈ Rn, va:b denotes the vector (va, . . . , vb). For
a matrix M ∈ Rn×m, Ma:b, c:d denotes the matrix (Mi,j)a≤i≤b, c≤j≤d; Ma:b, c denotes the vector (Ma,c, . . . ,Mb,c); and
M∗, c:d denotes M1:n, c:d (and similarly for Ma:b, ∗ and M∗, c).

C.1. Lemmas (Basic)

Lemma C.1. Let n ∈ N. For each j ∈ [n], let fj : R→ R andAj be a finite cover of R (i.e.,
⋃
A∈AjA = R and |Aj | <∞).

Consider x ∈ R. Then, there is {xi}i∈N ⊆ (x,∞) such that limi→∞xi = x and for all j ∈ [n],

{fj(xi) | i ∈ N} ⊆ A for some A ∈ Aj .

Further, there is {x′i}i∈N ⊆ (−∞, x) that satisfies the same conditions stated above.

Proof. Consider fj , Aj , and x stated above (j ∈ [n]). Let xi , x+ 1/i for i ∈ N. Then,

{xi}i∈N ⊆ (x,∞), lim
i→∞

xi = x. (15)

For each (i, j) ∈ N× [n], let Ai,j ∈ Aj be the set satisfying fj(xi) ∈ Ai,j , and Ai , (Ai,1, . . . , Ai,n) ∈ A1 × · · · × An,
where Ai,j always exists since Aj is a cover of R. Observe that since |A1 × · · · × An| <∞ (by |Aj | <∞ and n <∞)
and |N| =∞, there must exist {ki}i∈N ⊆ N such that

k1 < k2 < · · · , Ak1 = Ak2 = · · · . (16)

We claim that {xki}i∈N satisfies the desired conditions. First, by Eq. (15) and limi→∞ki = ∞ (due to Eq. (16)),
{xki}i∈N ⊆ (x,∞) and limi→∞xki = x. Second, by Eq. (16), {fj(xki) | i ∈ N} ⊆ Ak1,j for all j ∈ [n]. Hence, the claim
holds and this concludes the proof.

Lemma C.2. Let f, g : R→ R and x ∈ R. Suppose that f and g are differentiable at x, and there is {xi}i∈N ⊆ R \ {x}
such that limi→∞xi = x and f(xi) = g(xi) for all i ∈ N. Then,

Df(x) = Dg(x).

Proof. Consider f, g : R→ R, x ∈ R, and {xi}i∈N ⊆ R \ {x} stated above. Then,

f(x) = lim
i→∞

f(xi) = lim
i→∞

g(xi) = g(x),

where the first and third equalities are by that f and g are continuous at x (as they are differentiable at x) and xi → x, and
the second equality by that f(xi) = g(xi) for all i ∈ N. Using this, we obtain

Df(x) = lim
i→∞

f(xi)− f(x)

xi − x
= lim
i→∞

g(xi)− g(x)

xi − x
= Dg(x),

where the first and third equalities are by that f and g are differentiable at x, xi → x, and xi 6= x for all i ∈ N, and the
second equality by that f(xi) = g(xi) for all i ∈ N. This completes the proof.

C.2. Lemmas (Technical: Part 1)

Definition C.3. Let γ ∈ Γ. DefineRγcl ⊆ RW as

Rγcl ,
⋂

(l,i)∈Idx

{w ∈ RW | yl,i(w) ∈ cl(Iγ(l,i)
l,i )}.

Note that when definingRγ in Definition A.7, we used Iγ(l,i)
l,i instead of cl(Iγ(l,i)

l,i ).

Definition C.4. For γ ∈ Γ and l ∈ [L], define

τ̃ l : RNl−1 × RWl+Wl+1+···+WL → RNl × RWl+1+···+WL ,
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σ̃l, σ̃
γ
l : RNl × RWl+1+···+WL → RNl × RWl+1+···+WL ,

z̃l, z̃
γ
l : RNl−1 × RWl+Wl+1+···+WL → RNL

as follows:

τ̃ l(x, u) ,
(
τl(x, u1, . . . , uWl

), uWl+1, . . . , uWl+Wl+1+···+WL

)
,

σ̃l(x, u) , (σl(x), u), σ̃γl (x, u) , (σγl (x), u),

z̃l(x, u) , (z̃l+1 ◦ σ̃l ◦ τ̃ l)(x, u) z̃γl (x, u) , (z̃γl+1 ◦ σ̃
γ
l ◦ τ̃ l)(x, u)

where z̃L+1, z̃
γ
L+1 : RNL → RNL are defined as the identity function.

Lemma C.5. For all l ∈ [L] and γ ∈ Γ, z̃l is continuous and z̃γl is differentiable.

Proof. Since the proof is similar to that of Lemma A.9, we omit it.

Lemma C.6. Let γ ∈ Γ, w = (w1, . . . , wL) ∈ Rγcl, l ∈ [L], and x = (zl−1(w), wl, . . . , wL). Then,

τ̃ l(x) =
(
yl(w), wl+1, . . . , wL

)
, (σ̃γl ◦ τ̃ l)(x) =

(
zl(w), wl+1, . . . , wL

)
.

Proof. By the definition of τ̃ l and σ̃γl , we get the conclusion:

τ̃ l(x) =
(
τl(zl−1(w), wl), wl+1, . . . , wL

)
=
(
yl(w), wl+1, . . . , wL

)
,

(σ̃γl ◦ τ̃ l)(x) =
(
σγl (yl(w)), wl+1, . . . , wL

)
=
(
zl(w), wl+1, . . . , wL

)
,

where the last equality is by the observation that σγ(l,i)
l,i (yl,i(w)) = σl,i(yl,i(w)) for all i ∈ [Nl]. Here the observation holds

because σγ(l,i)
l,i and σl,i coincide on cl(Iγ(l,i)

l,i ) (as they coincide on Iγ(l,i)
l,i and are both continuous) and yl,i(w) ∈ cl(Iγ(l,i)

l,i )
(by w ∈ Rγcl).

Lemma C.7. Let γ ∈ Γ and l ∈ [L]. Then, for all w = (w1, . . . , wL) ∈ RW ,

z̃l
(
zl−1(w), wl, . . . , wL

)
= zL(w), z̃γl

(
zγl−1(w), wl, . . . , wL

)
= zγL(w).

Proof. Let γ ∈ Γ. The proof is by induction on l ∈ [L] (starting from l = L+ 1).

Case l = L+ 1. Since z̃L+1 and z̃γL+1 are identity functions, the desired equations clearly hold.

Case l < L+ 1. We obtain the first desired equation as follows:

z̃l
(
zl−1(w), wl, . . . , wL

)
= (z̃l+1 ◦ σ̃l ◦ τ̃ l)

(
zl−1(w), wl, . . . , wL

)
= (z̃l+1 ◦ σ̃l)

(
τl(zl−1(w), wl), wl+1, . . . , wL

)
= (z̃l+1 ◦ σ̃l)

(
yl(w), wl+1, . . . , wL

)
= z̃l+1

(
σl(yl(w)), wl+1, . . . , wL

)
= z̃l+1

(
zl(w), wl+1, . . . , wL

)
= zL(w),

where all but last lines use the definition of z̃l, τ̃ l, σ̃l, yl, and zl, and the last line uses induction hypothesis on l+ 1. We can
obtain the second desired equation similarly, by using induction hypothesis on l + 1 and the definition of z̃γl , τ̃ l, σ̃

γ
l , yγl ,

and zγl .

Lemma C.8. Let γ ∈ Γ and l ∈ [L]. Then, for all w = (w1, . . . , wL) ∈ Rγ ,

z̃l
(
zl−1(w), wl, . . . , wL

)
= z̃γl

(
zl−1(w), wl, . . . , wL

)
.

Proof. By Lemma C.7, we have the conclusion as follows:

z̃l(zl−1(w), wl, . . . , wL) = zL(w) = zγL(w) = z̃γl (zl−1(w), wl, . . . , wL),

where the second equality is by Lemma A.11 with w ∈ Rγ .
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C.3. Lemmas (Technical: Part 2)

Definition C.9. Let f : Rn → Rm and i ∈ [n]. Define

Dif : Rn → Rm ∪ {⊥}

be the partial derivative of f with respect to its i-th argument, where ⊥ denotes non-differentiability. Hence, for any x ∈ Rn

and i ∈ [n], Df(x) 6= ⊥ implies Dif(x) = (Df(x))1:m, i.

Lemma C.10. Let l ∈ [L], w = (w1, . . . , wL) ∈ RW , and j ∈ [W ] with j > W<l, where W<l , W1 + · · · + Wl−1.
Suppose that z̃l is differentiable with respect to its (Nl−1 + (j − W<l))-th argument at (zl−1(w), wl, . . . , wL), i.e.,
DNl−1+(j−W<l)z̃l(zl−1(w), wl, . . . , wL) 6= ⊥. Then, there are γ ∈ Γ and {tn}n∈N ⊆ (vj ,∞) satisfying the following
conditions:

• w ∈ Rγcl,
• DNl−1+(j−W<l)z̃l

(
zl−1(w), wl, . . . , wL

)
= DNl−1+(j−W<l)z̃

γ
l

(
zl−1(w), wl, . . . , wL

)
,

• limn→∞ tn = vj , and
• (v1, . . . , vj−1, tn, vj+1, . . . , vW ) ∈ Rγ for all n ∈ N,

where (v1, . . . , vW ) , w denotes the scalar values of w (recall that wl ∈ RWl is not scalar by definition). Further, there
are γ′ ∈ Γ and {t′n}i∈N ⊆ (−∞, vj) that satisfy the same conditions stated above.

Proof. Consider l ∈ [L], w ∈ RW , and j ∈ [W ] stated above. We show the existence of γ and {tn}n∈N, and will omit the
proof of the existence of γ′ and {t′n}n∈N since the proof is almost identical.

First, we show that there is {tn}n∈N ⊆ (vj ,∞) such that limn→∞ tn = vj and{
(v1, . . . , vj−1, tn, vj+1, . . . , vW )

∣∣ n ∈ N
}
⊆ Rγ for some γ ∈ Γ. (17)

By the definition ofRγ , Eq. (17) is equivalent to the following: for all (l, i) ∈ Idx,{
fl,i(tn)

∣∣ n ∈ N
}
⊆ Ikl,i for some k ∈ [Kl,i],

where fl,i : R → R is defined as fl,i(t) , yl,i(v1, . . . , vj−1, t, vj+1, . . . , vW ). Note that Lemma C.1 is applicable to
(fl,i, {Ikl,i}k∈[Kl,i], vj), since {Ikl,i}k∈[Kl,i] is a finite cover of R for all (l, i). Hence, by the lemma, there is {tn}n∈N ⊆
(vj ,∞) such that limn∈∞ tn = vj and Eq. (17) holds with some γ ∈ Γ.

Next, we show that w ∈ Rγcl. By the definition ofRγcl, this is equivalent to yl,i(w) ∈ cl(Iγ(l,i)
l,i ) for all (l, i) ∈ Idx. To show

this, let (l, i) ∈ Idx. By Eq. (17) and the definition ofRγ , we have{
yl,i(v1, . . . , vj−1, tn, vj+1, . . . , vW )

∣∣ n ∈ N
}
⊆ Iγ(l,i)

l,i . (18)

Using this, we obtain

yl,i(w) = lim
n→∞

yl,i(v1, . . . , vj−1, tn, vj+1, . . . , vW ) ∈ cl(Iγ(l,i)
l,i ),

where the equality is from the continuity of yl,i (by Lemma A.9) and limn→∞ tn = vj (by the above), and the inclusion is
by Eq. (18). Hence, we have w ∈ Rγcl as desired.

Lastly, we show that DNl−1+(j−W<l)z̃l(zl−1(w), wl, . . . , wL) = DNl−1+(j−W<l)z̃
γ
l (zl−1(w), wl, . . . , wL). To do so, de-

fine g, gγ : R→ RNL as:

g(t) , z̃l
(
zl−1(w), vW<l+1, . . . , vj−1, t, vj+1, . . . , vW

)
,

gγ(t) , z̃γl
(
zl−1(w), vW<l+1, . . . , vj−1, t, vj+1, . . . , vW

)
.

Using them, we obtain the desired equation as follows:

DNl−1+(j−W<l)z̃l
(
zl−1(w), wl, . . . , wL

)
= Dg(vj) = Dgγ(vj) = DNl−1+(j−W<l)z̃

γ
l

(
zl−1(w), wl, . . . , wL

)
,

where the first and third equalities are by the definition of partial derivatives, and the second equality comes from
Lemma C.2 applied to (g, gγ , vj , {tn}n∈N). Here Lemma C.2 is applicable due to the following: g is differentiable at vj

27



On the Correctness of Automatic Differentiation for Neural Networks with Machine-Representable Parameters

(as Dg(vj) = DNl−1+(j−W<l)z̃l(zl−1(w), wl, . . . , wL) 6= ⊥ by assumption); gγ is differentiable (as z̃γl is differentiable by
Lemma C.5); limn→∞ tn = vj with tn 6= vj (by the above); and g(tn) = gγ(tn) for all n ∈ N because

g(tn) = z̃l
(
zl−1(w), vW<l+1, . . . , vj−1, tn, vj+1, . . . , vW

)
= z̃l

(
zl−1(v1, . . . , vj−1, tn, vj+1, . . . , vW ), vW<l+1, . . . , vj−1, tn, vj+1, . . . , vW

)
= z̃γl

(
zl−1(v1, . . . , vj−1, tn, vj+1, . . . , vW ), vW<l+1, . . . , vj−1, tn, vj+1, . . . , vW

)
= z̃γl

(
zl−1(w), vW<l+1, . . . , vj−1, tn, vj+1, . . . , vW

)
= gγ(tn),

where the second and fourth lines use that zl−1 depends only on its first W<l arguments and j > W<l, and the third line is
by Lemma C.8 and Eq. (17). This completes the proof.

Lemma C.11. Let w = (w1, . . . , wL) ∈ RW and (l, i) ∈ Idx. Suppose the following hold: zL is differentiable
at w; τl has bias parameters; σl,i is not differentiable at yl,i(w); and for all γ1, γ2 ∈ Γ with w ∈ Rγ1cl ∩ R

γ2
cl ,

Diz̃
γ1
l+1(zl(w), wl+1, . . . , wL) = Diz̃

γ2
l+1(zl(w), wl+1, . . . , wL). Then, for all γ ∈ Γ with w ∈ Rγcl,

Diz̃
γ
l+1

(
zl(w), wl+1, . . . , wL

)
= (0, . . . , 0).

Proof. Consider w ∈ RW and (l, i) ∈ Idx satisfying the conditions in the lemma. First, we show that

DNl−1+(Wl−Nl+i)z̃
γ
l (zl−1(w), wl, . . . , wL) = Diz̃

γ
l+1(zl(w), wl+1, . . . , wL) ·Dσγ(l,i)

l,i (yl,i(w)),

for any γ ∈ Γ with w ∈ Rγcl. To this end, we derive two derivatives:(
Dτ̃ l(x)

)
∗, Nl−1+(Wl−Nl+i)

and
(
Dσ̃γl (x′)

)
∗, i.

Since τl has bias parameters (by assumption), and by the definitions of τ̃ l and σ̃γl , we have the following: for all γ ∈ Γ and
i′ ∈ [Nl +Wl+1 + · · ·+WL], there is τ ′l,i′ : RNl−1+(Wl−Nl) → R such that

τ̃ l,i′(x) =

{
τ ′l,i′(x1, . . . , xNl−1+(Wl−Nl)) + xNl−1+(Wl−Nl+i′)

xNl−1+(Wl−Nl+i′)

if i′ ≤ Nl
if i′ > Nl,

σ̃γl,i′(x
′) =

{
σ
γ(l,i′)
l,i′ (x′i′)

x′i′

if i′ ≤ Nl
if i′ > Nl,

for all x ∈ RNl−1+Wl+···+WL and x′ ∈ RNl+Wl+1+···+WL . From this and i ∈ [Nl], we obtain two derivatives:(
Dτ̃ l(x)

)
∗, Nl−1+(Wl−Nl+i)

= ei,
(
Dσ̃γl (x′)

)
∗, i = ei ·Dσγ(l,i)

l,i (x′i), (19)

where ei ∈ RNl+Wl+1+···+WL denotes the standard unit vector with 1 at the i-th coordinate, Dσγ(l,i)
l,i (x′i) is considered as a

scalar value, and both equalities are by i ∈ [Nl]. Using this, we obtain the following equation for x , (zl−1(w), wl, . . . , wL)
and for any γ ∈ Γ with w ∈ Rγcl:

DNl−1+(Wl−Nl+i)z̃
γ
l (x) =

(
Dz̃γl (x)

)
∗, Nl−1+(Wl−Nl+i)

=
(
Dz̃γl+1((σ̃γl ◦ τ̃ l)(x)) ·Dσ̃γl (τ̃ l(x)) ·Dτ̃ l(x)

)
∗, Nl−1+(Wl−Nl+i)

= Dz̃γl+1((σ̃γl ◦ τ̃ l)(x)) ·Dσ̃γl (τ̃ l(x)) ·
(
Dτ̃ l(x)

)
∗, Nl−1+(Wl−Nl+i)

= Dz̃γl+1((σ̃γl ◦ τ̃ l)(x)) ·
(
Dσ̃γl (τ̃ l(x))

)
∗, i

=
(
Dz̃γl+1((σ̃γl ◦ τ̃ l)(x))

)
∗, i
·Dσγ(l,i)

l,i (τ̃ l,i(x))

= Diz̃
γ
l+1(zl(w), wl+1, . . . , wL) ·Dσγ(l,i)

l,i (yl,i(w)), (20)
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where the first two lines use z̃γl = z̃γl+1 ◦ σ̃
γ
l ◦ τ̃ l and that z̃γl , z̃γl+1, σ̃γl , and τ̃ l are differentiable (by Lemma C.5), the fourth

and fifth lines use Eq. (19), and the last line uses Lemma C.6 with w ∈ Rγcl.

Next, we derive a sufficient condition for the conclusion by using Eq. (20) and applying Lemma C.10 to (l, w, j) with
j ,W<l + (Wl −Nl + i), where W<l ,W1 + · · ·+Wl−1. Note that the lemma is applicable here due to the following:
W<l < j ≤ W , because Wl ≥ Nl (as τl has bias parameters by assumption) and 1 ≤ i ≤ Nl (as (l, i) ∈ Idx); and z̃l is
differentiable with respect to its (Nl−1 + (Wl −Nl + i))-th argument at (zl−1(w), wl . . . , wL), because

DNl−1+(Wl−Nl+i)z̃l(zl−1(w), wl, . . . , wL) = DW<l+(Wl−Nl+i)zL(w) 6= ⊥

where the equality follows from that zL(w′) = z̃l(zl−1(w′1, . . . , w
′
l−1, 0, . . . , 0), w′l, . . . , w

′
L) for all w′ ∈ RW by

Lemma C.7, and the inequality from that zL is differentiable at w (by assumption). Let (v1, . . . , vW ) , w be the
scalar values of w. By applying Lemma C.10 to (l, w, j), it holds that there are γ+, γ− ∈ Γ, {t+n }n∈N ⊆ (vj ,∞), and
{t−n }n∈N ⊆ (−∞, vj) such that w ∈ Rγ+cl ∩R

γ−
cl and

DNl−1+(Wl−Nl+i)z̃
γ+
l (x) = DNl−1+(Wl−Nl+i)z̃

γ−
l (x),

{(v1, . . . , vj−1, t
+
n , vj+1, . . . , vW )}n∈N ⊆ Rγ+ , lim

n→∞
t+n = vj , (21)

{(v1, . . . , vj−1, t
−
n , vj+1, . . . , vW )}n∈N ⊆ Rγ− , lim

n→∞
t−n = vj , (22)

where x , (zl−1(w), wl, . . . , wL). By the first line and Eq. (20) with w ∈ Rγ+cl ∩R
γ−
cl , we have

Diz̃
γ+
l+1(x′) ·Dσγ+(l,i)

l,i (yl,i(w)) = Diz̃
γ−
l+1(x′) ·Dσγ−(l,i)

l,i (yl,i(w)),

where x′ , (zl(w), wl+1, . . . , wL). From this, and sinceDiz̃
γ
l+1(x′) is the same for all γ ∈ Γ withw ∈ Rγcl (by assumption),

we immediately obtain the conclusion (i.e., Diz̃
γ
l+1(x′) = (0, . . . , 0) for all γ ∈ Γ with w ∈ Rγcl) if the following holds:

Dσ
γ+(l,i)
l,i (yl,i(w)) 6= Dσ

γ−(l,i)
l,i (yl,i(w)). (23)

Hence, to prove the conclusion, it suffices to show Eq. (23).

Finally, we prove Eq. (23) in two steps. We first show that there are δ+, δ− > 0 such that(
yl,i(w), yl,i(w) + δ+

)
⊆ Iγ+(l,i)

l,i ,
(
yl,i(w)− δ−, yl,i(w)

)
⊆ Iγ+(l,i)

l,i . (24)

Fix j ,W<l + (Wl −Nl + i) and (v1, . . . , vW ) , w as above. Observe that we have

yl,i(v1, . . . , vj−1, t
+
n , vj+1, . . . , vW ) ∈ Iγ+(l,i)

l,i for all n ∈ N,

yl,i(v1, . . . , vj−1, t
+
n , vj+1, . . . , vW ) > yl,i(v1, . . . , vW ) = yl,i(w) for all n ∈ N,

lim
n→∞

yl,i(v1, . . . , vj−1, t
+
n , vj+1, . . . , vW ) = yl,i(v1, . . . , vW ) = yl,i(w),

where the first line uses Eq. (21), the third line uses Eq. (21) and that yl,i is continuous (by Lemma A.9), and the second line
uses the following and that t+n > vj for all n ∈ N: for all t ∈ R,

yl,i(v1, . . . , vj−1, t, vj+1, . . . , vW ) = τ ′l,i(zl−1(w), vW<l+1, . . . , vW<l+(Wl−Nl)) + t,

which holds since zl−1 depends only on its firstW<l arguments, τl has bias parameters, and j = W<l+(Wl−Nl+i) > W<l.
By these results, and since Iγ+(l,i)

l,i is an interval, there is δ+ > 0 satisfying Eq. (24); similarly, there is δ− > 0 satisfying
Eq. (24), due to Eq. (22) and t−n < vj for all n.

We next show that Eq. (23) indeed holds. By Eq. (24) and σl,i = σkl,i on Ikl,i for all k, we have

σl,i = σ
γ+(l,i)
l,i on

[
yl,i(w), yl,i(w) + δ+

)
, σl,i = σ

γ−(l,i)
l,i on

(
yl,i(w)− δ−, yl,i(w)

]
,

where the inclusion of yl,i(w) is by that σl,i and σkl,i are continuous for all k. From this, we have

Dσ
γ+(l,i)
l,i

(
yl,i(w)

)
= lim
h→0+

1

h

(
σl,i(yl,i(w) + h)− σl,i(yl,i(w))

)
,
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Dσ
γ−(l,i)
l,i

(
yl,i(w)

)
= lim
h→0−

1

h

(
σl,i(yl,i(w) + h)− σl,i(yl,i(w))

)
.

Suppose here that Eq. (23) does not hold, i.e., Dσγ+(l,i)
l,i (yl,i(w)) = Dσ

γ−(l,i)
l,i (yl,i(w)). Then,

lim
h→0

1

h

(
σl,i(yl,i(w) + h)− σl,i(yl,i(w))

)
= Dσ

γ+(l,i)
l,i

(
yl,i(w)

)
6= ⊥,

where the inequality is by that σγ+(l,i)
l,i is differentiable. This implies Dσl,i

(
yl,i(w)

)
6= ⊥, which contradicts to that σl,i is

non-differentiable at yl,i(w) (by assumption). Hence, Eq. (23) should hold.

C.4. Theorem 3.2 (Main Lemmas)

Lemma C.12. Let w ∈ RW and j ∈ [W ]. Suppose that zL is differentiable with respect to its j-th argument at w (i.e.,
DjzL(w) 6= ⊥). Then, there is γ ∈ Γ such that w ∈ Rγcl and

DjzL(w) = Djz
γ
L(w).

Proof. Consider w ∈ RW and j ∈ [W ] stated above. First, by Lemma C.7, and since z0 = zγ0 is a constant function, we
have zL(w′) = z̃1(z0(0, . . . , 0), w′) and zγL(w′) = z̃γ1(z0(0, . . . , 0), w′) for all w′ ∈ RW and γ ∈ Γ. From this, we have

DjzL(w) = DN0+j z̃1

(
z0(0, . . . , 0), w

)
= DN0+j z̃1

(
z0(w), w

)
,

Djz
γ
L(w) = DN0+j z̃

γ
1

(
z0(0, . . . , 0), w

)
= DN0+j z̃

γ
1

(
z0(w), w

)
for all γ ∈ Γ,

where the second and fourth equalities follow from that z0 is a constant function. Second, by Lemma C.10 applied to
(l = 1, w, j), there is γ ∈ Γ such that

w ∈ Rγcl, DN0+j z̃1

(
z0(w), w

)
= DN0+j z̃

γ
1

(
z0(w), w

)
.

Here Lemma C.10 is applicable, because DN0+j z̃1(z0(w), w) = DjzL(w) 6= ⊥ (by the above and by assumption). From
these results, there is γ ∈ Γ such that w ∈ Rγcl and DjzL(w) = Djz

γ
L(w).

Lemma C.13. Let w ∈ RW . Suppose that the following hold:

• zL is differentiable at w.
• For all l ∈ [L], if τl does not have bias parameters, then σl,i is differentiable at yl,i(w) for all i ∈ [Nl].

Then, for all γ1, γ2 ∈ Γ with w ∈ Rγ1cl ∩R
γ2
cl ,

Dzγ1L (w) = Dzγ2L (w).

Proof. Let w ∈ RW . Consider the following claim: for all l ∈ [L+ 1] and γ1, γ2 ∈ Γ, if w ∈ Rγ1cl ∩R
γ2
cl , then

Dz̃γ1l
(
zl−1(w), wl, . . . , wL

)
= Dz̃γ2l

(
zl−1(w), wl, . . . , wL

)
.

Note that the claim implies the conclusion: for any γ1, γ2 ∈ Γ with w ∈ Rγ1cl ∩R
γ2
cl ,

Dzγ1L (w) =
(
Dz̃γ11 (z0(0, . . . , 0), w)

)
∗, N0+1:N0+W

=
(
Dz̃γ21 (z0(0, . . . , 0), w)

)
∗, N0+1:N0+W

= Dzγ2L (w),

where the first and third equalities follow from that zγL(w′) = z̃γ1(z0(0, . . . , 0), w′) for all γ ∈ Γ and w′ ∈ RW (by
Lemma C.7 and since zγ0 = z0 is a constant function), and z̃γ1 is differentiable for all γ ∈ Γ (by Lemma C.5); and the second
equality is by the claim for l = 1 and that z0 is a constant function. We prove the claim by induction on l (starting from
L+ 1).

Case l = L+ 1. The claim clearly holds, since z̃γL+1 is the identity function for all γ ∈ Γ.

Case l < L + 1. To show the claim, we first analyze the derivatives mentioned in the claim. Let γ ∈ Γ with w ∈ Rγcl,
and consider any x ∈ RNl−1+Wl+···+WL and x′ ∈ RNl+Wl+1+···+WL . Recall the definition of z̃γl and σ̃γl : for all i ∈
[Nl +Wl+1 + · · ·+WL],

z̃γl (x) = (z̃γl+1 ◦ σ̃
γ
l ◦ τ̃ l)(x), σ̃γl,i(x

′) =

{
σ
γ(l,i)
l,i (x′i) if i ≤ Nl
x′i if i > Nl.
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Since every function in the RHS of the above equation is differentiable (by Lemma C.5), the following hold for all
i ∈ [Nl +Wl+1 + · · ·+WL]:

Dz̃γl (x) = Dz̃γl+1

(
(σ̃γl ◦ τ̃ l)(x)

)
·Dσ̃γl

(
τ̃ l(x)

)
·Dτ̃ l(x), (25)(

Dσ̃γl (x′)
)
∗, i =

{
ei ·Dσγ(l,i)

l,i (x′i) if i ≤ Nl
ei if i > Nl,

where the first line uses the chain rule, ei ∈ RNl+Wl+1+···+WL denotes the standard unit vector with 1 at the i-th coordinate,
and Dσγ(l,i)

l,i (x′i) is considered as a scalar value. By the second line, the following holds for all i ∈ [Nl+Wl+1 + · · ·+WL]:(
Dz̃γl+1((σ̃γl ◦ τ̃ l)(x)) ·Dσ̃γl (τ̃ l(x))

)
∗, i

= Diz̃
γ
l+1

(
(σ̃γl ◦ τ̃ l)(x)

)
·

{
Dσ

γ(l,i)
l,i

(
τ̃ l,i(x)

)
if i ≤ Nl

1 if i > Nl.
(26)

We can further simplify the two term in the RHS when x = (zl−1(w), wl, . . . , wL), as follows:

Dz̃γl+1

(
(σ̃γl ◦ τ̃ l)(x)

)
= Dz̃γl+1(x′), Dσ

γ(l,i)
l,i

(
τ̃ l,i(x)

)
= Dσ

γ(l,i)
l,i

(
yl,i(w)

)
for all i ∈ [Nl], (27)

where x′ , (zl(w), wl+1, . . . , wL) and both equalities are by Lemma C.6 with w ∈ Rγcl.

We now prove the claim. Let γ1, γ2 ∈ Γ with w ∈ Rγ1cl ∩R
γ2
cl , and fix x , (zl−1(w), wl, . . . , wL) and x′ ,

(zl(w), wl+1, . . . , wL). By induction hypothesis on l + 1, we obtain

Dz̃γ1l+1(x′) = Dz̃γ2l+1(x′). (28)

Since we want to show Dz̃γ1l (x) = Dz̃γ2l (x), it suffices to show the following due to Eqs. (25)–(28): for all i ∈ [Nl],

Diz̃
γ1
l+1(x′) ·Dσγ1(l,i)

l,i

(
yl,i(w)

)
= Diz̃

γ1
l+1(x′) ·Dσγ2(l,i)

l,i

(
yl,i(w)

)
. (29)

Let i ∈ [Nl]. We prove Eq. (29) by case analysis on i.

Subcase 1: σl,i is non-differentiable at yl,i(w). To show Eq. (29), it suffices to show that

Diz̃
γ1
l+1(x′) = (0, . . . , 0).

We obtain this equation by applying Lemma C.11 to (w, (l, i), γ1). Note that the lemma is applicable here because: zL
is differentiable at w (by assumption); σl,i is non-differentiable at yl,i(w) and so τl has bias parameters (by assumption);
Diz̃

γ
l+1(x′) is independent of γ for all γ ∈ Γ with w ∈ Rγcl (by induction hypothesis on l + 1); and w ∈ Rγ1cl .

Subcase 2: σl,i is differentiable at yl,i(w). To show Eq. (29), it suffices to show that for all j ∈ [2],

Dσ
γj(l,i)
l,i

(
yl,i(w)

)
= Dσl,i

(
yl,i(w)

)
. (30)

Let j ∈ [2]. If yl,i(w) ∈ Iγj(l,i)l,i , then we obtain Eq. (30) as follows:

Dσ
γj(l,i)
l,i

(
yl,i(w)

)
= DADσl,i

(
yl,i(w)

)
= Dσl,i

(
yl,i(w)

)
,

where the first equality holds because yl,i(w) ∈ Iγj(l,i)l,i and {(σkl,i, Ikl,i)}k∈[Kl,i] defines DADσl,i; and the second equality
holds because σl,i is differentiable at yl,i(w) and DADσl,i is an extended derivative of σl,i. If yl,i(w) /∈ Iγj(l,i)l,i , then
we obtain Eq. (30) directly from Lemma C.2 applied to (σ

γj(l,i)
l,i , σl,i, yl,i(w)). Note that the lemma is applicable here

because: σγj(l,i)l,i and σl,i are differentiable at yl,i(w); they coincide on Iγj(l,i)l,i ; yl,i(w) ∈ cl(Iγ(l,i)
l,i ) (by w ∈ Rγcl); and

int(Iγ(l,i)
l,i ) 6= ∅ (by yl,i(w) /∈ Iγ(l,i)

l,i ). Therefore, Eq. (29) holds and this completes the proof.

C.5. Theorem 3.2 (Main Proof)

Theorem 3.2. If zL has bias parameters, then for all w ∈ RW at which zL is differentiable,

DADzL(w) = DzL(w).

This implies that |incΩ(zL)| = 0.
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Proof. Let w ∈ RW such that zL is differentiable at w (i.e., DzL(w) 6= ⊥). By Lemma A.8, there is (unique) γ ∈ Γ such
that w ∈ Rγ . Using the γ, we obtain the conclusion:

DzL(w) =
[
D1zL(w)

∣∣ · · · ∣∣ DW zL(w)
]

=
[
D1z

γ1
L (w)

∣∣ · · · ∣∣ DW z
γW
L (w)

]
for some γj ∈ Γ with w ∈ Rγjcl (j ∈ [W ])

=
[
D1z

γ
L(w)

∣∣ · · · ∣∣ DW z
γ
L(w)

]
= DzγL(w) = DADzL(w).

Here the second line uses Lemma C.12 with that zL is differentiable at w. The third line uses Lemma C.13 with the
following: zL is differentiable at w; τl has bias parameters for all l ∈ [L] (by assumption); and w ∈ Rγ ⊆ Rγcl and w ∈ Rγjcl
for all j ∈ [W ] (by the second line). The last line uses Lemma A.12 with w ∈ Rγ .

C.6. Lemmas (Technical: Part 3)

Lemma C.14. Let zL be a neural network, w ∈ RW , and A ⊆ Idx. Suppose that w /∈ pbd({u ∈ RW | yl,i(u) = c}) for all
(l, i) ∈ A and c ∈ ndf(σl,i). Then, there is a neural network z′L (which consists of τ ′l , σ

′
l,i, y

′
l, z
′
l, and DADσ′l,i) satisfying the

following conditions:

1© Dz′L(w) = DzL(w), DADz′L(w) = DADzL(w), and τ ′l = τl for all l ∈ [L].
2© y′l,i(w) /∈ ndf(σ′l,i) for all (l, i) ∈ A.

Proof. Consider the setup given above. Define a function f from neural networks to N as:

f(z′L) ,
∣∣∣{ (l, i, c)

∣∣∣ (l, i) ∈ A, c ∈ ndf(σ′l,i), w ∈ int
(
{u ∈ RW | y′l,i(u) = c}

)}∣∣∣.
Note that f(zL) ∈ N (i.e., f(zL) < ∞), because σl,i is continuous, piecewise-analytic and so |ndf(σl,i)| < ∞ for all
(l, i) ∈ Idx (by Theorem A.4). The proof proceeds by induction on f(zL).

Case f(zL) = 0. We claim that zL satisfies 1©- 2©. Clearly, it satisfies 1©. Further, it also satisfies 2©: by the assumption
and f(zL) = 0, we have that for all (l, i) ∈ A and c ∈ ndf(σl,i),

w /∈ pbd
(
{u ∈ RW | yl,i(u) = c}

)
∪ int

(
{u ∈ RW | yl,i(u) = c}

)
= {u ∈ RW | yl,i(u) = c},

which implies that yl,i(w) 6= c. Hence, yl,i(w) /∈ ndf(σl,i) for all (l, i) ∈ A, as desired.

Case f(zL) > 0. Since f(zL) > 0, there are (l, i) ∈ A and c ∈ ndf(σl,i) such that w ∈ int({u ∈ RW | yl,i(u) = c}). This
implies that there is an open U ⊆ RW such that w ∈ U and yl,i(u) = c for all u ∈ U . Let z′L be the exactly same neural
network as zL except that it uses different σ′l,i and DADσ′l,i:

σ′l,i(x) , DADσl,i(c) · (x− c) + σl,i(c), DADσ′l,i(x) , DADσl,i(c).

Note that σ′l,i and DADσ′l,i satisfy the assumptions in §2.2–§2.3: the former is continuous and piecewise-analytic (since it is
differentiable), and the latter is an extended derivative of the former (since the former is differentiable and DADσ′l,i = Dσ′l,i).
Moreover, z′L satisfies 1© because yl,i(u) = c for all u ∈ U , and because σ′l,i(c) = σl,i(c) and DADσ′l,i(c) = DADσl,i(c).
Further, we have that w /∈ pbd({u ∈ RW | y′l′,i′(u) = c′}) for all (l′, i′) ∈ A and all c′ ∈ ndf(σ′l′,i′), and that

f(z′L) = f(zL)− 1,

where both results follow from ndf(σ′l,i) = ∅, ndf(σ′l′,i′) = ndf(σl′,i′) for all (l′, i′) 6= (l, i), and y′l′,i′ = yl′,i′ on U for all
(l′, i′) ∈ Idx. Hence, we can apply induction to z′L, and by induction hypothesis, there is a neural network z′′L such that
(z′′L, z

′
L) (instead of (z′L, zL)) satisfies 1©- 2©. From this, and since (z′L, zL) satisfies 1© (by the above), we conclude (z′′L, zL)

satisfies 1©- 2©, as desired.

Lemma C.15. We have

incR(zL) ⊆
⋃

(l,i)∈Idx

⋃
c∈ndf(σl,i)∩Sl

pbd
(
{w ∈ RW | yl,i(w) = c}

)
,

where Sl ⊆ R is defined by Sl , ∅ if τl has bias parameters, and Sl , R otherwise.
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Proof. Let U ⊆ RW be the RHS of the above equation:

U ,
⋃

l∈[L]:Sl=R

⋃
i∈[Nl]

⋃
c∈ndf(σl,i)

pbd
(
{w ∈ RW | yl,i(w) = c}

)
.

Then, it suffices to show that for any w ∈ RW , w /∈ U implies w /∈ incR(zL). Consider any w ∈ RW with w /∈ U . We want
to show w /∈ incR(zL). If zL is not differentiable at w, then w /∈ incR(zL) clearly holds by the definition of incR(−). Hence,
assume that zL is differentiable at w. By the definition of incR(−), it suffices to show the following:

DADzL(w) = DzL(w). (31)

We prove this in two steps.

Step 1. Since zL at w does not satisfy the assumption of Lemma C.13 (which we will apply to show Eq. (31)), we construct
another neural network z′L that is identical to zL nearby w while satisfying the assumption. To do so, we apply Lemma C.14
to (zL, w,A) with A , {(l, i) ∈ Idx | Sl = R}. The lemma is applicable here, since w /∈ pbd({v ∈ RW | yl,i(v) = c}) for
all (l, i) ∈ A and c ∈ ndf(σl,i) (by w /∈ U ). Hence, by Lemma C.14, we get a neural network z′L (which consists of τ ′l , σ

′
l,i,

y′l, z
′
l, and DADσ′l,i) satisfying the following conditions:

1© Dz′L(w) = DzL(w), DADz′L(w) = DADzL(w), and τ ′l = τl for all l ∈ [L].
2© y′l,i(w) /∈ ndf(σ′l,i) for all (l, i) ∈ A.

Step 2. We now prove Eq. (31) based on z′L. Let Γ′, R′, and R′cl be the counterparts of Γ, R, and Rcl for z′L. Then, by
Lemma A.8, there is γ′ ∈ Γ′ such that w ∈ R′γ

′
. Using z′L and γ′, we obtain Eq. (31):

DzL(w) = Dz′L(w)

=
[
D1z

′
L(w)

∣∣ · · · ∣∣ DW z
′
L(w)

]
=
[
D1z

′
L
γ′1(w)

∣∣ · · · ∣∣ DW z
′
L
γ′W (w)

]
for some γ′j ∈ Γ′ with w ∈ R′cl

γ′j (j ∈ [W ])

=
[
D1z

′
L
γ′

(w)
∣∣ · · · ∣∣ DW z

′
L
γ′

(w)
]

= Dz′L
γ′

(w) = DADz′L(w) = DADzL(w).

Here the first and last lines use 1© and Lemma A.12 with w ∈ R′γ
′
. The third line uses Lemma C.12 with that z′L is

differentiable at w (by 1©). The fourth line uses Lemma C.13 with the following: z′L is differentiable at w (by 1©); for all
(l, i) ∈ Idx, if τ ′l does not have bias parameters, then y′l,i(w) /∈ ndf(σ′l,i), i.e., σ′l,i is differentiable at y′l,i(w) (by 1© and 2©);
and w ∈ R′γ

′
⊆ R′cl

γ′ and w ∈ R′cl
γ′j for all j ∈ [W ] (by the third line).

C.7. Theorem 4.4 (Main Lemma)

Lemma C.16. Suppose that for every l ∈ [L], one of the following holds:

(a) τl has bias parameters, or
(b) τl is well-structured biaffine.

In the case of (b), let φl,i be the partial map described in Lemma B.10 for all i ∈ [Nl]. Then,

incΩ(zL) ⊆
⋃

(l,i)∈Idx

⋃
c∈Al,i

Bl,i(c),

where Al,i ⊆ R and Bl,i(c) ⊆ Ω are defined as

Al,i ,

{
(ndf(σl,i) ∩ Sl) if τl+1 satisfies the condition (a) or l = L

(ndf(σl,i) ∩ Sl) ∪ bdz(σl,i) if τl+1 satisfies the condition (b),

Bl,i(c) ,

{
{w ∈ Ω | yl,i(w) = c} if τl satisfies the condition (a)
{w ∈ Ω | yl,i(w) = c ∧

∨
j∈dom(φl,i)

zl−1,φl,i(j)(w) 6= 0} if τl satisfies the condition (b),

and Sl ⊆ R is defined as Sl , ∅ if τl has bias parameters, and Sl , R otherwise.

Proof. We obtain the conclusion by chaining Lemma C.15, Lemma B.11 (which is applicable by the assumption on τl), and
ndfΩ(zL) ∪ incΩ(zL) =

(
ndfR(zL) ∪ incR(zL)

)
∩ Ω.
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C.8. Theorem 4.4 (Main Proof)

Theorem 4.4. If τl either has bias parameters or is well-structured biaffine for all l ∈ [L], then

|incΩ(zL)|
|Ω|

≤ 1

|M|
∑

(l,i)∈Idx

∣∣∣(ndf(σl,i) ∩ Sl) ∪ (bdz(σl,i) ∩ Sl+1

)∣∣∣,
where Sl ⊆ R is defined by

Sl ,

{
∅ if l > L or τl has bias parameters
R otherwise.

Proof. Observe that

incΩ(zL) ⊆
⋃

(l,i)∈Idx

⋃
c∈Al,i

Bl,i(c), |Bl,i(c)| ≤ |M|W−1, (32)

where Sl ⊆ R, Al,i ⊆ R and Bl,i(c) ⊆ Ω for l ∈ [L] are defined as in Lemma C.16. Here the first equation is by
Lemma C.16 and the second equation is by Lemmas B.7 and B.13, where these lemmas are applicable by the definition of
Bl,i(c) and because τl either has bias parameters or is well-structured biaffine (by assumption). Observe further that

Al,i = (ndf(σl,i) ∩ Sl) ∪ (bdz(σl,i) ∩ Sl+1), (33)

by the definition of Al,i and Sl, where we use SL+1 , ∅. Combining the above observations, we obtain the conclusion:

|incΩ(zL)|
|Ω|

≤
∑

(l,i)∈Idx

∑
c∈Al,i

|Bl,i(c)|
|Ω|

≤
∑

(l,i)∈Idx

∣∣(ndf(σl,i) ∩ Sl) ∪ (bdz(σl,i) ∩ Sl+1)
∣∣ · |M|W−1

|M|W
,

where the first inequality uses Eq. (32) and the second inequality uses Eqs. (32) and (33).
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D. Lower Bounds on |ndfΩ(zL)| and |incΩ(zL)|
D.1. Theorem 3.4 (Main Proof)

Theorem 3.4. For any M ⊆ R and n, α ∈ N with 1 ≤ |M| < ∞, n ≥ 2, and α ≤ |M|/(n − 1), there is a neural network
zL : RW → R that satisfies

|ndfΩ(zL)|
|Ω|

≥ 1

2
· 1

|M|
∑

(l,i)∈Idx

|ndf(σl,i)|

and the following: zL has bias parameters, it has n+ 1 neurons, and |ndf(σ1,i)| = α for all i ∈ [N1].

Proof. Consider any M ⊆ R and n, α ∈ N that satisfy the assumption. We claim that there is a neural network zL that has
L = 2 layers, N = n+ 1 neurons, and W = n+ 1 parameters, and satisfies the given inequality.

We first define a few components to be used in the network. Let {x1, . . . , xα} ⊆ M be distinct machine-representable
numbers, and h : R→ R be a continuous, piecewise-analytic function such that ndf(h) = {x1, . . . , xα}. Note that such xj
always exists since |M| ≥ α (by assumption). Using h, define a function f : RW → R as

f(w) = wn+1 +
∑
i∈[n]

h(wi).

We assume here (and in the rest of the proof) that w ∈ RW is represented as w = (w1, . . . , wW ) for wi ∈ R (instead of
w = (w1,1, w1,2, . . . , wL,WL

) with wl,j ∈ R as we assumed so far).

Given these, we construct a neural network zL : RW → R that is essentially the same as f , as follows

z0(w) = 0 ∈ R,

y1(w) = (w1, . . . , wn) ∈ Rn, z1(w) = (h(w1), . . . , h(wn)) ∈ Rn,

y2(w) = f(x) ∈ R, z2(w) = f(x) ∈ R.

Then, zL has 2 layers, n+ 1 neurons, and n+ 1 parameters, and |ndf(σ1,i)| = |ndf(h)| = α for all i. Also, we can easily
make all τl have bias parameters (e.g., by using τ1(x,w1, . . . , wn) = (x+w1, . . . , x+wn)). What remains is to prove that
zL satisfies the inequality in the conclusion. To do so, observe that

ndfΩ(zL) ⊇ {w ∈ Ω | wi ∈ ndf(h) for some i ∈ [n]}
= Ω \ {w ∈ Ω | wi /∈ ndf(h) for all i ∈ [n]},

which follows from the definition of f and ndf(h) ⊆ M. From this, we have

|ndfΩ(zL)|
|Ω|

≥ 1

|M|n+1

(
|M|n+1 − |M| · (|M| − α)n

)
= 1−

(
1− α

|M|

)n
≥ 1−

(
1− n α

|M|
+

1

2
n(n− 1)

( α

|M|

)2)
=
nα

|M|

(
1− n− 1

2

α

|M|

)
≥ 1

2
· nα
|M|

,

where the first inequality uses ndf(h) ⊆ M and |ndf(h)| = α, the second inequality follows from (1 − x)n ≤ 1 − nx +
1
2n(n− 1)x2 (for any x ≤ 1 and n ∈ N) and α ≤ |M|, and the third inequality is by the assumption that α ≤ |M|/(n− 1).
By combining this result and

1

|M|
∑

(l,i)∈Idx

|ndf(σl,i)| =
nα

|M|
,

we obtain the desired inequality.
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D.2. Theorem 4.3 (Main Proof)

Theorem 4.3. For any M ⊆ R and n, α ∈ N with 1 ≤ |M| < ∞, n ≥ 4, and α ≤ |M|/(n − 1), there is a neural network
zL : RW → R that satisfies

|ndfΩ(zL)|
|Ω|

≥ 1

9
· 1

|M|
∑

(l,i)∈Idx

∣∣∣ndf(σl,i) ∪ bdz(σl,i)
∣∣∣

and the following: (i) τl is well-structured biaffine without bias parameters for all l < L, and has bias parameters for l = L;
(ii) zL has n+ 1 neurons; and (iii) |ndf(σ1,i)|=α, |bdz(σ1,i)|= 0 for all i. We get the same result for (i), (ii’), and (iii’):
(ii’) zL has 2n+ 1 neurons; and (iii’) |ndf(σ1,i)|= 0, |bdz(σ1,i)|=α for all i.

Proof. We prove the two cases (one for (i), (ii), (iii), and the other for (i), (ii’), (iii’)) as follows. Consider any M ⊆ R and
n, α ∈ N that satisfy the assumption. Let {x1, . . . , xα} ⊆ M be distinct machine-representable numbers; such xj always
exists since |M| ≥ α (by assumption). In the rest of the proof, we assume that w ∈ RW is represented as w = (w1, . . . , wW )
for wi ∈ R, as in the proof of Theorem 3.4 (see §D.1).

First case. Let W = n+ 1 and h : R→ R be a continuous, piecewise-analytic function such that ndf(h) = {x1, . . . , xα}
and h(x) > 0 for all x ∈ R. Using this h, define a function f : RW → R as

f(w) = wn+1 +
∑
i∈[n]

h(wi).

We now construct a neural network zL : RW → R that is essentially the same as f , as follows:

z0(w) = 1 ∈ R,

y1(w) = (w1, . . . , wn) ∈ Rn, z1(w) = (h(w1), . . . , h(wn)) ∈ Rn,

y2(w) = f(x) ∈ R, z2(w) = f(x) ∈ R.

Then, zL has L = 2 layers, N = n + 1 neurons, and W = n + 1 parameters, and |ndf(σ1,i)| = |ndf(h)| = α and
|bdz(σ1,i)| = |bdz(h)| = 0 for all i. Also, we can easily make τl be well-structured biaffine without bias parameters for all
l < L, and make τL have bias parameters (e.g., by using τ1(x,w1, . . . , wn) = (x · w1, . . . , x · wn)). This shows that (i),
(ii), and (iii) are satisfied.

What remains is to prove that zL satisfies the inequality in the conclusion. To do so, observe that

ndfΩ(zL) ⊇ {w ∈ Ω | wi ∈ ndf(h) for some i ∈ [n]},

which follows from the definition of f and ndf(h) ⊆ M. From this, we have

|ndfΩ(zL)|
|Ω|

≥ 1

2
· nα
|M|

,

as shown in the proof of Theorem 3.4 (see §D.1). Here we used ndf(h) ⊆ M and |ndf(h)| = α, as well as α ≤ |M|/(n− 1)
and n ≥ 2 (by assumption). Further, observe that

1

|M|
∑

(l,i)∈Idx

∣∣ndf(σl,i) ∪ bdz(σl,i)
∣∣ =

nα+ 1

|M|
=
(

1 +
1

nα

)
· nα
|M|
≤ 3

2
· nα
|M|

,

where the inequality uses n ≥ 2 and α ≥ 1 (by assumption). From these results, we obtain the desired inequality.

Second case. Let W = n+ 2 and h : R→ R be an analytic function such that h(xj) = 0 and Dh(xj) = 1 for all j ∈ [α],
and |bdz(h)| = α. We remark that such a function h always exists due to Hermite interpolation (Burden et al., 2015). Using
this h, define a function f : RW → R as

f(w) = wn+2 +
∑
i∈[n]

ReLU(h(wi) · wn+1).
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We now construct a neural network zL : RW → R that is essentially the same as f , as follows:

z0(w) = 1,

y1(w) = (w1, . . . , wn), z1(w) = (h(w1), . . . , h(wn)),

y2(w) = (h(w1) · wn+1, . . . , h(wn) · wn+1), z2(w) = (ReLU(h(w1) · wn+1), . . . ,ReLU(h(wn) · wn+1)),

y3(w) = f(x), z3(w) = f(x).

Then, zL has L = 3 layers, N = 2n + 1 neurons, and W = n + 2 parameters, and |ndf(σ1,i)| = |ndf(h)| = 0 and
|bdz(σ1,i)| = |bdz(h)| = α for all i. Also, we can easily make τl be well-structured biaffine without bias parameters for all
l < L, and make τL have bias parameters, as discussed above. This shows that (i), (ii’), and (iii’) are satisfied.

What remains is to prove that zL satisfies the inequality in the conclusion. To do so, observe that

ndfΩ(zL) ⊇ {w ∈ Ω | wn+1 6= 0 and wi ∈ bdz(h) for some i ∈ [n]}
= Ω \

(
{w ∈ Ω | wn+1 = 0} ∪ {w ∈ Ω | wi /∈ bdz(h) for all i ∈ [n]}

)
,

which follows from the definition of f and bdz(h) ⊆ M. From this, we have

|ndfΩ(zL)|
|Ω|

≥ 1

|M|n+2

(
|M|n+2 − |M|n+1 − |M|2 · (|M| − α)n

)
≥ 1

2
· nα
|M|
− 1

|M|
=
(1

2
− 1

nα

)
· nα
|M|

≥ 1

4
· nα
|M|

,

where the second inequality follows from an argument in the proof of Theorem 3.4 (see §D.1), and the third inequality uses
n ≥ 4 and α ≥ 1 (by assumption). Note that when proving the second inequality, we used bdz(h) ⊆ M and |bdz(h)| = α,
as well as α ≤ |M|/(n− 1) and n ≥ 2 (by assumption). Further, observe that

1

|M|
∑

(l,i)∈Idx

∣∣ndf(σl,i) ∪ bdz(σl,i)
∣∣ =

nα+ n+ 1

|M|
=
(

1 +
1

α
+

1

nα

)
· nα
|M|
≤ 9

4
· nα
|M|

,

where the inequality uses n ≥ 4 and α ≥ 1 (by assumption). From these results, we obtain the desired inequality.

D.3. Theorem 4.5 (Main Proof)

Theorem 4.5. For any M ⊆ R and n, α ∈ N with 1 ≤ |M| < ∞, n ≥ 4, and α ≤ |M|/(n − 1), there is a neural network
zL : RW → R that satisfies

|incΩ(zL)|
|Ω|

≥ 1

13
· 1

|M|
∑

(l,i)∈Idx

∣∣∣ndf(σl,i) ∪ bdz(σl,i)
∣∣∣

and the following: (i) τl is well-structured biaffine without bias parameters for all l < L, and has bias parameters for l = L;
(ii) zL has 2n+ 1 neurons; and (iii) |ndf(σ1,i)|=α, |bdz(σ1,i)|= 0 for all i. We get the same result for (i), (ii’), and (iii’):
(ii’) zL has 3n+ 1 neurons; and (iii’) |ndf(σ1,i)|= 0, |bdz(σ1,i)|=α for all i.

Proof. We prove the two cases (one for (i), (ii), (iii), and the other for (i), (ii’), (iii’)) as follows. Consider any M ⊆ R and
n, α ∈ N that satisfy the assumption. Let {x1, . . . , xα} ⊆ M be distinct machine-representable numbers; such xj always
exists since |M| ≥ α (by assumption). In the rest of the proof, we assume that w ∈ RW is represented as w = (w1, . . . , wW )
for wi ∈ R, as in the proof of Theorem 3.4 (see §D.1).

First case. Let W = n+ 1. Without loss of generality, assume that α is even and 0 < x1 < · · · < xα/2; other cases can
be handled in a similar way. Consider a continuous, piecewise-analytic function h : R → R that satisfies the following
conditions: for all j ∈ [α/2], h(xj) = 1 if j is odd, and h(xj) = 2 if j is even; ndf(h) ∩ (0,∞) = {x1, . . . , xα/2}; h is
piecewise linear, constant on [xα/2,∞), and even (i.e., h(x) = h(−x) for all x ∈ R). For this h, consider a (consistent)
extended derivative DADh : R→ R that takes the slope of the right piece of the function at non-differentiable points: e.g.,
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DADh(x2) = (h(x3) − h(x2))/(x3 − x2) and DADh(−x2) = (h(−x1) − h(−x2))/(−x1 + x2). Using this h, define a
function f : RW → R as

f(w) = wn+1 +
∑
i∈[n]

h(wi)− h(−wi).

Then, by using a similar approach taken in the proof of Theorem 4.3 (see §D.2), we can construct a neural network
zL : RW → R that is essentially the same as f and satisfies the following: zL has L = 2 layers, N = 2n+ 1 neurons, and
W = n+1 parameters (where 2n neurons are at layer 1 and 1 neuron is at layer 2); τl is well-structured biaffine without bias
parameters for all l < L, and has bias parameters for l = L; and |ndf(σ1,i)| = |ndf(h)| = α and |bdz(σ1,i)| = |bdz(h)| = 0
for all i. This shows that (i), (ii), and (iii) are satisfied.

What remains is to prove that zL satisfies the inequality in the conclusion. To do so, observe that

incΩ(zL) ⊇ {w ∈ Ω | wi ∈ {x1, . . . , xα/2} for some i ∈ [n]},

which follows from the definition of f and {x1, . . . , xα/2} ⊆ M. From this, we have

|incΩ(zL)|
|Ω|

≥ 1

4
· nα
|M|

by a similar argument to that in the proof of Theorem 3.4 (see §D.1). Here we used {x1, . . . , xα/2} ⊆ M as well as
α ≤ |M|/(n− 1) and n ≥ 2 (by assumption). Further, observe that

1

|M|
∑

(l,i)∈Idx

∣∣ndf(σl,i) ∪ bdz(σl,i)
∣∣ =

2nα+ 1

|M|
=
(

2 +
1

nα

)
· nα
|M|
≤ 9

4
· nα
|M|

,

where the inequality uses n ≥ 4 and α ≥ 1 (by assumption). From these results, we obtain the desired inequality.

Second case. Let W = n+ 2 and h : R→ R be an analytic function such that h(xj) = 0 and Dh(xj) = 1 for all j ∈ [α],
and |bdz(h)| = α. Using this h, define a function f : RW → R as

f(w) = wn+2 +
∑
i∈[n]

ReLU(h(wi) · wn+1)− ReLU(−h(wi) · wn+1),

and letDADReLU = 1(0,∞). By using an approach similar to the above, we can construct a neural network zL : RW → R that
is essentially the same as f and satisfies the following: zL has L = 3 layers,N = 3n+1 neurons, andW = n+2 parameters
(where n neurons are at layer 1, 2n neurons at layer 2, and 1 neuron at layer 3); τl is well-structured biaffine without bias
parameters for all l < L, and has bias parameters for l = L; and |ndf(σ1,i)| = |ndf(h)| = 0 and |bdz(σ1,i)| = |bdz(h)| = α
for all i. This shows that (i), (ii’), and (iii’) are satisfied.

What remains is to prove that zL satisfies the inequality in the conclusion. To do so, observe that

incΩ(zL) ⊇ {w ∈ Ω | wn+1 6= 0 and wi ∈ bdz(h) for some i ∈ [n]},

which follows from the definition of f and bdz(h) ⊆ M. From this, we have

|incΩ(zL)|
|Ω|

≥ 1

4
· nα
|M|

,

as shown in the proof of Theorem 4.3 (see §D.2). Here we used bdz(h) ⊆ M and |bdz(h)| = α, as well as 1 ≤ α ≤
|M|/(n− 1) and n ≥ 4 (by assumption). Further, observe that

1

|M|
∑

(l,i)∈Idx

∣∣ndf(σl,i) ∪ bdz(σl,i)
∣∣ =

nα+ 2n+ 1

|M|
=
(

1 +
2

α
+

1

nα

)
· nα
|M|
≤ 13

4
· nα
|M|

,

where the inequality uses n ≥ 4 and α ≥ 1 (by assumption). From these results, we obtain the desired inequality.
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E. Computation of Standard Derivatives
E.1. Lemmas (Basic)

Lemma E.1. Let f, f1, . . . , fn : Rd → Rd
′

(n ∈ N), x ∈ Rd, and U ⊆ Rd be an open neighborhood of x. Suppose that for
all y ∈ U , f(y) = fi(y) for some i ∈ [n]. Also, assume that f(x) = fi(x) for all i ∈ [n], and Dfi(x) = Dfj(x) 6= ⊥ for
all i, j ∈ [n]. Then,

Df(x) = Dfi(x) 6= ⊥ for all i ∈ [n].

Proof. Consider the setup of the statement. By the assumption, it suffices to show that Df(x) = Df1(x), which is
equivalent to the following: for all ε > 0, there exists δ > 0 such that for all h ∈ Rd,

0 < ‖h‖ < δ =⇒ ‖f(x+ h)− f(x)−Df1(x) · h‖
‖h‖

< ε,

where ‖ · ‖ denotes the `2-norm. To show this, consider any ε > 0. Since Dfi(x) 6= ⊥ (by assumption), there is δi > 0 for
each i ∈ [n] such that for all h ∈ Rd,

0 < ‖h‖ < δi =⇒ ‖fi(x+ h)− fi(x)−Dfi(x) · h‖
‖h‖

=
‖fi(x+ h)− f1(x)−Df1(x) · h‖

‖h‖
< ε,

where the equality is by assumption. Choose 0 < δ < min{δi | i ∈ [n]} such that {x + h | ‖h‖ < δ} ⊆ U , which is
possible because U is an open neighborhood of x. Then, for all h ∈ Rd, 0 < ‖h‖ < δ implies that

‖f(x+ h)− f(x)−Df1(x) · h‖
‖h‖

=
‖fj(x+ h)− f1(x)−Df1(x) · h‖

‖h‖
< ε

for some j ∈ [n], where the equality is by assumption and x + h ∈ U and the inequality is by δ < δj . This proves
Df(x) = Df1(x) as desired.

E.2. Lemmas (Technical: Part 1)

In this subsection, we formally define the partial derivative ∂ADzL/∂zl,i ∈ RNL of zL with respect to zl,i that reverse-mode
automatic differentiation computes (as a byproduct of computing DADzL). To do so, we fix l′ ∈ [L] and w′ ∈ RW , and
define ∂ADzL/∂zl′,i ∈ RNL at w′ (i ∈ [Nl′ ]) in a similar way we defined DADzL in §A.3.

We first define a program Q (different from P in §A.3) that represents a function from RNl′ to R as follows:

Q ::= r | xi | f(Q1, . . . ,Qn)

where r ∈ R, i ∈ [Nl′ ], f ∈ {τl,i, σl,i | (l, i) ∈ Idx, l > l′}, and n ∈ N. This definition says that a program Q can be either
a real-valued constant r, a real-valued variable xi denoting the neuron zl′,i, or the application of a function f : Rn → R to
subprograms Q1, . . . ,Qn. We focus on particular programs Qyl,i and Qzl,i (l > l′) that represent the neurons yl,i and zl,i but
as functions of the neurons zl′,1, . . . , zl′,Nl′ (instead of functions of parameters w1,1, w1,2, . . . , wL,WL

). These programs
are defined in a canonical way as follows:

Qyl,i , τl,i(Qzl−1,1
, . . . ,Qzl−1,Nl−1

, w′l,1, . . . , w
′
l,Wl

),

Qzl,i , σl,i(Qyl,i),

where Qzl′,i , xi for i ∈ [Nl′ ] represents the projection function from RNl′ to R. Note that w′l,j in the above equation is not
a variable but a constant, while xi in the definition of Qzl′,i is a variable.

Given a program Q, we define the function JQK : RNl′ → R that Q represents, and the function JQKAD : RNl′ → R1×Nl′ that
reverse-mode automatic differentiation computes for Q (as a byproduct of computing other derivatives):

JrK(x) , r,

JxiK(x) , xi,

Jf(Q1, . . . ,Qn)K(x) , f
(
JQ1K(x), . . . , JQnK(x)

)
,
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JrKAD(x) , 0,

JxiKAD(x) , 1i,

Jf(Q1, . . . ,Qn)KAD(x) , DADf
(
JQ1K(x), . . . , JQnK(x)

)
·
[
JQ1KAD(x)

/
· · ·
/

JQnKAD(x)
]
.

Here (x1, . . . , xNl′ ) , x denote the scalar values of x, the notation 0,1i ∈ R1×W denote the zero matrix and the matrix
whose entries are all zeros except for a single one at the i-th entry, DADf : Rn → R1×n denotes a “derivative” of f used by
automatic differentiation, and [M1 / · · · /Mn] denotes the matrix that stacks up matrices M1, . . . ,Mn vertically. Note that
the definitions of JQK and JQKAD are almost the same as that of JPK and JPKAD in §A.3.

Using the above definitions, ∂ADzL/∂zl′,i at w′ for i ∈ [Nl′ ] (i.e., the partial derivative of zL with respect to zl′,i at w′ that
reverse-mode automatic differentiation computes) can be defined as follows:

∂ADzL
∂zl′,i

at w′ ,
[
JQzL,1K

AD(zl′(w
′))
/
· · ·
/

JQzL,NL KAD(zl′(w′))
]

1:NL, i
∈ RNL .

Lemma E.2 (shown below) shows that ∂ADzL/∂zl,i can be expressed in terms of z̃γl+1 (defined in §C), as DADzL can be
expressed in terms of zγL (Lemma A.12). We will rely on this lemma in the rest of this section, when working with
∂ADzL/∂zl,i.

Lemma E.2. Let γ ∈ Γ. Then, for all l ∈ [L] and w ∈ Rγ ,

∂ADzL
∂zl,i

at w = Diz̃
γ
l+1

(
zl(w), wl+1, . . . , wL

)
.

Proof. The proof is similar to Lemma A.12, except that it uses Lemma C.8 instead of Lemma A.11; thus, we omit it.

E.3. Lemmas (Technical: Part 2)

Lemma E.3. Let w ∈ RW . Suppose that for all (l, i) ∈ Idx, yl,i(w) ∈ ndf(σl,i) implies that

Diz̃
γ
l+1(zl(w), wl+1, . . . , wL) = (0, . . . , 0)

for the γ ∈ Γ with w ∈ Rγ . Then, for all l ∈ [L+ 1] and γ1, γ2 ∈ Γ with w ∈ Rγ1cl ∩R
γ2
cl ,

Dz̃γ1l (zl−1(w), wl, . . . , wL) = Dz̃γ2l (zl−1(w), wl, . . . , wL).

Proof. The proof is similar to that of Lemma C.13, except that this lemma assumes that certain partial derivatives are all
zero while Lemma C.13 derives this assumption (in addition to proving the conclusion of this lemma). Let w ∈ RW that
satisfies the assumption of this lemma. The proof proceeds by induction on l (starting from l = L+ 1).

Case l = L+ 1. In this case, z̃γL+1 is the identity function for all γ ∈ Γ. Hence, the conclusion clearly holds.

Case l < L + 1. For simple notation, let x , (zl−1(w), wl, . . . , wL) and x′ , (zl(w), wl+1, . . . , wL). Observe that the
following hold for any γ ∈ Γ with w ∈ Rγcl, due to Eqs. (25)–(27) in the proof of Lemma C.13:

Dz̃γl (x) = Dz̃γl+1

(
(σ̃γl ◦ τ̃ l)(x)

)
·Dσ̃γl

(
τ̃ l(x)

)
·Dτ̃ l(x),(

Dz̃γl+1((σ̃γl ◦ τ̃ l)(x)) ·Dσ̃γl (τ̃ l(x))
)
∗, i

= Diz̃
γ
l+1(x′) ·

{
Dσ

γ(l,i)
l,i

(
yl,i(w)

)
if i ≤ Nl

1 if i > Nl.

Using this observation, we prove the conclusion for l. Let γ1, γ2 ∈ Γ with w ∈ Rγ1cl ∩R
γ2
cl . We want to show Dz̃γ1l (x) =

Dz̃γ2l (x). By induction hypothesis on l + 1, we obtain Dz̃γ1l+1(x′) = Dz̃γ2l+1(x′). From this and the above equation, it
suffices to show the following claim for all i ∈ [Nl]:

Diz̃
γ1
l+1(x′) ·Dσγ1(l,i)

l,i

(
yl,i(w)

)
= Diz̃

γ1
l+1(x′) ·Dσγ2(l,i)

l,i

(
yl,i(w)

)
.

Let i ∈ [Nl]. We prove this claim by case analysis on i.
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Subcase 1: yl,i(w) ∈ ndf(σl,i). Observe that for the γ ∈ Γ with w ∈ Rγ , we have

Diz̃
γ1
l+1(x′) = Diz̃

γ
l+1(x′) = (0, . . . , 0),

where the first equality is by induction hypothesis on l+ 1 with w ∈ Rγ ⊆ Rγcl, and the second equality by assumption with
yl,i(w) ∈ ndf(σl,i). This directly implies the claim.

Subcase 2: yl,i(w) /∈ ndf(σl,i). To show the claim, it suffices to show that for all j ∈ [2],

Dσ
γj(l,i)
l,i

(
yl,i(w)

)
= Dσl,i

(
yl,i(w)

)
.

This is exactly the same as Eq. (30) in the proof of Lemma C.13, and we can prove this in the exact same way as before.
Therefore, the claim holds and this completes the proof.

Lemma E.4. Let w ∈ RW . Suppose that for all γ1, γ2 ∈ Γ with w ∈ Rγ1cl ∩R
γ2
cl ,

Dzγ1L (w) = Dzγ2L (w).

Then, zL is differentiable at w.

Proof. Consider the setup of this lemma. To apply Lemma E.1, we show the following claims for Γw , {γ ∈ Γ | w ∈ Rγcl}:

(i) For some open neighborhood U ⊆ RW of w, if w′ ∈ U , then zL(w′) = zγL(w′) for some γ ∈ Γw.
(ii) zL(w) = zγL(w) for all γ ∈ Γw.

(iii) Dzγ1L (w) = Dzγ2L (w) 6= ⊥ for all γ1, γ2 ∈ Γw.

If these claims hold, then Lemma E.1 implies that DzL(w) 6= ⊥ (i.e., zL is differentiable at w). So what remains is to
show these claims. First, (iii) follows from the assumption of this lemma and that zγL is analytic for all γ ∈ Γ. Second, (ii)
follows from Lemma C.6. Finally, (i) holds as follows. Consider any γ ∈ Γ \ Γw. Then, by w /∈ Rγcl and the definition
of Rγcl, there is (l, i) ∈ Idx such that yl,i(w) ∈ A and A ∩ Iγ(l,i)

l,i = ∅ for some open A ⊆ R. Since yl,i is continuous and
Rγ ⊆ y−1

l,i (Iγ(l,i)
l,i ), the set Uγ , y−1

l,i (A) is an open neighborhood of w such that Uγ ∩Rγ = ∅. We now define

U ,
⋂

γ∈Γ\Γw

Uγ .

Then, because Γ is finite, U is an open neighborhood of w such that U ∩
⋃
γ∈Γ\ΓwR

γ = ∅. Using this, we obtain (i) as
follows: for any w′ ∈ U , we have w′ /∈

⋃
γ∈Γ\ΓwR

γ and so w′ ∈ Rγ for some γ ∈ Γw (by Lemma A.8); this implies that
zL(w′) = zγL(w′) (by Lemma A.11). This completes the proof.

E.4. Theorems 3.5 and 4.6 (Main Lemmas)

Lemma E.5. Let w ∈ RW . Suppose that the following holds:

• For all (l, i) ∈ Idx, yl,i(w) ∈ ndf(σl,i) implies that Diz̃
γ
l+1(zl(w), wl+1, . . . , wL) = ~0 for the γ ∈ Γ with w ∈ Rγ .

Then, we have the following:

• w /∈ ndfR(zL) (i.e., zL is differentiable at w).

Proof. Consider the setup of this lemma. For all γ1, γ2 ∈ Γ with w ∈ Rγ1cl ∩R
γ2
cl ,

Dzγ1L (w) = Dz̃γ11 (z0(w), w1, . . . , wL) = Dz̃γ21 (z0(w), w1, . . . , wL) = Dzγ2L (w),

where the first and last equalities are by Lemma C.7, and the second equality is by Lemma E.3. Then, by applying
Lemma E.4, we obtain that zL is differentiable at w, as desired.

Lemma E.6. Let w ∈ RW . Suppose that the following hold:

• w /∈ ndfR(zL) (i.e., zL is differentiable at w).
• For all (l, i) ∈ Idx, yl,i(w) ∈ ndf(σl,i) implies that τl has bias parameters.

Then, we have the following:
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• w /∈ ndfR(zL) ∪ incR(zL) (i.e., DADzL(w) = DzL(w) 6= ⊥).
• For all (l, i) ∈ Idx, yl,i(w) ∈ ndf(σl,i) implies that Diz̃

γ
l+1(zl(w), wl+1, . . . , wL) = ~0 for the γ ∈ Γ with w ∈ Rγ .

Proof. Consider the setup in the statement. By exactly following the proof of Theorem 3.2 (given in §C.5) under this
setup, we obtain the conclusion of Theorem 3.2: DADzL(w) = DzL(w), which implies the first conclusion of this lemma.
Moreover, the second conclusion was already shown in the proof of Lemma C.13 (which has the same assumption as this
lemma), especially in Subcase 1 of Case l < L+ 1 in the proof. This completes the proof.

E.5. Theorems 3.5 and 4.6 (Main Proofs)

Theorem 3.5. If zL has bias parameters, then the following are equivalent for all w ∈ RW .

• zL is non-differentiable at w.
• yl,i(w) ∈ ndf(σl,i) and ∂ADzL/∂zl,i 6= ~0 at w for some (l, i) ∈ Idx.

Proof. Let w ∈ RW . Suppose that zL has bias parameters. Then, by Lemmas E.5 and E.6, the following are equivalent:

(i) w /∈ ndfR(zL) (i.e., zL is differentiable at w).
(ii) For all (l, i) ∈ Idx, yl,i(w) ∈ ndf(σl,i) implies that Diz̃

γ
l+1(zl(w), wl+1, . . . , wL) = ~0 for the γ ∈ Γ with w ∈ Rγ .

By taking the negation of (i)-(ii) and applying Lemma E.2 to (ii), we obtain the conclusion.

Theorem 4.6. Let w ∈ RW . If yl,i(w) /∈ ndf(σl,i) for all (l, i) ∈ Idx such that τl does not have bias parameters or
∂ADzL/∂zl,i 6= ~0 at w, then

DADzL(w) = DzL(w) 6= ⊥.

Proof. Let w ∈ RW . Suppose that it satisfies the given assumption, which is equivalent to the following by Lemma E.2:

For all (l, i) ∈ Idx, yl,i(w) ∈ ndf(σl,i) implies that
(i) τl has bias parameters, and

(ii) Diz̃
γ
l+1(zl(w), wl+1, . . . , wL) = ~0 for the γ ∈ Γ with w ∈ Rγ .

First, by Lemma E.5 with (ii), we have

(iii) w /∈ ndfR(zL) (i.e., zL is differentiable at w).

Next, by Lemma E.6 with (i) and (iii), we have the conclusion:

w /∈ ndfR(zL) ∪ incR(zL) (i.e., DADzL = DzL(w) 6= ⊥).
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F. Computation of Clarke Subderivatives
F.1. Lemmas (Basic)

Definition F.1. LetA ⊆ Rn and x ∈ Rn (whereA does not need to contain x). ForB ⊆ Rn, we say thatA hasB-directions
around x if for all b ∈ B, there is δ > 0 such that {x+ tb | t ∈ (0, δ)} ⊆ A. We say that A has sufficient directions around
x if A has B-directions around x for some B ⊆ Rn with span(B) = Rn, where span(B) , {

∑k
i=1tibi | k ∈ N, ti ∈

R, bi ∈ B} denotes the span of B.

Lemma F.2. Let A ⊆ Rn and x ∈ Rn.

1. If x ∈ int(A), then A has Rn-directions around x.
2. Let α ∈ {±1}, ε ∈ R>0 ∪ {∞}, and f : Rn → R. If f is differentiable at x and

A = {y ∈ Rn | α · (f(y)− f(x)) ∈ (0, ε)},

then A has B-directions around x for

B , {y ∈ Rn | α · (Df(x) · y) ∈ (0,∞)}.

3. Let A′, B ⊆ Rn. If A has B-directions around x and A ⊆ A′, then A′ has B-directions around x.
4. Let A′, B,B′ ⊆ Rn. If A has B-directions around x and A′ has B′-directions around x, then (A ∩A′) has (B ∩B′)-

directions around x.
5. If A has B-directions around x for some nonempty, open B ⊆ Rn, then A has sufficient directions around x.

Proof. The proofs of (1), (3), and (4) are straightforward, so we omit them.

Proof of (2). Consider the setup stated above. Assume that f is differentiable at x, and let b ∈ B. We want to show there
is δ > 0 such that {x+ tb | t ∈ (0, δ)} ⊆ A. We show this when α = 1; we omit the case when α = −1, as the proof is
similar. Observe that since f is differentiable at x, there is δ′ > 0 such that for all h ∈ Rn,

0 < ‖h‖ < δ′ =⇒ |f(x+ h)− f(x)−Df(x) · h|
‖h‖

<
Df(x) · b

2‖b‖
, (34)

where ‖ · ‖ denotes the `2-norm. Here we used Df(x) · b > 0 and ‖b‖ > 0, which hold by b ∈ B and the definition of B.

We claim that {x+ tb | t ∈ (0, δ)} ⊆ A holds for the following choice of δ:

δ , min
{ δ′

‖b‖
,

2ε

3(Df(x) · b)

}
> 0.

To show this, consider any t ∈ (0, δ). It suffices to show x+ tb ∈ A. Observe that for h = tb, we have 0 < ‖h‖ = ‖tb‖ <
δ‖b‖ ≤ (δ′/‖b‖) · ‖b‖ = δ′. Hence, Eq. (34) implies that∣∣f(x+ tb)− f(x)−Df(x) · (tb)

∣∣ < ‖tb‖ · 1
2‖b‖ (Df(x) · b) = 1

2 (Df(x) · b)t,

0 < 1
2 (Df(x) · b)t < f(x+ tb)− f(x) < 3

2 (Df(x) · b)t < ε,

where the second line uses Df(x) · b > 0 and t < δ ≤ 2
3ε/(Df(x) · b). From this, and by the definition of A, we have

x+ tb ∈ A as desired.

Proof of (5). This follows from the fact that the span of any nonempty, open set in Rn is Rn.

Lemma F.3. Let f, g : Rn → Rm, A ⊆ Rn, and x ∈ Rn. Suppose that f = g on A ∪ {x}, A has sufficient directions
around x, and f and g are differentiable at x. Then,

Df(x) = Dg(x).

Proof. Consider the setup stated above. Since A has sufficient directions around x, there is B ⊆ Rn such that A has
B-directions around x and span(B) = Rn. We claim that Df(x) · b = Dg(x) · b for all b ∈ B. Note that this claim implies
the conclusion: by the claim and span(B) = Rn, we have Df(x) · v = Dg(x) · v for all v ∈ Rn, and so Df(x) = Dg(x).
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We now prove the above claim. Let b ∈ B. Note that it suffices to show:

‖(Df(x)−Dg(x)) · b‖ < ‖b‖ε for all ε > 0,

since this implies (Df(x)−Dg(x)) · b = 0, where ‖ · ‖ denotes the `2-norm. Let ε > 0. Since f and g are differentiable at
x, there is δ > 0 such that for any t ∈ (0, δ),

‖f(x+ tb)− f(x)−Df(x) · (tb)‖
‖tb‖

<
ε

2
,

‖g(x+ tb)− g(x)−Dg(x) · (tb)‖
‖tb‖

<
ε

2
. (35)

Also, since b ∈ B, there is δ′ > 0 such that {x + tb | t ∈ (0, δ′)} ⊆ A. Fix t , min{δ, δ′}/2 > 0. Then, we obtain the
desired equation based on this t:∥∥(Df(x)−Dg(x)

)
· b
∥∥ =

1

t

∥∥(Df(x)−Dg(x)
)
· (tb)

∥∥
=

1

t

∥∥(f(x+ tb)− f(x)−Df(x) · (tb)
)
−
(
f(x+ tb)− f(x)−Dg(x) · (tb)

)∥∥
=

1

t

∥∥(f(x+ tb)− f(x)−Df(x) · (tb)
)
−
(
g(x+ tb)− g(x)−Dg(x) · (tb)

)∥∥
=

1

t

(∥∥f(x+ tb)− f(x)−Df(x) · (tb)
∥∥+

∥∥g(x+ tb)− g(x)−Dg(x) · (tb)
∥∥)

=
1

t
·
( ε

2
+
ε

2

)
‖tb‖ = ‖b‖ε,

where the third line uses that f = g on A ∪ {x} (by assumption) and x+ tb ∈ A (by t < δ′), and the last line uses Eq. (35)
(by t < δ).

Lemma F.4. Let n ∈ N, {di ∈ N}i∈[n] such that d1 < · · · < dn, and {fi : Rdi−1 → R}i∈[n]. Then, for any c ∈ Rn, there
is u ∈ Rdn such that

fi(u1, . . . , udi−1) + udi = ci for all i ∈ [n].

Proof. The proof proceeds by induction on n.

Case n = 1. For any c ∈ R, u , (0, . . . , 0, c− f1(0, . . . , 0)) ∈ Rd1 satisfies the desired equation.

Case n > 1. Let c ∈ Rn. By induction hypothesis on n − 1, there is v ∈ Rdn−1 such that fi(v1, . . . , vdi−1) + vdi = ci
for all i ∈ [n − 1]. Define u , (v, 0, . . . , 0, cn − fn(v, 0, . . . , 0)) ∈ Rdn . Then, u satisfies the desired equations, since
(u1, . . . , udn−1

) = v by dn−1 < dn.

F.2. Lemmas (Technical)

In the following subsections, we consider a piecewise-C1 (not piecewise-differentiable) representation of each σl,i, using
the same notation in the previous sections. Formally, we make the following definitions.

Definition F.5. For each (l, i) ∈ Idx, let
{(Ikl,i, σkl,i)}k∈[Kl,i]

be a piecewise-C1 representation of σl,i : R → R that defines DADσl,i, where Kl,i ∈ N, Ikl,i ⊆ R, and σkl,i : R → R. We
assume that the representation satisfies:⋃

k∈[Kl,i]

bd(Ikl,i) =
⋃

k∈[Kl,i]

pbd(Ikl,i) = ncdf(σl,i),

where ncdf(f) ⊆ R denotes the set of real numbers at which f : R → R is not continuously differentiable. If DADσl,i is
consistent, we further assume that the representation satisfies the following:

int(Ikl,i) 6= ∅ for all k ∈ [Kl,i].

Note that such a representation always exists by Theorem A.4. Based on these new representations {(Ikl,i, σkl,i)}k∈[Kl,i], we
define Γ,Rγ , yγl , zγl , and σγl for γ ∈ Γ and l ∈ [L], as we defined them in §A.2; we omit their definitions here.
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Since we consider a piecewise-C1 (not piecewise-differentiable) representation of σl,i, we have Lemma F.6 (shown below)
that is stronger than Lemma A.9. Moreover, Lemmas A.8 and A.10–A.12 continue to hold under the new representations;
the proofs are exactly the same as before, so we omit them.

Lemma F.6. For all l ∈ [L] and γ ∈ Γ, yl and zl are continuous, and yγl and zγl are C1.

Proof. The continuity of yl and zl follows directly from that τl′ , πl′ , and σl′,i′ are continuous for all (l′, i′) ∈ Idx. Similarly,
the continuous differentiability of yγl and zγl follows directly from that τl′ , πl′ , and σk

′

l′,i′ are C1 for all (l′, i′) ∈ Idx and
k′ ∈ [Kl′,i′ ].

F.3. Theorems 3.6 and 4.7 (Main Lemmas)

Lemma F.7. Let γ ∈ Γ and w ∈ Rγ . Suppose that for all l ∈ [L], if τl does not have bias parameters, then yl,i(w) /∈
pbd(Iγ(l,i)

l,i ) for all i ∈ [Nl]. Also, assume that DADσl,i is consistent for all (l, i) ∈ Idx. Then,

int(Rγ) has sufficient directions around w.

Proof. First, observe that

int(Rγ) = int
( ⋂

(l,i)∈Idx

{
w′ ∈ RW | yl,i(w′) ∈ Iγ(l,i)

l,i

})
= int

( ⋂
(l,i)∈Idx

{
w′ ∈ RW | yγl,i(w

′) ∈ Iγ(l,i)
l,i

})
=

⋂
(l,i)∈Idx

int
({
w′ ∈ RW | yγl,i(w

′) ∈ Iγ(l,i)
l,i

})
⊇

⋂
(l,i)∈Idx

Al,i for Al,i ,
{
w′ ∈ RW | yγl,i(w

′) ∈ int(Iγ(l,i)
l,i )

}
,

where the second line uses Lemma A.10, the third line uses that int(U ∩ V ) = int(U) ∩ int(V ) for any U, V ⊆ Rn, and
the fourth line uses that int(f−1(U)) ⊇ f−1(int(U)) for any U ⊆ Rm and continuous f : Rn → Rm. Note that Al,i is
open, since int(Iγ(l,i)

l,i ) is open and yγl,i is continuous (by Lemma F.6).

Next, we show that it suffices to find some Bl,i ⊆ RW for every (l, i) ∈ Idx such that

(i) Al,i has Bl,i-directions around w, and
(ii)

⋂
(l,i)∈IdxBl,i is nonempty and open.

Suppose that there are such Bl,i’s. By applying Lemma F.2-(4) to (i), we have⋂
(l,i)∈IdxAl,i has

⋂
(l,i)∈IdxBl,i-directions around w.

By applying Lemma F.2-(3) to the above and
⋂

(l,i)∈IdxAl,i ⊆ int(Rγ), we have

int(Rγ) has
⋂

(l,i)∈IdxBl,i-directions around w.

By applying Lemma F.2-(5) to the above and (ii), we obtain the desired conclusion:

int(Rγ) has sufficient directions around w.

What remains is to show that there is Bl,i satisfying (i) and (ii). We claim that the Bl,i defined below satisfies (i) and (ii):

Bl,i =

{
RW if w ∈ Al,i
{v ∈ RW | αl,i · (Dyγl,i(w) · v) ∈ (0,∞)} if w /∈ Al,i,

where αl,i ∈ {±1} is defined as

αl,i =

{
1 if w /∈ Al,i and yγl,i(w) = inf Iγ(l,i)

l,i

−1 if w /∈ Al,i and yγl,i(w) = sup Iγ(l,i)
l,i .
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Before proving (i) and (ii), we point out that Bl,i is well-defined. In particular, Dyγl,i(w) exists since yγl,i is differentiable (by
Lemma F.6); and αl,i is well-defined (i.e., the cases in the definition of αl,i covers all possible cases) since w /∈ Al,i implies

yγl,i(w) ∈ pbd(Iγ(l,i)
l,i ) = {inf Iγ(l,i)

l,i , sup Iγ(l,i)
l,i }. (36)

Here the equality comes from that Iγ(l,i)
l,i is an interval in R, and the inclusion comes from:

yγl,i(w) = yl,i(w), yγl,i(w) /∈ int(Iγ(l,i)
l,i ), yl,i(w) ∈ Iγ(l,i)

l,i , (37)

where the first equation is by Lemma A.11 and w ∈ Rγ , the second equation by w /∈ Al,i, and the third equation by
w ∈ Rγ .

We now prove that the Bl,i defined above satisfies (i) and (ii).

Proof of (i). Consider (l, i) ∈ Idx. If w ∈ Al,i, then Al,i has RW -directions around w by Lemma F.2-(1), since
w ∈ int(Al,i) = Al,i (as Al,i is open); hence, (i) holds for this case. For the other case, suppose that w /∈ Al,i. Let
εl,i ∈ R ∪ {∞} be the length of the interval Iγ(l,i)

l,i . Then,

εl,i > 0, Al,i = {v ∈ RW | αl,i · (yγl,i(v)− yγl,i(w)) ∈ (0, εl,i)}.

Here the former holds, since we have int(Iγ(l,i)
l,i ) 6= ∅ (by Definition F.5) and that DADσl,i is consistent (by assumption).

The latter holds, since int(Iγ(l,i)
l,i ) is either (yγl,i(w), yγl,i(w) + εl,i) or (yγl,i(w)− ε, yγl,i(w)) by w /∈ Al,i and Eq. (36). By

these two observations, and since yγl,i is differentiable, Lemma F.2-(2) is applicable to (Al,i, Bl,i, w) and directly implies (i).

Proof of (ii). First,
⋂

(l,i)∈IdxBl,i is open as desired, since every Bl,i is open and Idx is finite. Second, we show that⋂
(l,i)∈IdxBl,i is nonempty. Let Idx′ , {(l, i) ∈ Idx | w /∈ Al,i}. By the definition of Bl,i, what we want to show is that for

some v′ ∈ RW ,
αl,i · (Dyγl,i(w) · v′) > 0 for all (l, i) ∈ Idx′.

Since αl,i 6= 0 for all (l, i) ∈ Idx′, it suffices to show that for some v′ ∈ RW ,

Dyγl,i(w) · v′ = αl,i for all (l, i) ∈ Idx′. (38)

To prove this, we analyze the above equation as follows. Consider any (l, i) ∈ Idx′. Then, we have w /∈ Al,i, which
implies yl,i(w) ∈ pbd(Iγ(l,i)

l,i ) by Eqs. (36) and (37). From this, τl has bias parameters (by assumption). So, for all
v = (v1, . . . , vW ) ∈ RW ,

yγl,i(v) = τl,i
(
zγl−1(v), πl(v)

)
= τl,i

(
zγl−1(v1, . . . , vW ′ , 0, . . . , 0), (vW ′+1, . . . , vW ′+Wl

)
)

= τ ′l,i
(
zγl−1(v1, . . . , vW ′ , 0, . . . , 0), (vW ′+1, . . . , vW ′+(Wl−Nl)

)
+ vW ′+(Wl−Nl+i), (39)

where the second line uses W ′ ,W1 + · · ·+Wl−1 and the fact that zγl−1 depends only on the parameters of τ1, . . . , τl−1,
and the third line uses that τl has bias parameters. Let ψl,i ,W ′ + (Wl −Nl + i). Since the first term in Eq. (39) does not
depend on vψl,i , . . . , vW , the following holds for all j ≥ ψl,i:

(
Dyγl,i(w)

)
j

=

{
1 if j = ψl,i

0 if j > ψl,i.

From this, the following holds for all v ∈ RW :

Dyγl,i(w) · v =
∑
j∈[W ]

(
Dyγl,i(w)

)
j
· vj = fl,i(v1, . . . , vψl,i−1) + vψl,i ,

where fl,i : Rψl,i−1 → R is defined as fl,i(u) ,
∑
j∈[ψl,i−1]

(
Dyγl,i(w)

)
j · uj . Hence, what we planned to show (i.e.,

Eq. (38) holds for some v′ ∈ RW ) is equivalent to the following: for some v′ ∈ RW ,

fl,i(v
′
1, . . . , v

′
ψl,i−1) + v′ψl,i = αl,i for all (l, i) ∈ Idx′. (40)

Since ψl,i 6= ψl′,i′ for any (l, i) 6= (l′, i′), Lemma F.4 implies that there is v′ ∈ RW satisfying Eq. (40). This proves (ii),
and concludes the proof.
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Lemma F.8. Let γ ∈ Γ and w ∈ Rγ . Suppose that int(Rγ) has sufficient directions around w. Then,

DADzL(w) =

{
DzL(w) if DzL(w) 6= ⊥
limn→∞DzL(w′n) for some w′n → w if DzL(w) = ⊥.

Proof. Let γ ∈ Γ and w ∈ Rγ such that int(Rγ) has sufficient directions around w. By Lemmas A.11 and A.12,

zL(w′) = zγL(w′) ∧ DADzL(w′) = DzγL(w′) for all w′ ∈ Rγ . (41)

We prove the conclusion for each of the two cases: DzL(w) 6= ⊥ and DzL(w) = ⊥.

Case 1: DzL(w) 6= ⊥ (i.e., zL is differentiable at w). We want to show

DADzL(w) = DzL(w).

This holds as follows:
DADzL(w) = DzγL(w) = DzL(w),

where the first equality is by Eq. (41), and the second equality follows directly from Lemma F.3 applied to (zγL, zL,Rγ , w).
Here Lemma F.3 is applicable since its preconditions are satisfied: zγL is differentiable at w (by Lemma F.6); zL is
differentiable at w (by assumption); zγL = zL on int(Rγ)∪ {w} (by Eq. (41)); and int(Rγ) has sufficient directions around
w (by assumption).

Case 2: DzL(w) = ⊥ (i.e., zL is not differentiable at w). We want to show:

DADzL(w) = lim
n→∞

DzL(w′n) for some w′n → w. (42)

Since int(Rγ) has sufficient directions around w (by assumption), there is {w′n ∈ int(Rγ)}n∈N such that w′n → w. We
show that these w′n satisfy Eq. (42) as follows:

DADzL(w) = DzγL(w) = lim
n→∞

DzγL(w′n) = lim
n→∞

DzL(w′n),

where the first equality is by Eq. (41), the second equality uses that DzγL is continuous (by Lemma F.6), and the third
equality uses that DzγL(w′n) = DzL(w′n) for all n (since w′n ∈ int(Rγ) and zγL = zL onRγ by Eq. (41)). This concludes
the proof.

F.4. Theorems 3.6 and 4.7 (Main Proofs)

Theorem 3.6. If zL has bias parameters and DADσl,i is consistent for all (l, i) ∈ Idx, then for all w ∈ RW ,

DADzL(w) =

{
DzL(w) if DzL(w) 6= ⊥
limn→∞DzL(w′n) for some w′n → w if DzL(w) = ⊥.

This implies that DADzL is a Clarke subderivative of zL.

Proof. This theorem is a special case of Theorem 4.7; we omit the proof.

Theorem 4.7. Let w ∈ RW and assume that DADσl,i is consistent for all (l, i) ∈ Idx. If yl,i(w) /∈ ncdf(σl,i) for all
(l, i) ∈ Idx such that τl does not have bias parameters, then

DADzL(w) =


DzL(w) if DzL(w) 6= ⊥
limn→∞DzL(w′n)

for some w′n → w
if DzL(w) = ⊥

and so DADzL(w) is a Clarke subderivative of zL at w.

Proof. Let w ∈ RW that satisfies the assumption in the statement. By Lemma A.8, there is γ ∈ Γ such that w ∈ Rγ . Note
that Lemma F.7 is applicable to (γ,w) because: DADσl,i is consistent for all (l, i) ∈ Idx (by assumption); and for all l ∈ [L],
if τl does not have bias parameters, then yl,i(w) /∈ ncdf(σl,i) and so yl,i(w) /∈ pbd(Iγ(l,i)

l,i ) for all i ∈ [Nl], where the
former follows from the assumption and the latter from pbd(Iγ(l,i)

l,i ) ⊆ ncdf(σl,i) (by Definition F.5). Hence, Lemma F.7
implies that int(Rγ) has sufficient directions around w, which subsequently implies the conclusion by Lemma F.8.
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