
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

FEDCMR: A LIBRARY FOR FEDERATED CONTINUAL MODEL REFINEMENT

Anonymous Authors1

ABSTRACT
Machine learning models suffer from performance degradation when out-of-distribution (OOD) data samples,
which do not come from their training data distributions, emerge after model deployment. A common practice
called continual model refinement (CMR) in machine learning operations (MLOps) can alleviate such performance
degradation by continuously refining deployed models over OOD data samples. However, few existing works
on CMR tasks have considered federated learning (FL) settings where the OOD data samples are ubiquitous.
To support CMR tasks in federated learning scenarios, we present a library called FedCMR, which includes a
holistic pipeline that enables end-to-end CMR task evaluation ranging from data selection and labeling to model
refinement and evaluation. We further show a case of integrating FedCMR with a federated learning ecosystem
backed by the FedML production system (He et al., 2020). We hope that FedCMR could provide an efficient means
for developing and evaluating federated CMR algorithms. We will open-source our library upon publication.

1 INTRODUCTION

Deployed machine learning models often encounter out-of-
distribution (OOD) data samples that do not come from
their training data distributions. For example, in a federated
surveillance system, object recognition models may see
images with lighting conditions or weather that are not
included in their training set (Figure 1). Various existing
studies (Koh et al., 2020; Gulrajani & Lopez-Paz, 2021;
Lin et al., 2022) suggest that deployed models often fail to
generalize to OOD data samples and, therefore, suffer from
performance degradation. Such performance degradation
imposes risks in mission-critical applications due to missing
detections of critical events.
A common practice to alleviate such performance degra-
dation of deployed models on OOD data is collecting data
samples from data sources (e.g., cameras) with evolving
data distributions and continuously refining deployed mod-
els using the collected data samples (Figure 1). Concretely,
a continual model refinement (CMR) task may repeatedly
perform the following steps:

1. Collecting data samples from data sources.
2. Selecting data samples for labeling and storing.
3. Trigger refinement tasks.
4. Produce refined models.
5. Evaluate and select refined models for serving.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the Machine Learning and
Systems (MLSys) Conference. Do not distribute.

Figure 1. An example of continual model refinement (CMR) task.
A model from the training service encounters out-of-distribution
(OOD) data samples from different distributions than its training
set D0. The CMR service summarizes OOD data samples into
refinement sets D1,D2 and produces refined models that perform
better on OOD data samples.

Along this direction, existing libraries suffer from a few
critical limitations.

Lack of holistic support. None of the existing libraries
(Lin et al., 2022; rostamiz & Yang, 2017; Huang et al.,
2022; Koh et al., 2020; Gulrajani & Lopez-Paz, 2021) on
CMR tasks includes all five steps in the CMR task pipeline.
For example, the CMR library (Lin et al., 2022) focuses
on simulating OOD data streams and benchmarking model
refinement algorithms but does not include the data selection
step (Step 2). The data selection step is important because
(1) data sources can constantly produce a high volume of
samples that are infeasible to store entirely, and (2) selection
strategies can affect the following training step and model
performance (Ren et al., 2020).
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FedCMR: A Library for Federated Continual Model Refinement

Table 1. Comparison between our FedCMR library and CMR (Lin et al., 2022), Avalanche (AVL) (Lomonaco et al., 2021), active learning
as a service (ALaas) (Huang et al., 2022), WILDS (Koh et al., 2020), and DomainBed (DB) (Gulrajani & Lopez-Paz, 2021) libraries.

CMR AVL ALAAS ALP WILDS DB FEDCMR

HOLISTIC
SUPPORT

FLEXIABLE OOD DATA GENERATION ✓ ✗ ✗ ✗ ✗ ✗ ✓
DATA SAMPLER ✗ ✗ ✓ ✓ ✗ ✗ ✓
TASK TRIGGER ✗ ✗ ✗ ✗ ✗ ✗ ✓
REFINEMENT PARADIGM ✓ ✓ ✗ ✗ ✗ ✗ ✓
EVALUATION CRITERIA ✓ ✓ ✓ ✓ ✓ ✓ ✓

MODULARITY
AND
COMPATABILITY

MODULARIZED ALGORITHM ✓ ✓ ✓ ✓ ✓ ✓ ✓
MODULARIZED DEPENDENCIES ✗ ✗ ✗ ✗ ✗ ✗ ✓
FL ECOSYSTEM INTEGRATION ✗ ✗ ✗ ✗ ✗ ✗ ✓

Lack of support for federated learning systems. Most
of the existing libraries (Lin et al., 2022; Huang et al., 2022)
are designed for local simulation or centralized deployment
on the cloud and do not support federated CMR tasks.

In this work, we present FedCMR that addresses the afore-
mentioned limitations. The highlights of our library are:

Out-of-the-box functionalities. Our libraries support all
five steps in CMR tasks, ranging from data collection to
model selection. Scientists and practitioners may directly
plugin their algorithms and datasets without additional cod-
ing efforts. We also include benchmark datasets and baseline
algorithm implementations (Appendix A).

Modularized library design and algorithm dependencies.
Our library is modularized and can be easily extended to
new refinement strategies. In addition, we design flexible
and generic API interfaces for each module, including al-
gorithm dependencies (e.g., data storage) that are common
in production machine learning systems. The modularized
dependencies can further ease the integration of our library
into a federated learning ecosystem.

Federated learning (FL) support. We integrate our Fed-
CMR library into the FedML ecosystem that supports
production-level deployments in cross-silo and cross-device
settings (He et al., 2020), going beyond local simulations
and centralized cloud platforms.

We list examples of integrating our library into federated
learning infrastructures and provide empirical results to
show the capability of our holistic library on CMR tasks.

2 RELATED WORKS

Besides the CMR library (Lin et al., 2022) that is discussed
in Section 1, active learning libraries (rostamiz & Yang,
2017; Huang et al., 2022) provide comprehensive support
for data selection strategies but mainly focus on improving
the model performance over their training sets instead of the

OOD data samples. There are also libraries (Koh et al., 2020;
Gulrajani & Lopez-Paz, 2021) on OOD generalization tasks
that benchmark model performance over OOD data samples
(Step 4). OOD generalization tasks assume that OOD data
samples are not accessible outside evaluation, differing from
CMR tasks that aim to refine deployed models over OOD
data samples. In addition, none of the existing libraries
support federated learning systems. Table 1 shows a detailed
comparison between our library and others.

3 ARCHITECTURE DESIGN

We first introduce the high-level architecture design of our
library. Later, we will show a case of integrating our li-
brary into federated learning systems. In what follows, we
shall present a basic workflow of our library (Figure 2) and,
then, dive into the detailed modular design. The workflow
includes modules that are related to the CMR task as well
as their dependencies (e.g., data sources and storage). Our
library provides a mock module for each dependency to
ease simulations outside production systems, including data
sources, data storage, training infrastructure, model card,
and inference endpoint (Figure 2).

3.1 Workflow Overview

The workflow of a CMR task (Figure 2) starts with data
sources that collect data samples (step 1). Later, the col-
lected data samples will arrive at the data sampler. The data
sampler operates in a batch manner: for a data batch, the
informative and representative data samples are selected
based on a selection strategy (step 2). Users may let the
selected data samples go to the data labeler for labeling or
directly add the unlabeled data to data storage (step 3). Such
a data collecting-labeling-storing process is long-running.
Algorithm 1 shows a data selection workflow example with
a labeling option.

Algorithm 2 summarizes the remaining workflow of our
library. The refinement trigger fires once a trigger condi-
tion (e.g., 10,000 new samples are labeled) is met (step 4).



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

FedCMR: A Library for Federated Continual Model Refinement

Figure 2. A workflow for continual model refinement (CMR) tasks, which include our library (rightmost column) and its dependencies.

Algorithm 1 Batch data selection workflow

Input: batch size m > 0, sampling budget k, option
need label
for i = 1 to ∞ do
{x1, ...,xm} = DataSource.get(m)
{π1, ..., πk} = DataSampler.sample(k, {x1, ..., xm})
if need label = True then
{(xπ1 , yπ1), ...} = Labeler.label({xπ1 , ...})
DataStorage.append labeled({(xπ1

, yπ1
), ...)})

else
DataStorage.append unlabeled({xπ1

, ...,xπk
})

end if
end for

To monitor trigger conditions, the refinement trigger may
periodically query the data storage for related information.
Once the refinement trigger fires, our CMR library submits a
refinement job to the training infrastructure (step 5). While
completing the refinement job, the training infrastructure in-
teracts with data storage for retrieving selected data samples
and updating stored data samples such as replay memory
(Lopez-Paz & Ranzato, 2017). Users may directly adopt
the built-in refinement job and algorithms in our library or
add their own customization. The refined models then go to
model cards. Our library then issues test jobs to the training
infrastructure and evaluates multiple models from model
cards based on the updated data set that includes the newly
labeled data samples (step 6). The inference endpoint will
pick the model with the best evaluation result for serving
(step 7).

Algorithm 2 Continuous Mode Refinement workflow

Input: refinement jobs Jtrain, Jeval

for i = 1 to ∞ do
t = Timer.get time()
n = DataStorage.get data counter()
if Trigger.fire(t, n) = True then

TrainingPlatform.execute(Jtrain)
best model = TrainingPlatform.execute(Jeval)
InferenceEndpoint.update(best model)

end if
end for

Comparison. In addition to the advantage of comprehen-
sive support for CMR tasks (Section 2), our workflow is
more generic and flexible than those of existing libraries:

• The previous CMR library (Lin et al., 2022) uses scripts
to generate and store data streams instead of providing
a generic DataSource module. For the same CMR task,
it would be valuable to evaluate a CMR strategy over
data streams that are generated with different seeds.
With a DataSource module, our library can directly
handle different seeds. In contrast, the CMR library
(Lin et al., 2022) would need users to generate and store
multiple data streams, introducing additional overhead.

• The Avalanche library (Lomonaco et al., 2021) as-
sumes that the data storage is a module of a refinement
job instead of specifying a generic interface between
the refinement job and the data storage. Therefore,
implementing a refinement task trigger is difficult in
Avalanche because the data storage is not available
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until the refinement job is launched. Such an issue
makes the Avalanche library less flexible for CMR
tasks compared to our library.

3.2 Modularized Design

We introduce each module that is mentioned in the workflow
with more details.

3.2.1 Data sources

Data sources iteratively generate data batches or streams that
include OOD data samples. Since real-world data streams
may not always be available, our library includes a simu-
lated batch OOD data generation approach (Lin et al., 2022)
utilizing multiple predefined datasets in addition to the train-
ing set. These predefined datasets are not available during
training and are therefore considered OOD. The simulated
approach (Algorithm 3) picks a major OOD dataset at each
iteration using a Markov chain. Then, we mix data samples
from the major OOD dataset and those from other datasets.
Such a strategy offers control over the OOD level of data
batches by specifying how often distribution shifts and how
many OOD samples are included.

Algorithm 3 Simulated data source (Lin et al., 2022)

Input: datasets D0, ...,DN , batch size m, previous major
dataset index c0, transition matrix of a Markov chain β,
mixing ratios α and γ
Initialize data batch D = ∅.
1. Sample a major dataset index c from a categorical
distribution c ∼ Cat(βc)
2. D = D ∪ D′

0 where D′
0 is a random subset with αb

elements from the training set D0.
3. D = D ∪ D′

c where D′
0 is a random subset with (1 −

α− γ)b elements from the training set D0.
4. D = D ∪ D′

0∪c where D′
0∪c is a random subset with

αb elements from the union of all dataset except for the
training set D0 and the major dataset D ∪D′

c.
Return D

3.2.2 Data sampler

Data sampler is a common module in modern machine learn-
ing pipelines (Haussmann et al., 2020) because storing every
data sample from data sources can be infeasible. Our sam-
pler module takes a data batch as input and outputs a set
of selected indices. Here, we detail the core-set approach
(Algorithm 4) and margin-based strategy (Algorithm 5) as
representative examples. The core-set approach aims to se-
lect data samples to maximize the coverage of the selected
samples over the remaining samples in, for example, Eu-
clidean distance. The margin-based strategy uses models’
prediction confidence as criteria, which is measured by the

Algorithm 4 Coreset sampler

Input: m data samples {x1, ...,xm}, budget k
Initialize S to be a random subset of [m] = {1, ...,m}.
repeat

u = argmaxi∈[m]\S minj∈S ∥xi − xj∥
S = S ∪ u

until |S| = k

Algorithm 5 Margin sampler

Input:
Input: m data samples {x1, ...,xm}, budget k, model f
that outputs logits, d classes
Initialize S = ∅.
repeat

u = argmaxi∈[m]\S f(xi)p − f(xi)q where p =
argmax[d] f(xi) and q = argmax[d]\p f(xi)
S = S ∪ u

until |S| = k

difference between the largest value and the second largest
value in prediction logits.

3.2.3 Data labeler

The data labeler needs to assign labels to selected data sam-
ples from the data sampler. In simulations and benchmark-
ing, we may directly use ground-truth labels.

3.2.4 Data storage

The data storage module needs to store and get both labeled
and unlabeled data. Our library lets data batches that are
selected at different times be stored separately. Separating
data batches can ease the model evaluation tasks and pro-
vide fine-grained evaluation results over a period of time in
addition to their average. The get method can take a time
argument t to retrieve data batches that are stored before
time t. We use a pointer to track which batches are included
in previous refinement tasks and provide a stash method
to update the pointer.

3.2.5 Model cards

A model cards module (Mitchell et al., 2018) needs to store
models and their parameters. Each model is indexed by a
card and can be retrieved.

3.2.6 Task trigger

The task trigger decides when to launch model refinement
tasks. Our current implementation supports time-based and
sample-based trigger strategies, which fire a trigger once a
given amount of time passes or a certain number of samples
are appended.
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Figure 3. A workflow for federated continual model refinement (FedCMR) tasks, which include our library and the FedML ecosystem (He
et al., 2020). We integrate our FedCMR modules into the server and clients from FedML.

Algorithm 6 Refinement job template

Input: current time t, model f , data storage DataStorage,
model card ModelCard
1. recent batch = DataStorage.get(t)
2. replay buffer = DataStorage.get replay buffer()
3. Refine model f and produce updated model f ′

4. Update replay buffer
5. DataStorage.update replay buffer(replay buffer)
6. DataStorage.stash(t)
7. card = ModelCard.add(f ′)
Return card

3.2.7 Training infrastructure

A training infrastructure needs to accept and complete refine-
ment jobs with specified datasets, models, and job scripts.
Interacting with the data storage module and the model card
module is necessary.

3.2.8 Refinement paradigm

A refinement paradigm specifies how to refine a model. Our
library provides generic refinement job templates (Algo-
rithm 6). The generic templates specify the interactions
between the job and the data storage and model card de-
pendencies, which are necessary and sufficient for common
replay-based and regularization refinement paradigms (Lin
et al., 2022).

3.2.9 Evaluation criteria

We provide job templates for evaluating the accuracies of
models over the training set and data batches selected by
the data sampler. On benchmark datasets, we also compute
accuracies on pre-defined OOD datasets.

3.2.10 Inference end-point

Inference endpoints 1 ease model deployments. Our library
sends the best model card to an endpoint, which will subse-
quently fetch the best model from the model card module
using the best model card and deploy it.

4 A CASE OF FL ECOSYSTEM
INTEGRATION

In this section, we shall present a case (Figure 3) of combin-
ing our FedCMR libraries with a horizontal FL system that is
supported by the FedML production system (He et al., 2020).
The FedML system supports a broad class of hardware plat-
forms, optimization algorithms, and learning paradigms and
has applications in real-world scenarios. Specifically, the
FedML system adopts a worker-oriented design pattern that
allows developers to specify the behavior of each worker
(e.g., server or client) in a system. Such a worker-oriented
design allows flexible customization of messaging flows in

1https://huggingface.co/
inference-endpoints

https://huggingface.co/inference-endpoints
https://huggingface.co/inference-endpoints
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any network topology (He et al., 2020). The modularized
design of our library, including the dependencies, allows us
to directly place each module on the server or client workers
with a minimum amount of effort and introduce CMR tasks
for real-world deployment (FedML, 2022).

4.1 Framework and Workflow

We present a FedCMR framework in Figure 3. Thanks to the
modularized design of our library, on the client side, we can
directly integrate data sources, data sampler, data labeler,
and data storage modules together with the client-side fed-
erated learning infrastructure. While clients are performing
data selection workflows (Algorithm 1), the server monitors
the trigger status and periodically queries clients for neces-
sary information (e.g., the number of labeled new samples
on each client). The messaging flow between clients and
servers is FedML built-in. Upon the trigger fire, the server
launches refinement jobs. The server further dispatches jobs
to clients and aggregates a refined global model. Then, the
server launches an evaluation job in a similar way to refine-
ment jobs and gets the best model card upon job completion.
The best model card will be sent to the inference endpoint
to fetch a new model for federated deployment.

5 EXPERIMENTS

We show the capability of our FedCMR library via exper-
iments in a centralized setting and in a federated learning
system with 10 clients. The aggregator in federated learning
settings is FedAvg (McMahan et al., 2016). We perform ex-
periments using the Fed CIFAR10 dataset and a Resnet-18
model that is trained on the Fed CIFAR10 dataset. We in-
crease and decrease the brightness of Fed CIFAR10 images
to generate OOD 1 and OOD 2 datasets, respectively.

We employ three data samplers (random, coreset, and mar-
gin samplers) and two data sources. The first data source
only includes a single OOD dataset and the second one
mixes OOD datasets according to Algorithm 3. The re-
finement algorithm is the random memory-replay. Next,
we highlight some results that are not covered by existing
libraries and benchmarks but are useful for further research.

Refinement is beneficial but not universally. In Figure 4,
we can see that experiments with the data source 1 that only
uses a single OOD dataset show accuracy improvements by
up to on both OOD datasets. In contrast, with data source 2,
the increased accuracy over the brighter OOD images (OOD
1) can sacrifice the accuracy over darker OOD images (OOD
2). This result suggests that conflicts between datasets may
diminish the refinement benefit. Such conflicts between
datasets or tasks are common in multi-task learning settings,
and methods from multi-task learning literature (Yu et al.,
2020) may help alleviate conflicts.

(a) Data source 1 (b) Data source 2

Figure 4. Accuracy plots of CMR tasks with 5 centralized refine-
ment steps (i.e., the trigger fires 5 times) and two data sources.

(a) Client 1 (b) Client 2

Figure 5. Accuracy plots on two clients in a federated CMR task.

Random sampler is competitive in CMR tasks. Neither
of the coreset and margin samplers that are designed for
training from scratch settings significantly outperforms the
random sampler over the OOD 1 and 2 datasets (Table 2) in
CMR tasks. In addition, the coreset sampler yields higher
accuracy variation across datasets.

Table 2. Sampler comparison.
SAMPLER OOD 1 OOD 2

RANDOM .743 .916
CORESET .749 .864
MARGIN .752 .920

Federated CMR task needs fairness. In a federated
CMR task, some clients may suffer from performance degra-
dation over both OOD datasets (Figure 5b) while others can
enjoy refinement benefits (Figure 5a).

6 CONCLUSION AND FUTURE WORK

In this paper, we present the FedCMR library that pro-
vides comprehensive support for continual model refinement
(CMR) tasks and extends CMR tasks to federated learning
settings. We will add more datasets, refinement algorithms
from various paradigms, and federated learning settings in
the future.
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A BASELINES AND BENCHMARKS

Tables 3, 4, and 5 list data sampler baselines, refinement
paradigms, and benchmark datasets, respectively. We are
actively developing our library and adding more baselines
and datasets.
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Table 3. Data sampler.
SAMPLER CONFIDENCE-BASED CLUSTERING-BASED

RANDOM ✗ ✗
CORESET ✗ ✓
MARGIN ✓ ✗
MC-DROPOUT ✓ ✗
INFORMATIVE AND DIVERSE ✓ ✓
GRAPH DENSITY ✗ ✓

Table 4. Refinement paradigm.
REFINER SUPERVISED REPLAY-BASED

FINE-TUNING ✗ ✗
MEMORY-REPLAY ✓ ✓
PSEUDO-LABELING ✗ ✓

Table 5. Benchmark datasets.
DATA SET DATA TYPE TASK OOD TYPE

CIFAR10 IMAGE IMAGE CLASSIFICATION BRIGHTNESS
FED CIFAR10 IMAGE IMAGE CLASSIFICATION BRIGHTNESS
COCO IMAGE OBJECT DETECTION BRIGHTNESS
IWILDCAM IMAGE IMAGE DETECTION CAMERA ANGLE, WEATHER, ETC


