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Abstract

The main challenges of ReID is the intra-class varia-
tions caused by color deviation under different camera con-
ditions. Simultaneously, we find that most of the existing
adversarial metric attacks are realized by interfering with
the color characteristics of the sample. Based on this ob-
servation, we first propose a local transformation attack
(LTA) based on color variation. It uses more obvious color
variation to randomly disturb the color of the retrieved im-
age, rather than adding random noise. Experiments show
that the performance of the proposed LTA method is better
than the advanced attack methods. Furthermore, consid-
ering that the contour feature is the main factor of the ro-
bustness of adversarial training, and the color feature will
directly affect the success rate of attack. Therefore, we fur-
ther propose joint adversarial defense (JAD) method, which
includes proactive defense and passive defense. Proactive
defense fuse multi-modality images to enhance the contour
feature and color feature, and considers local homomor-
phic transformation to solve the over-fitting problem. Pas-
sive defense exploits the invariance of contour feature dur-
ing image scaling to mitigate the adversarial disturbance
on contour feature. Finally, a series of experimental results
show that the proposed joint adversarial defense method is
more competitive than a state-of-the-art method.

1. Introduction
Person re-identification (ReID) is matching the same

person across diferent cameras and scenes [1–4]. This
technology have been widely applied to video surveillance
[5–7], image retrieval [8, 9], criminal investigation [8], tar-
get tracking [10] and others. ReID has been a challeng-
ing and hot problem since illumination, complex environ-
ment, occlusion, image blur and other factors. In recent
years, many ReID works [5–10] used deep-learning mod-
ule, and have made great progress. However, Szegedy et
al. [11] found the deep-learning models are susceptible to
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Figure 1. (a) shows the retrieval results of clean example. (b) cor-
responds to Meric-IFGSM attack [12], (c) corresponds to the SMA
attack [13], (d) corresponds to the proposed LTA attack. The num-
bers on the images indicate the rank of similarity in the retrieval
results, the red and green number denote the wrong and correct
results, respectively.

Figure 2. (a) shows clean example and (b) (c) (d) shows the adver-
sarial noise generated after attacking three different models using
SMA [13], respectively. (b) corresponds to the normally trained
model, (c) corresponds to the model which using [17] to train with
better robustness to color variations, (d) corresponds to our proac-
tive defense model, (e) corresponds to our joint adversarial de-
fense.

attacks from adversarial samples, which will cause the net-
work to completely change its prediction results. The works
of [12–16] have proved that the ReID systems based on
deep-learning have the same vulnerability. And these adver-
sarial samples have only added a slight disturbance, which
is hidden enough for the human visual system. It is very
important to study the security of ReID systems because
the insecurity may cause severe losses, eg., criminals may
use adversarial disturbance to cheat the monitoring sys-
tems [14, 16].
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The adversarial metric attack usually requires additional
push or pull guidance to distort the distance between the
attacked image and other images with the same identity or
class [12–14, 16, 18–23], so as to achieve the purpose of
deception models. Therefore, most of the existing stud-
ies [12, 13, 18, 23] of adversarial metric attack and defense
revolve around metric relationships. Generally, the opti-
mization function of the adversarial noise is designed for
pulling the distance between negative pairs and pushing the
distance between positive pairs.

The intra-class variations caused by color deviations
such as lighting, chromatic aberration, etc., in the vari-
ous camera conditions is one of the main challenge for
ReID [24–26], due to the training set solely encompasses
a limited portion of the intra-class variations of the color
domain, the model is easy to overfit. In the existing ad-
versarial metric attacks [12–14], it was observed that the
attacks naturally perturb the color feature of the samples,
which consistent with the color feature is important clue
for image retrieval. The effect of the adversarial attack on
the color feature is visualized in Figure 1. When retrieving
clean samples, the model was able to identify the retrieved
pedestrians with blue-gray striped top, grayish trousers, and
backpack, even though they looked a little off from different
cameras. While under adversarial perturbation, as shown
in (b), (c), (d), the misjudgment of the model in color be-
comes more and more serious, which includes the colors
of pedestrian top, trousers and backpack. Two classic met-
ric attacks include metric-IFGSM [12] and SMA [13] at-
tack. The metric-IFGSM [12] attack was realized by maxi-
mizing the metric distance between the retreved image and
the other images with the same identity, and used reference
images. The SMA [13] attack added random noise to the
retrieved image, and maximizing the metric distance from
the clean image. The SMA not require reference images
and thus is more with realistic scenario. Compared with
metric-IFGSM, SMA only used the retrived image to gen-
erate disturbance, so it performs better in making the model
misjudge color. Therefore, we further propose loacal trans-
formation attack (LTA), which does not add random noise,
but use local gray transformation with more obvious color
variation to randomly disturb the color of the retrieved im-
age, so as to learn robust adversarial noise against the color
variation, and to strengthen the attack on color feature. Fi-
nally, experiments verify that the performance of the pro-
posed LTA method is better than the advanced methods.

After exploring the vulnerability of ReID attack, we be-
gin to research the effectiveness of defense methods. Ad-
versarial training is currently the main adversarial metric
defense method [12, 13, 18, 23]. Generally speaking, in ad-
versarial training, a defense model trained by adversarial
examples of an attack cannot defend against multiple at-
tacks at the same time [27], and extreme overfitting during

training leads to obvious reduction in model generalization
capacity [28].

Considering that being better at capturing shape or con-
tour features is the main factor for the robustness of adver-
sarial training [29], and color features have a direct impact
on the success rate of attacks. So there speculate that color
features and contour feature are inherently important tar-
gets for attacker. To this end, we propose a corresponding
joint adversarial defense approach. Firstly, we consider in-
creasing the robustness of the model to color variations as
a proactive defense. We speculate that when the robustness
of the model to color variations is increased, the adversary
will change the attack direction and strengthen the attack on
the contour feature. It can be seen from Figure 2(c) that the
contour feature have been more seriously damaged. In ad-
dition, we also fuse sketch images during the model training
process to strengthen the learning of contour feature so as
to enhance the defense against the two attack modes (color
and contour). From Figure 2(d), it can be seen that the ad-
versarial noise is significantly weakened on our proactive
defense model. And then, we further propose a passive de-
fense strategy, which utilizing the invariance of contour fea-
tures in the circuitous scaling to mitigate attack on contour
feature. This strategically complementary to the proactive
defense. From Figure 2(e), it can be seen that after imple-
menting the joint adversarial defense proposed in this paper,
the adversarial noise becomes very sparse, and the contour
feature are also well protected. The proposed joint defense
model is a lightweight method without any additional pa-
rameter learning. It can be combined with various ReID
models without changing the learning strategy. Therefore,
the main contributions of this paper are summarized as fol-
lows:

• We propose a new attack method – local transforma-
tion attack (LTA) for the first time, by using more obvious
color variation to randomly disturb the color of the retrieved
image and without reference image.

• We propose a joint adversarial defense model based
on feature-invariant is to against adversarial metric attacks,
which does not rely on adversarial training. The proposed
method improves the robustness of the model, and performs
well in cross-domain tests.

• Finally, the comparative experimental results with the
state-of-the-art algorithms further verified the effectiveness
and the advanced nature of the proposed method.

2. Related Work
In this section, the previous work on adversarial attacks

and defenses of the metric learning is described.

2.1. Adversarial Attacks

Adversarial attacks can be categorized into white-
box [12, 30] and black-box [14, 31] attacks. The black-box
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attack means that the attacker does not know the structure
and parameters of the target network, and the adversaries
can only resort to the query access to generate adversarial
samples. White-box attack assumes that the attacker has
prior knowledge of the target networks, including the struc-
ture and parameters of model, which means that the adver-
sarial examples are generated with and tested on the targe
network. For the same attack, the success rate of white-box
attack is higher than black-box attacks.

There are some metric attack methods proposed in
ReID. Metric-FGSM [12] extended some metric attacks by
classification attacks, including fast gradient sign method
(FGSM) [32], iterative FGSM (IFGSM) and momentum
IFGSM (MIFGSM) [33]. Among the three attack meth-
ods, IFGSM delivers the strongest white-box attacks [12].
Opposite-direction feature attack (ODFA) [15] exploits
feature-level adversarial gradients to generate adversarial
examples to pull the feature in the opposite direction with
an artificial guide. Self metric attack (SMA) [13] uses the
image with added noise as the reference image and obtains
the adversarial examples by attacking the feature distance
between the original image and the reference image. This
process does not require any additional images, it is more
in line with the actual situation that the attacker usually
lacks data. Furthest-negative attack (FNA) [13] combine
hard sample mining [34, 35] and triple loss to obtain push-
ing guides and pulling guides to move image feature to head
towards the least similar cluster of features while moving
away from the other similar features. Deep mis-ranking
(DMR) [14] proposed a learning-to-mis-rank formulation
to perturb the ranking of the system output, which used a
multi-stage network architecture that pyramids the features
of different levels to extract general and transferable fea-
tures for the adversarial perturbations. The success attack
rate of black-box attacks is almost as high as that of white-
box attack. At the same time, it also showed that when ap-
plied to classification attacks, it has a higher success attack
rate than DeepFool [36], NewtonFool [37], and CW [38],
and it has successfully broken through many classical ReID
models [25, 39–47].

2.2. Adversarial Defenses

Recently, a number of effective defense methods have
been employed to against adversarial classification at-
tacks [48–54], such as denoising methods, randomization-
based schemes, adversarial training and others. The de-
fense methods based on denoising, such as Guo et al. [48]
used more diversified non-differentiable image transforma-
tion operations, which includes depth reduction, total vari-
ance minimization and image quilting. The goal is to in-
crease the difficulty of network gradient prediction, and
then achieve the purpose of defense. Noting that most of the
training images are in JPG format, Dziugaite [49] used JPG

image compression method to reduce the impact of adver-
sarial disturbance. In terms of randomization, RRP (random
resizing and padding) [50] mitigates adversarial effects by
combining random resizing and random padding based on
adversarial training. [51–54] showed that adversarial train-
ing is a robust way to defend against adversarial attacks,
which includes offline adversarial training and online ad-
versarial training.

The metric defense schemes employ by [12, 13, 18, 23]
correspond to offline adversarial training and online adver-
sarial training respectively. The defense method uses in [12]
is offline adversarial training, which is based on a genera-
tion of an adversarial version of the training set obtained
with a frozen version of the trained model. As a frozen
model is used to generate attacks, this method is referred
to as offline adversarial training. The defense method uses
in [13, 18, 23] is online adversarial training, which gener-
ates adversarial examples online while the defended model
evolves by triplet loss. However, adversarial training is
prone to overfitting [13,28] because dependent on the train-
ing data results in reducing the generalization capacity of
the model. Enhancing the robustness towards adversarial
examples and maintaining the generalization capacity of the
model is the important issue of adversarial defense.

3. Proposed Methods

In this section, we propose the local transformation at-
tack (LTA) based on color features. In order to push the
feature of the reference image away from the original im-
age, there constructs a reference image with local differ-
ence from the original image in each basic iteration based
on LGT [17]. As for the proposed attack method (LTA),
we further propose a joint defense method. In proactive
defense, we combine the three modal images of visible
(RGB), grayscale and sketch for random channel fusion. In
passive defense, it realizes by circuitous scaling of image.
The specific attack and joint defende method framework is
showed in Figure 3.

3.1. Proposed Local Transformation Attack

In order to attack the color feature, we propose the local
transformation attack (LTA), which adopts local grayscale
transformation (LGT) [17] constructing the local color de-
viation of the input. And then, it randomly selects a rect-
angular area in the image and replaces it with the pixels
of the same rectangular area in the corresponding grayscale
image. As showed in Figure 3, the LGT makes the con-
structed reference image have appropriate local differences
from the original image.

The initialization of the proposed LTA method is defined
as:

x
(0)
adv = x (1)
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Figure 3. Framework diagram of our attack and joint adversarial defence. In our Local Transformation Attack (LTA), It pushes the feature
of the reference image away from the original image by constructing a reference image with local difference from the original image in
each basic iteration based on LGT [17]. In proactive defense, we combines the three modal images of visible (RGB), grayscale and sketch
for random channel fusion. In our passive defense, it realizes by circuitous scaling of image.

where x denote the attacked image. There using x
(n)
adv de-

notes the adversarial example at the n-th iteration. x̂(n)

is the reference image with local variability constructed by
LGT [17] at the n-th basic iteration. So the proposed LTA
is defined as the following iterative optimization:

x̂(n) = LGT (x) (2)

x
(n+1)
adv = Ψε

x(x
(n)
adv + α · sign(grad(n+1))) (3)

where ϵ is the adversarial bound and α is the iteration step
size, Ψε

x is the clip function, which ensures that ∥x(n+1)
adv −

x∥∞ < ϵ and that adversarial noise inconspicuousness.
And the grad(n) is the accumulated gradient at the n-th it-
eration:

grad(n+1) = θ · grad(n) +
∆

(n)
LTA

∥∆(n)
LTA∥1

(4)

where θ is the decay factor of the momentum term, in our
experiments θ is set to 1. And ∆

(n)
LTA is calculated as fol-

lows:

∆
(n)
LTA =

∂D(f
(n)
adv, f̂

(n))

∂f
(n)
adv

(5)

D(f
(n)
adv, f̂

(n)) = ∥f (n)
adv − f̂ (n)∥22 (6)

where f
(n)
adv denotes the feature of the adversarial example.

Specifically, each iteration optimizes adversarial noise by

attacking the feature distance between the adversarial image
generated from the result of previous iteration and the new
reference image.

3.2. Proposed Joint Adversarial Defence Method

In order to overcome the attack based on color features,
we further propose the joint adversarial defense method
(JAD). The proposed method includes the proactive and the
passive defense. The proactive defense consists of channel
fusion (CF) and local homogeneous transformation (LHT),
and the passive defense consists of circuitous scaling (CS).

3.2.1 Proposed Proactive Defence

The proactive defense consists of channel fusion (CF)
and local homogeneous transformation (LHT).

Channel fusion (CF). Visible images, grayscale images,
and sketch images are homogeneous, which contain the
same structural information. The results in [17, 55] showed
that using the homogeneous grayscale images to learn struc-
tural information in training is effective in increasing the
robustness to color variations.

We add grayscale information and sketch information
by channel fusing. The operation (Grayscale(3)) in Py-
torch is adopted to get the grayscale image for each visi-
ble image, and sketch images can be obtained by inverting
the grayscale image and then Gaussian blurring it, finally
blending it with the grayscale image. As shown in Figure
3, the RGB images are randomly converted with a certain
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Figure 4. Hyper-parameter sensitivity analysis: (a) the contribu-
tion of each component of the joint defense to the defense and the
impact of different ratios on defense performance; (b) the effect of
different image scaling ratios on defense performance in passive
defense.

probability into 3-channel grayscale images or sketch im-
ages in pre-processing stage, and then randomly merge the
channels of the grayscale image and the sketch image with
the channels of the RGB image to create a new homoge-
neous modal image.

In the process of CF, 1 or 2 channels are randomly se-
lected from the R, G, and B channels of the visible image.
After the visible image channel and the number of channels
n is determined, the grayscale or sketch image channel is
randomly selected to reconstruct a new 3-channel image. In
fact, a maximum of 60 homogeneous variations can be gen-
erated by combining the 5 image channels types of R, G, B,
grayscale, and sketch in random order.

In addition, from Figure 4a, we can see that the augmen-
tation based on image transformation will further extend the
diversity of modes, such as Posterize, Equalize, Solarize,
Contrast, Inversion and so on. However, the multi-modal
inputs will lead to overfitting of the model, which affects
the generalization capacity of the model as showed in Fig-
ure 5a.

Local homogeneous transformation (LHT). To solve
this problem, we propose a strategy method based on local
homogeneous transformation (LHT), which extends local
grayscale transformation (LGT) [17]. Using LHT to guide
the model to fit the diversity of variation gradually from lo-
cal variations. The difference of LGT is that the proposed
LHT replaces randomly selected regions with homogeneous
images. As showed in Figure 5b, it positively helps reduce
the overfitting in training. Unless otherwise specified, the
diversity data learning in subsequent experiments combine
with LHT by default.

The LHT for each visible image xv can be achieved by
the following equations:

xh = T (xv), (7)

rect = RandPosition(xv), (8)

xLHT = LT (xv, xh, rect) (9)

Figure 5. The comparison of training curve without LHT and with
LHT.

and
(xLHT |y) = (xv|y) (10)

where xh is the homogeneous images, and T (•) is the ho-
mogeneous transformation funtion; RandPosition(•) is
used to generate a random rectangle in the image, and the
function of LT (•) is to give the pixels in the rectangle cor-
responding to the xh image to the xv image; xLHT is the
sample after local homogeneous transformation, and y is
the label of the transformed image.

From Figure 4a, we can see that the best defensive per-
formance is achieved when the components are in the ratio
of 5% to 15%. Therefore, the probability of the image us-
ing augmentation transformation is set to 5%, and the prob-
ability of converting to a grayscale image is set to 5%. In
addition, the probability of using CF transformation is set
to 5%, and the probability of using LHT is set to 10%.

3.2.2 Proposed Passive Defence

Since color features and contour feature are two impor-
tant targets in the attack, the increased robustness of the
model to color variations will force the adversary to change
the direction of the attack to some extent, more towards at-
tacking contour feature. Therefore, we exploit the invari-
ance of contour features during image scaling to mitigate
the adversarial disturbance on contour feature.

The basic principle of image scaling is to calculate the
pixel value of the target image according to the pixel value
of the original image by certain rules, common image scal-
ing algorithms such as linear interpolation [56]. In the scal-
ing process, some pixels are discarded or some new pixels
are added. [50] found that the adversarial noise structure can
be effectively destroyed by one-time image scaling. Cir-
cuitous scaling (CS) consists of multiple image scaling to
give full play to this advantage.

The passive defense is realizes by a series of image re-
sizing. The scaling of an image does not bring more in-
formation about the image, so the quality of the image will
inevitably be affected, which also has an impact on the re-
trieval accuracy. Therefore, it is important to find a suitable
scaling ratio to trade-off the retrieval accuracy and the ad-
versarial robustness. The effect of scaling ratio on accuracy
can be seen in Figure 4b. Taking the Market1501 [2] dataset
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Figure 6. The effect of image scaling and CS on the adversarial
noise, where (a) shows the adversarial noise from the original ad-
versarial example, and (b) shows the adversarial noise after reszie
the adversarial sample to [110, 50] (then restored to [256, 128]).
(c) shows the adversarial noise after CS.

as an example, the original size of the dataset image is [128,
64], and the size is uniformly resized to [256, 128] when
fed into the CNN. When using image resizing as passive
defense, we observe that the network performance hardly
drops and gets a satisfactory defense effect if we resize the
image to [110, 50] (Approximately 0.8 times the original
image) to corrupt the adversarial noise structure. Our pas-
sive defense consists of a series of resizing that reszie the
image to [110, 50] then to [220, 100], then to [110, 50] again
(finally uniformly to the [256, 128]), so it called circuitous
scaling. The effect of image scaling [50] (only once resiz-
ing) and CS on the adversarial noise can be seen in Figure
6, and it can be observed that the adversarial noise at the
contour feature is continuously weakened, and the outline
of the pedestrian is more clearer.

4. Experiments
In this section, we evaluate our LTA by comparing with

SMA [13] and then evaluate the robustness of our approach
using cross-domain tests. Finally, we verify the effective-
ness of our JAD under white-box attacks and black-box at-
tack.

4.1. Attack Evaluation and Cross-Domain Tests

Datasets. Experiments are conducted on Mar-
ket1501 [2] and DukeMTMC [45]. The Market1501 in-
cludes 1,501 pedestrians captured by six cameras (five HD
cameras and one low-definition camera). The DukeMTMC
is a large-scale multi-target, multi-camera tracking dataset,
a HD video dataset recorded by 8 synchronous cameras,
with more than 2,700 individual pedestrians. The above two
datasets are widely used in ReID studies.

Evaluation criteria. Following existing works [2],
Rank-k precision and mean Average Precision (mAP) are
adapted as evaluation metrics. Rank-1 denotes the aver-
age accuracy of the first return result corresponding to each
query image. mAP denotes the mean of average accuracy,
the query results are sorted according to the similarity, the
closer the correct result is to the top of the list, the higher

Table 1. Evaluation on Market1501 [2] under a white-box attack
on the query set. Where LTA* means that only one version with
local differences is used as a reference image, and LTA generates
image versions with different local differences in each basic itera-
tion to conduct the metric attack.

Attack Rank-1 Rank-5 Rank-10 mAP

No-attack 88.4% 95.5% 97.1% 72.1%
SMA [13] 15.7% 26.4% 32.7% 11.1%
LTA*(ours) 15.7% 26.2% 32.1% 11.0%
LTA(ours) 13.3% 22.4% 28.1% 9.6%

the score.
Implementation details. The proposed adversarial at-

tack and defense algorithm is development based on on
PyTorch framework. In our baseline, ResNet50 [57] and
DenseNet [40] are used as the backbone network in ex-
periments, and the pre-trained ImageNet parameters are
adopted for network initialization. Specifically, the stride
of the last convolutional block is set to 2. We adopt the
stochastic gradient descent (SGD) optimizer for optimiza-
tion, and the momentum parameter is set to 0.9. We set the
initial learning rate as 0.1. The learning rate is decayed by
0.1 every 40 iteration, with a total of 60 training epochs and
a batch size of 32 for normal training on both datasets, and
120 training epochs for our method as well as for adversar-
ial training [12].

Attack evaluation. The hyper-parameters are unified for
fair comparison, the adversarial boundary is set to 5 pixels,
the iteration step size is set to 1, and the number of basic
iterations is set to 15. Note that in contrast to an adversar-
ial defense problem, lower precision indicates better attack
performance. It can be seen from Table 1 that when only
one version of the reference image is used, the success at-
tack rate of LTA* is better than that of SMA. The compar-
ison between LTA* and LTA shows that using diverse ver-
sions of reference images has a higher attack success rate
than using only one version of reference images. The ex-
perimental results fully demonstrate that the attack against
color features are more aggressive compared to the same
type of SMA attack.

Cross-domain tests. It is pointed out by [12] that the
higher accuracy of the model does not mean that it has better
generalization capacity. The defense capabilities of differ-
ent baselines under the same attack would have been greatly
different, and the high accuracy model may even have worse
defenses capabilities due to overfit. In response to the above
potential problems, we suggest to use cross-domain tests
and adversarial defense tests to verify the robustness of the
model. Experiments show that the proposed method effec-
tively enhances the generalization capacity of the model,
and the Table 2 shows the cross-domain experiments of the
proposed method between two datasets, Market-1501 [2]
and DukeMTMC [45]. We use the state-of-the-art defense
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Table 2. The performance of different models is evaluated on
cross-domain dataset. M→D means that we train the model on
Market1501 [2] and evaluate it on DukeMTMC [45].

Model
M→D D→M

Rank-1 mAP Rank-1 mAP

Baseline 36.1% 18.9% 45.7% 19.6%
GOAT [13] 23.6% 11.4% 47.3% 18.5%

JAD(w/o LHT)(ours) 36.9% 18.4% 47.4% 19.5%
JAD(ours) 42.5% 21.5% 47.5% 19.4%

Table 3. The performance of normally trained models (Baseline)
and our JAD models on Market1501 and DukeMTMC.

Methods Market1501 [2] DukeMTMC [45]
Rank-1 mAP Rank-1 mAP

Baseline 88.4% 72.2% 78.7% 62.3%
Baseline+RK [58] 90.2% 84.7% 83.3% 79.3%

JAD(ours) 88.7% 70.3% 77.2% 57.8%
JAD+RK(ours) 91.0% 85.0% 82.7% 77.0%

Table 4. The performance of normally trained models and our JAD
models under white-box attack of the query.

Dataset Model Rank-1/mAP(%)
M-IFGSM [12] SMA [13] LTA

Market1501 [2]

Baseline 8.1/4.3 15.7/11.1 13.3/9.6
Baseline+RK 13.2/13.0 17.6/20.0 14.2/16.1

JAD(ours) 47.1/27.8 79.3/60.1 56.5/41.1
JAD+RK(ours) 61.3/56.8 85.6/80.3 66.2/63.9

DukeMTMC [45]

Baseline 10.1/5.8 15.0/10.4 13.0/9.2
Baseline+RK 16.8/16.3 18.8/19.8 15.2/16.3

JAD(ours) 30.5/16.3 56.7/39.5 41.8/27.6
JAD+RK(ours) 48.1/43.4 69.3/64.5 52.4/49.7

model GOAT [13] for comparison.
In the cross-domain tests of Market1501→DukeMTMC,

it can be seen that JAD (without LHT) enhances the Rank-1
by 3.1 percentage points compared with the baseline, and
further enhances by 4.8 percentage points after using LHT.
In the cross-domain tests of DukeMTMC→Market1501,
it can be seen that the proposed method (without LHT)
enhances the Rank-1 by 3.4 percentage points compared
with the baseline, and further enhances by 0.2 percentage
points after using LHT. The above shows that the proposed
method effectively enhances the generalization capacity of
the model, and LHT further enhances the generalization ca-
pacity.

4.2. Experiments of JAD

This subsection verifies the effectiveness of the proposed
method from white-box [12, 13] attack, black-box [14] at-
tack and the other baselines [59,60], and shows the effect of
each component of the proposed method in defense through
the ablation experiment. Then, the state-of-the-art black-

Table 5. Comparison of baseline, channel fusion (CF), proactive
defence (PD), and joint adversarial defense (JAD) in terms of de-
fense accuracy under white-box attack on Market1501 [2].

Model
(with RK)

Rank-1/mAP(%)
No-attack M-IFGSM [12] SMA [13] LTA

Baseline 90.2/84.7 13.2/13.0 17.6/20.0 14.2/16.1
CF(ours) 90.8/85.3 18.3/16.7 18.0/19.6 17.1/18.5
PD(ours) 91.5/85.6 31.7/28.7 58.4/57.1 25.2/27.6
JAD(ours) 91.0/85.0 61.3/56.8 85.6/80.3 66.2/63.9

Table 6. Comparison of different resizing combinations in terms of
defense accuracy, where P1 means the scaling pattern that resize
image to [110, 50] and P2 means resize to [220, 100]. P1→P2

means resize image to [110, 50] then to [220, 100].

Dateset Model No-attack LTA Attack
Rank-1/mAP(%) Rank-1/mAP(%)

Market1501 [2]

Baseline 90.2/84.7 14.2/16.1
P1 90.0/84.7 25.5/27.5
P2 90.3/84.9 15.9/17.9

P1→P2 90.1/84.8 25.8/27.8
P1→P2→P1 89.8/84.3 31.4/33.1

Table 7. Comparison of different defense methods in terms of de-
fense accuracy under white-box attacks on Market1501.

Model Rank-1/mAP(%)
No-attack M-IFGSM [12] SMA [13] LTA

Baseline 90.2/84.7 13.2/13.0 17.6/20.0 14.2/16.1
AT [12] 86.4/76.9 46.8/41.3 48.3/47.4 49.1/48.4
AT +CS 86.3/76.1 60.6/53.8 64.9/61.1 62.7/58.5

JAD(ours) 90.6/84.3 66.9/62.1 86.5/80.7 73.5/69.5

Table 8. Comparison of different defense methods and other base-
lines in terms of defense accuracy under DMR black-box attack.

Model
(w/o RK)

Rank-1/mAP(%) Model
(with RK)

Rank-1/mAP(%)
No-attack DMR [14] No-attack DMR

Baseline 88.4/72.2 19.8/15.8 SB [59] 95.4/94.2 6.2/4.8
GOAT [13] 87.5/66.9 67.8/46.4 SB+JAD(ours) 95.1/94.0 93.3/91.2
GOAT+CS 88.0/68.3 72.8/50.7 FR [60] 96.8/95.3 24.8/25.9
JAD(ours) 88.7/70.3 81.1/60.7 FR+JAD(ours) 96.3/94.9 91.6/90.1

box attack DMR [14] is used to compare defence perfor-
mance of our JAD and the state-of-the-art defense method
GOAT [13]. Finally, we give a visual analysis of our de-
fense.

We tested our JAD with white-box attacks on Mar-
ket1501 [2] and DukeMTMC [45], and the attacks include
metric-IFGSM (M-IFGSM) [12], SMA [13] and the pro-
posed LTA. To be consistent with recent works, we fol-
low the new training/testing protocol to conduct our exper-
iments by k-reciprocal re-ranking (RK) [58]. It can be seen
from Table 4 that on the two datasets, our JAD has enhanced
the Rank-1 in all white-box attacks by more than 40 per-
centage points after using re-ranking.
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Figure 7. t-SNE [61] visualization of six randomly selected im-
ages with different identities on Market1501 [2]. Each image cor-
responds to an metric-IFGSM [13] adversarial example and some
randomly generated homogeneous modalities images. The same
color means that they are obtained by transformation of the same
image. Dots means adversarial examples.

Ablation studies. We studied the contributions of our
channel fusion without augmentation (CF) , proactive de-
fence (PD) and joint adversarial defence (JAD). From Table
5, we can see that defense accuracy increases with the in-
crease of data diversity. As a passive defense, CS further
significantly enhances defense performance. Table 6 shows
that CS effectively reduces the adversarial effect and thus
significantly enhances the defense with negligible perfor-
mance degradation.

Comparison of state-of-the-arts. AT [12] needs to be
customized according to attacks. Specifically, in order to
defend an attack, it is necessary to add corresponding adver-
sarial examples to train the model. In Table 7, the original
accuracy (no attack) of defense methods based on AT [12]
are the average accuracy of the defense models correspond-
ing to the three attacks. AT+CS is the defense model com-
bining the AT [12] and our CS, and it can be seen that the
proactive defence and passive defence method CS (that is,
our JAD) exert a better combined effect. This shows that
our proactive and passive defenses can complement each
other and have a better gaining effect. As with RRP [50],
even if the attacker is aware of the existence of passive de-
fenses, CS can still be effectively defended by a randomiza-
tion mechanism that allows the resize to fluctuate within a
certain range. Compared with AT [12], our JAD enhances
Rank-1 by more than 14.5% in all white-box attacks.

In the tests of DMR [14] black-box attack, we use ad-
versarial examples generated by Resnet50 [57] to attack the
DenseNet [40] model. GOAT [13] model is training based
on the adversarial samples generated online by the FNA at-
tack [13] using triplet loss. GOAT+CS is the defense model
combining the GOAT [13] and our CS. It can be seen from
Table 8 that the defense accuracy of our JAD is far better
than GOAT [13]. In addition, the experimental results show
that the JAD is applicable to other baselines [59,60] and per-
forms well. The strong baseline (SB) [59] is implemented
based on the Resnet50 backbone network adding the batch

Figure 8. Comparison of Grad-CAM [63] activation map between
normally trained model and our proactive defense model.

normalization neck structure, and FastReID (FR) [60] is im-
plemented based on the IBN-ResNet101 [62] backbone net-
work. The method proposed in this paper has good defense
effect in both white-box attack and black-box attack.

Visualization analysis. As the show in Figure 7, our
proactive defense model with robust to color variations
which is insensitive to the variations in the adversarial ex-
amples relative to the original examples. Therefore, we can
observe that the features of adversarial example and homo-
geneous examples exhibit clustering effects.

Grad-CAM [63] uses the gradient information flowing
into the last convolutional layer of the CNN to visualize
the importance of each neuron in the output layer for the
final prediction, by which it is possible to visualize which
regions of the image have a significant impact on the predic-
tion of a model. As shown in Figure 8b, we can see that the
adversarial example successfully distracts the attention of
the normally trained model and activates the opposite parts,
while the our proactive defense model is still effectively ac-
tivating some important parts.

5. Conclusion

In this paper, we proposed a color attack method (LTA)
based on the local transformation, and further proposed
a joint adversarial defense method (JAD) based on the
feature-invariance mechanism to enhance the adversarial
robustness of ReID. Finally, we used different network
structures and baselines under different attack modes to
conduct comparative experiments to verify the effectiveness
of proposed attack method and joint defense method. Our
future goal is to further enhance the stability of the proac-
tive defense model, because we experimentally observed
that the limitations of proactive defense are regular. There-
fore, we will try to consider cross-datasets when training
the model, and update the parameters of the model when a
model is improved on the original and cross-domain dataset.

Acknowledgement

This work was supported by the National Natural Sci-
ence Foundation of China under Grant Nos. U1805263,
61976053, 61672157.

4320



References
[1] Mang Ye, Jianbing Shen, Gaojie Lin, Tao Xiang, Ling

Shao, and Steven C.H. Hoi. Deep learning for person re-
identification: A survey and outlook. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2021. 1

[2] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jing
dong Wang, , and Qi Tian. Scalable person re-identification:a
benchmark. In ICCV, 2015. 1, 5, 6, 7, 8

[3] Zhedong Zheng, Liang Zheng, and Yi Yang. A discrimi-
natively learned cnn embedding for person reidentification.
IEEE Transactions on Information Forensics and Security,
16:728–739, 2017. 1

[4] Yulin Li, Jianfeng He, Tianzhu Zhang, Xiang Liu, Yongdong
Zhang, and Feng Wu. Diverse part discovery: Occluded per-
son re-identification with part-aware transformer. In CVPR,
pages 2898–2907, 2021. 1

[5] Ruibing Hou, Hong Chang, Bingpeng Ma, Rui Huang,
and Shiguang Shan. Bicnet-tks: Learning efficient spatial-
temporal representation for video person re-identification. In
CVPR, pages 2014–2023, 2021. 1

[6] Xudong Tian, Zhizhong Zhang, Shaohui Lin, Yanyun Qu,
Yuan Xie, and Lizhuang Ma. Farewell to mutual infor-
mation: Variational distillation for cross-modal person re-
identification. In CVPR, pages 1522–1531, 2021. 1

[7] Xuehu Liu, Pingping Zhang, Chenyang Yu, Huchuan Lu,
and Xiaoyun Yang. Watching you: Global-guided reciprocal
learning for video-based person re-identification. In CVPR,
pages 13334–13343, 2021. 1

[8] Lu Pang, Yaowei Wang, YiZhe Song, Tiejun Huang, and
Yonghong Tian. Cross-domain adversarial feature learning
for sketch re-identification. 1

[9] Yi Li, Timothy M. Hospedales, Yizhe Song, and Shaogang
Gong. Fine-grained sketch-based image retrieval by match-
ing deformable part models. BMVC, pages 1–12, 2014. 1

[10] Lucas Beyer, Stefan Breuers, Vitaly Kurin, and Bastian
Leibe. Towards a principled integration of multi-camera re-
identification and tracking through optimal bayes filters. In
CVPRW, 2017. 1

[11] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. arXiv:1312.6199,
2014. 1

[12] Song Bai, Yingwei Li, Yuyin Zhou, Qizhu Li, and Philip H.S.
Torr. Metric attack and defense for person re-identification.
arXiv:1901.10650, 2019. 1, 2, 3, 6, 7, 8

[13] Quentin Bouniot, Romaric Audigier, and Angelique Loesch.
Vulnerability of person re-identification models to metric ad-
versarial attacks. In CVPRW, 2020. 1, 2, 3, 6, 7, 8

[14] Hongjun Wang, Guangrun Wang, Ya Li, Dongyu Zhang, and
Liang Lin. Transferable, controllable, and inconspicuous ad-
versarial attacks on person re-identification with deep mis-
ranking. In CVPR, 2020. 1, 2, 3, 7, 8

[15] Zhedong Zheng, Liang Zheng, Zhilan Hu, and Yi Yang.
Open set adversarial examples. arXiv:1809.02681v1, 2018.
1, 3

[16] Zhibo Wang, Siyan Zheng, Mengkai Song, Qian Wang,
Alireza Rahimpour, and Hairong Qi. advpattern: physical-
world attacks on deep person re-identification via adversari-
ally transformable patterns. In ICCV, 2019. 1, 2

[17] Yunpeng Gong. A general multi-modal data learning method
for person re-identification. arXiv:2101.08533, 2021. 1, 3,
4, 5

[18] Mo Zhou, Zhenxing Niu, Le Wang, Qilin Zhang, and Gang
Hua. Adversarial ranking attack and defense. In ECCV,
2020. 2, 3

[19] Giorgos Tolias, Filip Radenovic, and Ondrej Chum. Targeted
mismatch adversarial attack: Query with a flower to retrieve
the tower. In ICCV, 2019. 2

[20] Mo Zhou, Le Wang, Zhenxing Niu, Qilin Zhang, Yinghui
Xu, Nanning Zheng, and Gang Hua. Practical relative order
attack in deep ranking. In ICCV, 2021. 2

[21] Xiaodan Li, Jinfeng Li, Yuefeng Chen, Shaokai Ye, Yuan
He, Shuhui Wang, Hang Su, and Hui Xue. Qair: Practi-
cal query-efficient black-box attacks for image retrieval. In
CVPR, 2021. 2

[22] Jie Li, Rongrong Ji, Hong Liu, Xiaopeng Hong, Yue Gao,
and Qi Tian. Universal perturbation attack against image
retrieval. In ICCV, 2019. 2

[23] Mo Zhou and Vishal M. Patel. Enhancing adversarial robust-
ness for deep metric learning. arXiv:2203.01439, 2022. 2,
3

[24] Zhedong Zheng, Xiaodong Yang, Zhiding Yu, Liang Zheng,
Yi Yang, and Jan Kautz. Joint discriminative and generative
learning for person re-identification. In CVPR, 2019. 2

[25] Zhun Zhong, Liang Zheng, Zhedong Zheng, Shaozi Li,
and Yi Yang. Camera style adaptation for person re-
identification. In CVPR, 2018. 2, 3

[26] Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian.
Person transfer gan to bridge domain gap for person re-
identification. In CVPR, 2018. 2

[27] Chuanbiao Song, Kun He, Liwei Wang, and John E.
Hopcroft. Improving the generalization of adversarial train-
ing with domain adaptation. In ICLR, 2019. 2

[28] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom,
Alexander Turner, and Aleksander Madry. Robustness may
be at odds with accuracy. In ICLR, 2019. 2, 3

[29] Tianyuan Zhang and Zhanxing Zhu. Interpreting adversari-
ally trained convolutional neural networks. In Proceedings
of the 36th International Conference on Machine Learning,
volume 97, pages 7502–7511, 2019. 2

[30] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adver-
sarial examples in the physical world. In ICLR, 2017. 2

[31] Nicolas Papernot, Patrick McDaniel, and Ian Goodfel-
low. Transferability in machine learning:from phe-
nomena to black-box attacks using adversarial samples.
arXiv:1605.07277, 2016. 2

4321



[32] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In ICLR,
2014. 3

[33] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun
Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial at-
tacks with momentum. In CVPR, 2018. 3

[34] Qiqi Xiao, Hao Luo, and Chi Zhang. Margin sample min-
ing loss: A deep learning based method for person re-
identification. arXiv:1710.00478, 2017. 3

[35] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In
defense of the triplet loss for person re-identification.
arXiv:1703.07737, 2017. 3

[36] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and
Pascal Frossard. Deepfool: a simple and accurate method
to fool deep neural networks. In CVPR, 2016. 3

[37] Uyeong Jang, Xi Wu, and Somesh Jha. Objective metrics and
gradient descent algorithms for adversarial examples in ma-
chine learning. In Proceedings of the 33rd Annual Computer
Security Applications Conference, pages 262–277, 2017. 3

[38] Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. IEEE Symposium on Security
and Privacy, pages 39–57, 2017. 3

[39] Liang Zheng, Yi Yang, and Alexander G. Haupt-
mann. Person re-identification: Past, present and future.
arXiv:1610.02984, 2016. 3

[40] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q. Weinberger. Densely connected convolutional net-
works. In CVPR, 2017. 3, 6, 8

[41] Xuelin Qian, Yanwei Fu, Yu-Gang Jiang, Tao Xiang, and
Xiangyang Xue. Multi-scale deep learning architectures for
person re-identification. In ICCV, 2017. 3

[42] Xuan Zhang, Hao Luo, Xing Fan, Weilai Xiang, Yixiao Sun,
Qiqi Xiao, Wei Jiang, Chi Zhang, and Jian Sun. Aligne-
dreid: Surpassing human-level performance in person re-
identification. arXiv:1711.08184, 2017. 3

[43] Yifan Sun, Liang Zheng, Yi Yang, Qi Tian, and Shengjin
Wang. Beyond part models: Person retrieval with refined
part pooling (and a strong convolutional baseline). In ECCV,
2018. 3

[44] Wei Li, Xiatian Zhu, and Shaogang Gong. Harmonious at-
tention network for person re-identification. In CVPR, 2018.
3

[45] Zhedong Zheng, Liang Zheng, and Yi Yang. Unlabeled sam-
ples generated by gan improve the person re-identification
baseline in vitro. In ICCV, 2017. 3, 6, 7

[46] Zhun Zhong, Liang Zheng, Shaozi Li, and Yi Yang. Gener-
alizing a person retrieval model hetero- and homogeneously.
In ECCV, 2018. 3

[47] Weijian Deng, Liang Zheng, Qixiang Ye, Guoliang Kang,
Yi Yang, and Jianbin Jiao. Image-image domain adaptation
with preserved self-similarity and domain-dissimilarity for
person re-identification. In CVPR, 2018. 3

[48] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens
van der Maatenn. Countering adversarial images using input
transformations. In ICLR, 2018. 3

[49] Gintare Karolina Dziugaite, Zoubin Ghahramani, and
Daniel M. Roy. A study of the effect of jpg compression on
adversarial images. arXiv preprint arXiv:1608.00853, 2016.
3

[50] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and
Alan Yuille. Mitigating adversarial effects through random-
ization. In ICLR, 2018. 3, 5, 6, 8

[51] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. arXiv:1706.06083,
2017. 3

[52] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L.
Yuille, and Kaiming He. Feature denoising for improving
adversarial robustness. In CVPR, pages 501–509, 2019. 3

[53] Nicholas Carlini, Guy Katz, Clark Barrett, and David L. Dill.
Ground-truth adversarial examples. In ICLR, 2018. 3

[54] Papernot N, Faghri F, Carlini N, Goodfellow I, Feinman R,
Kurakin A, and et al. Technical report on the cleverhans
v2.1.0 adversarial examples library. arXiv:1610.00768v6,
2016. 3

[55] Mang Ye, Jianbing Shen, Senior Member, IEEE, and Ling
Shao. Visible-infrared person re-identification via homoge-
neous augmented tri-modal learning. IEEE Transactions on
Information Forensics and Security, 16:728–739, 2021. 4
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