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Abstract

Stochastic Geometry (SG) and Machine Learning (ML) are
considered two highly effective methods for designing and
evaluating the performance of next-generation large-scale
wireless networks. SG is a model-driven approach that lever-
ages previous research experience and mathematical deriva-
tions, while ML is a data-driven approach that learns from
available datasets. Recently, it is indeed surprising that these
two distinct methods have been frequently interacting in the
field of wireless communication, coexisting through cooper-
ation and competition. In existing studies, three types of in-
teractions have been identified: (i) ML methods optimize the
SG-based point process (PP) to bring it closer to the expected
distribution; (ii) The SG framework can be utilized to an-
alyze or accelerate the convergence of ML-based methods;
(iii) ML can substitute SG in symmetric scenarios for perfor-
mance evaluation and has been proven to be an evolution of
SG for real-world scenarios. Furthermore, we design a novel
and comprehensive case study called terrain-based coverage
estimation, which encompasses all three types of interactions.

Introduction
With the exponential growth in demand for wireless com-
munication capabilities, the performance evaluation of next-
generation wireless networks has become a crucial task in
the field of wireless communication. Stochastic Geometry
(SG) and Machine Learning (ML) are considered the two
most popular approaches for designing and analyzing wire-
less networks (Zappone, Di Renzo, and Debbah 2019).

SG is a powerful model-driven analytical framework. It is
a mathematical tool that is particularly well-suited for ana-
lyzing large-scale random network topologies, which has re-
cently gained significant attention. As one of the few meth-
ods that can provide analytical results for interference, SG-
based approaches offer higher accuracy when analyzing the
performance of interference-dominated densely deployed
networks compared to other methods (Zappone, Di Renzo,
and Debbah 2019).

ML is a typical data-driven approach. With sufficient
real-world data, ML methods have strong generalization
ability and they can learn better representations of data
(Hmamouche et al. 2021). In recent years, wireless commu-
nication network-related statistics have unprecedented avail-
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ability. Therefore, ML-based models have attracted more at-
tention in various wireless communication scenarios, includ-
ing power allocation, channel prediction, and coverage eval-
uation (Mondal et al. 2022).

Recently, the above two different methods have had fre-
quent interactions in wireless communication. Table 1 shows
the existing research involving both SG and ML methods.
The contribution of the article and comparisons with exist-
ing literature are as follows:
• This is the first summary to discuss the interaction be-

tween SG and ML. As intuitively reflected in Table 1,
the interaction between SG and ML is limited to techni-
cal research, so the scope of the content involved is far
less than that of this paper.

• The research perspective of this paper is unique com-
pared to the current non-technical summaries. To be
specific, the existing summaries focus on the compari-
son between AI-based methods and model-based meth-
ods (Zappone, Di Renzo, and Debbah 2019), thus only
slightly overlapping with the viewpoints of this paper.

• Currently, terrain-based network performance analysis
primarily relies on optimization, model-based methods,
and basic machine learning techniques, such as variants
of linear regression (Wang et al. 2024). Apart from our
case study, there is still no literature that applies deep
learning to terrain-based network performance anal-
ysis.

• Furthermore, existing literature related to terrain-based
network performance limited their scope to the evolution
of ML as SG (Mondal et al. 2022; Wang et al. 2024), and
neglected the collaboration between the two. In contrast,
our case study is more comprehensive. Specifically, it
compares the advantages and disadvantages of ML and
SG through three interaction modes (C1)-(C3), enhanc-
ing the accuracy of performance evaluation.

ML-Aided PP Optimization
Optimization Objective
SG is a mathematical tool that enhances the tractability
of traditional probabilistic wireless communication mod-
els at the cost of limiting the distribution of transmit-
ter and receiver locations. In the SG framework, the ho-
mogeneous Poisson point process (HPPP) is one of the
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References Classification Application Scenario Function of ML or/and SG
(Blaszczyszyn and Keeler 2019)

(Saha and Dhillon 2019) (C1) PP thinning Link scheduling ML: Determinantal
thinning of PPs

(Wang, Kishk, and Alouini 2022) (C1) PP evaluation Satellite constellation modeling ML: Measure the difference
between two PPs

(Zappone, Di Renzo, and Debbah 2019)
(Liu 2019) (C2) Data augmentation Secrecy and energy

efficiency analysis
SG: Generate extra data

sets for the neural network
(Salehi and Hossain 2021)

(Lin et al. 2021) (C2) Convergence analysis Federated Learning (FL) SG: Provide analytical
expressions for convergence

(Yan et al. 2019)
(Yang et al. 2019) (C2) Strategy selection Content popularity prediction SG: Select access mode

and scheduling strategy
(Zappone, Di Renzo, and Debbah 2019)
(El Hammouti, Ghogho, and Zaidi 2018)

(Liu et al. 2022)
(C3) Substitution Performance evaluation ML&SG: Coverage

and QoS evaluation

(Mondal et al. 2022)
(Liu et al. 2022)

(Wang et al. 2024)
(C3) Evolution Performance evaluation ML&SG: QoS, coverage

and data rate evaluation

Table 1: Classification and summary of studies on interactions between stochastic geometry (SG) and machine learning (ML)
in wireless communication. (C1) ML-aided point process (PP) optimization, (C2) SG-aided learning, and (C3) competition.

most basic and common models. In HPPP, the spatial dis-
tribution of communication devices exhibits homogene-
ity and independence. Having homogeneity and indepen-
dence, the distances between the signal transmitter and re-
ceiver follow a simple exponential distribution (Alzenad and
Yanikomeroglu 2019), which allows concise expressions of
performance metrics such as coverage probability and chan-
nel capacity.

However, evidence shows that the real-world distribu-
tion of communication devices often does not adhere to the
assumptions of homogeneity and independence (Saha and
Dhillon 2019). For example, base stations (BSs) may be dis-
tributed more densely in densely populated areas, and a cer-
tain distance between BSs needs to be maintained to avoid
interference with each other. In the upper-right corner of
Fig. 1, the differences between real-world BS positions and
the generated HPPP are illustrated. To handle this issue, sev-
eral more sophisticated PPs, such as the Poisson cluster pro-
cess, Cox point process, and Matern hard-core process, have
been designed to match better network topologies and fea-
tures. Most of the sophisticated use HPPP as the underlying
point process for generation. Among them, the determinan-
tal point process (DPP) artfully utilizes ML methods to gen-
erate the desired PP (Blaszczyszyn and Keeler 2019).

PP Thinning
Thinning is a classic topic in the ML field, whose target
is to balance the quality and diversity of selected subsets
(Blaszczyszyn and Keeler 2019). Taking BS thinning as an
example, BSs with better communication link quality will
be prioritized for selection to constitute the DPP. On the
other hand, close BSs will cause significant interference with
neighboring BSs. Therefore, the diversity can be measured
by Euclidean distance (Saha and Dhillon 2019).

DPP is generated through a doubly stochastic approach,
where it generates an HPPP as the underlying point process
and selects a subset from this HPPP to form a DPP. The fig-
ure in the upper left corner of Fig. 1 depicts the above proce-
dure through BS selection with diversity priority. In the un-

derlying HPPP (blue circles), the locations of some BSs are
close to others, leading to significant interference for neigh-
boring BS. The subfigure above the arrow in the middle
shows the detailed thinning procedure. In the generated DPP,
there is a considerable distance between each point (purple
star), and the DPP better aligns with the actual BS distribu-
tion. To summarize, DPP sacrifices part of the mathemat-
ical traceability such as independence, in exchange for a
more accurate modeling distribution. DPP has been demon-
strated to maintain relatively good tractability and exhibit a
relatively simple expression for the distance distribution be-
tween transmitters and receivers (Blaszczyszyn and Keeler
2019).

PP Evaluation
Due to several studies focusing on approximating generated
PPs to real distributions, how to quantitatively measure the
accuracy of the generated PP becomes an open question.
The authors in (Wang, Kishk, and Alouini 2022) proposed
a Wasserstein distance-inspired ML method to compare the
difference between two PPs or between a PP and a determin-
istic points set. The squared discrete distributions’ Wasser-
stein distance measures the minimum energy required to
move one PP to another.

However, moving a PP with N points to another has N
factorial ways in general, which means that to find the solu-
tion with the minimum energy, the computational complex-
ity of the exhaustive search is N factorial. Therefore, the
authors in (Wang, Kishk, and Alouini 2022) further propose
an ML-based algorithm whose complexity is only N square.
It is worth mentioning that results obtained from this algo-
rithm prove that the PP has better approximation in more
densely deployed networks.

Open Issues
The existing ML techniques are limited to optimizing two-
dimensional PPs, but it is worthwhile to explore three-
dimensional PPs for aerial and space network modeling. At
present, some studies have made efforts to model non-planar
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Figure 1: System diagram of the interaction between stochastic geometry (SG) and machine learning (ML). Point process
(PP) thinning and evaluation are two common applications of ML-aided PP optimization; additionally, PP dividing is another
promising application. SG helps federated learning (FL) by analyzing interference and SINR parameters to enhance conver-
gence speed and link selection strategies. Next, SG-aided data augmentation reduces dependency on real data. Moreover, at the
bottom left are terrain-based coverage manifolds obtained using simulation, SG, and ML approaches.

PPs under the SG framework. Spherical PPP, spherical Bino-
mial PP, Cox PP and orbit geometry model are proposed for
satellite network modeling. However, the application of ML
to assist in optimizing non-planar PPs has not yet emerged.

PP dividing is another promising application. In response
to the inability of HPPP to capture the effects of terrain,
the authors in (Wang et al. 2024) provided an air-to-ground
line-of-sight (LoS) probability model, which is implemented
in the left part of Fig. 1. An HPPP can be divided into a
LoS sub-PPP and a non-line-of-sight (NLoS) sub-PPP. The
transmitter with smaller elevation angle to (closer to) the re-
ceiver has a higher probability of not being blocked by build-
ings and, consequently, establishing an LoS link with the re-
ceiver. Nevertheless, this division is closely related to the
type of terrain. The counting measure of LoS PPP in a high-
rise building region should be significantly smaller than that
in a suburban region. Therefore, ML methods are expected
to study terrain features such as the density and height of
buildings and depict these features on PP dividing.

SG-Aided Learning
In the previous section, ML provides assistance in the mod-
eling of SG frameworks. Conversely, SG can assist in gen-
erating datasets and analyzing performance for ML.

Data Augmentation
In many cases, datasets collected from the real world are
often limited in scale, since obtaining real-world datasets
is often costly or challenging in wireless communication.
Therefore, data generated by SG’s models or analytical ex-
pressions can serve as a valuable supplement (Liu 2019).
An illustration of data augmentation is shown in the bottom
right of Fig. 1. Since SG-generated data is not as accurate
as real-world one, SG-generated data is utilized for prelimi-
nary training for the neural networks (NN). A small amount
of real-world data can be used for the second round of fine-
tuning (Zappone, Di Renzo, and Debbah 2019).

There are three motivations for SG-aided data augmen-
tation. Firstly, the addition of augmented datasets reduces
the heavy reliance of NN training on large amounts of ac-
curate real-world data. Secondly, NN can converge faster in
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the second round of training, because the initial weights of
the network are obtained after preliminary training. Third,
it aims to improve the NN’s adaptability and generalization
ability to different samples.

Convergence and Strategy in FL
FL is a typical topic at the intersection of ML and wireless
communication. An illustration of FL is shown in the right
part of Fig. 1. In FL, model training is performed on local
devices, called clients. Each device utilizes its local data for
training and only sends the updated model parameters to a
central server for aggregation (Lin et al. 2021). Client-server
links are usually wireless and not stable. For example, the
link might be interrupted due to building blockage, as shown
in Fig. 1. Therefore, analyzing link performance is crucial
can be further used for studying convergence speed and de-
signing link selection strategies.

To start with, we explain how coverage probability is used
in convergence analysis. Coverage probability, mathemati-
cally defined as the probability that SINR is greater than a
threshold, represents the probability of successful communi-
cation for a wireless link (Salehi and Hossain 2021). When
the SINR of the communication link does not reach the cov-
erage threshold, the server is unable to receive the transmit-
ted training weights from the client, thus affecting the train-
ing of the global model (Lin et al. 2021). Considering the
advantages of SG in the analysis of interference and SINR-
related parameters, it can provide powerful assistance to FL.

Next, the influence of coverage probability and data rate
on strategy selection could be explained. The server selects
a subset of the users to upload the parameters for the global
model in each round. Thus, strategy selection is also a sub-
set selection problem, and the trade-off between quality and
diversity is the core (Yan et al. 2019). The client-server links
with higher coverage will be assigned with high priority.
However, links with low SINR should also be transmitted
at a certain frequency to ensure the diversity of the training
data. Therefore, authors in (Yang et al. 2019) propose three
link scheduling strategies that balance quality and diversity
and give the analytical convergence rate results under differ-
ent strategy selections based on the SG framework.

Open Issues
In the field of wireless communication, there are also numer-
ous applications of other learning paradigms, such as trans-
fer learning and reinforcement learning (Zappone, Di Renzo,
and Debbah 2019). SG-embedded transfer learning and rein-
forcement learning are still waiting to be developed. Trans-
fer learning and reinforcement learning share similar train-
ing and test processes with classical supervised learning.
Therefore, SG can also be applied as a data augmentation
method. Data augmentation is particularly crucial for rein-
forcement learning, as it requires multiple stages of contin-
uous data driving. Once available, SG-augmented data can
accelerate the training process of reinforcement learning and
transfer learning frameworks with wireless communication.

SG-aided edge distributed learning is another potential re-
search content. Similar to FL, the communication between
core network devices and edge computing devices mainly

relies on wireless channels. Compared to FL, edge dis-
tributed learning focuses more on latency analysis. Fortu-
nately, the SG framework can provide analytical results for
transmission latency.

Competition Between ML and SG
Field of Competition
So far, the competition between ML and SG has been limited
to the research domain of SG, that is, performance prediction
of wireless networks. From the perspective of performance
estimation, the analytical expressions derived from the SG
framework can represent performance metrics as functions
of network parameters. Similarly, ML-based methods, such
as deep neural networks (DNNs), can also achieve mappings
from network parameters to performance metrics. There-
fore, multiple studies have compared the accuracy of both
methods in performance evaluation. Furthermore, their com-
petition includes two components: whether ML can replace
SG in performance evaluation in symmetric scenarios and
whether ML can provide more accurate estimates than SG
in real-world scenarios. These two modes of competitions
are known as complementary and evolutionary interactions
between ML and SG.

Substitution of ML for SG
The motivation for substituting ML for SG is as follows.
Sometimes, the SG framework is challenging to derive an-
alytical expressions, especially in complex system models.
However, ML methods can overcome this challenge by con-
structing parameterized models and learning the parameters
from datasets. These models can be explicit expressions de-
rived from analytical expressions obtained in previous re-
search, or implicit representations like neural network mod-
els.

The authors in (El Hammouti, Ghogho, and Zaidi 2018)
and (Liu et al. 2022) prove that neural networks can ob-
tain performance evaluation results that coincide with SG’s
analytical results in symmetric scenarios. A symmetric sce-
nario should satisfy the following three properties (Liu et al.
2022): (i) The distribution of transmitters follows some spe-
cific PP; (ii) The position of each transmitter is independent
of each other; (iii) The transmitter’s channel fading is in-
dependent of each other. The coverage probability curve is
fitted by the Sigmoid function with a group of parameters
in (El Hammouti, Ghogho, and Zaidi 2018). The parameters
are estimated by training a neural network with the chan-
nel and system model parameters as input. The performance
metric in (Liu et al. 2022) is estimated by some graph neural
network without explicit form.

Evolution of ML as SG
The authors in (Mondal et al. 2022) present an evolution of
ML as SG in real-time scenarios for performance evalua-
tion. While there are numerous numerical simulation meth-
ods capable of achieving high-precision performance eval-
uation, such as Monte Carlo simulation, these methods are
computationally expensive and their high complexity pre-
vents real-time application. In contrast, once the analytical
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expressions of the SG framework or ML-based training are
completed, both methods can obtain evaluation results with
lower complexity (Liu et al. 2022). Therefore, numerical
simulation results can be used to test the performance of SG
and ML methods in the offline stage or generate datasets for
ML training, while real-time performance analysis is better
suited for ML and SG in the online stage.

The NN proposed in (Mondal et al. 2022) takes all BSs’
positions as an input in the form of a manifold and maps it to
a coverage manifold as an output. As a comparative method,
the SG-based method converts the BSs’ positions into the
density of HPPP. The compression of position information
and the introduction of HPPP with deviation from reality
make SG coarse-grained. In contrast to the homogeneity
characteristic in the SG framework, the coverage probability
obtained by ML methods is location-related (Mondal et al.
2022; Wang et al. 2024). In this asymmetric scenario, ML
approaches utilize position information more completely
and have higher accuracy of evaluation while ensuring low
complexity.

Open Issues
So far, the competition between ML and SG has mainly fo-
cused on comparing the accuracy of coverage analysis in
simple scenarios. However, it is worth researching their per-
formance in more realistic and complex scenarios, and con-
sidering other factors such as complexity.

The terrain is one of the most critical factors affecting
signal transmission since signals will suffer severe attenu-
ation when blocked by solid obstacles. The idea of coverage
manifold estimation proposed in (Mondal et al. 2022) is a
way to study terrain-based coverage probability. There are
two potentially applicable methods to extend: incorporating
the building topology information into the input matrix or
adding terrain information processing layers on the basis of
the original neural network.

In performance evaluation, ML and SG methods serve as
alternatives to computationally expensive simulation meth-
ods. However, existing studies have not emphasized the
complexity or time delay performance of these two methods.
Furthermore, when considering more realistic scenarios, for
example, a scenario that involves terrain information, perfor-
mance evaluation becomes more complex, and complexity
analysis is necessary.

Case Study: Terrain-Based Coverage
Estimation

Background
The competition between ML and SG is currently conducted
based on simplified system model, which somewhat affects
the persuasiveness of the results. Therefore, we consider
incorporating terrain information, which can lead to bet-
ter predictions of system performance under different geo-
graphical conditions. The lower left part of Fig. 1 shows the
terrain-based coverage manifolds at latitude 39.11◦ and lon-
gitude 22.33◦. Datasets containing BS positions and build-
ings’ topology can be obtained from the website www.
opencellid.org and www.openstreetmap.org, respectively. In

Figure 2: Deep neural network (DNN) architecture. The
DNN takes the system model and channel parameters as in-
put and the coverage probability as output.

Fig. 1, simulation is realized by conducted by the ray trac-
ing method, and the manifold of SG-based method is ob-
tained by analytical expression provided in (Alzenad and
Yanikomeroglu 2019). The next subsections will focus on
how to apply ML to accomplish this task.

The primary purpose of this case analysis is to help read-
ers understand the mentioned interaction modes and extend
their application scenarios. The case study is comprehen-
sive, and it includes all three ML and SG coexisting modes.
In the case study, we involve three tasks: (i) substitution
and evolution interactions between ML and SG in terrain-
based coverage estimation, (ii) data augmentation through
SG modeling methods, and (iii) selecting more realistic data
samples through PP evaluation. In addition, coverage prob-
ability is regarded as one of the most representative perfor-
mance metrics. Studies have confirmed that the estimation
coverage can be easily extended to the estimation of other
performance metrics such as data rate and energy efficiency
(Mondal et al. 2022).

DNN-Based Coverage Estimation
As a comparison method for SG, we use a DNN, whose
structure is shown in Fig. 2, to estimate the coverage prob-
ability. A complete set of input parameters, their physi-
cal meanings, and values can be found in (Alzenad and
Yanikomeroglu 2019). Compared with the ML-assisted
model fitting method in (El Hammouti, Ghogho, and Zaidi
2018), the proposed DNN does not rely on specific mod-
els, which proves that ML methods can serve as excellent
alternatives to model-driven approaches when analytical ex-
pressions are unable to provide.

Fig. 3 shows the substitution and evolution interaction be-
tween ML and SG. In this article, the number of samples
used for the test process is fixed as 512. The loss on the
vertical axis of Fig. 3 is defined as the absolute value of
the difference between DNN’s output and the expected cov-
erage probability obtained by simulation. The ”training” in
the legend represents the real-time mean loss in the training
process, while ”validation” represents the mean loss of the
trained DNN in the test process.

The brilliant blue line in Fig. 3 parallel to the horizontal
axis is the loss between the label and the expected coverage
probability given by SG’s analytical expressions in (Alzenad
and Yanikomeroglu 2019). In a symmetric scenario, we con-
sider that the quantity of data samples is unlimited since it
is relatively easy to generate data samples and labels. Under
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Figure 3: Substitution and evolution interaction between
stochastic geometry (SG) and machine learning (ML). ML
outperforms SG with sufficient data, showing the need for
data augmentation.

this assumption, the estimate of coverage probability given
by DNN is more accurate than SG-based method. The val-
idation loss of the DNN converges to 4%, which is signif-
icantly lower than the loss obtained by the SG-based ana-
lytical expression (around 14 %). As long as more than 256
samples are used for training, the DNN outperforms the SG-
based method in symmetric scenarios.

In real-world scenarios, the acquisition of terrain infor-
mation is costly due to the limited availability of building
topology in public data and significant amount of time for
label acquisition. Therefore, we constructed a small training
dataset with 512 samples for the real-world scenario by ran-
domly sampling the receiving signal locations on the map.
Then, we reduce loss by duplicating the training real-world
data samples. As shown in Fig. 3, over-fitting occurs after
more than two rounds of repeated training on the real-world
dataset, and the validation loss decreases to about 17% and
then rises again. In this case, the SG-based method has an
advantage over the ML-based method, and data augmenta-
tion is necessary.

SG-Based Data Augmentation and ML-Based
Sample Selection
The HPPP model is applied to generate locations of
BSs and central locations of buildings. Based on the ap-
proaches proposed in (Wang et al. 2024) and (Alzenad and
Yanikomeroglu 2019), we can compute the coverage prob-
abilities corresponding to the generated point processes as
a dataset quickly using analytical expressions under the SG
framework. However, if the HPPP model is inaccurate, the
training may produce some wrong initialization for DNN.
A potentially feasible solution is to measure the difference
between HPPP and real distributions.

We choose the Wasserstein distance to quantify the dif-
ference between HPPP and BS and the difference between
HPPP and building topology (Wang, Kishk, and Alouini
2022). Each point in Fig. 4 records the Wasserstein distance
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Figure 4: Measurement of differences between homoge-
neous Poisson point process and real-world samples. The
differences decrease as density increases.

between a randomly generated HPPP and a randomly chosen
real-world sample at different densities. Because of the mag-
nitude discrepancy between the building density and the BS
density, the horizontal axis is unified as the normalized den-
sity. The normalized density of buildings and BSs is defined
as the ratio of their density to 1241.4km−2 and 167.1km−2,
respectively.

Then, we compare the coverage probability loss among
the approaches of without data augmentation, augmentation,
and selectivity augmentation. Selectivity augmentation rep-
resents that relatively accurate SG-generated samples below
the dotted line in Fig. 4 have been selected as the augmented
data, whereas augmentation means SG-generated samples
are not selected. To balance accuracy and diversity, we keep
the following criteria when mixing the augmented data with
real-world data:

• Real-world samples are prioritized in training;
• At least half of the samples in the mixed dataset are from

real-world samples;
• When the number of real-world samples is less than half,

we duplicate real-world samples until they reach half.

We generate 10,000 samples by HPPP and SG analyti-
cal framework and select the most accurate 5,000 samples.
Therefore, the number of samples available for data aug-
mentation is sufficient, and there is no need for replication.

When training with more than 512 samples, the DNN
trained with augmented data shows significant advantages.
As shown in Fig. 5, the minimum validation loss decreases
from 17.9% (without augmentation, 1024 samples) to 11.3%
(augmentation, 2048 samples) and 7.2% (selectively aug-
mentation, 2048 samples). However, the augmented dataset
generated by the SG method more or less has some differ-
ences from the real dataset. Adding too many SG-generated
samples in the training process will lead to a lower propor-
tion of real-world samples in the dataset, resulting in an in-
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Figure 5: The influence of data augmentation on loss. Se-
lective data augmentation greatly reduces loss, but too many
stochastic geometry-generated samples can increase it due
to real-world differences.

crease in validation loss. The results in Fig. 5 also demon-
strate the effectiveness of the selectivity augmentation strat-
egy, as it exhibits significantly smaller loss compared to the
non-selectivity approach. Unfortunately, the model provided
in (Alzenad and Yanikomeroglu 2019) is no longer aligned
with the PP thinning situation and the analytical framework
of this thinned PP and other sophisticated PPs (such as Pois-
son cluster process, Matern hard-core process) for terrain-
based coverage estimation are still pending development,
thus SG is not applied as a baseline for ML-based methods
in Fig. 5.

Conclusion
SG and ML coexist in the network layer of wireless net-
works. The assistance of ML to SG is primarily focused
on optimizing the distribution model of PPs, while the sub-
sequent derivation of analytical results have not yet been
addressed. SG assists NN training through data augmenta-
tion and provides performance analysis FL framework. The
competition between ML and SG is limited to their com-
mon goal: performance evaluation. In the case study, we
compared the accuracy of DNN and SG-based methods for
terrain-based coverage probability estimation. At the same
time, we verified that applying data augmentation through
SG to improve DNN’s performance is feasible.
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